TY - JOUR AB - Pollinators display a remarkable diversity of foraging strategies with flowering plants, from primarily mutualistic interactions to cheating through nectar robbery. Despite numerous studies on the effect of nectar robbing on components of plant fitness, its contribution to reproductive isolation is unclear. We experimentally tested the impact of different pollinator strategies in a natural hybrid zone between two subspecies of Antirrhinum majus with alternate flower colour guides. On either side of a steep cline in flower colour between Antirrhinum majus pseudomajus (magenta) and A. m. striatum (yellow), we quantified the behaviour of all floral visitors at different time points during the flowering season. Using long-run camera surveys, we quantify the impact of nectar robbing on the number of flowers visited per inflorescence and the flower probing time. We further experimentally tested the effect of nectar robbing on female reproductive success by manipulating the intensity of robbing. While robbing increased over time the number of legitimate visitors tended to decrease concomitantly. We found that the number of flowers pollinated on a focal inflorescence decreased with the number of prior robbing events. However, in the manipulative experiment, fruit set and fruit volume did not vary significantly between low robbing and control treatments. Our findings challenge the idea that robbers have a negative impact on plant fitness through female function. This study also adds to our understanding of the components of pollinator-mediated reproductive isolation and the maintenance of Antirrhinum hybrid zones. AU - Andalo, Christophe AU - Burrus, Monique AU - Paute, Sandrine AU - Lauzeral, Christine AU - Field, David ID - 5680 IS - 1 JF - Botany Letters SN - 23818107 TI - Prevalence of legitimate pollinators and nectar robbers and the consequences for fruit set in an Antirrhinum majus hybrid zone VL - 166 ER - TY - JOUR AB - The evolution of new species is made easier when traits under divergent ecological selection are also mating cues. Such ecological mating cues are now considered more common than previously thought, but we still know little about the genetic changes underlying their evolution or more generally about the genetic basis for assortative mating behaviors. Both tight physical linkage and the existence of large-effect preference loci will strengthen genetic associations between behavioral and ecological barriers, promoting the evolution of assortative mating. The warning patterns of Heliconius melpomene and H. cydno are under disruptive selection due to increased predation of nonmimetic hybrids and are used during mate recognition. We carried out a genome-wide quantitative trait locus (QTL) analysis of preference behaviors between these species and showed that divergent male preference has a simple genetic basis. We identify three QTLs that together explain a large proportion (approximately 60%) of the difference in preference behavior observed between the parental species. One of these QTLs is just 1.2 (0-4.8) centiMorgans (cM) from the major color pattern gene optix, and, individually, all three have a large effect on the preference phenotype. Genomic divergence between H. cydno and H. melpomene is high but broadly heterogenous, and admixture is reduced at the preference-optix color pattern locus but not the other preference QTLs. The simple genetic architecture we reveal will facilitate the evolution and maintenance of new species despite ongoing gene flow by coupling behavioral and ecological aspects of reproductive isolation. AU - Merrill, Richard M. AU - Rastas, Pasi AU - Martin, Simon H. AU - Melo Hurtado, Maria C AU - Barker, Sarah AU - Davey, John AU - Mcmillan, W. Owen AU - Jiggins, Chris D. ID - 6022 IS - 2 JF - PLoS Biology TI - Genetic dissection of assortative mating behavior VL - 17 ER - TY - GEN AU - Merrill, Richard M. AU - Rastas, Pasi AU - Martin, Simon H. AU - Melo Hurtado, Maria C AU - Barker, Sarah AU - Davey, John AU - Mcmillan, W. Owen AU - Jiggins, Chris D. ID - 9801 TI - Raw behavioral data ER - TY - JOUR AB - Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. AU - Faria, Rui AU - Chaube, Pragya AU - Morales, Hernán E. AU - Larsson, Tomas AU - Lemmon, Alan R. AU - Lemmon, Emily M. AU - Rafajlović, Marina AU - Panova, Marina AU - Ravinet, Mark AU - Johannesson, Kerstin AU - Westram, Anja M AU - Butlin, Roger K. ID - 6095 IS - 6 JF - Molecular Ecology SN - 0962-1083 TI - Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes VL - 28 ER - TY - JOUR AB - Great care is needed when interpreting claims about the genetic basis of human variation based on data from genome-wide association studies. AU - Barton, Nicholas H AU - Hermisson, Joachim AU - Nordborg, Magnus ID - 6230 JF - eLife TI - Why structure matters VL - 8 ER - TY - JOUR AB - One of the most striking and consistent results in speciation genomics is the heterogeneous divergence observed across the genomes of closely related species. This pattern was initially attributed to different levels of gene exchange—with divergence preserved at loci generating a barrier to gene flow but homogenized at unlinked neutral