--- _id: '282' abstract: - lang: eng text: Adaptive introgression is common in nature and can be driven by selection acting on multiple, linked genes. We explore the effects of polygenic selection on introgression under the infinitesimal model with linkage. This model assumes that the introgressing block has an effectively infinite number of genes, each with an infinitesimal effect on the trait under selection. The block is assumed to introgress under directional selection within a native population that is genetically homogeneous. We use individual-based simulations and a branching process approximation to compute various statistics of the introgressing block, and explore how these depend on parameters such as the map length and initial trait value associated with the introgressing block, the genetic variability along the block, and the strength of selection. Our results show that the introgression dynamics of a block under infinitesimal selection is qualitatively different from the dynamics of neutral introgression. We also find that in the long run, surviving descendant blocks are likely to have intermediate lengths, and clarify how the length is shaped by the interplay between linkage and infinitesimal selection. Our results suggest that it may be difficult to distinguish introgression of single loci from that of genomic blocks with multiple, tightly linked and weakly selected loci. article_processing_charge: No author: - first_name: Himani full_name: Sachdeva, Himani id: 42377A0A-F248-11E8-B48F-1D18A9856A87 last_name: Sachdeva - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Sachdeva H, Barton NH. Introgression of a block of genome under infinitesimal selection. Genetics. 2018;209(4):1279-1303. doi:10.1534/genetics.118.301018 apa: Sachdeva, H., & Barton, N. H. (2018). Introgression of a block of genome under infinitesimal selection. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.118.301018 chicago: Sachdeva, Himani, and Nicholas H Barton. “Introgression of a Block of Genome under Infinitesimal Selection.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.118.301018. ieee: H. Sachdeva and N. H. Barton, “Introgression of a block of genome under infinitesimal selection,” Genetics, vol. 209, no. 4. Genetics Society of America, pp. 1279–1303, 2018. ista: Sachdeva H, Barton NH. 2018. Introgression of a block of genome under infinitesimal selection. Genetics. 209(4), 1279–1303. mla: Sachdeva, Himani, and Nicholas H. Barton. “Introgression of a Block of Genome under Infinitesimal Selection.” Genetics, vol. 209, no. 4, Genetics Society of America, 2018, pp. 1279–303, doi:10.1534/genetics.118.301018. short: H. Sachdeva, N.H. Barton, Genetics 209 (2018) 1279–1303. date_created: 2018-12-11T11:45:36Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-13T08:22:32Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.118.301018 external_id: isi: - '000440014100020' intvolume: ' 209' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/early/2017/11/30/227082 month: '08' oa: 1 oa_version: Submitted Version page: 1279 - 1303 publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '7617' quality_controlled: '1' scopus_import: '1' status: public title: Introgression of a block of genome under infinitesimal selection type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 209 year: '2018' ... --- _id: '39' abstract: - lang: eng text: We study how a block of genome with a large number of weakly selected loci introgresses under directional selection into a genetically homogeneous population. We derive exact expressions for the expected rate of growth of any fragment of the introduced block during the initial phase of introgression, and show that the growth rate of a single-locus variant is largely insensitive to its own additive effect, but depends instead on the combined effect of all loci within a characteristic linkage scale. The expected growth rate of a fragment is highly correlated with its long-term introgression probability in populations of moderate size, and can hence identify variants that are likely to introgress across replicate populations. We clarify how the introgression probability of an individual variant is determined by the interplay between hitchhiking with relatively large fragments during the early phase of introgression and selection on fine-scale variation within these, which at longer times results in differential introgression probabilities for beneficial and deleterious loci within successful fragments. By simulating individuals, we also investigate how introgression probabilities at individual loci depend on the variance of fitness effects, the net fitness of the introduced block, and the size of the recipient population, and how this shapes the net advance under selection. Our work suggests that even highly replicable substitutions may be associated with a range of selective effects, which makes it challenging to fine map the causal loci that underlie polygenic adaptation. article_processing_charge: No article_type: original author: - first_name: Himani full_name: Sachdeva, Himani id: 42377A0A-F248-11E8-B48F-1D18A9856A87 last_name: Sachdeva - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Sachdeva H, Barton NH. Replicability of introgression under linked, polygenic selection. Genetics. 2018;210(4):1411-1427. doi:10.1534/genetics.118.301429 apa: Sachdeva, H., & Barton, N. H. (2018). Replicability of introgression under linked, polygenic selection. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.118.301429 chicago: Sachdeva, Himani, and Nicholas H Barton. “Replicability of Introgression under Linked, Polygenic Selection.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.118.301429. ieee: H. Sachdeva and N. H. Barton, “Replicability of introgression under linked, polygenic selection,” Genetics, vol. 210, no. 4. Genetics Society of America, pp. 1411–1427, 2018. ista: Sachdeva H, Barton NH. 2018. Replicability of introgression under linked, polygenic selection. Genetics. 