--- _id: '1241' abstract: - lang: eng text: 'How likely is it that a population escapes extinction through adaptive evolution? The answer to this question is of great relevance in conservation biology, where we aim at species’ rescue and the maintenance of biodiversity, and in agriculture and medicine, where we seek to hamper the emergence of pesticide or drug resistance. By reshuffling the genome, recombination has two antagonistic effects on the probability of evolutionary rescue: It generates and it breaks up favorable gene combinations. Which of the two effects prevails depends on the fitness effects of mutations and on the impact of stochasticity on the allele frequencies. In this article, we analyze a mathematical model for rescue after a sudden environmental change when adaptation is contingent on mutations at two loci. The analysis reveals a complex nonlinear dependence of population survival on recombination. We moreover find that, counterintuitively, a fast eradication of the wild type can promote rescue in the presence of recombination. The model also shows that two-step rescue is not unlikely to happen and can even be more likely than single-step rescue (where adaptation relies on a single mutation), depending on the circumstances.' acknowledgement: This work was made possible by a “For Women in Science” fellowship (L’Oréal Österreich in cooperation with the Austrian Commission for the United Nations Educational, Scientific, and Cultural Organization and the Austrian Academy of Sciences with financial support from the Federal Ministry for Science and Research Austria) and European Research Council grant 250152 (to Nick Barton). author: - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Joachim full_name: Hermisson, Joachim last_name: Hermisson citation: ama: Uecker H, Hermisson J. The role of recombination in evolutionary rescue. Genetics. 2016;202(2):721-732. doi:10.1534/genetics.115.180299 apa: Uecker, H., & Hermisson, J. (2016). The role of recombination in evolutionary rescue. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.115.180299 chicago: Uecker, Hildegard, and Joachim Hermisson. “The Role of Recombination in Evolutionary Rescue.” Genetics. Genetics Society of America, 2016. https://doi.org/10.1534/genetics.115.180299. ieee: H. Uecker and J. Hermisson, “The role of recombination in evolutionary rescue,” Genetics, vol. 202, no. 2. Genetics Society of America, pp. 721–732, 2016. ista: Uecker H, Hermisson J. 2016. The role of recombination in evolutionary rescue. Genetics. 202(2), 721–732. mla: Uecker, Hildegard, and Joachim Hermisson. “The Role of Recombination in Evolutionary Rescue.” Genetics, vol. 202, no. 2, Genetics Society of America, 2016, pp. 721–32, doi:10.1534/genetics.115.180299. short: H. Uecker, J. Hermisson, Genetics 202 (2016) 721–732. date_created: 2018-12-11T11:50:54Z date_published: 2016-02-01T00:00:00Z date_updated: 2023-02-21T10:24:19Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.115.180299 ec_funded: 1 intvolume: ' 202' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: http://biorxiv.org/content/early/2015/07/06/022020.abstract month: '02' oa: 1 oa_version: Preprint page: 721 - 732 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25B67606-B435-11E9-9278-68D0E5697425 name: L'OREAL Fellowship publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '6091' quality_controlled: '1' scopus_import: 1 status: public title: The role of recombination in evolutionary rescue type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2016' ... --- _id: '1349' abstract: - lang: eng text: Crossing fitness valleys is one of the major obstacles to function optimization. In this paper we investigate how the structure of the fitness valley, namely its depth d and length ℓ, influence the runtime of different strategies for crossing these valleys. We present a runtime comparison between the (1+1) EA and two non-elitist nature-inspired algorithms, Strong Selection Weak Mutation (SSWM) and the Metropolis algorithm. While the (1+1) EA has to jump across the valley to a point of higher fitness because it does not accept decreasing moves, the non-elitist algorithms may cross the valley by accepting worsening moves. We show that while the runtime of the (1+1) EA algorithm depends critically on the length of the valley, the runtimes of the non-elitist algorithms depend crucially only on the depth of the valley. In particular, the expected runtime of both SSWM and Metropolis is polynomial in ℓ and exponential in d while the (1+1) EA is efficient only for valleys of small length. Moreover, we show that both SSWM and Metropolis can also efficiently optimize a rugged function consisting of consecutive valleys. author: - first_name: Pietro full_name: Oliveto, Pietro last_name: Oliveto - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Jorge full_name: Heredia, Jorge last_name: Heredia - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 citation: ama: 'Oliveto P, Paixao T, Heredia J, Sudholt D, Trubenova B. When non-elitism outperforms elitism for crossing fitness valleys. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016 . ACM; 2016:1163-1170. doi:10.1145/2908812.2908909' apa: 'Oliveto, P., Paixao, T., Heredia, J., Sudholt, D., & Trubenova, B. (2016). When non-elitism outperforms elitism for crossing fitness valleys. In Proceedings of the Genetic and Evolutionary Computation Conference 2016 (pp. 1163–1170). Denver, CO, USA: ACM. https://doi.org/10.1145/2908812.2908909' chicago: Oliveto, Pietro, Tiago Paixao, Jorge Heredia, Dirk Sudholt, and Barbora Trubenova. “When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys.” In Proceedings of the Genetic and Evolutionary Computation Conference 2016 , 1163–70. ACM, 2016. https://doi.org/10.1145/2908812.2908909. ieee: P. Oliveto, T. Paixao, J. Heredia, D. Sudholt, and B. Trubenova, “When non-elitism outperforms elitism for crossing fitness valleys,” in Proceedings of the Genetic and Evolutionary Computation Conference 2016 , Denver, CO, USA, 2016, pp. 1163–1170. ista: 'Oliveto P, Paixao T, Heredia J, Sudholt D, Trubenova B. 2016. When non-elitism outperforms elitism for crossing fitness valleys. Proceedings of the Genetic and Evolutionary Computation Conference 2016 . GECCO: Genetic and evolutionary computation conference, 1163–1170.' mla: Oliveto, Pietro, et al. “When Non-Elitism Outperforms Elitism for Crossing Fitness Valleys.” Proceedings of the Genetic and Evolutionary Computation Conference 2016 , ACM, 2016, pp. 1163–70, doi:10.1145/2908812.2908909. short: P. Oliveto, T. Paixao, J. Heredia, D. Sudholt, B. Trubenova, in:, Proceedings of the Genetic and Evolutionary Computation Conference 2016 , ACM, 2016, pp. 1163–1170. conference: end_date: 2016-07-24 location: Denver, CO, USA name: 'GECCO: Genetic and evolutionary computation conference' start_date: 2016-07-20 date_created: 2018-12-11T11:51:31Z date_published: 2016-07-20T00:00:00Z date_updated: 2021-01-12T06:50:03Z day: '20' ddc: - '576' department: - _id: NiBa - _id: CaGu doi: 10.1145/2908812.2908909 ec_funded: 1 file: - access_level: open_access checksum: a1896e39e4113f2711e46b435d5f3e69 content_type: application/pdf creator: system date_created: 2018-12-12T10:16:27Z date_updated: 2020-07-14T12:44:45Z file_id: '5214' file_name: IST-2016-650-v1+1_p1163-oliveto.pdf file_size: 979026 relation: main_file file_date_updated: 2020-07-14T12:44:45Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 1163 - 1170 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: 'Proceedings of the Genetic and Evolutionary Computation Conference 2016 ' publication_status: published publisher: ACM publist_id: '5900' pubrep_id: '650' quality_controlled: '1' scopus_import: 1 status: public title: When non-elitism outperforms elitism for crossing fitness valleys tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '1359' abstract: - lang: eng text: "The role of gene interactions in the evolutionary process has long\r\nbeen controversial. Although some argue that they are not of\r\nimportance, because most variation is additive, others claim that\r\ntheir effect in the long term can be substantial. Here, we focus on\r\nthe long-term effects of genetic interactions under directional\r\nselection assuming no mutation or dominance, and that epistasis is\r\nsymmetrical overall. We ask by how much the mean of a complex\r\ntrait can be increased by selection and analyze two extreme\r\nregimes, in which either drift or selection dominate the dynamics\r\nof allele frequencies. In both scenarios, epistatic interactions affect\r\nthe long-term response to selection by modulating the additive\r\ngenetic variance. When drift dominates, we extend Robertson\r\n’\r\ns\r\n[Robertson A (1960)\r\nProc R Soc Lond B Biol Sci\r\n153(951):234\r\n−\r\n249]\r\nargument to show that, for any form of epistasis, the total response\r\nof a haploid population is proportional to the initial total genotypic\r\nvariance. In contrast, the total response of a diploid population is\r\nincreased by epistasis, for a given initial genotypic variance. When\r\nselection dominates, we show that the total selection response can\r\nonly be increased by epistasis when s\r\nome initially deleterious alleles\r\nbecome favored as the genetic background changes. We find a sim-\r\nple approximation for this effect and show that, in this regime, it is\r\nthe structure of the genotype - phenotype map that matters and not\r\nthe variance components of the population." article_processing_charge: No article_type: original author: - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Paixao T, Barton NH. The effect of gene interactions on the long-term response to selection. PNAS. 2016;113(16):4422-4427. doi:10.1073/pnas.1518830113 apa: Paixao, T., & Barton, N. H. (2016). The effect of gene interactions on the long-term response to selection. