--- _id: '1519' abstract: - lang: eng text: Evolutionary biologists have an array of powerful theoretical techniques that can accurately predict changes in the genetic composition of populations. Changes in gene frequencies and genetic associations between loci can be tracked as they respond to a wide variety of evolutionary forces. However, it is often less clear how to decompose these various forces into components that accurately reflect the underlying biology. Here, we present several issues that arise in the definition and interpretation of selection and selection coefficients, focusing on insights gained through the examination of selection coefficients in multilocus notation. Using this notation, we discuss how its flexibility-which allows different biological units to be identified as targets of selection-is reflected in the interpretation of the coefficients that the notation generates. In many situations, it can be difficult to agree on whether loci can be considered to be under "direct" versus "indirect" selection, or to quantify this selection. We present arguments for what the terms direct and indirect selection might best encompass, considering a range of issues, from viability and sexual selection to kin selection. We show how multilocus notation can discriminate between direct and indirect selection, and describe when it can do so. author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Maria full_name: Servedio, Maria last_name: Servedio citation: ama: Barton NH, Servedio M. The interpretation of selection coefficients. Evolution. 2015;69(5):1101-1112. doi:10.1111/evo.12641 apa: Barton, N. H., & Servedio, M. (2015). The interpretation of selection coefficients. Evolution. Wiley. https://doi.org/10.1111/evo.12641 chicago: Barton, Nicholas H, and Maria Servedio. “The Interpretation of Selection Coefficients.” Evolution. Wiley, 2015. https://doi.org/10.1111/evo.12641. ieee: N. H. Barton and M. Servedio, “The interpretation of selection coefficients,” Evolution, vol. 69, no. 5. Wiley, pp. 1101–1112, 2015. ista: Barton NH, Servedio M. 2015. The interpretation of selection coefficients. Evolution. 69(5), 1101–1112. mla: Barton, Nicholas H., and Maria Servedio. “The Interpretation of Selection Coefficients.” Evolution, vol. 69, no. 5, Wiley, 2015, pp. 1101–12, doi:10.1111/evo.12641. short: N.H. Barton, M. Servedio, Evolution 69 (2015) 1101–1112. date_created: 2018-12-11T11:52:29Z date_published: 2015-03-19T00:00:00Z date_updated: 2021-01-12T06:51:20Z day: '19' ddc: - '570' department: - _id: NiBa doi: 10.1111/evo.12641 ec_funded: 1 file: - access_level: open_access checksum: fd8d23f476bc194419929b72ca265c02 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:34Z date_updated: 2020-07-14T12:45:00Z file_id: '4822' file_name: IST-2016-560-v1+1_Interpreting_ML_coefficients_11.2.15_App.pdf file_size: 188872 relation: main_file - access_level: open_access checksum: b774911e70044641d556e258efcb52ef content_type: application/pdf creator: system date_created: 2018-12-12T10:10:35Z date_updated: 2020-07-14T12:45:00Z file_id: '4823' file_name: IST-2016-560-v1+2_Interpreting_ML_coefficients_11.2.15_mainText.pdf file_size: 577415 relation: main_file file_date_updated: 2020-07-14T12:45:00Z has_accepted_license: '1' intvolume: ' 69' issue: '5' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 1101 - 1112 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Evolution publication_status: published publisher: Wiley publist_id: '5656' pubrep_id: '560' quality_controlled: '1' scopus_import: 1 status: public title: The interpretation of selection coefficients type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 69 year: '2015' ... --- _id: '1542' abstract: - lang: eng text: 'The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. ' author: - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Golnaz full_name: Badkobeh, Golnaz last_name: Badkobeh - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Doğan full_name: Çörüş, Doğan last_name: Çörüş - first_name: Duccuong full_name: Dang, Duccuong last_name: Dang - first_name: Tobias full_name: Friedrich, Tobias last_name: Friedrich - first_name: Per full_name: Lehre, Per last_name: Lehre - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Andrew full_name: Sutton, Andrew last_name: Sutton - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 citation: ama: Paixao T, Badkobeh G, Barton NH, et al. Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. 2015;383:28-43. doi:10.1016/j.jtbi.2015.07.011 apa: Paixao, T., Badkobeh, G., Barton, N. H., Çörüş, D., Dang, D., Friedrich, T., … Trubenova, B. (2015). Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2015.07.011 chicago: Paixao, Tiago, Golnaz Badkobeh, Nicholas H Barton, Doğan Çörüş, Duccuong Dang, Tobias Friedrich, Per Lehre, Dirk Sudholt, Andrew Sutton, and Barbora Trubenova. “Toward a Unifying Framework for Evolutionary Processes.” Journal of Theoretical Biology. Elsevier, 2015. https://doi.org/10.1016/j.jtbi.2015.07.011. ieee: T. Paixao et al., “Toward a unifying framework for evolutionary processes,” Journal of Theoretical Biology, vol. 383. Elsevier, pp. 28–43, 2015. ista: Paixao T, Badkobeh G, Barton NH, Çörüş D, Dang D, Friedrich T, Lehre P, Sudholt D, Sutton A, Trubenova B. 2015. Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. 383, 28–43. mla: Paixao, Tiago, et al. “Toward a Unifying Framework for Evolutionary Processes.” Journal of Theoretical Biology, vol. 383, Elsevier, 2015, pp. 28–43, doi:10.1016/j.jtbi.2015.07.011. short: T. Paixao, G. Badkobeh, N.H. Barton, D. Çörüş, D. Dang, T. Friedrich, P. Lehre, D. Sudholt, A. Sutton, B. Trubenova, Journal of Theoretical Biology 383 (2015) 28–43. date_created: 2018-12-11T11:52:37Z date_published: 2015-10-21T00:00:00Z date_updated: 2021-01-12T06:51:29Z day: '21' ddc: - '570' department: - _id: NiBa - _id: CaGu doi: 10.1016/j.jtbi.2015.07.011 ec_funded: 1 file: - access_level: open_access checksum: 33b60ecfea60764756a9ee9df5eb65ca content_type: application/pdf creator: system date_created: 2018-12-12T10:16:53Z date_updated: 2020-07-14T12:45:01Z file_id: '5244' file_name: IST-2016-483-v1+1_1-s2.0-S0022519315003409-main.pdf file_size: 595307 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 383' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '10' oa: 1 oa_version: Published Version page: 28 - 43 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: ' Journal of Theoretical Biology' publication_status: published publisher: Elsevier publist_id: '5629' pubrep_id: '483' quality_controlled: '1' scopus_import: 1 status: public title: Toward a unifying framework for evolutionary processes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 383 year: '2015' ... --- _id: '1699' abstract: - lang: eng text: By hybridization and backcrossing, alleles can surmount species boundaries and be incorporated into the genome of a related species. This introgression of genes is of particular evolutionary relevance if it involves the transfer of adaptations between populations. However, any beneficial allele will typically be associated with other alien alleles that are often deleterious and hamper the introgression process. In order to describe the introgression of an adaptive allele, we set up a stochastic model with an explicit genetic makeup of linked and unlinked deleterious alleles. Based on the theory of reducible multitype branching processes, we derive a recursive expression for the establishment probability of the beneficial allele after a single hybridization event. We furthermore study the probability that slightly deleterious alleles hitchhike to fixation. The key to the analysis is a split of the process into a stochastic phase in which the advantageous alleles establishes and a deterministic phase in which it sweeps to fixation. We thereafter apply the theory to a set of biologically relevant scenarios such as introgression in the presence of many unlinked or few closely linked deleterious alleles. A comparison to computer simulations shows that the approximations work well over a large parameter range. acknowledgement: This work was made possible with financial support by the Vienna Science and Technology Fund (WWTF), by the Deutsche Forschungsgemeinschaft (DFG), Research Unit 1078 Natural selection in structured populations, by the Austrian Science Fund (FWF) via funding for the Vienna Graduate School for Population Genetics, and by a “For Women in Science” fellowship (L’Oréal Österreich in cooperation with the Austrian Commission for UNESCO and the Austrian Academy of Sciences with financial support from the Federal Ministry for Science and Research Austria). author: - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Derek full_name: Setter, Derek last_name: Setter - first_name: Joachim full_name: Hermisson, Joachim last_name: Hermisson citation: ama: Uecker H, Setter D, Hermisson J. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 2015;70(7):1523-1580. doi:10.1007/s00285-014-0802-y apa: Uecker, H., Setter, D., & Hermisson, J. (2015). Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. Springer. https://doi.org/10.1007/s00285-014-0802-y chicago: Uecker, Hildegard, Derek Setter, and Joachim Hermisson. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology. Springer, 2015. https://doi.org/10.1007/s00285-014-0802-y. ieee: H. Uecker, D. Setter, and J. Hermisson, “Adaptive gene introgression after secondary contact,” Journal of Mathematical Biology, vol. 70, no. 7. Springer, pp. 1523–1580, 2015. ista: Uecker H, Setter D, Hermisson J. 2015. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 70(7), 1523–1580. mla: Uecker, Hildegard, et al. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology, vol. 70, no. 7, Springer, 2015, pp. 1523–80, doi:10.1007/s00285-014-0802-y. short: H. Uecker, D. Setter, J. Hermisson, Journal of Mathematical Biology 70 (2015) 1523–1580. date_created: 2018-12-11T11:53:32Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-02-23T10:10:36Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1007/s00285-014-0802-y file: - access_level: open_access checksum: 00e3a67bda05d4cc165b3a48b41ef9ad content_type: application/pdf creator: system date_created: 2018-12-12T10:14:27Z date_updated: 2020-07-14T12:45:12Z file_id: '5079' file_name: IST-2016-458-v1+1_s00285-014-0802-y.pdf file_size: 1321527 relation: main_file file_date_updated: 2020-07-14T12:45:12Z has_accepted_license: '1' intvolume: ' 70' issue: '7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1523 - 1580 project: - _id: 25B67606-B435-11E9-9278-68D0E5697425 name: L'OREAL Fellowship publication: Journal of Mathematical Biology publication_status: published publisher: Springer publist_id: '5442' pubrep_id: '458' quality_controlled: '1' scopus_import: 1 status: public title: Adaptive gene introgression after secondary contact tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 70 year: '2015' ... --- _id: '1703' abstract: - lang: eng text: Vegetation clearing and land-use change have depleted many natural plant communities to the point where restoration is required. A major impediment to the success of rebuilding complex vegetation communities is having regular access to sufficient quantities of high-quality seed. Seed-production areas (SPAs) can help generate this seed, but these must be underpinned by a broad genetic base to maximise the evolutionary potential of restored populations. However, genetic bottlenecks can occur at the collection, establishment and production stages in SPAs, requiring genetic evaluation. This is especially relevant for species that may take many years before a return on SPA investment is realised. Two recently established yellow box (Eucalyptus melliodora A.Cunn. ex Schauer, Myrtaceae) SPAs were evaluated to determine whether genetic bottlenecks had occurred between seed collection and SPA establishment. No evidence was found to suggest that a significant loss of genetic diversity had occurred at this stage, although there was a significant difference in diversity between the two SPAs. Complex population genetic structure was also observed in the seed used to source the SPAs, with up to eight groups identified. Plant survival in the SPAs was influenced by seed collection location but not by SPA location and was not associated with genetic diversity. There were also no associations between genetic diversity and plant growth. These data highlighted the importance of chance events when establishing SPAs and indicated that the two yellow box SPAs are likely to provide genetically diverse seed sources for future restoration projects, especially by pooling seed from both SPAs. author: - first_name: Linda full_name: Broadhurst, Linda last_name: Broadhurst - first_name: Graham full_name: Fifield, Graham last_name: Fifield - first_name: Bindi full_name: Vanzella, Bindi last_name: Vanzella - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 citation: ama: Broadhurst L, Fifield G, Vanzella B, Pickup M. An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas. Australian Journal of Botany. 2015;63(5):455-466. doi:10.1071/BT15023 apa: Broadhurst, L., Fifield, G., Vanzella, B., & Pickup, M. (2015). An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas. Australian Journal of Botany. CSIRO. https://doi.org/10.1071/BT15023 chicago: Broadhurst, Linda, Graham Fifield, Bindi Vanzella, and Melinda Pickup. “An Evaluation of the Genetic Structure of Seed Sources and the Maintenance of Genetic Diversity during Establishment of Two Yellow Box (Eucalyptus Melliodora) Seed-Production Areas.” Australian Journal of Botany. CSIRO, 2015. https://doi.org/10.1071/BT15023. ieee: L. Broadhurst, G. Fifield, B. Vanzella, and M. Pickup, “An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas,” Australian Journal of Botany, vol. 63, no. 5. CSIRO, pp. 455–466, 2015. ista: Broadhurst L, Fifield G, Vanzella B, Pickup M. 2015. An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas. Australian Journal of Botany. 63(5), 455–466. mla: Broadhurst, Linda, et al. “An Evaluation of the Genetic Structure of Seed Sources and the Maintenance of Genetic Diversity during Establishment of Two Yellow Box (Eucalyptus Melliodora) Seed-Production Areas.” Australian Journal of Botany, vol. 63, no. 5, CSIRO, 2015, pp. 455–66, doi:10.1071/BT15023. short: L. Broadhurst, G. Fifield, B. Vanzella, M. Pickup, Australian Journal of Botany 63 (2015) 455–466. date_created: 2018-12-11T11:53:34Z date_published: 2015-05-26T00:00:00Z date_updated: 2021-01-12T06:52:38Z day: '26' department: - _id: NiBa doi: 10.1071/BT15023 intvolume: ' 63' issue: '5' language: - iso: eng month: '05' oa_version: None page: 455 - 466 publication: Australian Journal of Botany publication_status: published publisher: CSIRO publist_id: '5434' quality_controlled: '1' scopus_import: 1 status: public title: An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 63 year: '2015' ... --- _id: '1818' abstract: - lang: eng text: 'Why do species not adapt to ever-wider ranges of conditions, gradually expanding their ecological niche and geographic range? Gene flow across environments has two conflicting effects: although it increases genetic variation, which is a prerequisite for adaptation, gene flow may swamp adaptation to local conditions. In 1956, Haldane proposed that, when the environment varies across space, "swamping" by gene flow creates a positive feedback between low population size and maladaptation, leading to a sharp range margin. However, current deterministic theory shows that, when variance can evolve, there is no such limit. Using simple analytical tools and simulations, we show that genetic drift can generate a sharp margin to a species'' range, by reducing genetic variance below the level needed for adaptation to spatially variable conditions. Aided by separation of ecological and evolutionary timescales, the identified effective dimensionless parameters reveal a simple threshold that predicts when adaptation at the range margin fails. Two observable parameters determine the threshold: (i) the effective environmental gradient, which can be measured by the loss of fitness due to dispersal to a different environment; and (ii) the efficacy of selection relative to genetic drift. The theory predicts sharp range margins even in the absence of abrupt changes in the environment. Furthermore, it implies that gradual worsening of conditions across a species'' habitat may lead to a sudden range fragmentation, when adaptation to a wide span of conditions within a single species becomes impossible.' author: - first_name: Jitka full_name: Polechova, Jitka id: 3BBFB084-F248-11E8-B48F-1D18A9856A87 last_name: Polechova orcid: 0000-0003-0951-3112 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Polechova J, Barton NH. Limits to adaptation along environmental gradients. PNAS. 2015;112(20):6401-6406. doi:10.1073/pnas.1421515112 apa: Polechova, J., & Barton, N. H. (2015). Limits to adaptation along environmental gradients. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1421515112 chicago: Polechova, Jitka, and Nicholas H Barton. “Limits to Adaptation along Environmental Gradients.” PNAS. National Academy of Sciences, 2015. https://doi.org/10.1073/pnas.1421515112. ieee: J. Polechova and N. H. Barton, “Limits to adaptation along environmental gradients,” PNAS, vol. 112, no. 20. National Academy of Sciences, pp. 6401–6406, 2015. ista: Polechova J, Barton NH. 2015. Limits to adaptation along environmental gradients. PNAS. 112(20), 6401–6406. mla: Polechova, Jitka, and Nicholas H. Barton. “Limits to Adaptation along Environmental Gradients.” PNAS, vol. 112, no. 20, National Academy of Sciences, 2015, pp. 6401–06, doi:10.1073/pnas.1421515112. short: J. Polechova, N.H. Barton, PNAS 112 (2015) 6401–6406. date_created: 2018-12-11T11:54:11Z date_published: 2015-05-19T00:00:00Z date_updated: 2021-01-12T06:53:24Z day: '19' department: - _id: NiBa doi: 10.1073/pnas.1421515112 ec_funded: 1 external_id: pmid: - '25941385' intvolume: ' 112' issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443383/ month: '05' oa: 1 oa_version: Submitted Version page: 6401 - 6406 pmid: 1 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5288' quality_controlled: '1' scopus_import: 1 status: public title: Limits to adaptation along environmental gradients type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2015' ... --- _id: '1850' abstract: - lang: eng text: 'Entomopathogenic fungi are potent biocontrol agents that are widely used against insect pests, many of which are social insects. Nevertheless, theoretical investigations of their particular life history are scarce. We develop a model that takes into account the main distinguishing features between traditionally studied diseases and obligate killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious particles (conidiospores) only after host death and not yet on the living host. Second, the killing rates of entomopathogenic fungi depend strongly on the initial exposure dosage, thus we explicitly consider the pathogen load of individual hosts. Further, we make the model applicable not only to solitary host species, but also to group living species by incorporating social interactions between hosts, like the collective disease defences of insect societies. Our results identify the optimal killing rate for the pathogen that minimises its invasion threshold. Furthermore, we find that the rate of contact between hosts has an ambivalent effect: dense interaction networks between individuals are considered to facilitate disease outbreaks because of increased pathogen transmission. In social insects, this is compensated by their collective disease defences, i.e., social immunity. For the type of pathogens considered here, we show that even without social immunity, high contact rates between live individuals dilute the pathogen in the host colony and hence can reduce individual pathogen loads below disease-causing levels.' author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: 'Novak S, Cremer S. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. 2015;372(5):54-64. doi:10.1016/j.jtbi.2015.02.018' apa: 'Novak, S., & Cremer, S. (2015). Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2015.02.018' chicago: 'Novak, Sebastian, and Sylvia Cremer. “Fungal Disease Dynamics in Insect Societies: Optimal Killing Rates and the Ambivalent Effect of High Social Interaction Rates.” Journal of Theoretical Biology. Elsevier, 2015. https://doi.org/10.1016/j.jtbi.2015.02.018.' ieee: 'S. Novak and S. Cremer, “Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates,” Journal of Theoretical Biology, vol. 372, no. 5. Elsevier, pp. 54–64, 2015.' ista: 'Novak S, Cremer S. 2015. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. 372(5), 54–64.' mla: 'Novak, Sebastian, and Sylvia Cremer. “Fungal Disease Dynamics in Insect Societies: Optimal Killing Rates and the Ambivalent Effect of High Social Interaction Rates.” Journal of Theoretical Biology, vol. 372, no. 5, Elsevier, 2015, pp. 54–64, doi:10.1016/j.jtbi.2015.02.018.' short: S. Novak, S. Cremer, Journal of Theoretical Biology 372 (2015) 54–64. date_created: 2018-12-11T11:54:21Z date_published: 2015-05-07T00:00:00Z date_updated: 2021-01-12T06:53:37Z day: '07' ddc: - '576' department: - _id: NiBa - _id: SyCr doi: 10.1016/j.jtbi.2015.02.018 ec_funded: 1 file: - access_level: open_access checksum: 3c0dcacc900bc45cc65a453dfda4ca43 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:07Z date_updated: 2020-07-14T12:45:19Z file_id: '5326' file_name: IST-2015-329-v1+1_manuscript.pdf file_size: 1546914 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 372' issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 54 - 64 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '5251' pubrep_id: '329' quality_controlled: '1' scopus_import: 1 status: public title: 'Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 372 year: '2015' ... --- _id: '1851' abstract: - lang: eng text: We consider mating strategies for females who search for males sequentially during a season of limited length. We show that the best strategy rejects a given male type if encountered before a time-threshold but accepts him after. For frequency-independent benefits, we obtain the optimal time-thresholds explicitly for both discrete and continuous distributions of males, and allow for mistakes being made in assessing the correct male type. When the benefits are indirect (genes for the offspring) and the population is under frequency-dependent ecological selection, the benefits depend on the mating strategy of other females as well. This case is particularly relevant to speciation models that seek to explore the stability of reproductive isolation by assortative mating under frequency-dependent ecological selection. We show that the indirect benefits are to be quantified by the reproductive values of couples, and describe how the evolutionarily stable time-thresholds can be found. We conclude with an example based on the Levene model, in which we analyze the evolutionarily stable assortative mating strategies and the strength of reproductive isolation provided by them. article_processing_charge: No article_type: original author: - first_name: Tadeas full_name: Priklopil, Tadeas id: 3C869AA0-F248-11E8-B48F-1D18A9856A87 last_name: Priklopil - first_name: Eva full_name: Kisdi, Eva last_name: Kisdi - first_name: Mats full_name: Gyllenberg, Mats last_name: Gyllenberg citation: ama: Priklopil T, Kisdi E, Gyllenberg M. Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating. Evolution. 2015;69(4):1015-1026. doi:10.1111/evo.12618 apa: Priklopil, T., Kisdi, E., & Gyllenberg, M. (2015). Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating. Evolution. Wiley. https://doi.org/10.1111/evo.12618 chicago: Priklopil, Tadeas, Eva Kisdi, and Mats Gyllenberg. “Evolutionarily Stable Mating Decisions for Sequentially Searching Females and the Stability of Reproductive Isolation by Assortative Mating.” Evolution. Wiley, 2015. https://doi.org/10.1111/evo.12618. ieee: T. Priklopil, E. Kisdi, and M. Gyllenberg, “Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating,” Evolution, vol. 69, no. 4. Wiley, pp. 1015–1026, 2015. ista: Priklopil T, Kisdi E, Gyllenberg M. 2015. Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating. Evolution. 