210(4), 1411–1427. mla: Sachdeva, Himani, and Nicholas H. Barton. “Replicability of Introgression under Linked, Polygenic Selection.” Genetics, vol. 210, no. 4, Genetics Society of America, 2018, pp. 1411–27, doi:10.1534/genetics.118.301429. short: H. Sachdeva, N.H. Barton, Genetics 210 (2018) 1411–1427. date_created: 2018-12-11T11:44:18Z date_published: 2018-12-04T00:00:00Z date_updated: 2023-09-18T08:10:29Z day: '04' department: - _id: NiBa doi: 10.1534/genetics.118.301429 external_id: isi: - '000452315900021' intvolume: ' 210' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/379578v1 month: '12' oa: 1 oa_version: Preprint page: 1411-1427 publication: Genetics publication_identifier: issn: - '00166731' publication_status: published publisher: Genetics Society of America quality_controlled: '1' scopus_import: '1' status: public title: Replicability of introgression under linked, polygenic selection type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 210 year: '2018' ... --- _id: '38' abstract: - lang: eng text: 'Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightlylinked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation.' acknowledgement: ' ERC Grant 201252 (to N.H.B.)' article_processing_charge: No author: - first_name: Hugo full_name: Tavares, Hugo last_name: Tavares - first_name: Annabel full_name: Whitley, Annabel last_name: Whitley - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Desmond full_name: Bradley, Desmond last_name: Bradley - first_name: Matthew full_name: Couchman, Matthew last_name: Couchman - first_name: Lucy full_name: Copsey, Lucy last_name: Copsey - first_name: Joane full_name: Elleouet, Joane last_name: Elleouet - first_name: Monique full_name: Burrus, Monique last_name: Burrus - first_name: Christophe full_name: Andalo, Christophe last_name: Andalo - first_name: Miaomiao full_name: Li, Miaomiao last_name: Li - first_name: Qun full_name: Li, Qun last_name: Li - first_name: Yongbiao full_name: Xue, Yongbiao last_name: Xue - first_name: Alexandra B full_name: Rebocho, Alexandra B last_name: Rebocho - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Enrico full_name: Coen, Enrico last_name: Coen citation: ama: Tavares H, Whitley A, Field D, et al. Selection and gene flow shape genomic islands that control floral guides. PNAS. 2018;115(43):11006-11011. doi:10.1073/pnas.1801832115 apa: Tavares, H., Whitley, A., Field, D., Bradley, D., Couchman, M., Copsey, L., … Coen, E. (2018). Selection and gene flow shape genomic islands that control floral guides. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1801832115 chicago: Tavares, Hugo, Annabel Whitley, David Field, Desmond Bradley, Matthew Couchman, Lucy Copsey, Joane Elleouet, et al. “Selection and Gene Flow Shape Genomic Islands That Control Floral Guides.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1801832115. ieee: H. Tavares et al., “Selection and gene flow shape genomic islands that control floral guides,” PNAS, vol. 115, no. 43. National Academy of Sciences, pp. 11006–11011, 2018. ista: Tavares H, Whitley A, Field D, Bradley D, Couchman M, Copsey L, Elleouet J, Burrus M, Andalo C, Li M, Li Q, Xue Y, Rebocho AB, Barton NH, Coen E. 2018. Selection and gene flow shape genomic islands that control floral guides. PNAS. 115(43), 11006–11011. mla: Tavares, Hugo, et al. “Selection and Gene Flow Shape Genomic Islands That Control Floral Guides.” PNAS, vol. 115, no. 43, National Academy of Sciences, 2018, pp. 11006–11, doi:10.1073/pnas.1801832115. short: H. Tavares, A. Whitley, D. Field, D. Bradley, M. Couchman, L. Copsey, J. Elleouet, M. Burrus, C. Andalo, M. Li, Q. Li, Y. Xue, A.B. Rebocho, N.H. Barton, E. Coen, PNAS 115 (2018) 11006–11011. date_created: 2018-12-11T11:44:18Z date_published: 2018-10-23T00:00:00Z date_updated: 2023-09-18T08:36:49Z day: '23' ddc: - '570' department: - _id: NiBa doi: 10.1073/pnas.1801832115 external_id: isi: - '000448040500065' pmid: - '30297406' file: - access_level: open_access checksum: d2305d0cc81dbbe4c1c677d64ad6f6d1 content_type: application/pdf creator: dernst date_created: 2018-12-17T08:44:03Z date_updated: 2020-07-14T12:46:16Z file_id: '5683' file_name: 11006.full.pdf file_size: 1911302 relation: main_file file_date_updated: 2020-07-14T12:46:16Z has_accepted_license: '1' intvolume: ' 115' isi: 1 issue: '43' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 11006 - 11011 pmid: 1 publication: PNAS publication_identifier: issn: - '00278424' publication_status: published publisher: National Academy of Sciences publist_id: '8017' quality_controlled: '1' scopus_import: '1' status: public title: Selection and gene flow shape genomic islands that control floral guides tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '40' abstract: - lang: eng text: Hanemaaijer et al. (Molecular Ecology, 27, 2018) describe the genetic consequences of the introgression of an insecticide resistance allele into a mosquito population. Linked alleles initially increased, but many of these later declined. It is hard to determine whether this decline was due to counter‐selection, rather than simply to chance. article_processing_charge: Yes (via OA deal) article_type: letter_note author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. The consequences of an introgression event. Molecular Ecology. 2018;27(24):4973-4975. doi:10.1111/mec.14950 apa: Barton, N. H. (2018). The consequences of an introgression event. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.14950 chicago: Barton, Nicholas H. “The Consequences of an Introgression Event.” Molecular Ecology. Wiley, 2018. https://doi.org/10.1111/mec.14950. ieee: N. H. Barton, “The consequences of an introgression event,” Molecular Ecology, vol. 27, no. 24. Wiley, pp. 4973–4975, 2018. ista: Barton NH. 2018. The consequences of an introgression event. Molecular Ecology. 27(24), 4973–4975. mla: Barton, Nicholas H. “The Consequences of an Introgression Event.” Molecular Ecology, vol. 27, no. 24, Wiley, 2018, pp. 4973–75, doi:10.1111/mec.14950. short: N.H. Barton, Molecular Ecology 27 (2018) 4973–4975. date_created: 2018-12-11T11:44:18Z date_published: 2018-12-31T00:00:00Z date_updated: 2023-09-19T10:06:08Z day: '31' ddc: - '576' department: - _id: NiBa doi: 10.1111/mec.14950 external_id: isi: - '000454600500001' pmid: - '30599087' file: - access_level: open_access content_type: application/pdf creator: apreinsp date_created: 2019-07-19T06:54:46Z date_updated: 2020-07-14T12:46:22Z file_id: '6652' file_name: 2018_MolecularEcology_BartonNick.pdf file_size: 295452 relation: main_file file_date_updated: 2020-07-14T12:46:22Z has_accepted_license: '1' intvolume: ' 27' isi: 1 issue: '24' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 4973-4975 pmid: 1 publication: Molecular Ecology publication_identifier: issn: - 1365294X publication_status: published publisher: Wiley publist_id: '8014' quality_controlled: '1' related_material: record: - id: '9805' relation: research_data status: public scopus_import: '1' status: public title: The consequences of an introgression event tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 27 year: '2018' ... --- _id: '565' abstract: - lang: eng text: 'We re-examine