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1518830113 chicago: Paixao, Tiago, and Nicholas H Barton. “The Effect of Gene Interactions on the Long-Term Response to Selection.” PNAS. National Academy of Sciences, 2016. https://doi.org/10.1073/pnas.1518830113. ieee: T. Paixao and N. H. Barton, “The effect of gene interactions on the long-term response to selection,” PNAS, vol. 113, no. 16. National Academy of Sciences, pp. 4422–4427, 2016. ista: Paixao T, Barton NH. 2016. The effect of gene interactions on the long-term response to selection. PNAS. 113(16), 4422–4427. mla: Paixao, Tiago, and Nicholas H. Barton. “The Effect of Gene Interactions on the Long-Term Response to Selection.” PNAS, vol. 113, no. 16, National Academy of Sciences, 2016, pp. 4422–27, doi:10.1073/pnas.1518830113. short: T. Paixao, N.H. Barton, PNAS 113 (2016) 4422–4427. date_created: 2018-12-11T11:51:34Z date_published: 2016-04-19T00:00:00Z date_updated: 2021-01-12T06:50:08Z day: '19' department: - _id: NiBa - _id: CaGu doi: 10.1073/pnas.1518830113 ec_funded: 1 external_id: pmid: - '27044080' intvolume: ' 113' issue: '16' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843425/ month: '04' oa: 1 oa_version: Published Version page: 4422 - 4427 pmid: 1 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5886' quality_controlled: '1' scopus_import: 1 status: public title: The effect of gene interactions on the long-term response to selection type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 113 year: '2016' ... --- _id: '1356' author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. Sewall Wright on evolution in Mendelian populations and the “Shifting Balance.” Genetics. 2016;202(1):3-4. doi:10.1534/genetics.115.184796 apa: Barton, N. H. (2016). Sewall Wright on evolution in Mendelian populations and the “Shifting Balance.” Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.115.184796 chicago: Barton, Nicholas H. “Sewall Wright on Evolution in Mendelian Populations and the ‘Shifting Balance.’” Genetics. Genetics Society of America, 2016. https://doi.org/10.1534/genetics.115.184796. ieee: N. H. Barton, “Sewall Wright on evolution in Mendelian populations and the ‘Shifting Balance,’” Genetics, vol. 202, no. 1. Genetics Society of America, pp. 3–4, 2016. ista: Barton NH. 2016. Sewall Wright on evolution in Mendelian populations and the “Shifting Balance”. Genetics. 202(1), 3–4. mla: Barton, Nicholas H. “Sewall Wright on Evolution in Mendelian Populations and the ‘Shifting Balance.’” Genetics, vol. 202, no. 1, Genetics Society of America, 2016, pp. 3–4, doi:10.1534/genetics.115.184796. short: N.H. Barton, Genetics 202 (2016) 3–4. date_created: 2018-12-11T11:51:33Z date_published: 2016-01-05T00:00:00Z date_updated: 2021-01-12T06:50:07Z day: '05' ddc: - '570' department: - _id: NiBa doi: 10.1534/genetics.115.184796 file: - access_level: open_access checksum: 3562b89c821a4be84edf2b6ebd870cf5 content_type: application/pdf creator: system date_created: 2018-12-12T10:08:26Z date_updated: 2020-07-14T12:44:46Z file_id: '4687' file_name: IST-2017-769-v1+1_SewallWright1931.pdf file_size: 112674 relation: main_file file_date_updated: 2020-07-14T12:44:46Z has_accepted_license: '1' intvolume: ' 202' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 3 - 4 publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '5889' pubrep_id: '769' quality_controlled: '1' scopus_import: 1 status: public title: Sewall Wright on evolution in Mendelian populations and the “Shifting Balance” type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2016' ... --- _id: '1357' author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. Richard Hudson and Norman Kaplan on the coalescent process. Genetics. 2016;202(3):865-866. doi:10.1534/genetics.116.187542 apa: Barton, N. H. (2016). Richard Hudson and Norman Kaplan on the coalescent process. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.116.187542 chicago: Barton, Nicholas H. “Richard Hudson and Norman Kaplan on the Coalescent Process.” Genetics. Genetics Society of America, 2016. https://doi.org/10.1534/genetics.116.187542. ieee: N. H. Barton, “Richard Hudson and Norman Kaplan on the coalescent process,” Genetics, vol. 202, no. 3. Genetics Society of America, pp. 865–866, 2016. ista: Barton NH. 2016. Richard Hudson and Norman Kaplan on the coalescent process. Genetics. 202(3), 865–866. mla: Barton, Nicholas H. “Richard Hudson and Norman Kaplan on the Coalescent Process.” Genetics, vol. 202, no. 3, Genetics Society of America, 2016, pp. 865–66, doi:10.1534/genetics.116.187542. short: N.H. Barton, Genetics 202 (2016) 865–866. date_created: 2018-12-11T11:51:33Z date_published: 2016-03-01T00:00:00Z date_updated: 2021-01-12T06:50:07Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1534/genetics.116.187542 file: - access_level: open_access checksum: b2174bab2de1d1142900062a150f35c9 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:09Z date_updated: 2020-07-14T12:44:46Z file_id: '5127' file_name: IST-2017-768-v1+1_Hudson-Kaplan-1988.pdf file_size: 130779 relation: main_file file_date_updated: 2020-07-14T12:44:46Z has_accepted_license: '1' intvolume: ' 202' issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 865 - 866 publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '5888' pubrep_id: '768' quality_controlled: '1' scopus_import: 1 status: public title: Richard Hudson and Norman Kaplan on the coalescent process type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2016' ...