--- _id: '13073' abstract: - lang: eng text: The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study "replicated" instances of secondary contact between closely-related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly-sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact. article_processing_charge: No author: - first_name: Alexis full_name: Simon, Alexis last_name: Simon - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: Tahani full_name: El Ayari, Tahani last_name: El Ayari - first_name: Cathy full_name: Liautard-Haag, Cathy last_name: Liautard-Haag - first_name: Petr full_name: Strelkov, Petr last_name: Strelkov - first_name: John full_name: Welch, John last_name: Welch - first_name: Nicolas full_name: Bierne, Nicolas last_name: Bierne citation: ama: Simon A, Fraisse C, El Ayari T, et al. How do species barriers decay? concordance and local introgression in mosaic hybrid zones of mussels. 2020. doi:10.5061/DRYAD.R4XGXD29N apa: Simon, A., Fraisse, C., El Ayari, T., Liautard-Haag, C., Strelkov, P., Welch, J., & Bierne, N. (2020). How do species barriers decay? concordance and local introgression in mosaic hybrid zones of mussels. Dryad. https://doi.org/10.5061/DRYAD.R4XGXD29N chicago: Simon, Alexis, Christelle Fraisse, Tahani El Ayari, Cathy Liautard-Haag, Petr Strelkov, John Welch, and Nicolas Bierne. “How Do Species Barriers Decay? Concordance and Local Introgression in Mosaic Hybrid Zones of Mussels.” Dryad, 2020. https://doi.org/10.5061/DRYAD.R4XGXD29N. ieee: A. Simon et al., “How do species barriers decay? concordance and local introgression in mosaic hybrid zones of mussels.” Dryad, 2020. ista: Simon A, Fraisse C, El Ayari T, Liautard-Haag C, Strelkov P, Welch J, Bierne N. 2020. How do species barriers decay? concordance and local introgression in mosaic hybrid zones of mussels, Dryad, 10.5061/DRYAD.R4XGXD29N. mla: Simon, Alexis, et al. How Do Species Barriers Decay? Concordance and Local Introgression in Mosaic Hybrid Zones of Mussels. Dryad, 2020, doi:10.5061/DRYAD.R4XGXD29N. short: A. Simon, C. Fraisse, T. El Ayari, C. Liautard-Haag, P. Strelkov, J. Welch, N. Bierne, (2020). date_created: 2023-05-23T16:48:27Z date_published: 2020-09-22T00:00:00Z date_updated: 2023-08-04T11:04:11Z day: '22' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.R4XGXD29N license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.r4xgxd29n month: '09' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '8708' relation: used_in_publication status: public status: public title: How do species barriers decay? concordance and local introgression in mosaic hybrid zones of mussels tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '13065' abstract: - lang: eng text: Domestication is a human-induced selection process that imprints the genomes of domesticated populations over a short evolutionary time scale, and that occurs in a given demographic context. Reconstructing historical gene flow, effective population size changes and their timing is therefore of fundamental interest to understand how plant demography and human selection jointly shape genomic divergence during domestication. Yet, the comparison under a single statistical framework of independent domestication histories across different crop species has been little evaluated so far. Thus, it is unclear whether domestication leads to convergent demographic changes that similarly affect crop genomes. To address this question, we used existing and new transcriptome data on three crop species of Solanaceae (eggplant, pepper and tomato), together with their close wild relatives. We fitted twelve demographic models of increasing complexity on the unfolded joint allele frequency spectrum for each wild/crop pair, and we found evidence for both shared and species-specific demographic processes between species. A convergent history of domestication with gene-flow was inferred for all three species, along with evidence of strong reduction in the effective population size during the cultivation stage of tomato and pepper. The absence of any reduction in size of the crop in eggplant stands out from the classical view of the domestication process; as does the existence of a “protracted period” of management before cultivation. Our results also suggest divergent management strategies of modern cultivars among species as their current demography substantially differs. Finally, the timing of domestication is species-specific and supported by the few historical records available. article_processing_charge: No author: - first_name: Stephanie full_name: Arnoux, Stephanie last_name: Arnoux - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: Christopher full_name: Sauvage, Christopher last_name: Sauvage citation: ama: 'Arnoux S, Fraisse C, Sauvage C. VCF files of synonymous SNPs related to: Genomic inference of complex domestication histories in three Solanaceae species. 2020. doi:10.5061/DRYAD.Q2BVQ83HD' apa: 'Arnoux, S., Fraisse, C., & Sauvage, C. (2020). VCF files of synonymous SNPs related to: Genomic inference of complex domestication histories in three Solanaceae species. Dryad. https://doi.org/10.5061/DRYAD.Q2BVQ83HD' chicago: 'Arnoux, Stephanie, Christelle Fraisse, and Christopher Sauvage. “VCF Files of Synonymous SNPs Related to: Genomic Inference of Complex Domestication Histories in Three Solanaceae Species.” Dryad, 2020. https://doi.org/10.5061/DRYAD.Q2BVQ83HD.' ieee: 'S. Arnoux, C. Fraisse, and C. Sauvage, “VCF files of synonymous SNPs related to: Genomic inference of complex domestication histories in three Solanaceae species.” Dryad, 2020.' ista: 'Arnoux S, Fraisse C, Sauvage C. 2020. VCF files of synonymous SNPs related to: Genomic inference of complex domestication histories in three Solanaceae species, Dryad, 10.5061/DRYAD.Q2BVQ83HD.' mla: 'Arnoux, Stephanie, et al. VCF Files of Synonymous SNPs Related to: Genomic Inference of Complex Domestication Histories in Three Solanaceae Species. Dryad, 2020, doi:10.5061/DRYAD.Q2BVQ83HD.' short: S. Arnoux, C. Fraisse, C. Sauvage, (2020). date_created: 2023-05-23T16:30:20Z date_published: 2020-10-19T00:00:00Z date_updated: 2023-08-04T11:19:26Z day: '19' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.Q2BVQ83HD main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.q2bvq83hd month: '10' oa: 1 oa_version: Published Version publisher: Dryad related_material: link: - relation: software url: https://github.com/starnoux/arnoux_et_al_2019 record: - id: '8928' relation: used_in_publication status: public status: public title: 'VCF files of synonymous SNPs related to: Genomic inference of complex domestication histories in three Solanaceae species' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '7995' abstract: - lang: eng text: When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple‐effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis , occur in North Atlantic rocky‐shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size‐assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment. acknowledgement: We are very grateful to I. Sencic, L. Brettell, A.‐L. Liabot, J. Galindo, M. Ravinet, and A. Butlin for their help with field sampling and mating experiments. This work was funded by the Natural Environment Research Council, European Research Council and Swedish Research Council VR and we are also very grateful for the support of the Linnaeus Centre for Marine Evolutionary Biology at the University of Gothenburg. The simulations were performed on resources at Chalmers Centre for Computational Science and Engineering (C3SE) provided by the Swedish National Infrastructure for Computing (SNIC). AMW was funded by the European Union's Horizon 2020 research and innovation program under Marie Skłodowska‐Curie grant agreement no. 797747. article_processing_charge: No article_type: original author: - first_name: Samuel full_name: Perini, Samuel last_name: Perini - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Perini S, Rafajlović M, Westram AM, Johannesson K, Butlin RK. Assortative mating, sexual selection, and their consequences for gene flow in Littorina. Evolution. 