loci. Although there is evidence to support this model, it is now recognized that interpreting patterns of divergence across genomes is not so straightforward. One problem is that heterogenous divergence between populations can also be generated by other processes (e.g. recurrent selective sweeps or background selection) without any involvement of differential gene flow. Thus, integrated studies that identify which loci are likely subject to divergent selection are required to shed light on the interplay between selection and gene flow during the early phases of speciation. In this issue of Molecular Ecology, Rifkin et al. (2019) confront this challenge using a pair of sister morning glory species. They wisely design their sampling to take the geographic context of individuals into account, including geographically isolated (allopatric) and co‐occurring (sympatric) populations. This enabled them to show that individuals are phenotypically less differentiated in sympatry. They also found that the loci that resist introgression are enriched for those most differentiated in allopatry and loci that exhibit signals of divergent selection. One great strength of the study is the combination of methods from population genetics and molecular evolution, including the development of a model to simultaneously infer admixture proportions and selfing rates. AU - Field, David AU - Fraisse, Christelle ID - 6466 IS - 7 JF - Molecular ecology TI - Breaking down barriers in morning glories VL - 28 ER - TY - JOUR AB - Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA (small nucleolar RNA). Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. AU - Fraisse, Christelle AU - Welch, John J. ID - 6467 IS - 4 JF - Biology Letters SN - 17449561 TI - The distribution of epistasis on simple fitness landscapes VL - 15 ER - TY - JOUR AB - The environment changes constantly at various time scales and, in order to survive, species need to keep adapting. Whether these species succeed in avoiding extinction is a major evolutionary question. Using a multilocus evolutionary model of a mutation‐limited population adapting under strong selection, we investigate the effects of the frequency of environmental fluctuations on adaptation. Our results rely on an “adaptive‐walk” approximation and use mathematical methods from evolutionary computation theory to investigate the interplay between fluctuation frequency, the similarity of environments, and the number of loci contributing to adaptation. First, we assume a linear additive fitness function, but later generalize our results to include several types of epistasis. We show that frequent environmental changes prevent populations from reaching a fitness peak, but they may also prevent the large fitness loss that occurs after a single environmental change. Thus, the population can survive, although not thrive, in a wide range of conditions. Furthermore, we show that in a frequently changing environment, the similarity of threats that a population faces affects the level of adaptation that it is able to achieve. We check and supplement our analytical results with simulations. AU - Trubenova, Barbora AU - Krejca, Martin AU - Lehre, Per Kristian AU - Kötzing, Timo ID - 6637 IS - 7 JF - Evolution TI - Surfing on the seascape: Adaptation in a changing environment VL - 73 ER - TY - JOUR AB - This paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation‐selection balance in a large, partially selfing source population under selection involving multiple non‐identical loci. I then use individual‐based simulations to study the eco‐evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long‐term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed. AU - Sachdeva, Himani ID - 6680 IS - 9 JF - Evolution SN - 0014-3820 TI - Effect of partial selfing and polygenic selection on establishment in a new habitat VL - 73 ER - TY - GEN AB - Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response. AU - Castro, João Pl AU - Yancoskie, Michelle N. AU - Marchini, Marta AU - Belohlavy, Stefanie AU - Hiramatsu, Layla AU - Kučka, Marek AU - Beluch, William H. AU - Naumann, Ronald AU - Skuplik, Isabella AU - Cobb, John AU - Barton, Nicholas H AU - Rolian, Campbell AU - Chan, Yingguang Frank ID - 9804 TI - Data from: An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice ER - TY - GEN AB - This paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation-selection balance in a large, partially selfing source population under selection involving multiple non-identical loci. I then use individual-based simulations to study the eco-evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long-term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed. AU - Sachdeva, Himani ID - 9802 TI - Data from: Effect of partial selfing and polygenic selection on establishment in a new habitat ER - TY - JOUR AB - The green‐beard effect is one proposed mechanism predicted to underpin the evolu‐tion of altruistic behavior. It relies on the recognition and the selective help of altruists to each other in order to promote and sustain altruistic behavior. However, this mechanism has often been dismissed as unlikely or uncommon, as it is assumed that