the model of Kirkpatrick and Barton for the spread of an inversion into a local population. This model assumes that local selection maintains alleles at two or more loci, despite immigration of alternative alleles at these loci from another population. We show that an inversion is favored because it prevents the breakdown of linkage disequilibrium generated by migration; the selective advantage of an inversion is proportional to the amount of recombination between the loci involved, as in other cases where inversions are selected for. We derive expressions for the rate of spread of an inversion; when the loci covered by the inversion are tightly linked, these conditions deviate substantially from those proposed previously, and imply that an inversion can then have only a small advantage. ' article_processing_charge: No article_type: original author: - first_name: Brian full_name: Charlesworth, Brian last_name: Charlesworth - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Charlesworth B, Barton NH. The spread of an inversion with migration and selection. Genetics. 2018;208(1):377-382. doi:10.1534/genetics.117.300426 apa: Charlesworth, B., & Barton, N. H. (2018). The spread of an inversion with migration and selection. Genetics. Genetics . https://doi.org/10.1534/genetics.117.300426 chicago: Charlesworth, Brian, and Nicholas H Barton. “The Spread of an Inversion with Migration and Selection.” Genetics. Genetics , 2018. https://doi.org/10.1534/genetics.117.300426. ieee: B. Charlesworth and N. H. Barton, “The spread of an inversion with migration and selection,” Genetics, vol. 208, no. 1. Genetics , pp. 377–382, 2018. ista: Charlesworth B, Barton NH. 2018. The spread of an inversion with migration and selection. Genetics. 208(1), 377–382. mla: Charlesworth, Brian, and Nicholas H. Barton. “The Spread of an Inversion with Migration and Selection.” Genetics, vol. 208, no. 1, Genetics , 2018, pp. 377–82, doi:10.1534/genetics.117.300426. short: B. Charlesworth, N.H. Barton, Genetics 208 (2018) 377–382. date_created: 2018-12-11T11:47:12Z date_published: 2018-01-01T00:00:00Z date_updated: 2023-09-19T10:12:31Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.117.300426 external_id: isi: - '000419356300025' pmid: - '29158424' intvolume: ' 208' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753870/ month: '01' oa: 1 oa_version: Published Version page: 377 - 382 pmid: 1 publication: Genetics publication_status: published publisher: 'Genetics ' publist_id: '7249' quality_controlled: '1' scopus_import: '1' status: public title: The spread of an inversion with migration and selection type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 208 year: '2018' ... --- _id: '430' abstract: - lang: eng text: In this issue of GENETICS, a new method for detecting natural selection on polygenic traits is developed and applied to sev- eral human examples ( Racimo et al. 2018 ). By de fi nition, many loci contribute to variation in polygenic traits, and a challenge for evolutionary ge neticists has been that these traits can evolve by small, nearly undetectable shifts in allele frequencies across each of many, typically unknown, loci. Recently, a helpful remedy has arisen. Genome-wide associ- ation studies (GWAS) have been illuminating sets of loci that can be interrogated jointly for c hanges in allele frequencies. By aggregating small signal s of change across many such loci, directional natural selection is now in principle detect- able using genetic data, even for highly polygenic traits. This is an exciting arena of progress – with these methods, tests can be made for selection associated with traits, and we can now study selection in what may be its most prevalent mode. The continuing fast pace of GWAS publications suggest there will be many more polygenic tests of selection in the near future, as every new GWAS is an opportunity for an accom- panying test of polygenic selection. However, it is important to be aware of complications th at arise in interpretation, especially given that these studies may easily be misinter- preted both in and outside the evolutionary genetics commu- nity. Here, we provide context for understanding polygenic tests and urge caution regarding how these results are inter- preted and reported upon more broadly. article_processing_charge: No author: - first_name: John full_name: Novembre, John last_name: Novembre - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Novembre J, Barton NH. Tread lightly interpreting polygenic tests of selection. Genetics. 2018;208(4):1351-1355. doi:10.1534/genetics.118.300786 apa: Novembre, J., & Barton, N. H. (2018). Tread lightly interpreting polygenic tests of selection. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.118.300786 chicago: Novembre, John, and Nicholas H Barton. “Tread Lightly Interpreting Polygenic Tests of Selection.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.118.300786. ieee: J. Novembre and N. H. Barton, “Tread lightly interpreting polygenic tests of selection,” Genetics, vol. 208, no. 4. Genetics Society of America, pp. 1351–1355, 2018. ista: Novembre J, Barton NH. 2018. Tread lightly interpreting polygenic tests of selection. Genetics. 208(4), 1351–1355. mla: Novembre, John, and Nicholas H. Barton. “Tread Lightly Interpreting Polygenic Tests of Selection.” Genetics, vol. 208, no. 4, Genetics Society of America, 2018, pp. 1351–55, doi:10.1534/genetics.118.300786. short: J. Novembre, N.H. Barton, Genetics 208 (2018) 1351–1355. date_created: 2018-12-11T11:46:26Z date_published: 2018-04-01T00:00:00Z date_updated: 2023-09-19T10:17:30Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1534/genetics.118.300786 external_id: isi: - '000429094400005' file: - access_level: open_access checksum: 3d838dc285df394376555b794b6a5ad1 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:40Z date_updated: 2020-07-14T12:46:26Z file_id: '4958' file_name: IST-2018-1012-v1+1_2018_Barton_Tread.pdf file_size: 500129 relation: main_file file_date_updated: 2020-07-14T12:46:26Z has_accepted_license: '1' intvolume: ' 208' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 1351 - 1355 publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '7393' pubrep_id: '1012' quality_controlled: '1' scopus_import: '1' status: public title: Tread lightly interpreting polygenic tests of selection tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 208 year: '2018' ... --- _id: '607' abstract: - lang: eng text: We study the Fokker-Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker-Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain's boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium.Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of observables (moments) of the Fokker-Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one. acknowledgement: "JH and PM are funded by KAUST baseline funds and grant no. 1000000193 .\r\nWe thank Nicholas Barton (IST Austria) for his useful comments and suggestions. \r\n\r\n" article_processing_charge: No author: - first_name: Katarina full_name: Bodova, Katarina id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bodova orcid: 0000-0002-7214-0171 - first_name: Jan full_name: Haskovec, Jan last_name: Haskovec - first_name: Peter full_name: Markowich, Peter last_name: Markowich citation: ama: 'Bodova K, Haskovec J, Markowich P. Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. 2018;376-377:108-120. doi:10.1016/j.physd.2017.10.015' apa: 'Bodova, K., Haskovec, J., & Markowich, P. (2018). Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. Elsevier. https://doi.org/10.1016/j.physd.2017.10.015' chicago: 'Bodova, Katarina, Jan Haskovec, and Peter Markowich. “Well Posedness and Maximum Entropy Approximation for the Dynamics of Quantitative Traits.” Physica D: Nonlinear Phenomena. Elsevier, 2018. https://doi.org/10.1016/j.physd.2017.10.015.' ieee: 'K. Bodova, J. Haskovec, and P. Markowich, “Well posedness and maximum entropy approximation for the dynamics of quantitative traits,” Physica D: Nonlinear Phenomena, vol. 376–377. Elsevier, pp. 108–120, 2018.' ista: 'Bodova K, Haskovec J, Markowich P. 2018. Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. 376–377, 108–120.' mla: 'Bodova, Katarina, et al. “Well Posedness and Maximum Entropy Approximation for the Dynamics of Quantitative Traits.” Physica D: Nonlinear Phenomena, vol. 376–377, Elsevier, 2018, pp. 108–20, doi:10.1016/j.physd.2017.10.015.' short: 'K. Bodova, J. Haskovec, P. Markowich, Physica D: Nonlinear Phenomena 376–377 (2018) 108–120.' date_created: 2018-12-11T11:47:28Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-19T10:38:34Z day: '01' department: - _id: NiBa - _id: GaTk doi: 10.1016/j.physd.2017.10.015 external_id: arxiv: - '1704.08757' isi: - '000437962900012' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1704.08757 month: '08' oa: 1 oa_version: Submitted Version page: 108-120 publication: 'Physica D: Nonlinear Phenomena' publication_status: published publisher: Elsevier publist_id: '7198' quality_controlled: '1' scopus_import: '1' status: public title: Well posedness and maximum entropy approximation for the dynamics of quantitative traits type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 376-377 year: '2018' ... --- _id: '200' abstract: - lang: eng text: This thesis is concerned with the inference of current population structure based on geo-referenced genetic data. The underlying idea is that population structure affects its spatial genetic structure. Therefore, genotype information can be utilized to estimate important demographic parameters such as migration rates. These indirect estimates of population structure have become very attractive, as genotype data is now widely available. However, there also has been much concern about these approaches. Importantly, genetic structure can be influenced by many complex patterns, which often cannot be disentangled. Moreover, many methods merely fit heuristic patterns of genetic structure, and do not build upon population genetics theory. Here, I describe two novel inference methods that address these shortcomings. In Chapter 2, I introduce an inference scheme based on a new type of signal, identity by descent (IBD) blocks. Recently, it has become feasible to detect such long blocks of genome shared between pairs of samples. These blocks are direct traces of recent coalescence events. As such, they contain ample signal for inferring recent demography. I examine sharing of IBD blocks in two-dimensional populations with local migration. Using a diffusion approximation, I derive formulas for an isolation by distance pattern of long IBD blocks and show that sharing of long IBD blocks approaches rapid exponential decay for growing sample distance. I describe an inference scheme based on these results. It can robustly estimate the dispersal rate and population density, which is demonstrated on simulated data. I also show an application to estimate mean migration and the rate of recent population growth within Eastern Europe. Chapter 3 is about a novel method to estimate barriers to gene flow in a two dimensional population. This inference scheme utilizes geographically localized allele frequency fluctuations - a classical isolation by distance signal. The strength of these local fluctuations increases on average next to a barrier, and there is less correlation across it. I again use a framework of diffusion of ancestral lineages to model this effect, and provide an efficient numerical implementation to fit the results to geo-referenced biallelic SNP data. This inference scheme is able to robustly estimate strong barriers to gene flow, as tests on simulated data confirm. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Harald full_name: Ringbauer, Harald id: 417FCFF4-F248-11E8-B48F-1D18A9856A87 last_name: Ringbauer orcid: 0000-0002-4884-9682 citation: ama: Ringbauer H. Inferring recent demography from spatial genetic structure. 2018. doi:10.15479/AT:ISTA:th_963 apa: Ringbauer, H. (2018). Inferring recent demography from spatial genetic structure. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_963 chicago: Ringbauer, Harald. “Inferring Recent Demography from Spatial Genetic Structure.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_963. ieee: H. Ringbauer, “Inferring recent demography from spatial genetic structure,” Institute of Science and Technology Austria, 2018. ista: Ringbauer H. 2018. Inferring recent demography from spatial genetic structure. Institute of Science and Technology Austria. mla: Ringbauer, Harald. Inferring Recent Demography from Spatial Genetic Structure. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_963. short: H. Ringbauer, Inferring Recent Demography from Spatial Genetic Structure, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:10Z date_published: 2018-02-21T00:00:00Z date_updated: 2023-09-20T12:00:56Z day: '21' ddc: - '576' degree_awarded: PhD department: - _id: NiBa doi: 10.15479/AT:ISTA:th_963 file: - access_level: open_access checksum: 8cc534d2b528ae017acf80874cce48c9 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:55Z date_updated: 2020-07-14T12:45:23Z file_id: '5111' file_name: IST-2018-963-v1+1_thesis.pdf file_size: 5792935 relation: main_file - access_level: closed checksum: 6af18d7e5a7e2728ceda2f41ee24f628 content_type: application/zip creator: dernst date_created: 2019-04-05T09:30:12Z date_updated: 2020-07-14T12:45:23Z file_id: '6224' file_name: 2018_thesis_ringbauer_source.zip file_size: 113365 relation: source_file file_date_updated: 2020-07-14T12:45:23Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '146' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7713' pubrep_id: '963' related_material: record: - id: '563' relation: part_of_dissertation status: public - id: '1074' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Inferring recent demography from spatial genetic structure tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '139' abstract: - lang: eng text: 'Genome-scale diversity data are increasingly available in a variety of biological systems, and can be used to reconstruct the past evolutionary history of species divergence. However, extracting the full demographic information from these data is not trivial, and requires inferential methods that account for the diversity of coalescent histories throughout the genome. Here, we evaluate the potential and limitations of one such approach. We reexamine a well-known system of mussel sister species, using the joint site frequency spectrum (jSFS) of synonymousmutations computed either fromexome capture or RNA-seq, in an Approximate Bayesian Computation (ABC) framework. We first assess the best sampling strategy (number of: individuals, loci, and bins in the jSFS), and show that model selection is robust to variation in the number of individuals and loci. In contrast, different binning choices when summarizing the jSFS, strongly affect the results: including classes of low and high frequency shared polymorphisms can more effectively reveal recent migration events. We then take advantage of the flexibility of ABC to compare more realistic models of speciation, including variation in migration rates through time (i.e., periodic connectivity) and across genes (i.e., genome-wide heterogeneity in migration rates). We show that these models were consistently selected as the most probable, suggesting that mussels have experienced a complex history of gene flow during divergence and that the species boundary is semi-permeable. Our work provides a comprehensive evaluation of ABC demographic inference in mussels based on the coding jSFS, and supplies guidelines for employing different sequencing techniques and sampling strategies. We emphasize, perhaps surprisingly, that inferences are less limited by the volume of data, than by the way in which they are analyzed.' article_number: '30083438' article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: Camille full_name: Roux, Camille last_name: Roux - first_name: Pierre full_name: Gagnaire, Pierre last_name: Gagnaire - first_name: Jonathan full_name: Romiguier, Jonathan last_name: Romiguier - first_name: Nicolas full_name: Faivre, Nicolas last_name: Faivre - first_name: John full_name: Welch, John last_name: Welch - first_name: Nicolas full_name: Bierne, Nicolas last_name: Bierne citation: ama: 'Fraisse C, Roux C, Gagnaire P, et al. The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies. PeerJ. 2018;2018(7). doi:10.7717/peerj.5198' apa: 'Fraisse, C., Roux, C., Gagnaire, P., Romiguier, J., Faivre, N., Welch, J., & Bierne, N. (2018). The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies. PeerJ. PeerJ. https://doi.org/10.7717/peerj.5198' chicago: 'Fraisse, Christelle, Camille Roux, Pierre Gagnaire, Jonathan Romiguier, Nicolas Faivre, John Welch, and Nicolas Bierne. “The Divergence History of European Blue Mussel Species Reconstructed from Approximate Bayesian Computation: The Effects of Sequencing Techniques and Sampling Strategies.” PeerJ. PeerJ, 2018. https://doi.org/10.7717/peerj.5198.' ieee: 'C. Fraisse et al., “The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies,” PeerJ, vol. 2018, no. 7. PeerJ, 2018.' ista: 'Fraisse C, Roux C, Gagnaire P, Romiguier J, Faivre N, Welch J, Bierne N. 2018. The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies. PeerJ. 2018(7), 30083438.' mla: 'Fraisse, Christelle, et al. “The Divergence History of European Blue Mussel Species Reconstructed from Approximate Bayesian Computation: The Effects of Sequencing Techniques and Sampling Strategies.” PeerJ, vol. 2018, no. 7, 30083438, PeerJ, 2018, doi:10.7717/peerj.5198.' short: C. Fraisse, C. Roux, P. Gagnaire, J. Romiguier, N. Faivre, J. Welch, N. Bierne, PeerJ 2018 (2018). date_created: 2018-12-11T11:44:50Z date_published: 2018-07-30T00:00:00Z date_updated: 2023-10-17T12:25:28Z day: '30' ddc: - '576' department: - _id: BeVi - _id: NiBa doi: 10.7717/peerj.5198 external_id: isi: - '000440484800002' file: - access_level: open_access checksum: 7d55ae22598a1c70759cd671600cff53 content_type: application/pdf creator: dernst date_created: 2018-12-18T09:42:11Z date_updated: 2020-07-14T12:44:48Z file_id: '5739' file_name: 2018_PeerJ_Fraisse.pdf file_size: 1480792 relation: main_file file_date_updated: 2020-07-14T12:44:48Z has_accepted_license: '1' intvolume: ' 2018' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: PeerJ publication_status: published publisher: PeerJ publist_id: '7784' quality_controlled: '1' scopus_import: '1' status: public title: 'The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2018 year: '2018' ... --- _id: '33' abstract: - lang: eng text: Secondary contact is the reestablishment of gene flow between sister populations that have diverged. For instance, at the end of the Quaternary glaciations in Europe, secondary contact occurred during the northward expansion of the populations which had found refugia in the southern peninsulas. With the advent of multi-locus markers, secondary contact can be investigated using various molecular signatures including gradients of allele frequency, admixture clines, and local increase of genetic differentiation. We use coalescent simulations to investigate if molecular data provide enough information to distinguish between secondary contact following range expansion and an alternative evolutionary scenario consisting of a barrier to gene flow in an isolation-by-distance model. We find that an excess of linkage disequilibrium and of genetic diversity at the suture zone is a unique signature of secondary contact. We also find that the directionality index ψ, which was proposed to study range expansion, is informative to distinguish between the two hypotheses. However, although evidence for secondary contact