69(4), 1015–1026. mla: Priklopil, Tadeas, et al. “Evolutionarily Stable Mating Decisions for Sequentially Searching Females and the Stability of Reproductive Isolation by Assortative Mating.” Evolution, vol. 69, no. 4, Wiley, 2015, pp. 1015–26, doi:10.1111/evo.12618. short: T. Priklopil, E. Kisdi, M. Gyllenberg, Evolution 69 (2015) 1015–1026. date_created: 2018-12-11T11:54:21Z date_published: 2015-02-09T00:00:00Z date_updated: 2022-06-07T10:52:37Z day: '09' ddc: - '570' department: - _id: NiBa - _id: KrCh doi: 10.1111/evo.12618 ec_funded: 1 external_id: pmid: - '25662095' file: - access_level: open_access checksum: 1e8be0b1d7598a78cd2623d8ee8e7798 content_type: application/pdf creator: dernst date_created: 2020-05-15T09:05:34Z date_updated: 2020-07-14T12:45:19Z file_id: '7855' file_name: 2015_Evolution_Priklopil.pdf file_size: 967214 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 69' issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Submitted Version page: 1015 - 1026 pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Evolution publication_identifier: eissn: - 1558-5646 issn: - 0014-3820 publication_status: published publisher: Wiley publist_id: '5249' quality_controlled: '1' scopus_import: '1' status: public title: Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 69 year: '2015' ... --- _id: '1883' abstract: - lang: eng text: "We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ-α. Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)2. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.\r\n" article_number: '022803' article_processing_charge: No article_type: original author: - first_name: Stephanie full_name: Keller-Schmidt, Stephanie last_name: Keller-Schmidt - first_name: Murat full_name: Tugrul, Murat id: 37C323C6-F248-11E8-B48F-1D18A9856A87 last_name: Tugrul orcid: 0000-0002-8523-0758 - first_name: Víctor full_name: Eguíluz, Víctor last_name: Eguíluz - first_name: Emilio full_name: Hernandez Garcia, Emilio last_name: Hernandez Garcia - first_name: Konstantin full_name: Klemm, Konstantin last_name: Klemm citation: ama: Keller-Schmidt S, Tugrul M, Eguíluz V, Hernandez Garcia E, Klemm K. Anomalous scaling in an age-dependent branching model. Physical Review E Statistical Nonlinear and Soft Matter Physics. 2015;91(2). doi:10.1103/PhysRevE.91.022803 apa: Keller-Schmidt, S., Tugrul, M., Eguíluz, V., Hernandez Garcia, E., & Klemm, K. (2015). Anomalous scaling in an age-dependent branching model. Physical Review E Statistical Nonlinear and Soft Matter Physics. American Institute of Physics. https://doi.org/10.1103/PhysRevE.91.022803 chicago: Keller-Schmidt, Stephanie, Murat Tugrul, Víctor Eguíluz, Emilio Hernandez Garcia, and Konstantin Klemm. “Anomalous Scaling in an Age-Dependent Branching Model.” Physical Review E Statistical Nonlinear and Soft Matter Physics. American Institute of Physics, 2015. https://doi.org/10.1103/PhysRevE.91.022803. ieee: S. Keller-Schmidt, M. Tugrul, V. Eguíluz, E. Hernandez Garcia, and K. Klemm, “Anomalous scaling in an age-dependent branching model,” Physical Review E Statistical Nonlinear and Soft Matter Physics, vol. 91, no. 2. American Institute of Physics, 2015. ista: Keller-Schmidt S, Tugrul M, Eguíluz V, Hernandez Garcia E, Klemm K. 2015. Anomalous scaling in an age-dependent branching model. Physical Review E Statistical Nonlinear and Soft Matter Physics. 91(2), 022803. mla: Keller-Schmidt, Stephanie, et al. “Anomalous Scaling in an Age-Dependent Branching Model.” Physical Review E Statistical Nonlinear and Soft Matter Physics, vol. 91, no. 2, 022803, American Institute of Physics, 2015, doi:10.1103/PhysRevE.91.022803. short: S. Keller-Schmidt, M. Tugrul, V. Eguíluz, E. Hernandez Garcia, K. Klemm, Physical Review E Statistical Nonlinear and Soft Matter Physics 91 (2015). date_created: 2018-12-11T11:54:31Z date_published: 2015-02-02T00:00:00Z date_updated: 2021-01-12T06:53:49Z day: '02' department: - _id: NiBa doi: 10.1103/PhysRevE.91.022803 external_id: arxiv: - '1012.3298' intvolume: ' 91' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1012.3298 month: '02' oa: 1 oa_version: Preprint publication: Physical Review E Statistical Nonlinear and Soft Matter Physics publication_status: published publisher: American Institute of Physics publist_id: '5213' quality_controlled: '1' scopus_import: 1 status: public title: Anomalous scaling in an age-dependent branching model type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 91 year: '2015' ... --- _id: '1809' abstract: - lang: eng text: 'Background: Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the expression of traits in social partners. Previous studies focused on the evolutionary consequences and evolutionary dynamics of IGEs, using equilibrium solutions to predict phenotypes in subsequent generations. However, whether or not such steady states may be reached may depend on the dynamics of interactions themselves. Results: In our study, we focus on the dynamics of social interactions and indirect genetic effects and investigate how they modify phenotypes over time. Unlike previous IGE studies, we do not analyse evolutionary dynamics; rather we consider within-individual phenotypic changes, also referred to as phenotypic plasticity. We analyse iterative interactions, when individuals interact in a series of discontinuous events, and investigate the stability of steady state solutions and the dependence on model parameters, such as population size, strength, and the nature of interactions. We show that for interactions where a feedback loop occurs, the possible parameter space of interaction strength is fairly limited, affecting the evolutionary consequences of IGEs. We discuss the implications of our results for current IGE model predictions and their limitations.' author: - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Reinmar full_name: Hager, Reinmar last_name: Hager citation: ama: Trubenova B, Novak S, Hager R. Indirect genetic effects and the dynamics of social interactions. PLoS One. 2015;10(5). doi:10.1371/journal.pone.0126907 apa: Trubenova, B., Novak, S., & Hager, R. (2015). Indirect genetic effects and the dynamics of social interactions. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0126907 chicago: Trubenova, Barbora, Sebastian Novak, and Reinmar Hager. “Indirect Genetic Effects and the Dynamics of Social Interactions.” PLoS One. Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0126907. ieee: B. Trubenova, S. Novak, and R. Hager, “Indirect genetic effects and the dynamics of social interactions,” PLoS One, vol. 10, no. 5. Public Library of Science, 2015. ista: Trubenova B, Novak S, Hager R. 2015. Indirect genetic effects and the dynamics of social interactions. PLoS One. 10(5). mla: Trubenova, Barbora, et al. “Indirect Genetic Effects and the Dynamics of Social Interactions.” PLoS One, vol. 10, no. 5, Public Library of Science, 2015, doi:10.1371/journal.pone.0126907. short: B. Trubenova, S. Novak, R. Hager, PLoS One 10 (2015). date_created: 2018-12-11T11:54:07Z date_published: 2015-05-18T00:00:00Z date_updated: 2023-02-23T14:07:48Z day: '18' ddc: - '570' - '576' department: - _id: NiBa doi: 10.1371/journal.pone.0126907 file: - access_level: open_access checksum: d3a4a58ef4bd3b3e2f32b7fd7af4a743 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:07Z date_updated: 2020-07-14T12:45:17Z file_id: '4730' file_name: IST-2016-453-v1+1_journal.pone.0126907.pdf file_size: 2748982 relation: main_file file_date_updated: 2020-07-14T12:45:17Z has_accepted_license: '1' intvolume: ' 10' issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '5299' pubrep_id: '453' quality_controlled: '1' related_material: record: - id: '9715' relation: research_data status: public - id: '9772' relation: research_data status: public scopus_import: 1 status: public title: Indirect genetic effects and the dynamics of social interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2015' ... --- _id: '9772' article_processing_charge: No author: - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Reinmar full_name: Hager, Reinmar last_name: Hager citation: ama: Trubenova B, Novak S, Hager R. Description of the agent based simulations. 