@article{951, abstract = {Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transfo}, author = {Schmidt, Tom and Barton, Nicholas H and Rasic, Gordana and Turley, Andrew and Montgomery, Brian and Iturbe Ormaetxe, Inaki and Cook, Peter and Ryan, Peter and Ritchie, Scott and Hoffmann, Ary and O’Neill, Scott and Turelli, Michael}, issn = {15449173}, journal = {PLoS Biology}, number = {5}, publisher = {Public Library of Science}, title = {{Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes Aegypti}}, doi = {10.1371/journal.pbio.2001894}, volume = {15}, year = {2017}, } @misc{9858, author = {Schmidt, Tom and Barton, Nicholas H and Rasic, Gordana and Turley, Andrew and Montgomery, Brian and Iturbe Ormaetxe, Inaki and Cook, Peter and Ryan, Peter and Ritchie, Scott and Hoffmann, Ary and O’Neill, Scott and Turelli, Michael}, publisher = {Public Library of Science}, title = {{Excel file with data on mosquito densities, Wolbachia infection status and housing characteristics}}, doi = {10.1371/journal.pbio.2001894.s016}, year = {2017}, } @misc{9857, author = {Schmidt, Tom and Barton, Nicholas H and Rasic, Gordana and Turley, Andrew and Montgomery, Brian and Iturbe Ormaetxe, Inaki and Cook, Peter and Ryan, Peter and Ritchie, Scott and Hoffmann, Ary and O’Neill, Scott and Turelli, Michael}, publisher = {Public Library of Science }, title = {{Supporting information concerning observed wMel frequencies and analyses of habitat variables}}, doi = {10.1371/journal.pbio.2001894.s015}, year = {2017}, } @misc{9856, author = {Schmidt, Tom and Barton, Nicholas H and Rasic, Gordana and Turley, Andrew and Montgomery, Brian and Iturbe Ormaetxe, Inaki and Cook, Peter and Ryan, Peter and Ritchie, Scott and Hoffmann, Ary and O’Neill, Scott and Turelli, Michael}, publisher = {Public Library of Science}, title = {{Supporting Information concerning additional likelihood analyses and results}}, doi = {10.1371/journal.pbio.2001894.s014}, year = {2017}, } @article{910, abstract = {Frequency-independent selection is generally considered as a force that acts to reduce the genetic variation in evolving populations, yet rigorous arguments for this idea are scarce. When selection fluctuates in time, it is unclear whether frequency-independent selection may maintain genetic polymorphism without invoking additional mechanisms. We show that constant frequency-independent selection with arbitrary epistasis on a well-mixed haploid population eliminates genetic variation if we assume linkage equilibrium between alleles. To this end, we introduce the notion of frequency-independent selection at the level of alleles, which is sufficient to prove our claim and contains the notion of frequency-independent selection on haploids. When selection and recombination are weak but of the same order, there may be strong linkage disequilibrium; numerical calculations show that stable equilibria are highly unlikely. Using the example of a diallelic two-locus model, we then demonstrate that frequency-independent selection that fluctuates in time can maintain stable polymorphism if linkage disequilibrium changes its sign periodically. We put our findings in the context of results from the existing literature and point out those scenarios in which the possible role of frequency-independent selection in maintaining genetic variation remains unclear. }, author = {Novak, Sebastian and Barton, Nicholas H}, journal = {Genetics}, number = {2}, pages = {653 -- 668}, publisher = {Genetics Society of America}, title = {{When does frequency-independent selection maintain genetic variation?}}, doi = {10.1534/genetics.117.300129}, volume = {207}, year = {2017}, }