is usually conveyed by statistics related to admixture coefficients, we find that they can be confounded by isolation-by-distance. We recommend to account for the spatial repartition of individuals when investigating secondary contact in order to better reflect the complex spatio-temporal evolution of populations and species. acknowledgement: 'Johanna Bertl was supported by the Vienna Graduate School of Population Genetics (Austrian Science Fund (FWF): W1225-B20) and worked on this project while employed at the Department of Statistics and Operations Research, University of Vienna, Austria. This article was developed in the framework of the Grenoble Alpes Data Institute, which is supported by the French National Research Agency under the “Investissments d’avenir” program (ANR-15-IDEX-02).' article_number: e5325 article_processing_charge: No author: - first_name: Johanna full_name: Bertl, Johanna last_name: Bertl - first_name: Harald full_name: Ringbauer, Harald id: 417FCFF4-F248-11E8-B48F-1D18A9856A87 last_name: Ringbauer orcid: 0000-0002-4884-9682 - first_name: Michaël full_name: Blum, Michaël last_name: Blum citation: ama: Bertl J, Ringbauer H, Blum M. Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. 2018;2018(10). doi:10.7717/peerj.5325 apa: Bertl, J., Ringbauer, H., & Blum, M. (2018). Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. PeerJ. https://doi.org/10.7717/peerj.5325 chicago: Bertl, Johanna, Harald Ringbauer, and Michaël Blum. “Can Secondary Contact Following Range Expansion Be Distinguished from Barriers to Gene Flow?” PeerJ. PeerJ, 2018. https://doi.org/10.7717/peerj.5325. ieee: J. Bertl, H. Ringbauer, and M. Blum, “Can secondary contact following range expansion be distinguished from barriers to gene flow?,” PeerJ, vol. 2018, no. 10. PeerJ, 2018. ista: Bertl J, Ringbauer H, Blum M. 2018. Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. 2018(10), e5325. mla: Bertl, Johanna, et al. “Can Secondary Contact Following Range Expansion Be Distinguished from Barriers to Gene Flow?” PeerJ, vol. 2018, no. 10, e5325, PeerJ, 2018, doi:10.7717/peerj.5325. short: J. Bertl, H. Ringbauer, M. Blum, PeerJ 2018 (2018). date_created: 2018-12-11T11:44:16Z date_published: 2018-10-01T00:00:00Z date_updated: 2023-10-17T12:24:43Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.7717/peerj.5325 external_id: isi: - '000447204400001' pmid: - '30294507' file: - access_level: open_access checksum: 3334886c4b39678db4c4b74299ca14ba content_type: application/pdf creator: dernst date_created: 2018-12-17T10:46:06Z date_updated: 2020-07-14T12:46:06Z file_id: '5692' file_name: 2018_PeerJ_Bertl.pdf file_size: 1328344 relation: main_file file_date_updated: 2020-07-14T12:46:06Z has_accepted_license: '1' intvolume: ' 2018' isi: 1 issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: PeerJ publication_status: published publisher: PeerJ publist_id: '8022' quality_controlled: '1' scopus_import: '1' status: public title: Can secondary contact following range expansion be distinguished from barriers to gene flow? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2018 year: '2018' ... --- _id: '286' abstract: - lang: eng text: 'Pedigree and sibship reconstruction are important methods in quantifying relationships and fitness of individuals in natural populations. Current methods employ a Markov chain-based algorithm to explore plausible possible pedigrees iteratively. This provides accurate results, but is time-consuming. Here, we develop a method to infer sibship and paternity relationships from half-sibling arrays of known maternity using hierarchical clustering. Given 50 or more unlinked SNP markers and empirically derived error rates, the method performs as well as the widely used package Colony, but is faster by two orders of magnitude. Using simulations, we show that the method performs well across contrasting mating scenarios, even when samples are large. We then apply the method to open-pollinated arrays of the snapdragon Antirrhinum majus and find evidence for a high degree of multiple mating. Although we focus on diploid SNP data, the method does not depend on marker type and as such has broad applications in nonmodel systems. ' acknowledgement: 'ERC, Grant/Award Number: 250152' article_processing_charge: No author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Ellis T, Field D, Barton NH. Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering. Molecular Ecology Resources. 2018;18(5):988-999. doi:10.1111/1755-0998.12782 apa: Ellis, T., Field, D., & Barton, N. H. (2018). Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering. Molecular Ecology Resources. Wiley. https://doi.org/10.1111/1755-0998.12782 chicago: Ellis, Thomas, David Field, and Nicholas H Barton. “Efficient Inference of Paternity and Sibship Inference given Known Maternity via Hierarchical Clustering.” Molecular Ecology Resources. Wiley, 2018. https://doi.org/10.1111/1755-0998.12782. ieee: T. Ellis, D. Field, and N. H. Barton, “Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering,” Molecular Ecology Resources, vol. 18, no. 5. Wiley, pp. 988–999, 2018. ista: Ellis T, Field D, Barton NH. 2018. Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering. Molecular Ecology Resources. 18(5), 988–999. mla: Ellis, Thomas, et al. “Efficient Inference of Paternity and Sibship Inference given Known Maternity via Hierarchical Clustering.” Molecular Ecology Resources, vol. 18, no. 5, Wiley, 2018, pp. 988–99, doi:10.1111/1755-0998.12782. short: T. Ellis, D. Field, N.H. Barton, Molecular Ecology Resources 18 (2018) 988–999. date_created: 2018-12-11T11:45:37Z date_published: 2018-09-01T00:00:00Z date_updated: 2024-02-21T13:45:00Z day: '01' department: - _id: NiBa doi: 10.1111/1755-0998.12782 ec_funded: 1 external_id: isi: - '000441753000007' intvolume: ' 18' isi: 1 issue: '5' language: - iso: eng month: '09' oa_version: None page: 988 - 999 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Molecular Ecology Resources publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '5583' relation: popular_science status: public scopus_import: '1' status: public title: Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 18 year: '2018' ... --- _id: '5583' abstract: - lang: eng text: "Data and scripts are provided in support of the manuscript \"Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering\", and the associated Python package FAPS, available from www.github.com/ellisztamas/faps.\r\n\r\nSimulation scripts cover:\r\n1. Performance under different mating scenarios.\r\n2. Comparison with Colony2.