2020;74(7):1482-1497. doi:10.1111/evo.14027 apa: Perini, S., Rafajlović, M., Westram, A. M., Johannesson, K., & Butlin, R. K. (2020). Assortative mating, sexual selection, and their consequences for gene flow in Littorina. Evolution. Wiley. https://doi.org/10.1111/evo.14027 chicago: Perini, Samuel, Marina Rafajlović, Anja M Westram, Kerstin Johannesson, and Roger K. Butlin. “Assortative Mating, Sexual Selection, and Their Consequences for Gene Flow in Littorina.” Evolution. Wiley, 2020. https://doi.org/10.1111/evo.14027. ieee: S. Perini, M. Rafajlović, A. M. Westram, K. Johannesson, and R. K. Butlin, “Assortative mating, sexual selection, and their consequences for gene flow in Littorina,” Evolution, vol. 74, no. 7. Wiley, pp. 1482–1497, 2020. ista: Perini S, Rafajlović M, Westram AM, Johannesson K, Butlin RK. 2020. Assortative mating, sexual selection, and their consequences for gene flow in Littorina. Evolution. 74(7), 1482–1497. mla: Perini, Samuel, et al. “Assortative Mating, Sexual Selection, and Their Consequences for Gene Flow in Littorina.” Evolution, vol. 74, no. 7, Wiley, 2020, pp. 1482–97, doi:10.1111/evo.14027. short: S. Perini, M. Rafajlović, A.M. Westram, K. Johannesson, R.K. Butlin, Evolution 74 (2020) 1482–1497. date_created: 2020-06-22T09:14:21Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-08-22T07:13:38Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/evo.14027 ec_funded: 1 external_id: isi: - '000539780800001' file: - access_level: open_access checksum: 56235bf1e2a9e25f96196bb13b6b754d content_type: application/pdf creator: dernst date_created: 2020-11-25T10:49:48Z date_updated: 2020-11-25T10:49:48Z file_id: '8808' file_name: 2020_Evolution_Perini.pdf file_size: 1080810 relation: main_file success: 1 file_date_updated: 2020-11-25T10:49:48Z has_accepted_license: '1' intvolume: ' 74' isi: 1 issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '07' oa: 1 oa_version: Published Version page: 1482-1497 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: Evolution publication_identifier: eissn: - '15585646' issn: - '00143820' publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '8809' relation: research_data status: public scopus_import: '1' status: public title: Assortative mating, sexual selection, and their consequences for gene flow in Littorina tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 74 year: '2020' ... --- _id: '8809' abstract: - lang: eng text: When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple-effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis, occur in North Atlantic rocky-shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size-assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively-sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment. article_processing_charge: No author: - first_name: Samuel full_name: Perini, Samuel last_name: Perini - first_name: Marina full_name: Rafajlovic, Marina last_name: Rafajlovic - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: 'Perini S, Rafajlovic M, Westram AM, Johannesson K, Butlin R. Data from: Assortative mating, sexual selection and their consequences for gene flow in Littorina. 2020. doi:10.5061/dryad.qrfj6q5cn' apa: 'Perini, S., Rafajlovic, M., Westram, A. M., Johannesson, K., & Butlin, R. (2020). Data from: Assortative mating, sexual selection and their consequences for gene flow in Littorina. Dryad. https://doi.org/10.5061/dryad.qrfj6q5cn' chicago: 'Perini, Samuel, Marina Rafajlovic, Anja M Westram, Kerstin Johannesson, and Roger Butlin. “Data from: Assortative Mating, Sexual Selection and Their Consequences for Gene Flow in Littorina.” Dryad, 2020. https://doi.org/10.5061/dryad.qrfj6q5cn.' ieee: 'S. Perini, M. Rafajlovic, A. M. Westram, K. Johannesson, and R. Butlin, “Data from: Assortative mating, sexual selection and their consequences for gene flow in Littorina.” Dryad, 2020.' ista: 'Perini S, Rafajlovic M, Westram AM, Johannesson K, Butlin R. 2020. Data from: Assortative mating, sexual selection and their consequences for gene flow in Littorina, Dryad, 10.5061/dryad.qrfj6q5cn.' mla: 'Perini, Samuel, et al. Data from: Assortative Mating, Sexual Selection and Their Consequences for Gene Flow in Littorina. Dryad, 2020, doi:10.5061/dryad.qrfj6q5cn.' short: S. Perini, M. Rafajlovic, A.M. Westram, K. Johannesson, R. Butlin, (2020). date_created: 2020-11-25T11:07:25Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-08-22T07:13:37Z day: '01' department: - _id: NiBa doi: 10.5061/dryad.qrfj6q5cn has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.qrfj6q5cn month: '07' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '7995' relation: used_in_publication status: public status: public title: 'Data from: Assortative mating, sexual selection and their consequences for gene flow in Littorina' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '8112' article_number: '20190530' article_processing_charge: No article_type: letter_note author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Barton NH. On the completion of speciation. Philosophical Transactions of the Royal Society Series B: Biological Sciences. 2020;375(1806). doi:10.1098/rstb.2019.0530' apa: 'Barton, N. H. (2020). On the completion of speciation. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society. https://doi.org/10.1098/rstb.2019.0530' chicago: 'Barton, Nicholas H. “On the Completion of Speciation.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society, 2020. https://doi.org/10.1098/rstb.2019.0530.' ieee: 'N. H. Barton, “On the completion of speciation,” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806. The Royal Society, 2020.' ista: 'Barton NH. 2020. On the completion of speciation. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. 375(1806), 20190530.' mla: 'Barton, Nicholas H. “On the Completion of Speciation.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806, 20190530, The Royal Society, 2020, doi:10.1098/rstb.2019.0530.' short: 'N.H. Barton, Philosophical Transactions of the Royal Society. Series B: Biological Sciences 375 (2020).' date_created: 2020-07-13T03:41:39Z date_published: 2020-07-12T00:00:00Z date_updated: 2023-08-22T07:53:52Z day: '12' department: - _id: NiBa doi: 10.1098/rstb.2019.0530 external_id: isi: - '000552662100002' pmid: - '32654647' intvolume: ' 375' isi: 1 issue: '1806' language: - iso: eng month: '07' oa_version: None pmid: 1 publication: 'Philosophical Transactions of the Royal Society. Series B: Biological Sciences' publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: On the completion of speciation type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 375 year: '2020' ... --- _id: '8168' abstract: - lang: eng text: Speciation, that is, the evolution of reproductive barriers eventually leading to complete isolation, is a crucial process generating biodiversity. Recent work has contributed much to our understanding of how reproductive barriers begin to evolve, and how they are maintained in the face of gene flow. However, little is known about the transition from partial to strong reproductive isolation (RI) and the completion of speciation. We argue that the evolution of strong RI is likely to involve different processes, or new interactions among processes, compared with the evolution of the first reproductive barriers. Transition to strong RI may be brought about by changing external conditions, for example, following secondary contact. However, the increasing levels of RI themselves create opportunities for new barriers to evolve and, and interaction or coupling among barriers. These changing processes may depend on genomic architecture and leave detectable signals in the genome. We outline outstanding questions and suggest more theoretical and empirical work, considering both patterns and processes associated with strong RI, is needed to understand how speciation is completed. article_number: '20190528' article_processing_charge: No article_type: original author: - first_name: Jonna full_name: Kulmuni, Jonna last_name: Kulmuni - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Kay full_name: Lucek, Kay last_name: Lucek - first_name: Vincent full_name: Savolainen, Vincent last_name: Savolainen - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 citation: ama: 'Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society Series B: Biological sciences. 2020;375(1806). doi:10.1098/rstb.2019.0528' apa: 'Kulmuni, J., Butlin, R. K., Lucek, K., Savolainen, V., & Westram, A. M. (2020). Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society. https://doi.org/10.1098/rstb.2019.0528' chicago: 'Kulmuni, Jonna, Roger K. Butlin, Kay Lucek, Vincent Savolainen, and Anja M Westram. “Towards the Completion of Speciation: The Evolution of Reproductive Isolation beyond the First Barriers.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society, 2020. https://doi.org/10.1098/rstb.2019.0528.' ieee: 'J. Kulmuni, R. K. Butlin, K. Lucek, V. Savolainen, and A. M. Westram, “Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers,” Philosophical Transactions of the Royal Society. Series B: Biological sciences, vol. 375, no. 1806. The Royal Society, 2020.' ista: 'Kulmuni J, Butlin RK, Lucek K, Savolainen V, Westram AM. 2020. Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society. Series B: Biological sciences. 375(1806), 20190528.' mla: 'Kulmuni, Jonna, et al. “Towards the Completion of Speciation: The Evolution of Reproductive Isolation beyond the First Barriers.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806, 20190528, The Royal Society, 2020, doi:10.1098/rstb.2019.0528.' short: 'J. Kulmuni, R.K. Butlin, K. Lucek, V. Savolainen, A.M. Westram, Philosophical Transactions of the Royal Society. Series B: Biological Sciences 375 (2020).' date_created: 2020-07-26T22:01:01Z date_published: 2020-07-12T00:00:00Z date_updated: 2023-08-22T08:21:31Z day: '12' department: - _id: NiBa doi: 10.1098/rstb.2019.0528 ec_funded: 1 external_id: isi: - '000552662100001' pmid: - '32654637' intvolume: ' 375' isi: 1 issue: '1806' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1098/rstb.2019.0528 month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: 'Philosophical Transactions of the Royal Society. Series B: Biological sciences' publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: 'Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 375 year: '2020' ... --- _id: '8167' abstract: - lang: eng text: The evolution of strong reproductive isolation (RI) is fundamental to the origins and maintenance of biological diversity, especially in situations where geographical distributions of taxa broadly overlap. But what is the history behind strong barriers currently acting in sympatry? Using whole-genome sequencing and single nucleotide polymorphism genotyping, we inferred (i) the evolutionary relationships, (ii) the strength of RI, and (iii) the demographic history of divergence between two broadly sympatric taxa of intertidal snail. Despite being cryptic, based on external morphology, Littorina arcana and Littorina saxatilis differ in their mode of female reproduction (egg-laying versus brooding), which may generate a strong post-zygotic barrier. We show that egg-laying and brooding snails are closely related, but genetically distinct. Genotyping of 3092 snails from three locations failed to recover any recent hybrid or backcrossed individuals, confirming that RI is strong. There was, however, evidence for a very low level of asymmetrical introgression, suggesting that isolation remains incomplete. The presence of strong, asymmetrical RI was further supported by demographic analysis of these populations. Although the taxa are currently broadly sympatric, demographic modelling suggests that they initially diverged during a short period of geographical separation involving very low gene flow. Our study suggests that some geographical separation may kick-start the evolution of strong RI, facilitating subsequent coexistence of taxa in sympatry. The strength of RI needed to achieve sympatry and the subsequent effect of sympatry on RI remain open questions. acknowledgement: Funding was provided by the Natural Environment Research Council (NERC) and the European Research Council. We thank Rui Faria, Nicola Nadeau, Martin Garlovsky and Hernan Morales for advice and/or useful discussion during the project. Richard Turney, Graciela Sotelo, Jenny Larson, Stéphane Loisel and Meghan Wharton participated in the collection and processing of samples. Mark Dunning helped with the development of bioinformatic pipelines. The analysis of genomic data was conducted on the University of Sheffield High-performance computer, ShARC. Jeffrey Feder and an anonymous reviewer provided comments that improved the manuscript. article_number: '20190545' article_processing_charge: No article_type: original author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Zuzanna B. full_name: Zagrodzka, Zuzanna B. last_name: Zagrodzka - first_name: Isobel full_name: Eyres, Isobel last_name: Eyres - first_name: Thomas full_name: Broquet, Thomas last_name: Broquet - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: 'Stankowski S, Westram AM, Zagrodzka ZB, et al. The evolution of strong reproductive isolation between sympatric intertidal snails. Philosophical Transactions of the Royal Society Series B: Biological Sciences. 2020;375(1806). doi:10.1098/rstb.2019.0545' apa: 'Stankowski, S., Westram, A. M., Zagrodzka, Z. B., Eyres, I., Broquet, T., Johannesson, K., & Butlin, R. K. (2020). The evolution of strong reproductive isolation between sympatric intertidal snails. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society. https://doi.org/10.1098/rstb.2019.0545' chicago: 'Stankowski, Sean, Anja M Westram, Zuzanna B. Zagrodzka, Isobel Eyres, Thomas Broquet, Kerstin Johannesson, and Roger K. Butlin. “The Evolution of Strong Reproductive Isolation between Sympatric Intertidal Snails.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society, 2020. https://doi.org/10.1098/rstb.2019.0545.' ieee: 'S. Stankowski et al., “The evolution of strong reproductive isolation between sympatric intertidal snails,” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806. The Royal Society, 2020.' ista: 'Stankowski S, Westram AM, Zagrodzka ZB, Eyres I, Broquet T, Johannesson K, Butlin RK. 2020. The evolution of strong reproductive isolation between sympatric intertidal snails. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. 375(1806), 20190545.' mla: 'Stankowski, Sean, et al. “The Evolution of Strong Reproductive Isolation between Sympatric Intertidal Snails.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806, 20190545, The Royal Society, 2020, doi:10.1098/rstb.2019.0545.' short: 'S. Stankowski, A.M. Westram, Z.B. Zagrodzka, I. Eyres, T. Broquet, K. Johannesson, R.K. Butlin, Philosophical Transactions of the Royal Society. Series B: Biological Sciences 375 (2020).' date_created: 2020-07-26T22:01:01Z date_published: 2020-07-12T00:00:00Z date_updated: 2023-08-22T08:22:13Z day: '12' department: - _id: NiBa doi: 10.1098/rstb.2019.0545 external_id: isi: - '000552662100014' pmid: - '32654639' intvolume: ' 375' isi: 1 issue: '1806' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1098/rstb.2019.0545 month: '07' oa: 1 oa_version: Published Version pmid: 1 publication: 'Philosophical Transactions of the Royal Society. Series B: Biological Sciences' publication_identifier: eissn: - 1471-2970 publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: The evolution of strong reproductive isolation between sympatric intertidal snails type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 375 year: '2020' ... --- _id: '8169' abstract: - lang: eng text: Many recent studies have addressed the mechanisms operating during the early stages of speciation, but surprisingly few studies have tested theoretical predictions on the evolution of strong reproductive isolation (RI). To help address this gap, we first undertook a quantitative review of the hybrid zone literature for flowering plants in relation to reproductive barriers. Then, using Populus as an exemplary model group, we analysed genome-wide variation for phylogenetic tree topologies in both early- and late-stage speciation taxa to determine how these patterns may be related to the genomic architecture of RI. Our plant literature survey revealed variation in barrier complexity and an association between barrier number and introgressive gene flow. Focusing on Populus, our genome-wide analysis of tree topologies in speciating poplar taxa points to unusually complex genomic architectures of RI, consistent with earlier genome-wide association studies. These architectures appear to facilitate the ‘escape’ of introgressed genome segments from polygenic barriers even with strong RI, thus affecting their relationships with recombination rates. Placed within the context of the