@misc{13073, abstract = {The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study "replicated" instances of secondary contact between closely-related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly-sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.}, author = {Simon, Alexis and Fraisse, Christelle and El Ayari, Tahani and Liautard-Haag, Cathy and Strelkov, Petr and Welch, John and Bierne, Nicolas}, publisher = {Dryad}, title = {{How do species barriers decay? concordance and local introgression in mosaic hybrid zones of mussels}}, doi = {10.5061/DRYAD.R4XGXD29N}, year = {2020}, } @misc{13065, abstract = {Domestication is a human-induced selection process that imprints the genomes of domesticated populations over a short evolutionary time scale, and that occurs in a given demographic context. Reconstructing historical gene flow, effective population size changes and their timing is therefore of fundamental interest to understand how plant demography and human selection jointly shape genomic divergence during domestication. Yet, the comparison under a single statistical framework of independent domestication histories across different crop species has been little evaluated so far. Thus, it is unclear whether domestication leads to convergent demographic changes that similarly affect crop genomes. To address this question, we used existing and new transcriptome data on three crop species of Solanaceae (eggplant, pepper and tomato), together with their close wild relatives. We fitted twelve demographic models of increasing complexity on the unfolded joint allele frequency spectrum for each wild/crop pair, and we found evidence for both shared and species-specific demographic processes between species. A convergent history of domestication with gene-flow was inferred for all three species, along with evidence of strong reduction in the effective population size during the cultivation stage of tomato and pepper. The absence of any reduction in size of the crop in eggplant stands out from the classical view of the domestication process; as does the existence of a “protracted period” of management before cultivation. Our results also suggest divergent management strategies of modern cultivars among species as their current demography substantially differs. Finally, the timing of domestication is species-specific and supported by the few historical records available.}, author = {Arnoux, Stephanie and Fraisse, Christelle and Sauvage, Christopher}, publisher = {Dryad}, title = {{VCF files of synonymous SNPs related to: Genomic inference of complex domestication histories in three Solanaceae species}}, doi = {10.5061/DRYAD.Q2BVQ83HD}, year = {2020}, } @article{7995, abstract = {When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple‐effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis , occur in North Atlantic rocky‐shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size‐assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.}, author = {Perini, Samuel and Rafajlović, Marina and Westram, Anja M and Johannesson, Kerstin and Butlin, Roger K.}, issn = {15585646}, journal = {Evolution}, number = {7}, pages = {1482--1497}, publisher = {Wiley}, title = {{Assortative mating, sexual selection, and their consequences for gene flow in Littorina}}, doi = {10.1111/evo.14027}, volume = {74}, year = {2020}, } @misc{8809, abstract = {When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple-effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis, occur in North Atlantic rocky-shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size-assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively-sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.}, author = {Perini, Samuel and Rafajlovic, Marina and Westram, Anja M and Johannesson, Kerstin and Butlin, Roger}, publisher = {Dryad}, title = {{Data from: Assortative mating, sexual selection and their consequences for gene flow in Littorina}}, doi = {10.5061/dryad.qrfj6q5cn}, year = {2020}, } @article{8112, author = {Barton, Nicholas H}, issn = {1471-2970}, journal = {Philosophical Transactions of the Royal Society. Series B: Biological Sciences}, number = {1806}, publisher = {The Royal Society}, title = {{On the completion of speciation}}, doi = {10.1098/rstb.2019.0530}, volume = {375}, year = {2020}, }