2015. doi:10.1371/journal.pone.0126907.s003 apa: Trubenova, B., Novak, S., & Hager, R. (2015). Description of the agent based simulations. Public Library of Science. https://doi.org/10.1371/journal.pone.0126907.s003 chicago: Trubenova, Barbora, Sebastian Novak, and Reinmar Hager. “Description of the Agent Based Simulations.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0126907.s003. ieee: B. Trubenova, S. Novak, and R. Hager, “Description of the agent based simulations.” Public Library of Science, 2015. ista: Trubenova B, Novak S, Hager R. 2015. Description of the agent based simulations, Public Library of Science, 10.1371/journal.pone.0126907.s003. mla: Trubenova, Barbora, et al. Description of the Agent Based Simulations. Public Library of Science, 2015, doi:10.1371/journal.pone.0126907.s003. short: B. Trubenova, S. Novak, R. Hager, (2015). date_created: 2021-08-05T12:55:20Z date_published: 2015-05-18T00:00:00Z date_updated: 2023-02-23T10:15:25Z day: '18' department: - _id: NiBa doi: 10.1371/journal.pone.0126907.s003 month: '05' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1809' relation: used_in_publication status: public status: public title: Description of the agent based simulations type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '9712' article_processing_charge: No author: - first_name: Murat full_name: Tugrul, Murat id: 37C323C6-F248-11E8-B48F-1D18A9856A87 last_name: Tugrul orcid: 0000-0002-8523-0758 - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Tugrul M, Paixao T, Barton NH, Tkačik G. Other fitness models for comparison & for interacting TFBSs. 2015. doi:10.1371/journal.pgen.1005639.s001 apa: Tugrul, M., Paixao, T., Barton, N. H., & Tkačik, G. (2015). Other fitness models for comparison & for interacting TFBSs. Public Library of Science. https://doi.org/10.1371/journal.pgen.1005639.s001 chicago: Tugrul, Murat, Tiago Paixao, Nicholas H Barton, and Gašper Tkačik. “Other Fitness Models for Comparison & for Interacting TFBSs.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pgen.1005639.s001. ieee: M. Tugrul, T. Paixao, N. H. Barton, and G. Tkačik, “Other fitness models for comparison & for interacting TFBSs.” Public Library of Science, 2015. ista: Tugrul M, Paixao T, Barton NH, Tkačik G. 2015. Other fitness models for comparison & for interacting TFBSs, Public Library of Science, 10.1371/journal.pgen.1005639.s001. mla: Tugrul, Murat, et al. Other Fitness Models for Comparison & for Interacting TFBSs. Public Library of Science, 2015, doi:10.1371/journal.pgen.1005639.s001. short: M. Tugrul, T. Paixao, N.H. Barton, G. Tkačik, (2015). date_created: 2021-07-23T12:00:37Z date_published: 2015-11-06T00:00:00Z date_updated: 2023-02-23T10:09:08Z day: '06' department: - _id: NiBa - _id: CaGu - _id: GaTk doi: 10.1371/journal.pgen.1005639.s001 month: '11' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1666' relation: used_in_publication status: public status: public title: Other fitness models for comparison & for interacting TFBSs type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '9715' article_processing_charge: No author: - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Reinmar full_name: Hager, Reinmar last_name: Hager citation: ama: Trubenova B, Novak S, Hager R. Mathematical inference of the results. 2015. doi:10.1371/journal.pone.0126907.s001 apa: Trubenova, B., Novak, S., & Hager, R. (2015). Mathematical inference of the results. Public Library of Science. https://doi.org/10.1371/journal.pone.0126907.s001 chicago: Trubenova, Barbora, Sebastian Novak, and Reinmar Hager. “Mathematical Inference of the Results.” Public Library of Science, 2015. https://doi.org/10.1371/journal.pone.0126907.s001. ieee: B. Trubenova, S. Novak, and R. Hager, “Mathematical inference of the results.” Public Library of Science, 2015. ista: Trubenova B, Novak S, Hager R. 2015. Mathematical inference of the results, Public Library of Science, 10.1371/journal.pone.0126907.s001. mla: Trubenova, Barbora, et al. Mathematical Inference of the Results. Public Library of Science, 2015, doi:10.1371/journal.pone.0126907.s001. short: B. Trubenova, S. Novak, R. Hager, (2015). date_created: 2021-07-23T12:11:30Z date_published: 2015-05-18T00:00:00Z date_updated: 2023-02-23T10:15:25Z day: '18' department: - _id: NiBa doi: 10.1371/journal.pone.0126907.s001 month: '05' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '1809' relation: used_in_publication status: public status: public title: Mathematical inference of the results type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2015' ... --- _id: '1666' abstract: - lang: eng text: Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ∼ 10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of “pre-sites” or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genomics. author: - first_name: Murat full_name: Tugrul, Murat id: 37C323C6-F248-11E8-B48F-1D18A9856A87 last_name: Tugrul orcid: 0000-0002-8523-0758 - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 citation: ama: Tugrul M, Paixao T, Barton NH, Tkačik G. Dynamics of transcription factor binding site evolution. PLoS Genetics. 2015;11(11). doi:10.1371/journal.pgen.1005639 apa: Tugrul, M., Paixao, T., Barton, N. H., & Tkačik, G. (2015). Dynamics of transcription factor binding site evolution. PLoS Genetics. Public Library of Science. https://doi.org/10.1371/journal.pgen.1005639 chicago: Tugrul, Murat, Tiago Paixao, Nicholas H Barton, and Gašper Tkačik. “Dynamics of Transcription Factor Binding Site Evolution.” PLoS Genetics. Public Library of Science, 2015. https://doi.org/10.1371/journal.pgen.1005639. ieee: M. Tugrul, T. Paixao, N. H. Barton, and G. Tkačik, “Dynamics of transcription factor binding site evolution,” PLoS Genetics, vol. 11, no. 11. Public Library of Science, 2015. ista: Tugrul M, Paixao T, Barton NH, Tkačik G. 2015. Dynamics of transcription factor binding site evolution. PLoS Genetics. 11(11). mla: Tugrul, Murat, et al. “Dynamics of Transcription Factor Binding Site Evolution.” PLoS Genetics, vol. 11, no. 11, Public Library of Science, 2015, doi:10.1371/journal.pgen.1005639. short: M. Tugrul, T. Paixao, N.H. Barton, G. Tkačik, PLoS Genetics 11 (2015). date_created: 2018-12-11T11:53:21Z date_published: 2015-11-06T00:00:00Z date_updated: 2023-09-07T11:53:49Z day: '06' ddc: - '576' department: - _id: NiBa - _id: CaGu - _id: GaTk doi: 10.1371/journal.pgen.1005639 ec_funded: 1 file: - access_level: open_access checksum: a4e72fca5ccf40ddacf4d08c8e46b554 content_type: application/pdf creator: system date_created: 2018-12-12T10:07:58Z date_updated: 2020-07-14T12:45:10Z file_id: '4657' file_name: IST-2016-463-v1+1_journal.pgen.1005639.pdf file_size: 2580778 relation: main_file file_date_updated: 2020-07-14T12:45:10Z has_accepted_license: '1' intvolume: ' 11' issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: PLoS Genetics publication_status: published publisher: Public Library of Science publist_id: '5483' pubrep_id: '463' quality_controlled: '1' related_material: record: - id: '9712' relation: research_data status: public - id: '1131' relation: dissertation_contains status: public scopus_import: 1 status: public title: Dynamics of transcription factor binding site evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2015' ... --- _id: '1835' abstract: - lang: eng text: The behaviour of gene regulatory networks (GRNs) is typically analysed using simulation-based statistical testing-like methods. In this paper, we demonstrate that we can replace this approach by a formal verification-like method that gives higher assurance and scalability. We focus on Wagner’s weighted GRN model with varying weights, which is used in evolutionary biology. In the model, weight parameters represent the gene interaction strength that may change due to genetic mutations. For a property of interest, we synthesise the constraints over the parameter space that represent the set of GRNs satisfying the property. We experimentally show that our parameter synthesis procedure computes the mutational robustness of GRNs –an important problem of interest in evolutionary biology– more efficiently than the classical simulation method. We specify the property in linear temporal logics. We employ symbolic bounded model checking and SMT solving to compute the space of GRNs that satisfy the property, which amounts to synthesizing a set of linear constraints on the weights. acknowledgement: "SNSF Early Postdoc.Mobility Fellowship, the grant number P2EZP2 148797.