both the signaling trait and altruistic trait need to be encoded by the same gene or through tightly linked genes. Here, we use models of indirect genetic effects (IGEs) to find the minimum correlation between the signaling and altruistic trait required for the evolution of the latter. We show that this correlation threshold depends on the strength of the interaction (influence of the green beard on the expression of the altruistic trait), as well as the costs and benefits of the altruistic behavior. We further show that this correlation does not necessarily have to be high and support our analytical results by simulations. AU - Trubenova, Barbora AU - Hager, Reinmar ID - 6795 IS - 17 JF - Ecology and Evolution TI - Green beards in the light of indirect genetic effects VL - 9 ER - TY - JOUR AB - * Understanding the mechanisms causing phenotypic differences between females and males has long fascinated evolutionary biologists. An extensive literature exists on animal sexual dimorphism but less information is known about sex differences in plants, particularly the extent of geographical variation in sexual dimorphism and its life‐cycle dynamics. * Here, we investigated patterns of genetically based sexual dimorphism in vegetative and reproductive traits of a wind‐pollinated dioecious plant, Rumex hastatulus, across three life‐cycle stages using open‐pollinated families from 30 populations spanning the geographic range and chromosomal variation (XY and XY1Y2) of the species. * The direction and degree of sexual dimorphism was highly variable among populations and life‐cycle stages. Sex‐specific differences in reproductive function explained a significant amount of temporal change in sexual dimorphism. For several traits, geographical variation in sexual dimorphism was associated with bioclimatic parameters, likely due to the differential responses of the sexes to climate. We found no systematic differences in sexual dimorphism between chromosome races. * Sex‐specific trait differences in dioecious plants largely result from a balance between sexual and natural selection on resource allocation. Our results indicate that abiotic factors associated with geographical context also play a role in modifying sexual dimorphism during the plant life‐cycle. AU - Puixeu Sala, Gemma AU - Pickup, Melinda AU - Field, David AU - Barrett, Spencer C.H. ID - 6831 IS - 3 JF - New Phytologist TI - Variation in sexual dimorphism in a wind-pollinated plant: The influence of geographical context and life-cycle dynamics VL - 224 ER - TY - GEN AB - Understanding the mechanisms causing phenotypic differences between females and males has long fascinated evolutionary biologists. An extensive literature exists on animal sexual dimorphism but less is known about sex differences in plants, particularly the extent of geographical variation in sexual dimorphism and its life-cycle dynamics. Here, we investigate patterns of genetically-based sexual dimorphism in vegetative and reproductive traits of a wind-pollinated dioecious plant, Rumex hastatulus, across three life-cycle stages using open-pollinated families from 30 populations spanning the geographic range and chromosomal variation (XY and XY1Y2) of the species. The direction and degree of sexual dimorphism was highly variable among populations and life-cycle stages. Sex-specific differences in reproductive function explained a significant amount of temporal change in sexual dimorphism. For several traits, geographical variation in sexual dimorphism was associated with bioclimatic parameters, likely due to the differential responses of the sexes to climate. We found no systematic differences in sexual dimorphism between chromosome races. Sex-specific trait differences in dioecious plants largely result from a balance between sexual and natural selection on resource allocation. Our results indicate that abiotic factors associated with geographical context also play a role in modifying sexual dimorphism during the plant life cycle. AU - Puixeu Sala, Gemma AU - Pickup, Melinda AU - Field, David AU - Barrett, Spencer C.H. ID - 9803 TI - Data from: Variation in sexual dimorphism in a wind-pollinated plant: the influence of geographical context and life-cycle dynamics ER - TY - JOUR AB - Many traits of interest are highly heritable and genetically complex, meaning that much of the variation they exhibit arises from differences at numerous loci in the genome. Complex traits and their evolution have been studied for more than a century, but only in the last decade have genome-wide association studies (GWASs) in humans begun to reveal their genetic basis. Here, we bring these threads of research together to ask how findings from GWASs can further our understanding of the processes that give rise to heritable variation in complex traits and of the genetic basis of complex trait evolution in response to changing selection pressures (i.e., of polygenic adaptation). Conversely, we ask how evolutionary thinking helps us to interpret findings from GWASs and informs related efforts of practical importance. AU - Sella, Guy AU - Barton, Nicholas H ID - 6855 JF - Annual Review of Genomics and Human Genetics SN - 1527-8204 