broader literature, our data illustrate how phylogenomic approaches hold great promise for addressing the evolution and temporary breakdown of RI during late stages of speciation. acknowledgement: This work was supported by a fellowship from the China Scholarship Council (CSC) to H.S., Swiss National Science Foundation (SNF) grant no. 31003A_149306 to C.L., doctoral programme grant W1225-B20 to a faculty team including C.L., and the University of Vienna. We thank members of J.L.’s lab for collecting samples, Michael Barfuss and Elfi Grasserbauer for help in the laboratory, the Next Generation Sequencing Platform of the University of Berne for sequencing, the Vienna Scientific Cluster (VSC) for access to computational resources, and Claus Vogel and members of the PopGen Vienna graduate school for helpful discussions. article_number: '20190544' article_processing_charge: No article_type: original author: - first_name: Huiying full_name: Shang, Huiying last_name: Shang - first_name: Jaqueline full_name: Hess, Jaqueline last_name: Hess - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Pär K. full_name: Ingvarsson, Pär K. last_name: Ingvarsson - first_name: Jianquan full_name: Liu, Jianquan last_name: Liu - first_name: Christian full_name: Lexer, Christian last_name: Lexer citation: ama: 'Shang H, Hess J, Pickup M, et al. Evolution of strong reproductive isolation in plants: Broad-scale patterns and lessons from a perennial model group. Philosophical Transactions of the Royal Society Series B: Biological Sciences. 2020;375(1806). doi:10.1098/rstb.2019.0544' apa: 'Shang, H., Hess, J., Pickup, M., Field, D., Ingvarsson, P. K., Liu, J., & Lexer, C. (2020). Evolution of strong reproductive isolation in plants: Broad-scale patterns and lessons from a perennial model group. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society. https://doi.org/10.1098/rstb.2019.0544' chicago: 'Shang, Huiying, Jaqueline Hess, Melinda Pickup, David Field, Pär K. Ingvarsson, Jianquan Liu, and Christian Lexer. “Evolution of Strong Reproductive Isolation in Plants: Broad-Scale Patterns and Lessons from a Perennial Model Group.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences. The Royal Society, 2020. https://doi.org/10.1098/rstb.2019.0544.' ieee: 'H. Shang et al., “Evolution of strong reproductive isolation in plants: Broad-scale patterns and lessons from a perennial model group,” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806. The Royal Society, 2020.' ista: 'Shang H, Hess J, Pickup M, Field D, Ingvarsson PK, Liu J, Lexer C. 2020. Evolution of strong reproductive isolation in plants: Broad-scale patterns and lessons from a perennial model group. Philosophical Transactions of the Royal Society. Series B: Biological Sciences. 375(1806), 20190544.' mla: 'Shang, Huiying, et al. “Evolution of Strong Reproductive Isolation in Plants: Broad-Scale Patterns and Lessons from a Perennial Model Group.” Philosophical Transactions of the Royal Society. Series B: Biological Sciences, vol. 375, no. 1806, 20190544, The Royal Society, 2020, doi:10.1098/rstb.2019.0544.' short: 'H. Shang, J. Hess, M. Pickup, D. Field, P.K. Ingvarsson, J. Liu, C. Lexer, Philosophical Transactions of the Royal Society. Series B: Biological Sciences 375 (2020).' date_created: 2020-07-26T22:01:02Z date_published: 2020-07-12T00:00:00Z date_updated: 2023-08-22T08:23:24Z day: '12' department: - _id: NiBa doi: 10.1098/rstb.2019.0544 external_id: isi: - '000552662100013' pmid: - '32654641' intvolume: ' 375' isi: 1 issue: '1806' language: - iso: eng month: '07' oa_version: Published Version pmid: 1 publication: 'Philosophical Transactions of the Royal Society. Series B: Biological Sciences' publication_identifier: eissn: - '14712970' publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: 'Evolution of strong reproductive isolation in plants: Broad-scale patterns and lessons from a perennial model group' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 375 year: '2020' ... --- _id: '9799' abstract: - lang: eng text: Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: John J. full_name: Welch, John J. last_name: Welch citation: ama: Fraisse C, Welch JJ. Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes. 2020. doi:10.6084/m9.figshare.7957469.v1 apa: Fraisse, C., & Welch, J. J. (2020). Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes. Royal Society of London. https://doi.org/10.6084/m9.figshare.7957469.v1 chicago: Fraisse, Christelle, and John J. Welch. “Simulation Code for Fig S1 from the Distribution of Epistasis on Simple Fitness Landscapes.” Royal Society of London, 2020. https://doi.org/10.6084/m9.figshare.7957469.v1. ieee: C. Fraisse and J. J. Welch, “Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes.” Royal Society of London, 2020. ista: Fraisse C, Welch JJ. 2020. Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes, Royal Society of London, 10.6084/m9.figshare.7957469.v1. mla: Fraisse, Christelle, and John J. Welch. Simulation Code for Fig S1 from the Distribution of Epistasis on Simple Fitness Landscapes. Royal Society of London, 2020, doi:10.6084/m9.figshare.7957469.v1. short: C. Fraisse, J.J. Welch, (2020). date_created: 2021-08-06T11:26:57Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-25T10:34:41Z day: '15' department: - _id: BeVi - _id: NiBa doi: 10.6084/m9.figshare.7957469.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.7957469.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society of London related_material: record: - id: '6467' relation: used_in_publication status: public status: public title: Simulation code for Fig S1 from the distribution of epistasis on simple fitness landscapes type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '9798' abstract: - lang: eng text: Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA. Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: John J. full_name: Welch, John J. last_name: Welch citation: ama: Fraisse C, Welch JJ. Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes. 2020. doi:10.6084/m9.figshare.7957472.v1 apa: Fraisse, C., & Welch, J. J. (2020). Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes. Royal Society of London. https://doi.org/10.6084/m9.figshare.7957472.v1 chicago: Fraisse, Christelle, and John J. Welch. “Simulation Code for Fig S2 from the Distribution of Epistasis on Simple Fitness Landscapes.” Royal Society of London, 2020. https://doi.org/10.6084/m9.figshare.7957472.v1. ieee: C. Fraisse and J. J. Welch, “Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes.” Royal Society of London, 2020. ista: Fraisse C, Welch JJ. 2020. Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes, Royal Society of London, 10.6084/m9.figshare.7957472.v1. mla: Fraisse, Christelle, and John J. Welch. Simulation Code for Fig S2 from the Distribution of Epistasis on Simple Fitness Landscapes. Royal Society of London, 2020, doi:10.6084/m9.figshare.7957472.v1. short: C. Fraisse, J.J. Welch, (2020). date_created: 2021-08-06T11:18:15Z date_published: 2020-10-15T00:00:00Z date_updated: 2023-08-25T10:34:41Z day: '15' department: - _id: BeVi - _id: NiBa doi: 10.6084/m9.figshare.7957472.