\r\n" alternative_title: - LNCS author: - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Ashutosh full_name: Gupta, Ashutosh id: 335E5684-F248-11E8-B48F-1D18A9856A87 last_name: Gupta - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Tatjana full_name: Petrov, Tatjana id: 3D5811FC-F248-11E8-B48F-1D18A9856A87 last_name: Petrov orcid: 0000-0002-9041-0905 citation: ama: Giacobbe M, Guet CC, Gupta A, Henzinger TA, Paixao T, Petrov T. Model checking gene regulatory networks. 2015;9035:469-483. doi:10.1007/978-3-662-46681-0_47 apa: 'Giacobbe, M., Guet, C. C., Gupta, A., Henzinger, T. A., Paixao, T., & Petrov, T. (2015). Model checking gene regulatory networks. Presented at the TACAS: Tools and Algorithms for the Construction and Analysis of Systems, London, United Kingdom: Springer. https://doi.org/10.1007/978-3-662-46681-0_47' chicago: Giacobbe, Mirco, Calin C Guet, Ashutosh Gupta, Thomas A Henzinger, Tiago Paixao, and Tatjana Petrov. “Model Checking Gene Regulatory Networks.” Lecture Notes in Computer Science. Springer, 2015. https://doi.org/10.1007/978-3-662-46681-0_47. ieee: M. Giacobbe, C. C. Guet, A. Gupta, T. A. Henzinger, T. Paixao, and T. Petrov, “Model checking gene regulatory networks,” vol. 9035. Springer, pp. 469–483, 2015. ista: Giacobbe M, Guet CC, Gupta A, Henzinger TA, Paixao T, Petrov T. 2015. Model checking gene regulatory networks. 9035, 469–483. mla: Giacobbe, Mirco, et al. Model Checking Gene Regulatory Networks. Vol. 9035, Springer, 2015, pp. 469–83, doi:10.1007/978-3-662-46681-0_47. short: M. Giacobbe, C.C. Guet, A. Gupta, T.A. Henzinger, T. Paixao, T. Petrov, 9035 (2015) 469–483. conference: end_date: 2015-04-18 location: London, United Kingdom name: 'TACAS: Tools and Algorithms for the Construction and Analysis of Systems' start_date: 2015-04-11 date_created: 2018-12-11T11:54:16Z date_published: 2015-04-01T00:00:00Z date_updated: 2023-09-20T11:06:03Z day: '01' department: - _id: ToHe - _id: CaGu - _id: NiBa doi: 10.1007/978-3-662-46681-0_47 ec_funded: 1 intvolume: ' 9035' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1410.7704 month: '04' oa: 1 oa_version: Preprint page: 469 - 483 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication_status: published publisher: Springer publist_id: '5267' quality_controlled: '1' related_material: record: - id: '1351' relation: later_version status: public scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Model checking gene regulatory networks type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9035 year: '2015' ... --- _id: '1681' abstract: - lang: eng text: In many social situations, individuals endeavor to find the single best possible partner, but are constrained to evaluate the candidates in sequence. Examples include the search for mates, economic partnerships, or any other long-term ties where the choice to interact involves two parties. Surprisingly, however, previous theoretical work on mutual choice problems focuses on finding equilibrium solutions, while ignoring the evolutionary dynamics of decisions. Empirically, this may be of high importance, as some equilibrium solutions can never be reached unless the population undergoes radical changes and a sufficient number of individuals change their decisions simultaneously. To address this question, we apply a mutual choice sequential search problem in an evolutionary game-theoretical model that allows one to find solutions that are favored by evolution. As an example, we study the influence of sequential search on the evolutionary dynamics of cooperation. For this, we focus on the classic snowdrift game and the prisoner’s dilemma game. article_processing_charge: No article_type: original author: - first_name: Tadeas full_name: Priklopil, Tadeas id: 3C869AA0-F248-11E8-B48F-1D18A9856A87 last_name: Priklopil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Priklopil T, Chatterjee K. Evolution of decisions in population games with sequentially searching individuals. Games. 2015;6(4):413-437. doi:10.3390/g6040413 apa: Priklopil, T., & Chatterjee, K. (2015). Evolution of decisions in population games with sequentially searching individuals. Games. MDPI. https://doi.org/10.3390/g6040413 chicago: Priklopil, Tadeas, and Krishnendu Chatterjee. “Evolution of Decisions in Population Games with Sequentially Searching Individuals.” Games. MDPI, 2015. https://doi.org/10.3390/g6040413. ieee: T. Priklopil and K. Chatterjee, “Evolution of decisions in population games with sequentially searching individuals,” Games, vol. 6, no. 4. MDPI, pp. 413–437, 2015. ista: Priklopil T, Chatterjee K. 2015. Evolution of decisions in population games with sequentially searching individuals. Games. 6(4), 413–437. mla: Priklopil, Tadeas, and Krishnendu Chatterjee. “Evolution of Decisions in Population Games with Sequentially Searching Individuals.” Games, vol. 6, no. 4, MDPI, 2015, pp. 413–37, doi:10.3390/g6040413. short: T. Priklopil, K. Chatterjee, Games 6 (2015) 413–437. date_created: 2018-12-11T11:53:26Z date_published: 2015-09-29T00:00:00Z date_updated: 2023-10-17T11:42:52Z day: '29' ddc: - '000' department: - _id: NiBa - _id: KrCh doi: 10.3390/g6040413 ec_funded: 1 file: - access_level: open_access checksum: 912e1acbaf201100f447a43e4d5958bd content_type: application/pdf creator: system date_created: 2018-12-12T10:12:41Z date_updated: 2020-07-14T12:45:12Z file_id: '4959' file_name: IST-2016-448-v1+1_games-06-00413.pdf file_size: 518832 relation: main_file file_date_updated: 2020-07-14T12:45:12Z has_accepted_license: '1' intvolume: ' 6' issue: '4' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 413 - 437 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: Games publication_identifier: eissn: - 2073-4336 publication_status: published publisher: MDPI publist_id: '5467' pubrep_id: '448' quality_controlled: '1' scopus_import: '1' status: public title: Evolution of decisions in population games with sequentially searching individuals tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ... --- _id: '1896' abstract: - lang: eng text: 'Biopolymer length regulation is a complex process that involves a large number of biological, chemical, and physical subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres - nucleoprotein structures at the ends of linear chromosomes consisting of tandemly repeated DNA sequences and a specialized set of proteins. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady-state approximation. The detailed treatment of kinetic rates yields explicit formulas for expected size distributions of telomeres that demonstrate the key role played by the J factor, a quantitative measure of bending of polymers. The results are in agreement with experimental data and point out interesting phenomena: an appearance of very long telomeric circles if the total telomere density exceeds a critical value (excess mass) and a nonlinear response of the telomere size distributions to the amount of telomeric DNA in the system. The results can be of general importance for understanding dynamics of telomeres in telomerase-independent systems as this mode of telomere maintenance is similar to the situation in tumor cells lacking telomerase activity. Furthermore, due to its universality, the model may also serve as a prototype of an interaction between linear and circular DNA structures in various settings.' acknowledgement: The work was supported by the VEGA Grant No. 1/0459/13 (R.K. and K.B.). article_number: '032701' article_processing_charge: No author: - first_name: Richard full_name: Kollár, Richard last_name: Kollár - first_name: Katarína full_name: Bod'ová, Katarína id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bod'ová orcid: 0000-0002-7214-0171 - first_name: Jozef full_name: Nosek, Jozef last_name: Nosek - first_name: Ľubomír full_name: Tomáška, Ľubomír last_name: Tomáška citation: ama: Kollár R, Bodova K, Nosek J, Tomáška Ľ. Mathematical model of alternative mechanism of telomere length maintenance. Physical Review E Statistical Nonlinear and Soft Matter Physics. 