TI - Thinking about the evolution of complex traits in the era of genome-wide association studies VL - 20 ER - TY - JOUR AU - Barton, Nicholas H ID - 6858 IS - 2 JF - National Science Review SN - 2095-5138 TI - Is speciation driven by cycles of mixing and isolation? VL - 6 ER - TY - JOUR AB - Gene Drives are regarded as future tools with a high potential for population control. Due to their inherent ability to overcome the rules of Mendelian inheritance, gene drives (GD) may spread genes rapidly through populations of sexually reproducing organisms. A release of organisms carrying a GD would constitute a paradigm shift in the handling of genetically modified organisms because gene drive organisms (GDO) are designed to drive their transgenes into wild populations and thereby increase the number of GDOs. The rapid development in this field and its focus on wild populations demand a prospective risk assessment with a focus on exposure related aspects. Presently, it is unclear how adequate risk management could be guaranteed to limit the spread of GDs in time and space, in order to avoid potential adverse effects in socio‐ecological systems. The recent workshop on the “Evaluation of Spatial and Temporal Control of Gene Drives” hosted by the Institute of Safety/Security and Risk Sciences (ISR) in Vienna aimed at gaining some insight into the potential population dynamic behavior of GDs and appropriate measures of control. Scientists from France, Germany, England, and the USA discussed both topics in this meeting on April 4–5, 2019. This article summarizes results of the workshop. AU - Giese, B AU - Friess, J L AU - Schetelig, M F AU - Barton, Nicholas H AU - Messer, Philip AU - Debarre, Florence AU - Meimberg, H AU - Windbichler, N AU - Boete, C ID - 6857 IS - 11 JF - BioEssays TI - Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna VL - 41 ER - TY - GEN AB - Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis divergent selection forms strong barriers to gene flow, while the role of postzygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Postzygotic barriers might include genetic incompatibilities (e.g. Dobzhansky-Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1011 embryos (mean 130±123) and abortion rates varied between 0 and100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterised female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant postzygotic barriers contributing to ecotype divergence and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females. AU - Johannesson, Kerstin AU - Zagrodzka, Zuzanna AU - Faria, Rui AU - Westram, Anja M AU - Butlin, Roger ID - 13067 TI - Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes? ER - TY - JOUR AB - The study of parallel ecological divergence provides important clues to the operation of natural selection. Parallel divergence often occurs in heterogeneous environments with different kinds of environmental gradients in different locations, but the genomic basis underlying this process is unknown. We investigated the genomics of rapid parallel adaptation in the marine snail Littorina saxatilis in response to two independent environmental axes (crab-predation versus wave-action and low-shore versus high-shore). Using pooled whole-genome resequencing, we show that sharing of genomic regions of high differentiation between environments is generally low but increases at smaller spatial scales. We identify different shared genomic regions of divergence for each environmental axis and show that most of these regions overlap with candidate chromosomal inversions. Several inversion regions are divergent and polymorphic across many localities. We argue that chromosomal inversions could store shared variation that fuels rapid parallel adaptation to heterogeneous environments, possibly as balanced polymorphism shared by adaptive gene flow. AU - Morales, Hernán E. AU - Faria, Rui AU - Johannesson, Kerstin AU - Larsson, Tomas AU - Panova, Marina AU - Westram, Anja M AU - Butlin, Roger K. ID - 7393 IS - 12 JF - Science Advances SN - 2375-2548 TI - Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast VL - 5 ER - TY - CHAP AB - We review the history of population genetics, starting with its origins a century ago from the synthesis between Mendel and Darwin's ideas, through to the recent development of sophisticated schemes of inference from sequence data, based on the coalescent. We explain the close relation between the coalescent and a diffusion process, which we illustrate by their application to understand spatial structure. We summarise the powerful methods available for analysis of multiple loci, when linkage equilibrium can be assumed, and then discuss approaches to the more challenging case, where associations between alleles require that we follow genotype, rather than allele, frequencies. Though we can hardly cover the whole of population genetics, we give an overview of the current state of the subject, and future challenges to it. AU - Barton, Nicholas H AU - Etheridge, Alison ED - Balding, David ED - Moltke, Ida ED - Marioni, John ID - 8281 SN - 9781119429142 T2 - Handbook of statistical genomics TI - Mathematical models in population genetics ER -