@misc{13062, abstract = {This paper analyzes the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.}, author = {Szep, Eniko and Sachdeva, Himani and Barton, Nicholas H}, publisher = {Dryad}, title = {{Supplementary code for: Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model}}, doi = {10.5061/DRYAD.8GTHT76P1}, year = {2021}, } @article{9383, abstract = {A primary roadblock to our understanding of speciation is that it usually occurs over a timeframe that is too long to study from start to finish. The idea of a speciation continuum provides something of a solution to this problem; rather than observing the entire process, we can simply reconstruct it from the multitude of speciation events that surround us. But what do we really mean when we talk about the speciation continuum, and can it really help us understand speciation? We explored these questions using a literature review and online survey of speciation researchers. Although most researchers were familiar with the concept and thought it was useful, our survey revealed extensive disagreement about what the speciation continuum actually tells us. This is due partly to the lack of a clear definition. Here, we provide an explicit definition that is compatible with the Biological Species Concept. That is, the speciation continuum is a continuum of reproductive isolation. After outlining the logic of the definition in light of alternatives, we explain why attempts to reconstruct the speciation process from present‐day populations will ultimately fail. We then outline how we think the speciation continuum concept can continue to act as a foundation for understanding the continuum of reproductive isolation that surrounds us.}, author = {Stankowski, Sean and Ravinet, Mark}, issn = {1558-5646}, journal = {Evolution}, number = {6}, pages = {1256--1273}, publisher = {Oxford University Press}, title = {{Defining the speciation continuum}}, doi = {10.1111/evo.14215}, volume = {75}, year = {2021}, } @inbook{14984, abstract = {Hybrid zones are narrow geographic regions where different populations, races or interbreeding species meet and mate, producing mixed ‘hybrid’ offspring. They are relatively common and can be found in a diverse range of organisms and environments. The study of hybrid zones has played an important role in our understanding of the origin of species, with hybrid zones having been described as ‘natural laboratories’. This is because they allow us to study,in situ, the conditions and evolutionary forces that enable divergent taxa to remain distinct despite some ongoing gene exchange between them.}, author = {Stankowski, Sean and Shipilina, Daria and Westram, Anja M}, booktitle = {Encyclopedia of Life Sciences}, isbn = {9780470016176}, publisher = {Wiley}, title = {{Hybrid Zones}}, doi = {10.1002/9780470015902.a0029355}, volume = {2}, year = {2021}, } @article{7651, abstract = {The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods.}, author = {Larsson, J. and Westram, Anja M and Bengmark, S. and Lundh, T. and Butlin, R. K.}, issn = {1742-5662}, journal = {Journal of The Royal Society Interface}, number = {163}, publisher = {The Royal Society}, title = {{A developmentally descriptive method for quantifying shape in gastropod shells}}, doi = {10.1098/rsif.2019.0721}, volume = {17}, year = {2020}, } @inbook{9123, abstract = {Inversions are chromosomal rearrangements where the order of genes is reversed. Inversions originate by mutation and can be under positive, negative or balancing selection. Selective effects result from potential disruptive effects on meiosis, gene disruption at inversion breakpoints and, importantly, the effects of inversions as modifiers of recombination rate: Recombination is strongly reduced in individuals heterozygous for an inversion, allowing for alleles at different loci to be inherited as a ‘block’. This may lead to a selective advantage whenever it is favourable to keep certain combinations of alleles associated, for example under local adaptation with gene flow. Inversions can cover a considerable part of a chromosome and contain numerous loci under different selection pressures, so that the resulting overall effects may be complex. Empirical data from various systems show that inversions may have a prominent role in local adaptation, speciation, parallel evolution, the maintenance of polymorphism and sex chromosome evolution.}, author = {Westram, Anja M and Faria, Rui and Butlin, Roger and Johannesson, Kerstin}, booktitle = {eLS}, isbn = {9780470016176}, publisher = {Wiley}, title = {{Inversions and Evolution}}, doi = {10.1002/9780470015902.a0029007}, year = {2020}, } @misc{13073, abstract = {The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study "replicated" instances of secondary contact between closely-related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly-sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.}, author = {Simon, Alexis and Fraisse, Christelle and El Ayari, Tahani and Liautard-Haag, Cathy and Strelkov, Petr and Welch, John and Bierne, Nicolas}, publisher = {Dryad}, title = {{How do species barriers decay? concordance and local introgression in mosaic hybrid zones of mussels}}, doi = {10.5061/DRYAD.R4XGXD29N}, year = {2020}, } @misc{13065, abstract = {Domestication is a human-induced selection process that imprints the genomes of domesticated populations over a short evolutionary time scale, and that occurs in a given demographic context. Reconstructing historical gene flow, effective population size changes and their timing is therefore of fundamental interest to understand how plant demography and human selection jointly shape genomic divergence during domestication. Yet, the comparison under a single statistical framework of independent domestication histories across different crop species has been little evaluated so far. Thus, it is unclear whether domestication leads to convergent demographic changes that similarly affect crop genomes. To address this question, we used existing and new transcriptome data on three crop species of Solanaceae (eggplant, pepper and tomato), together with their close wild relatives. We fitted twelve demographic models of increasing complexity on the unfolded joint allele frequency spectrum for each wild/crop pair, and we found evidence for both shared and species-specific demographic processes between species. A convergent history of domestication with gene-flow was inferred for all three species, along with evidence of strong reduction in the effective population size during the cultivation stage of tomato and pepper. The absence of any reduction in size of the crop in eggplant stands out from the classical view of the domestication process; as does the existence of a “protracted period” of management before cultivation. Our results also suggest divergent management strategies of modern cultivars among species as their current demography substantially differs. Finally, the timing of domestication is species-specific and supported by the few historical records available.}, author = {Arnoux, Stephanie and Fraisse, Christelle and Sauvage, Christopher}, publisher = {Dryad}, title = {{VCF files of synonymous SNPs related to: Genomic inference of complex domestication histories in three Solanaceae species}}, doi = {10.5061/DRYAD.Q2BVQ83HD}, year = {2020}, } @article{7995, abstract = {When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple‐effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis , occur in North Atlantic rocky‐shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size‐assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.}, author = {Perini, Samuel and Rafajlović, Marina and Westram, Anja M and Johannesson, Kerstin and Butlin, Roger K.}, issn = {15585646}, journal = {Evolution}, number = {7}, pages = {1482--1497}, publisher = {Wiley}, title = {{Assortative mating, sexual selection, and their consequences for gene flow in Littorina}}, doi = {10.1111/evo.14027}, volume = {74}, year = {2020}, } @misc{8809, abstract = {When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple-effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis, occur in North Atlantic rocky-shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size-assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively-sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.}, author = {Perini, Samuel and Rafajlovic, Marina and Westram, Anja M and Johannesson, Kerstin and Butlin, Roger}, publisher = {Dryad}, title = {{Data from: Assortative mating, sexual selection and their consequences for gene flow in Littorina}}, doi = {10.5061/dryad.qrfj6q5cn}, year = {2020}, } @article{8112, author = {Barton, Nicholas H}, issn = {1471-2970}, journal = {Philosophical Transactions of the Royal Society. Series B: Biological Sciences}, number = {1806}, publisher = {The Royal Society}, title = {{On the completion of speciation}}, doi = {10.1098/rstb.2019.0530}, volume = {375}, year = {2020}, }