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.7957472.v1 month: '10' oa: 1 oa_version: Published Version publisher: Royal Society of London related_material: record: - id: '6467' relation: used_in_publication status: public status: public title: Simulation code for Fig S2 from the distribution of epistasis on simple fitness landscapes type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '7236' abstract: - lang: eng text: The biotic interactions hypothesis posits that biotic interactions are more important drivers of adaptation closer to the equator, evidenced by “stronger” contemporary interactions (e.g. greater interaction rates) and/or patterns of trait evolution consistent with a history of stronger interactions. Support for the hypothesis is mixed, but few studies span tropical and temperate regions while experimentally controlling for evolutionary history. Here, we integrate field observations and common garden experiments to quantify the relative importance of pollination and herbivory in a pair of tropical‐temperate congeneric perennial herbs. Phytolacca rivinoides and P. americana are pioneer species native to the Neotropics and the eastern USA, respectively. We compared plant‐pollinator and plant‐herbivore interactions between three tropical populations of P. rivinoides from Costa Rica and three temperate populations of P. americana from its northern range edge in Michigan and Ohio. For some metrics of interaction importance, we also included three subtropical populations of P. americana from its southern range edge in Florida. This approach confounds species and region but allows us, uniquely, to measure complementary proxies of interaction importance across a tropical‐temperate range in one system. To test the prediction that lower‐latitude plants are more reliant on insect pollinators, we quantified floral display and reward, insect visitation rates, and self‐pollination ability (autogamy). To test the prediction that lower‐latitude plants experience more herbivore pressure, we quantified herbivory rates, herbivore abundance, and leaf palatability. We found evidence supporting the biotic interactions hypothesis for most comparisons between P. rivinoides and north‐temperate P. americana (floral display, insect visitation, autogamy, herbivory, herbivore abundance, and young‐leaf palatability). Results for subtropical P. americana populations, however, were typically not intermediate between P. rivinoides and north‐temperate P. americana, as would be predicted by a linear latitudinal gradient in interaction importance. Subtropical young‐leaf palatability was intermediate, but subtropical mature leaves were the least palatable, and pollination‐related traits did not differ between temperate and subtropical regions. These nonlinear patterns of interaction importance suggest future work to relate interaction importance to climatic or biotic thresholds. In sum, we found that the biotic interactions hypothesis was more consistently supported at the larger spatial scale of our study. article_number: e01397 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Carina full_name: Baskett, Carina id: 3B4A7CE2-F248-11E8-B48F-1D18A9856A87 last_name: Baskett orcid: 0000-0002-7354-8574 - first_name: Lucy full_name: Schroeder, Lucy last_name: Schroeder - first_name: Marjorie G. full_name: Weber, Marjorie G. last_name: Weber - first_name: Douglas W. full_name: Schemske, Douglas W. last_name: Schemske citation: ama: Baskett C, Schroeder L, Weber MG, Schemske DW. Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair. Ecological Monographs. 2020;90(1). doi:10.1002/ecm.1397 apa: Baskett, C., Schroeder, L., Weber, M. G., & Schemske, D. W. (2020). Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair. Ecological Monographs. Wiley. https://doi.org/10.1002/ecm.1397 chicago: Baskett, Carina, Lucy Schroeder, Marjorie G. Weber, and Douglas W. Schemske. “Multiple Metrics of Latitudinal Patterns in Insect Pollination and Herbivory for a Tropical‐temperate Congener Pair.” Ecological Monographs. Wiley, 2020. https://doi.org/10.1002/ecm.1397. ieee: C. Baskett, L. Schroeder, M. G. Weber, and D. W. Schemske, “Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair,” Ecological Monographs, vol. 90, no. 1. Wiley, 2020. ista: Baskett C, Schroeder L, Weber MG, Schemske DW. 2020. Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair. Ecological Monographs. 90(1), e01397. mla: Baskett, Carina, et al. “Multiple Metrics of Latitudinal Patterns in Insect Pollination and Herbivory for a Tropical‐temperate Congener Pair.” Ecological Monographs, vol. 90, no. 1, e01397, Wiley, 2020, doi:10.1002/ecm.1397. short: C. Baskett, L. Schroeder, M.G. Weber, D.W. Schemske, Ecological Monographs 90 (2020). date_created: 2020-01-07T12:47:07Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-09-05T15:43:19Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1002/ecm.1397 ec_funded: 1 external_id: isi: - '000508511600001' file: - access_level: open_access checksum: ab8130c6e68101f5a091d05324c36f08 content_type: application/pdf creator: dernst date_created: 2020-02-10T08:18:14Z date_updated: 2020-07-14T12:47:54Z file_id: '7469' file_name: 2020_EcologMono_Baskett.pdf file_size: 537941 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 90' isi: 1 issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '02' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Ecological Monographs publication_identifier: eissn: - 1557-7015 issn: - 0012-9615 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Multiple metrics of latitudinal patterns in insect pollination and herbivory for a tropical‐temperate congener pair tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 90 year: '2020' ... --- _id: '7205' abstract: - lang: eng text: Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post‐zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post‐zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky–Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post‐zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females. article_processing_charge: No article_type: original author: - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Zuzanna full_name: Zagrodzka, Zuzanna last_name: Zagrodzka - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Johannesson K, Zagrodzka Z, Faria R, Westram AM, Butlin RK. Is embryo abortion a post-zygotic barrier to gene flow between Littorina ecotypes? Journal of Evolutionary Biology. 2020;33(3):342-351. doi:10.1111/jeb.13570 apa: Johannesson, K., Zagrodzka, Z., Faria, R., Westram, A. M., & Butlin, R. K. (2020). Is embryo abortion a post-zygotic barrier to gene flow between Littorina ecotypes? Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.13570 chicago: Johannesson, Kerstin, Zuzanna Zagrodzka, Rui Faria, Anja M Westram, and Roger K. Butlin. “Is Embryo Abortion a Post-Zygotic Barrier to Gene Flow between Littorina Ecotypes?” Journal of Evolutionary Biology. Wiley, 2020. https://doi.org/10.1111/jeb.13570. ieee: K. Johannesson, Z. Zagrodzka, R. Faria, A. M. Westram, and R. K. Butlin, “Is embryo abortion a post-zygotic barrier to gene flow between Littorina ecotypes?,” Journal of Evolutionary Biology, vol. 33, no. 3. Wiley, pp. 342–351, 2020. ista: Johannesson K, Zagrodzka Z, Faria R, Westram AM, Butlin RK. 2020. Is embryo abortion a post-zygotic barrier to gene flow between Littorina ecotypes? Journal of Evolutionary Biology. 33(3), 342–351. mla: Johannesson, Kerstin, et al. “Is Embryo Abortion a Post-Zygotic Barrier to Gene Flow between Littorina Ecotypes?” Journal of Evolutionary Biology, vol. 33, no. 3, Wiley, 2020, pp. 342–51, doi:10.1111/jeb.13570. short: K. Johannesson, Z. Zagrodzka, R. Faria, A.M. Westram, R.K. Butlin, Journal of Evolutionary Biology 33 (2020) 342–351. date_created: 2019-12-22T23:00:43Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-09-06T14:48:57Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/jeb.13570 external_id: isi: - '000500954800001' pmid: - '31724256' file: - access_level: open_access checksum: 7534ff0839709c0c5265c12d29432f03 content_type: application/pdf creator: dernst date_created: 2020-09-22T09:42:18Z date_updated: 2020-09-22T09:42:18Z file_id: '8553' file_name: 2020_EvolBiology_Johannesson.pdf file_size: 885611 relation: main_file success: 1 file_date_updated: 2020-09-22T09:42:18Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 342-351 pmid: 1 publication: Journal of Evolutionary Biology publication_identifier: eissn: - '14209101' issn: - 1010061X publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '13067' relation: research_data status: public scopus_import: '1' status: public title: Is embryo abortion a post-zygotic barrier to gene flow between Littorina ecotypes? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 33 year: '2020' ... --- _id: '8574' abstract: - lang: eng text: "This thesis concerns itself with the interactions of evolutionary and ecological forces and the consequences on genetic diversity and the ultimate survival of populations. It is important to understand what signals processes \r\nleave on the genome and what we can infer from such data, which is usually abundant but noisy. Furthermore, understanding how and when populations adapt or go extinct is important for practical purposes, such as the genetic management of populations, as well as for theoretical questions, since local adaptation can be the first step toward speciation. \r\nIn Chapter 2, we introduce the method of maximum entropy to approximate the demographic changes of a population in a simple setting, namely the logistic growth model with immigration. We show that this method is not only a powerful \r\ntool in physics but can be gainfully applied in an ecological framework. We investigate how well it approximates the real \r\nbehavior of the system, and find that is does so, even in unexpected situations. Finally, we illustrate how it can model changing environments.