2014;89(3). doi:10.1103/PhysRevE.89.032701 apa: Kollár, R., Bodova, K., Nosek, J., & Tomáška, Ľ. (2014). Mathematical model of alternative mechanism of telomere length maintenance. Physical Review E Statistical Nonlinear and Soft Matter Physics. American Institute of Physics. https://doi.org/10.1103/PhysRevE.89.032701 chicago: Kollár, Richard, Katarina Bodova, Jozef Nosek, and Ľubomír Tomáška. “Mathematical Model of Alternative Mechanism of Telomere Length Maintenance.” Physical Review E Statistical Nonlinear and Soft Matter Physics. American Institute of Physics, 2014. https://doi.org/10.1103/PhysRevE.89.032701. ieee: R. Kollár, K. Bodova, J. Nosek, and Ľ. Tomáška, “Mathematical model of alternative mechanism of telomere length maintenance,” Physical Review E Statistical Nonlinear and Soft Matter Physics, vol. 89, no. 3. American Institute of Physics, 2014. ista: Kollár R, Bodova K, Nosek J, Tomáška Ľ. 2014. Mathematical model of alternative mechanism of telomere length maintenance. Physical Review E Statistical Nonlinear and Soft Matter Physics. 89(3), 032701. mla: Kollár, Richard, et al. “Mathematical Model of Alternative Mechanism of Telomere Length Maintenance.” Physical Review E Statistical Nonlinear and Soft Matter Physics, vol. 89, no. 3, 032701, American Institute of Physics, 2014, doi:10.1103/PhysRevE.89.032701. short: R. Kollár, K. Bodova, J. Nosek, Ľ. Tomáška, Physical Review E Statistical Nonlinear and Soft Matter Physics 89 (2014). date_created: 2018-12-11T11:54:35Z date_published: 2014-03-04T00:00:00Z date_updated: 2022-08-01T10:50:10Z day: '04' department: - _id: NiBa - _id: GaTk doi: 10.1103/PhysRevE.89.032701 intvolume: ' 89' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1402.0430 month: '03' oa: 1 oa_version: Submitted Version publication: Physical Review E Statistical Nonlinear and Soft Matter Physics publication_status: published publisher: American Institute of Physics publist_id: '5198' scopus_import: '1' status: public title: Mathematical model of alternative mechanism of telomere length maintenance type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 89 year: '2014' ... --- _id: '1909' abstract: - lang: eng text: 'Summary: Phenotypes are often environmentally dependent, which requires organisms to track environmental change. The challenge for organisms is to construct phenotypes using the most accurate environmental cue. Here, we use a quantitative genetic model of adaptation by additive genetic variance, within- and transgenerational plasticity via linear reaction norms and indirect genetic effects respectively. We show how the relative influence on the eventual phenotype of these components depends on the predictability of environmental change (fast or slow, sinusoidal or stochastic) and the developmental lag τ between when the environment is perceived and when selection acts. We then decompose expected mean fitness into three components (variance load, adaptation and fluctuation load) to study the fitness costs of within- and transgenerational plasticity. A strongly negative maternal effect coefficient m minimizes the variance load, but a strongly positive m minimises the fluctuation load. The adaptation term is maximized closer to zero, with positive or negative m preferred under different environmental scenarios. Phenotypic plasticity is higher when τ is shorter and when the environment changes frequently between seasonal extremes. Expected mean population fitness is highest away from highest observed levels of phenotypic plasticity. Within- and transgenerational plasticity act in concert to deliver well-adapted phenotypes, which emphasizes the need to study both simultaneously when investigating phenotypic evolution.' acknowledgement: 'Engineering and Physical Sciences Research Council. Grant Number: EP/H031928/1' author: - first_name: Thomas full_name: Ezard, Thomas last_name: Ezard - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak - first_name: Rebecca full_name: Hoyle, Rebecca last_name: Hoyle citation: ama: Ezard T, Prizak R, Hoyle R. The fitness costs of adaptation via phenotypic plasticity and maternal effects. Functional Ecology. 2014;28(3):693-701. doi:10.1111/1365-2435.12207 apa: Ezard, T., Prizak, R., & Hoyle, R. (2014). The fitness costs of adaptation via phenotypic plasticity and maternal effects. Functional Ecology. Wiley-Blackwell. https://doi.org/10.1111/1365-2435.12207 chicago: Ezard, Thomas, Roshan Prizak, and Rebecca Hoyle. “The Fitness Costs of Adaptation via Phenotypic Plasticity and Maternal Effects.” Functional Ecology. Wiley-Blackwell, 2014. https://doi.org/10.1111/1365-2435.12207. ieee: T. Ezard, R. Prizak, and R. Hoyle, “The fitness costs of adaptation via phenotypic plasticity and maternal effects,” Functional Ecology, vol. 28, no. 3. Wiley-Blackwell, pp. 693–701, 2014. ista: Ezard T, Prizak R, Hoyle R. 2014. The fitness costs of adaptation via phenotypic plasticity and maternal effects. Functional Ecology. 28(3), 693–701. mla: Ezard, Thomas, et al. “The Fitness Costs of Adaptation via Phenotypic Plasticity and Maternal Effects.” Functional Ecology, vol. 28, no. 3, Wiley-Blackwell, 2014, pp. 693–701, doi:10.1111/1365-2435.12207. short: T. Ezard, R. Prizak, R. Hoyle, Functional Ecology 28 (2014) 693–701. date_created: 2018-12-11T11:54:40Z date_published: 2014-06-01T00:00:00Z date_updated: 2021-01-12T06:54:00Z day: '01' ddc: - '570' department: - _id: NiBa - _id: GaTk doi: 10.1111/1365-2435.12207 file: - access_level: open_access checksum: 3cbe8623174709a8ceec2103246f8fe0 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:45Z date_updated: 2020-07-14T12:45:20Z file_id: '5167' file_name: IST-2016-419-v1+1_Ezard_et_al-2014-Functional_Ecology.pdf file_size: 536154 relation: main_file file_date_updated: 2020-07-14T12:45:20Z has_accepted_license: '1' intvolume: ' 28' issue: '3' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 693 - 701 publication: Functional Ecology publication_status: published publisher: Wiley-Blackwell publist_id: '5186' pubrep_id: '419' scopus_import: 1 status: public title: The fitness costs of adaptation via phenotypic plasticity and maternal effects tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2014' ... --- _id: '1908' abstract: - lang: eng text: In large populations, multiple beneficial mutations may be simultaneously spreading. In asexual populations, these mutations must either arise on the same background or compete against each other. In sexual populations, recombination can bring together beneficial alleles from different backgrounds, but tightly linked alleles may still greatly interfere with each other. We show for well-mixed populations that when this interference is strong, the genome can be seen as consisting of many effectively asexual stretches linked together. The rate at which beneficial alleles fix is thus roughly proportional to the rate of recombination and depends only logarithmically on the mutation supply and the strength of selection. Our scaling arguments also allow us to predict, with reasonable accuracy, the fitness distribution of fixed mutations when the mutational effect sizes are broad. We focus on the regime in which crossovers occur more frequently than beneficial mutations, as is likely to be the case for many natural populations. author: - first_name: Daniel full_name: Weissman, Daniel id: 2D0CE020-F248-11E8-B48F-1D18A9856A87 last_name: Weissman - first_name: Oskar full_name: Hallatschek, Oskar last_name: Hallatschek citation: ama: Weissman D, Hallatschek O. The rate of adaptation in large sexual populations with linear chromosomes. Genetics. 2014;196(4):1167-1183. doi:10.1534/genetics.113.160705 apa: Weissman, D., & Hallatschek, O. (2014). The rate of adaptation in large sexual populations with linear chromosomes. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.113.160705 chicago: Weissman, Daniel, and Oskar Hallatschek. “The Rate of Adaptation in Large Sexual Populations with Linear Chromosomes.” Genetics. Genetics Society of America, 2014. https://doi.org/10.1534/genetics.113.160705. ieee: D. Weissman and O. Hallatschek, “The rate of adaptation in large sexual populations with linear chromosomes,” Genetics, vol. 196, no. 4. Genetics Society of America, pp. 1167–1183, 2014. ista: Weissman D, Hallatschek O. 2014. The rate of adaptation in large sexual populations with linear chromosomes. Genetics. 196(4), 1167–1183. mla: Weissman, Daniel, and Oskar Hallatschek. “The Rate of Adaptation in Large Sexual Populations with Linear Chromosomes.” Genetics, vol. 196, no. 4, Genetics Society of America, 2014, pp. 1167–83, doi:10.1534/genetics.113.160705. short: D. Weissman, O. Hallatschek, Genetics 196 (2014) 1167–1183. date_created: 2018-12-11T11:54:39Z date_published: 2014-04-01T00:00:00Z date_updated: 2021-01-12T06:53:59Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.113.160705 ec_funded: 1 intvolume: ' 196' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1307.0737 month: '04' oa: 1 oa_version: Submitted Version page: 1167 - 1183 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '5187' quality_controlled: '1' scopus_import: 1 status: public title: The rate of adaptation in large sexual populations with linear chromosomes type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 196 year: '2014' ... --- _id: '1936' abstract: - lang: eng text: 'The social intelligence hypothesis states that the need to cope with complexities of social life has driven the evolution of advanced cognitive abilities. It is usually invoked in the context of challenges arising from complex intragroup structures, hierarchies, and alliances. However, a fundamental aspect of group living remains largely unexplored as a driving force in cognitive evolution: the competition between individuals searching for resources (producers) and conspecifics that parasitize their findings (scroungers). In populations of social foragers, abilities that enable scroungers to steal by outsmarting producers, and those allowing producers to prevent theft by outsmarting scroungers, are likely to be beneficial and may fuel a cognitive arms race. Using analytical theory and agent-based simulations, we present a general model for such a race that is driven by the producer-scrounger game and show that the race''s plausibility is dramatically affected by the nature of the evolving abilities. If scrounging and scrounging avoidance rely on separate, strategy-specific cognitive abilities, arms races are short-lived and have a limited effect on cognition. However, general cognitive abilities that facilitate both scrounging and scrounging avoidance undergo stable, long-lasting arms races. Thus, ubiquitous foraging interactions may lead to the evolution of general cognitive abilities in social animals, without the requirement of complex intragroup structures.' author: - first_name: Michal full_name: Arbilly, Michal last_name: Arbilly - first_name: Daniel full_name: Weissman, Daniel id: 2D0CE020-F248-11E8-B48F-1D18A9856A87 last_name: Weissman - first_name: Marcus full_name: Feldman, Marcus last_name: Feldman - first_name: Uri full_name: Grodzinski, Uri last_name: Grodzinski citation: ama: Arbilly M, Weissman D, Feldman M, Grodzinski U. An arms race between producers and scroungers can drive the evolution of social cognition. Behavioral Ecology. 2014;25(3):487-495. doi:10.1093/beheco/aru002 apa: Arbilly, M., Weissman, D., Feldman, M., & Grodzinski, U. (2014). An arms race between producers and scroungers can drive the evolution of social cognition. Behavioral Ecology. Oxford University Press. https://doi.org/10.1093/beheco/aru002 chicago: Arbilly, Michal, Daniel Weissman, Marcus Feldman, and Uri Grodzinski. “An Arms Race between Producers and Scroungers Can Drive the Evolution of Social Cognition.” Behavioral Ecology. Oxford University Press, 2014. https://doi.org/10.1093/beheco/aru002. ieee: M. Arbilly, D. Weissman, M. Feldman, and U. Grodzinski, “An arms race between producers and scroungers can drive the evolution of social cognition,” Behavioral Ecology, vol. 25, no. 3. Oxford University Press, pp. 487–495, 2014. ista: Arbilly M, Weissman D, Feldman M, Grodzinski U. 2014. An arms race between producers and scroungers can drive the evolution of social cognition. Behavioral Ecology. 25(3), 487–495. mla: Arbilly, Michal, et al. “An Arms Race between Producers and Scroungers Can Drive the Evolution of Social Cognition.” Behavioral Ecology, vol. 25, no. 3, Oxford University Press, 2014, pp. 487–95, doi:10.1093/beheco/aru002. short: M. Arbilly, D. Weissman, M. Feldman, U. Grodzinski, Behavioral Ecology 25 (2014) 487–495. date_created: 2018-12-11T11:54:48Z date_published: 2014-02-13T00:00:00Z date_updated: 2021-01-12T06:54:11Z day: '13' department: - _id: NiBa doi: 10.1093/beheco/aru002 ec_funded: 1 intvolume: ' 25' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014306/ month: '02' oa: 1 oa_version: Submitted Version page: 487 - 495 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Behavioral Ecology publication_status: published publisher: Oxford University Press publist_id: '5157' quality_controlled: '1' scopus_import: 1 status: public title: An arms race between producers and scroungers can drive the evolution of social cognition type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2014' ... --- _id: '1932' abstract: - lang: eng text: The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations. acknowledgement: "Funded by National Institutes of Health. Grant Numbers: R01GM076041, R01GM104040 \r\n\r\nSimons Foundation\r\n\r\n" author: - first_name: Meredith full_name: Trotter, Meredith last_name: Trotter - first_name: Daniel full_name: Weissman, Daniel id: 2D0CE020-F248-11E8-B48F-1D18A9856A87 last_name: Weissman - first_name: Grant full_name: Peterson, Grant last_name: Peterson - first_name: Kayla full_name: Peck, Kayla last_name: Peck - first_name: Joanna full_name: Masel, Joanna last_name: Masel citation: ama: Trotter M, Weissman D, Peterson G, Peck K, Masel J. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution. 2014;68(12):3357-3367. doi:10.1111/evo.12517 apa: Trotter, M., Weissman, D., Peterson, G., Peck, K., & Masel, J. (2014). Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution. Wiley-Blackwell. https://doi.org/10.1111/evo.12517 chicago: Trotter, Meredith, Daniel Weissman, Grant Peterson, Kayla Peck, and Joanna Masel. “Cryptic Genetic Variation Can Make "Irreducible Complexity" a Common Mode of Adaptation in Sexual Populations.” Evolution. Wiley-Blackwell, 2014. https://doi.org/10.1111/evo.12517. ieee: M. Trotter, D. Weissman, G. Peterson, K. Peck, and J. Masel, “Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations,” Evolution, vol. 68, no. 12. Wiley-Blackwell, pp. 3357–3367, 2014. ista: Trotter M, Weissman D, Peterson G, Peck K, Masel J. 2014. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution. 68(12), 3357–3367. mla: Trotter, Meredith, et al. “Cryptic Genetic Variation Can Make "Irreducible Complexity" a Common Mode of Adaptation in Sexual Populations.” Evolution, vol. 68, no. 12, Wiley-Blackwell, 2014, pp. 3357–67, doi:10.1111/evo.12517. short: M. Trotter, D. Weissman, G. Peterson, K. Peck, J. Masel, Evolution 68 (2014) 3357–3367. date_created: 2018-12-11T11:54:47Z date_published: 2014-12-01T00:00:00Z date_updated: 2021-01-12T06:54:10Z day: '01' department: - _id: NiBa doi: 10.1111/evo.12517 ec_funded: 1 intvolume: ' 68' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1310.6077 month: '12' oa: 1 oa_version: Submitted Version page: 3357 - 3367 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Evolution publication_status: published publisher: Wiley-Blackwell publist_id: '5162' quality_controlled: '1' scopus_import: 1 status: public title: Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 68 year: '2014' ...