\r\nIn Chapter 3, we analyze the co-evolution of allele frequencies and population sizes in an infinite island model.\r\nWe give conditions under which polygenic adaptation to a rare habitat is possible. The model we use is based on the diffusion approximation, considers eco-evolutionary feedback mechanisms (hard selection), and treats both \r\ndrift and environmental fluctuations explicitly. We also look at limiting scenarios, for which we derive analytical expressions. \r\nIn Chapter 4, we present a coalescent based simulation tool to obtain patterns of diversity in a spatially explicit subdivided population, in which the demographic history of each subpopulation can be specified. We compare \r\nthe results to existing predictions, and explore the relative importance of time and space under a variety of spatial arrangements and demographic histories, such as expansion and extinction. \r\nIn the last chapter, we give a brief outlook to further research. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Eniko full_name: Szep, Eniko id: 485BB5A4-F248-11E8-B48F-1D18A9856A87 last_name: Szep citation: ama: Szep E. Local adaptation in metapopulations. 2020. doi:10.15479/AT:ISTA:8574 apa: Szep, E. (2020). Local adaptation in metapopulations. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8574 chicago: Szep, Eniko. “Local Adaptation in Metapopulations.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8574. ieee: E. Szep, “Local adaptation in metapopulations,” Institute of Science and Technology Austria, 2020. ista: Szep E. 2020. Local adaptation in metapopulations. Institute of Science and Technology Austria. mla: Szep, Eniko. Local Adaptation in Metapopulations. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8574. short: E. Szep, Local Adaptation in Metapopulations, Institute of Science and Technology Austria, 2020. date_created: 2020-09-28T07:33:38Z date_published: 2020-09-20T00:00:00Z date_updated: 2023-09-07T13:11:39Z day: '20' ddc: - '570' degree_awarded: PhD department: - _id: NiBa doi: 10.15479/AT:ISTA:8574 file: - access_level: open_access checksum: 20e71f015fbbd78fea708893ad634ed0 content_type: application/pdf creator: dernst date_created: 2020-09-28T07:25:35Z date_updated: 2020-09-28T07:25:35Z file_id: '8575' file_name: thesis_EnikoSzep_final.pdf file_size: 6354833 relation: main_file success: 1 - access_level: closed checksum: a8de2c14a1bb4e53c857787efbb289e1 content_type: application/x-zip-compressed creator: dernst date_created: 2020-09-28T07:25:37Z date_updated: 2020-09-28T07:25:37Z file_id: '8576' file_name: thesisFiles_EnikoSzep.zip file_size: 23020401 relation: source_file file_date_updated: 2020-09-28T07:25:37Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '158' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Local adaptation in metapopulations type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '9839' abstract: - lang: eng text: 'More than 100 years after Grigg’s influential analysis of species’ borders, the causes of limits to species’ ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species’ ranges to shift in response to climate change—and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal—a measure of environmental heterogeneity—and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an ‘expansion threshold’: adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species’ range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter—the strength of genetic drift—is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with ‘neighbourhood size’—the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and testable prediction for formation of the range margin and collapse of the species’ range.' article_processing_charge: No author: - first_name: Jitka full_name: Polechova, Jitka id: 3BBFB084-F248-11E8-B48F-1D18A9856A87 last_name: Polechova orcid: 0000-0003-0951-3112 citation: ama: 'Polechova J. Data from: Is the sky the limit? On the expansion threshold of a species’ range. 2019. doi:10.5061/dryad.5vv37' apa: 'Polechova, J. (2019). Data from: Is the sky the limit? On the expansion threshold of a species’ range. Dryad. https://doi.org/10.5061/dryad.5vv37' chicago: 'Polechova, Jitka. “Data from: Is the Sky the Limit? On the Expansion Threshold of a Species’ Range.” Dryad, 2019. https://doi.org/10.5061/dryad.5vv37.' ieee: 'J. Polechova, “Data from: Is the sky the limit? On the expansion threshold of a species’ range.” Dryad, 2019.' ista: 'Polechova J. 2019. Data from: Is the sky the limit? On the expansion threshold of a species’ range, Dryad, 10.5061/dryad.5vv37.' mla: 'Polechova, Jitka. Data from: Is the Sky the Limit? On the Expansion Threshold of a Species’ Range. Dryad, 2019, doi:10.5061/dryad.5vv37.' short: J. Polechova, (2019). date_created: 2021-08-09T13:07:28Z date_published: 2019-06-22T00:00:00Z date_updated: 2023-02-23T11:14:30Z day: '22' department: - _id: NiBa doi: 10.5061/dryad.5vv37 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.5vv37 month: '06' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '315' relation: used_in_publication status: public status: public title: 'Data from: Is the sky the limit? On the expansion threshold of a species'' range' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '5911' abstract: - lang: eng text: Empirical data suggest that inversions in many species contain genes important for intraspecific divergence and speciation, yet mechanisms of evolution remain unclear. While genes inside an inversion are tightly linked, inversions are not static but evolve separately from the rest of the genome by new mutations, recombination within arrangements, and gene flux between arrangements. Inversion polymorphisms are maintained by different processes, for example, divergent or balancing selection, or a mix of multiple processes. Moreover, the relative roles of selection, drift, mutation, and recombination will change over the lifetime of an inversion and within its area of distribution. We believe inversions are central to the evolution of many species, but we need many more data and new models to understand the complex mechanisms involved. article_processing_charge: No article_type: original author: - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 citation: ama: Faria R, Johannesson K, Butlin RK, Westram AM. Evolving inversions. Trends in Ecology and Evolution. 2019;34(3):239-248. doi:10.1016/j.tree.2018.12.005 apa: Faria, R., Johannesson, K., Butlin, R. K., & Westram, A. M. (2019). Evolving inversions. Trends in Ecology and Evolution. Elsevier. https://doi.org/10.1016/j.tree.2018.12.005 chicago: Faria, Rui, Kerstin Johannesson, Roger K. Butlin, and Anja M Westram. “Evolving Inversions.” Trends in Ecology and Evolution. Elsevier, 2019. https://doi.org/10.1016/j.tree.2018.12.005. ieee: R. Faria, K. Johannesson, R. K. Butlin, and A. M. Westram, “Evolving inversions,” Trends in Ecology and Evolution, vol. 34, no. 3. Elsevier, pp. 239–248, 2019. ista: Faria R, Johannesson K, Butlin RK, Westram AM. 2019. Evolving inversions. Trends in Ecology and Evolution. 34(3), 239–248. mla: Faria, Rui, et al. “Evolving Inversions.” Trends in Ecology and Evolution, vol. 34, no. 3, Elsevier, 2019, pp. 239–48, doi:10.1016/j.tree.2018.12.005. short: R. Faria, K. Johannesson, R.K. Butlin, A.M. Westram, Trends in Ecology and Evolution 34 (2019) 239–248. date_created: 2019-02-03T22:59:15Z date_published: 2019-03-01T00:00:00Z date_updated: 2023-08-24T14:29:48Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1016/j.tree.2018.12.005 ec_funded: 1 external_id: isi: - '000459899000013' file: - access_level: open_access checksum: ef24572d6ebcc1452c067e05410cc4a2 content_type: application/pdf creator: cziletti date_created: 2020-01-09T10:55:58Z date_updated: 2020-07-14T12:47:13Z file_id: '7245' file_name: 2019_Trends_Evolution_Faria.pdf file_size: 1946795 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' intvolume: ' 34' isi: 1 issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '03' oa: 1 oa_version: Published Version page: 239-248 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Trends in Ecology and Evolution publication_identifier: issn: - '01695347' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Evolving inversions tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2019' ... --- _id: '5680' abstract: - lang: eng text: Pollinators display a remarkable diversity of foraging strategies with flowering plants, from primarily mutualistic interactions to cheating through nectar robbery. Despite numerous studies on the effect of nectar robbing on components of plant fitness, its contribution to reproductive isolation is unclear. We experimentally tested the impact of different pollinator strategies in a natural hybrid zone between two subspecies of Antirrhinum majus with alternate flower colour guides. On either side of a steep cline in flower colour between Antirrhinum majus pseudomajus (magenta) and A. m. striatum (yellow), we quantified the behaviour of all floral visitors at different time points during the flowering season. Using long-run camera surveys, we quantify the impact of nectar robbing on the number of flowers visited per inflorescence and the flower probing time. We further experimentally tested the effect of nectar robbing on female reproductive success by manipulating the intensity of robbing. While robbing increased over time the number of legitimate visitors tended to decrease concomitantly. We found that the number of flowers pollinated on a focal inflorescence decreased with the number of prior robbing events. However, in the manipulative experiment, fruit set and fruit volume did not vary significantly between low robbing and control treatments. Our findings challenge the idea that robbers have a negative impact on plant fitness through female function. This study also adds to our understanding of the components of pollinator-mediated reproductive isolation and the maintenance of Antirrhinum hybrid zones. article_processing_charge: No author: - first_name: Christophe full_name: Andalo, Christophe last_name: Andalo - first_name: Monique full_name: Burrus, Monique last_name: Burrus - first_name: Sandrine full_name: Paute, Sandrine last_name: Paute - first_name: Christine full_name: Lauzeral, Christine last_name: Lauzeral - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 citation: ama: Andalo C, Burrus M, Paute S, Lauzeral C, Field D. Prevalence of legitimate pollinators and nectar robbers and the consequences for fruit set in an Antirrhinum majus hybrid zone. Botany Letters. 2019;166(1):80-92. doi:10.1080/23818107.2018.1545142 apa: Andalo, C., Burrus, M., Paute, S., Lauzeral, C., & Field, D. (2019). Prevalence of legitimate pollinators and nectar robbers and the consequences for fruit set in an Antirrhinum majus hybrid zone. Botany Letters. Taylor and Francis. https://doi.org/10.1080/23818107.2018.1545142 chicago: Andalo, Christophe, Monique Burrus, Sandrine Paute, Christine Lauzeral, and David Field. “Prevalence of Legitimate Pollinators and Nectar Robbers and the Consequences for Fruit Set in an Antirrhinum Majus Hybrid Zone.” Botany Letters. Taylor and Francis, 2019. https://doi.org/10.1080/23818107.2018.1545142. ieee: C. Andalo, M. Burrus, S. Paute, C. Lauzeral, and D. Field, “Prevalence of legitimate pollinators and nectar robbers and the consequences for fruit set in an Antirrhinum majus hybrid zone,” Botany Letters, vol. 166, no. 1. Taylor and Francis, pp. 80–92, 2019. ista: Andalo C, Burrus M, Paute S, Lauzeral C, Field D. 2019. Prevalence of legitimate pollinators and nectar robbers and the consequences for fruit set in an Antirrhinum majus hybrid zone. Botany Letters. 166(1), 80–92. mla: Andalo, Christophe, et al. “Prevalence of Legitimate Pollinators and Nectar Robbers and the Consequences for Fruit Set in an Antirrhinum Majus Hybrid Zone.” Botany Letters, vol. 166, no. 1, Taylor and Francis, 2019, pp. 80–92, doi:10.1080/23818107.2018.1545142. short: C. Andalo, M. Burrus, S. Paute, C. Lauzeral, D. Field, Botany Letters 166 (2019) 80–92. date_created: 2018-12-16T22:59:20Z date_published: 2019-01-01T00:00:00Z date_updated: 2023-08-24T14:34:12Z day: '01' department: - _id: NiBa doi: 10.1080/23818107.2018.1545142 external_id: isi: - '000463802800009' intvolume: ' 166' isi: 1 issue: '1' language: - iso: eng month: '01' oa_version: None page: 80-92 publication: Botany Letters publication_identifier: eissn: - '23818115' issn: - '23818107' publication_status: published publisher: Taylor and Francis quality_controlled: '1' scopus_import: '1' status: public title: Prevalence of legitimate pollinators and nectar robbers and the consequences for fruit set in an Antirrhinum majus hybrid zone type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 166 year: '2019' ... --- _id: '6022' abstract: - lang: eng text: The evolution of new species is made easier when traits under divergent ecological selection are also mating cues. Such ecological mating cues are now considered more common than previously thought, but we still know little about the genetic changes underlying their evolution or more generally about the genetic basis for assortative mating behaviors. Both tight physical linkage and the existence of large-effect preference loci will strengthen genetic associations between behavioral and ecological barriers, promoting the evolution of assortative mating. The warning patterns of Heliconius melpomene and H. cydno are under disruptive selection due to increased predation of nonmimetic hybrids and are used during mate recognition. We carried out a genome-wide quantitative trait locus (QTL) analysis of preference behaviors between these species and showed that divergent male preference has a simple genetic basis. We identify three QTLs that together explain a large proportion (approximately 60%) of the difference in preference behavior observed between the parental species. One of these QTLs is just 1.2 (0-4.8) centiMorgans (cM) from the major color pattern gene optix, and, individually, all three have a large effect on the preference phenotype. Genomic divergence between H. cydno and H. melpomene is high but broadly heterogenous, and admixture is reduced at the preference-optix color pattern locus but not the other preference QTLs. The simple genetic architecture we reveal will facilitate the evolution and maintenance of new species despite ongoing gene flow by coupling behavioral and ecological aspects of reproductive isolation. article_number: e2005902 article_processing_charge: No author: - first_name: Richard M. full_name: Merrill, Richard M. last_name: Merrill - first_name: Pasi full_name: Rastas, Pasi last_name: Rastas - first_name: Simon H. full_name: Martin, Simon H. last_name: Martin - first_name: Maria C full_name: Melo Hurtado, Maria C id: 386D7308-F248-11E8-B48F-1D18A9856A87 last_name: Melo Hurtado - first_name: Sarah full_name: Barker, Sarah last_name: Barker - first_name: John full_name: Davey, John last_name: Davey - first_name: W. Owen full_name: Mcmillan, W. Owen last_name: Mcmillan - first_name: Chris D. full_name: Jiggins, Chris D. last_name: Jiggins citation: ama: Merrill RM, Rastas P, Martin SH, et al. Genetic dissection of assortative mating behavior. PLoS Biology. 2019;17(2). doi:10.1371/journal.pbio.2005902 apa: Merrill, R. M., Rastas, P., Martin, S. H., Melo Hurtado, M. C., Barker, S., Davey, J., … Jiggins, C. D. (2019). Genetic dissection of assortative mating behavior. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.2005902 chicago: Merrill, Richard M., Pasi Rastas, Simon H. Martin, Maria C Melo Hurtado, Sarah Barker, John Davey, W. Owen Mcmillan, and Chris D. Jiggins. “Genetic Dissection of Assortative Mating Behavior.” PLoS Biology. Public Library of Science, 2019. https://doi.org/10.1371/journal.pbio.2005902. ieee: R. M. Merrill et al., “Genetic dissection of assortative mating behavior,” PLoS Biology, vol. 17, no. 2. Public Library of Science, 2019. ista: Merrill RM, Rastas P, Martin SH, Melo Hurtado MC, Barker S, Davey J, Mcmillan WO, Jiggins CD. 2019. Genetic dissection of assortative mating behavior. PLoS Biology. 17(2), e2005902. mla: Merrill, Richard M., et al. “Genetic Dissection of Assortative Mating Behavior.” PLoS Biology, vol. 17, no. 2, e2005902, Public Library of Science, 2019, doi:10.1371/journal.pbio.2005902. short: R.M. Merrill, P. Rastas, S.H. Martin, M.C. Melo Hurtado, S. Barker, J. Davey, W.O. Mcmillan, C.D. Jiggins, PLoS Biology 17 (2019). date_created: 2019-02-17T22:59:21Z date_published: 2019-02-07T00:00:00Z date_updated: 2023-08-24T14:46:23Z day: '07' ddc: - '570' department: - _id: NiBa doi: 10.1371/journal.pbio.2005902 external_id: isi: - '000460317100001' file: - access_level: open_access checksum: 5f34001617ee729314ca520c049b1112 content_type: application/pdf creator: dernst date_created: 2019-02-18T14:57:24Z date_updated: 2020-07-14T12:47:17Z file_id: '6036' file_name: 2019_PLOS_Merrill.pdf file_size: 2005949 relation: main_file file_date_updated: 2020-07-14T12:47:17Z has_accepted_license: '1' intvolume: ' 17' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: PLoS Biology publication_status: published publisher: Public Library of Science quality_controlled: '1' related_material: record: - id: '9801' relation: research_data status: public scopus_import: '1' status: public title: Genetic dissection of assortative mating behavior tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2019' ... --- _id: '9801' article_processing_charge: No author: - first_name: Richard M. full_name: Merrill, Richard M. last_name: Merrill - first_name: Pasi full_name: Rastas, Pasi last_name: Rastas - first_name: Simon H. full_name: Martin, Simon H. last_name: Martin - first_name: Maria C full_name: Melo Hurtado, Maria C id: 386D7308-F248-11E8-B48F-1D18A9856A87 last_name: Melo Hurtado - first_name: Sarah full_name: Barker, Sarah last_name: Barker - first_name: John full_name: Davey, John last_name: Davey - first_name: W. Owen full_name: Mcmillan, W. Owen last_name: Mcmillan - first_name: Chris D. full_name: Jiggins, Chris D. last_name: Jiggins citation: ama: Merrill RM, Rastas P, Martin SH, et al. Raw behavioral data. 2019. doi:10.1371/journal.pbio.2005902.s006 apa: Merrill, R. M., Rastas, P., Martin, S. H., Melo Hurtado, M. C., Barker, S., Davey, J., … Jiggins, C. D. (2019). Raw behavioral data. Public Library of Science. https://doi.org/10.1371/journal.pbio.2005902.s006 chicago: Merrill, Richard M., Pasi Rastas, Simon H. Martin, Maria C Melo Hurtado, Sarah Barker, John Davey, W. Owen Mcmillan, and Chris D. Jiggins. “Raw Behavioral Data.” Public Library of Science, 2019. https://doi.org/10.1371/journal.pbio.2005902.s006. ieee: R. M. Merrill et al., “Raw behavioral data.” Public Library of Science, 2019. ista: Merrill RM, Rastas P, Martin SH, Melo Hurtado MC, Barker S, Davey J, Mcmillan WO, Jiggins CD. 2019. Raw behavioral data, Public Library of Science, 10.1371/journal.pbio.2005902.s006. mla: Merrill, Richard M., et al. Raw Behavioral Data. Public Library of Science, 2019, doi:10.1371/journal.pbio.2005902.s006. short: R.M. Merrill, P. Rastas, S.H. Martin, M.C. Melo Hurtado, S. Barker, J. Davey, W.O. Mcmillan, C.D. Jiggins, (2019). date_created: 2021-08-06T11:34:56Z date_published: 2019-02-07T00:00:00Z date_updated: 2023-08-24T14:46:23Z day: '07' department: - _id: NiBa doi: 10.1371/journal.pbio.2005902.s006 month: '02' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '6022' relation: used_in_publication status: public status: public title: Raw behavioral data type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '6095' abstract: - lang: eng text: Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. article_processing_charge: No author: - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Pragya full_name: Chaube, Pragya last_name: Chaube - first_name: Hernán E. full_name: Morales, Hernán E. last_name: Morales - first_name: Tomas full_name: Larsson, Tomas last_name: Larsson - first_name: Alan R. full_name: Lemmon, Alan R. last_name: Lemmon - first_name: Emily M. full_name: Lemmon, Emily M. last_name: Lemmon - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Marina full_name: Panova, Marina last_name: Panova - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Faria R, Chaube P, Morales HE, et al. Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Molecular Ecology. 2019;28(6):1375-1393. doi:10.1111/mec.14972 apa: Faria, R., Chaube, P., Morales, H. E., Larsson, T., Lemmon, A. R., Lemmon, E. M., … Butlin, R. K. (2019). Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.14972 chicago: Faria, Rui, Pragya Chaube, Hernán E. Morales, Tomas Larsson, Alan R. Lemmon, Emily M. Lemmon, Marina Rafajlović, et al. “Multiple Chromosomal Rearrangements in a Hybrid Zone between Littorina Saxatilis Ecotypes.” Molecular Ecology. Wiley, 2019. https://doi.org/10.1111/mec.14972. ieee: R. Faria et al., “Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes,” Molecular Ecology, vol. 28, no. 6. Wiley, pp. 1375–1393, 2019. ista: Faria R, Chaube P, Morales HE, Larsson T, Lemmon AR, Lemmon EM, Rafajlović M, Panova M, Ravinet M, Johannesson K, Westram AM, Butlin RK. 2019. Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Molecular Ecology. 28(6), 1375–1393. mla: Faria, Rui, et al. “Multiple Chromosomal Rearrangements in a Hybrid Zone between Littorina Saxatilis Ecotypes.” Molecular Ecology, vol. 28, no. 6, Wiley, 2019, pp. 1375–93, doi:10.1111/mec.14972. short: R. Faria, P. Chaube, H.E. Morales, T. Larsson, A.R. Lemmon, E.M. Lemmon, M. Rafajlović, M. Panova, M. Ravinet, K. Johannesson, A.M. Westram, R.K. Butlin, Molecular Ecology 28 (2019) 1375–1393. date_created: 2019-03-10T22:59:21Z date_published: 2019-03-01T00:00:00Z date_updated: 2023-08-24T14:50:27Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/mec.14972 external_id: isi: - '000465219200013' file: - access_level: open_access checksum: f915885756057ec0ca5912a41f46a887 content_type: application/pdf creator: dernst date_created: 2019-03-11T16:12:54Z date_updated: 2020-07-14T12:47:19Z file_id: '6097' file_name: 2019_MolecularEcology_Faria.pdf file_size: 1510715 relation: main_file file_date_updated: 2020-07-14T12:47:19Z has_accepted_license: '1' intvolume: ' 28' isi: 1 issue: '6' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1375-1393 publication: Molecular Ecology publication_identifier: eissn: - 1365-294X issn: - 0962-1083 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '9837' relation: research_data status: public scopus_import: '1' status: public title: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 28 year: '2019' ... --- _id: '6230' abstract: - lang: eng text: Great care is needed when interpreting claims about the genetic basis of human variation based on data from genome-wide association studies. article_number: e45380 article_processing_charge: No author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Joachim full_name: Hermisson, Joachim last_name: Hermisson - first_name: Magnus full_name: Nordborg, Magnus last_name: Nordborg citation: ama: Barton NH, Hermisson J, Nordborg M. Why structure matters. eLife. 2019;8. doi:10.7554/eLife.45380 apa: Barton, N. H., Hermisson, J., & Nordborg, M. (2019). Why structure matters. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.45380 chicago: Barton, Nicholas H, Joachim Hermisson, and Magnus Nordborg. “Why Structure Matters.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.45380. ieee: N. H. Barton, J. Hermisson, and M. Nordborg, “Why structure matters,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Barton NH, Hermisson J, Nordborg M. 2019. Why structure matters. eLife. 8, e45380. mla: Barton, Nicholas H., et al. “Why Structure Matters.” ELife, vol. 8, e45380, eLife Sciences Publications, 2019, doi:10.7554/eLife.45380. short: N.H. Barton, J. Hermisson, M. Nordborg, ELife 8 (2019). date_created: 2019-04-07T21:59:15Z date_published: 2019-03-21T00:00:00Z date_updated: 2023-08-25T08:59:38Z day: '21' ddc: - '570' department: - _id: NiBa doi: 10.7554/eLife.45380 external_id: isi: - '000461988300001' file: - access_level: open_access checksum: 130d7544b57df4a6787e1263c2d7ea43 content_type: application/pdf creator: dernst date_created: 2019-04-11T11:43:38Z date_updated: 2020-07-14T12:47:24Z file_id: '6293' file_name: 2019_eLife_Barton.pdf file_size: 298466 relation: main_file file_date_updated: 2020-07-14T12:47:24Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/body-height-bmi-disease-risk-co/ scopus_import: '1' status: public title: Why structure matters tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2019' ...