\r\n3. Effect of changing the number of Monte Carlo draws\r\n\r\nThe final script covers the analysis of half-sib arrays from wild-pollinated seed in an Antirrhinum majus hybrid zone." article_processing_charge: No author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 citation: ama: Ellis T. Data and Python scripts supporting Python package FAPS. 2018. doi:10.15479/AT:ISTA:95 apa: Ellis, T. (2018). Data and Python scripts supporting Python package FAPS. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:95 chicago: Ellis, Thomas. “Data and Python Scripts Supporting Python Package FAPS.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:95. ieee: T. Ellis, “Data and Python scripts supporting Python package FAPS.” Institute of Science and Technology Austria, 2018. ista: Ellis T. 2018. Data and Python scripts supporting Python package FAPS, Institute of Science and Technology Austria, 10.15479/AT:ISTA:95. mla: Ellis, Thomas. Data and Python Scripts Supporting Python Package FAPS. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:95. short: T. Ellis, (2018). contributor: - first_name: David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field - first_name: Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton datarep_id: '95' date_created: 2018-12-12T12:31:39Z date_published: 2018-02-12T00:00:00Z date_updated: 2024-02-21T13:45:01Z day: '12' department: - _id: NiBa doi: 10.15479/AT:ISTA:95 file: - access_level: open_access checksum: fc6aab51439f2622ba6df8632e66fd4f content_type: text/csv creator: system date_created: 2018-12-12T13:02:41Z date_updated: 2020-07-14T12:47:07Z file_id: '5606' file_name: IST-2018-95-v1+1_amajus_GPS_2012.csv file_size: 122048 relation: main_file - access_level: open_access checksum: 92347586ae4f8a6eb7c04354797bf314 content_type: text/csv creator: system date_created: 2018-12-12T13:02:42Z date_updated: 2020-07-14T12:47:07Z file_id: '5607' file_name: IST-2018-95-v1+2_offspring_SNPs_2012.csv file_size: 235980 relation: main_file - access_level: open_access checksum: 3300813645a54e6c5c39f41917228354 content_type: text/csv creator: system date_created: 2018-12-12T13:02:43Z date_updated: 2020-07-14T12:47:07Z file_id: '5608' file_name: IST-2018-95-v1+3_parents_SNPs_2012.csv file_size: 311712 relation: main_file - access_level: open_access checksum: e739fc473567fd8f39438b445fc46147 content_type: application/zip creator: system date_created: 2018-12-12T13:02:44Z date_updated: 2020-07-14T12:47:07Z file_id: '5609' file_name: IST-2018-95-v1+4_faps_scripts.zip file_size: 342090 relation: main_file file_date_updated: 2020-07-14T12:47:07Z has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ month: '02' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '286' relation: research_paper status: public status: public title: Data and Python scripts supporting Python package FAPS tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '5757' abstract: - lang: eng text: "File S1. Variant Calling Format file of the ingroup: 197 haploid sequences of D. melanogaster from Zambia (Africa) aligned to the D. melanogaster 5.57 reference genome.\r\n\r\nFile S2. Variant Calling Format file of the outgroup: 1 haploid sequence of D. simulans aligned to the D. melanogaster 5.57 reference genome.\r\n\r\nFile S3. Annotations of each transcript in coding regions with SNPeff: Ps (# of synonymous polymorphic sites); Pn (# of non-synonymous polymorphic sites); Ds (# of synonymous divergent sites); Dn (# of non-synonymous divergent sites); DoS; ⍺ MK . All variants were included.\r\n\r\nFile S4. Annotations of each transcript in non-coding regions with SNPeff: Ps (# of synonymous polymorphic sites); Pu (# of UTR polymorphic sites); Ds (# of synonymous divergent sites); Du (# of UTR divergent sites); DoS; ⍺ MK . All variants were included.\r\n\r\nFile S5. Annotations of each transcript in coding regions with SNPGenie: Ps (# of synonymous polymorphic sites); πs (synonymous diversity); Ss_p (total # of synonymous sites in the polymorphism data); Pn (# of non-synonymous polymorphic sites); πn (non-synonymous diversity); Sn_p (total # of non-synonymous sites in the polymorphism data); Ds (# of synonymous divergent sites); ks (synonymous evolutionary rate); Ss_d (total # of synonymous sites in the divergence data); Dn (# of non-synonymous divergent sites); kn (non-synonymous evolutionary rate); Sn_d (total # of non-\r\nsynonymous sites in the divergence data); DoS; ⍺ MK . All variants were included.\r\n\r\nFile S6. Gene expression values (RPKM summed over all transcripts) for each sample. Values were quantile-normalized across all samples.\r\n\r\nFile S7. Final dataset with all covariates, ⍺ MK , ωA MK and DoS for coding sites, excluding variants below 5% frequency.\r\n\r\nFile S8. Final dataset with all covariates, ⍺ MK , ωA MK and DoS for non-coding sites, excluding variants below 5%\r\nfrequency.\r\n\r\nFile S9. Final dataset with all covariates, ⍺ EWK , ωA EWK and deleterious SFS for coding sites obtained with the Eyre-Walker and Keightley method on binned data and using all variants." article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 citation: ama: Fraisse C. Supplementary Files for “Pleiotropy modulates the efficacy of selection in Drosophila melanogaster.” 2018. doi:10.15479/at:ista:/5757 apa: Fraisse, C. (2018). Supplementary Files for “Pleiotropy modulates the efficacy of selection in Drosophila melanogaster.” Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:/5757 chicago: Fraisse, Christelle. “Supplementary Files for ‘Pleiotropy Modulates the Efficacy of Selection in Drosophila Melanogaster.’” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/at:ista:/5757. ieee: C. Fraisse, “Supplementary Files for ‘Pleiotropy modulates the efficacy of selection in Drosophila melanogaster.’” Institute of Science and Technology Austria, 2018. ista: Fraisse C. 2018. Supplementary Files for ‘Pleiotropy modulates the efficacy of selection in Drosophila melanogaster’, Institute of Science and Technology Austria, 10.15479/at:ista:/5757. mla: Fraisse, Christelle. Supplementary Files for “Pleiotropy Modulates the Efficacy of Selection in Drosophila Melanogaster.” Institute of Science and Technology Austria, 2018, doi:10.15479/at:ista:/5757. short: C. Fraisse, (2018). contributor: - first_name: Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse - first_name: Gemma id: 33AB266C-F248-11E8-B48F-1D18A9856A87 last_name: Puixeu Sala - first_name: Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 date_created: 2018-12-19T14:22:35Z date_published: 2018-12-19T00:00:00Z date_updated: 2024-02-21T13:59:18Z day: '19' ddc: - '576' department: - _id: BeVi - _id: NiBa doi: 10.15479/at:ista:/5757 ec_funded: 1 file: - access_level: open_access checksum: aed7ee9ca3f4dc07d8a66945f68e13cd content_type: application/zip creator: cfraisse date_created: 2018-12-19T14:19:52Z date_updated: 2020-07-14T12:47:11Z file_id: '5758' file_name: FileS1.zip file_size: 369837892 relation: main_file - access_level: open_access checksum: 3592e467b4d8206650860b612d6e12f3 content_type: application/zip creator: cfraisse date_created: 2018-12-19T14:19:49Z date_updated: 2020-07-14T12:47:11Z file_id: '5759' file_name: FileS2.zip file_size: 84856909 relation: main_file - access_level: open_access checksum: c37ac5d5437c457338afc128c1240655 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:49Z date_updated: 2020-07-14T12:47:11Z file_id: '5760' file_name: FileS3.txt file_size: 881133 relation: main_file - access_level: open_access checksum: 943dfd14da61817441e33e3e3cb8cdb9 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:49Z date_updated: 2020-07-14T12:47:11Z file_id: '5761' file_name: FileS4.txt file_size: 883742 relation: main_file - access_level: open_access checksum: 1c669b6c4690ec1bbca3e2da9f566d17 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:49Z date_updated: 2020-07-14T12:47:11Z file_id: '5762' file_name: FileS5.txt file_size: 2495437 relation: main_file - access_level: open_access checksum: f40f661b987ca6fb6b47f650cbbb04e6 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:50Z date_updated: 2020-07-14T12:47:11Z file_id: '5763' file_name: FileS6.txt file_size: 15913457 relation: main_file - access_level: open_access checksum: 25f41e5b8a075669c6c88d4c6713bf6f content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:50Z date_updated: 2020-07-14T12:47:11Z file_id: '5764' file_name: FileS7.txt file_size: 2584120 relation: main_file - access_level: open_access checksum: f6c0bd3e63e14ddf5445bd69b43a9152 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:50Z date_updated: 2020-07-14T12:47:11Z file_id: '5765' file_name: FileS8.txt file_size: 2446059 relation: main_file - access_level: open_access checksum: 0fe7a58a030b11bf3b9c8ff7a7addcae content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:50Z date_updated: 2020-07-14T12:47:11Z file_id: '5766' file_name: FileS9.txt file_size: 100737 relation: main_file file_date_updated: 2020-07-14T12:47:11Z has_accepted_license: '1' keyword: - (mal)adaptation - pleiotropy - selective constraint - evo-devo - gene expression - Drosophila melanogaster month: '12' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publisher: Institute of Science and Technology Austria related_material: record: - id: '6089' relation: research_paper status: public status: public title: Supplementary Files for "Pleiotropy modulates the efficacy of selection in Drosophila melanogaster" type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '1112' abstract: - lang: eng text: There has been renewed interest in modelling the behaviour of evolutionary algorithms by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogs of the additive and multiplicative drift theorems for SDEs. We exemplify the use of these methods for two model algorithms ((1+1) EA and RLS) on two canonical problems(OneMax and LeadingOnes). author: - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Jorge full_name: Pérez Heredia, Jorge last_name: Pérez Heredia citation: ama: 'Paixao T, Pérez Heredia J. An application of stochastic differential equations to evolutionary algorithms. In: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. ACM; 2017:3-11. doi:10.1145/3040718.3040729' apa: 'Paixao, T., & Pérez Heredia, J. (2017). An application of stochastic differential equations to evolutionary algorithms. In Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 3–11). Copenhagen, Denmark: ACM. https://doi.org/10.1145/3040718.3040729' chicago: Paixao, Tiago, and Jorge Pérez Heredia. “An Application of Stochastic Differential Equations to Evolutionary Algorithms.” In Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 3–11. ACM, 2017. https://doi.org/10.1145/3040718.3040729. ieee: T. Paixao and J. Pérez Heredia, “An application of stochastic differential equations to evolutionary algorithms,” in Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, Copenhagen, Denmark, 2017, pp. 3–11. ista: 'Paixao T, Pérez Heredia J. 2017. An application of stochastic differential equations to evolutionary algorithms. Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. FOGA: Foundations of Genetic Algorithms, 3–11.' mla: Paixao, Tiago, and Jorge Pérez Heredia. “An Application of Stochastic Differential Equations to Evolutionary Algorithms.” Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, ACM, 2017, pp. 3–11, doi:10.1145/3040718.3040729. short: T. Paixao, J. Pérez Heredia, in:, Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, ACM, 2017, pp. 3–11. conference: end_date: 2017-01-15 location: Copenhagen, Denmark name: 'FOGA: Foundations of Genetic Algorithms' start_date: 2017-01-12 date_created: 2018-12-11T11:50:12Z date_published: 2017-01-12T00:00:00Z date_updated: 2021-01-12T06:48:22Z day: '12' department: - _id: NiBa doi: 10.1145/3040718.3040729 language: - iso: eng month: '01' oa_version: None page: 3 - 11 publication: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms publication_identifier: isbn: - 978-145034651-1 publication_status: published publisher: ACM publist_id: '6255' quality_controlled: '1' scopus_import: 1 status: public title: An application of stochastic differential equations to evolutionary algorithms type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '1191' abstract: - lang: eng text: Variation in genotypes may be responsible for differences in dispersal rates, directional biases, and growth rates of individuals. These traits may favor certain genotypes and enhance their spatiotemporal spreading into areas occupied by the less advantageous genotypes. We study how these factors influence the speed of spreading in the case of two competing genotypes under the assumption that spatial variation of the total population is small compared to the spatial variation of the frequencies of the genotypes in the population. In that case, the dynamics of the frequency of one of the genotypes is approximately described by a generalized Fisher–Kolmogorov–Petrovskii–Piskunov (F–KPP) equation. This generalized F–KPP equation with (nonlinear) frequency-dependent diffusion and advection terms admits traveling wave solutions that characterize the invasion of the dominant genotype. Our existence results generalize the classical theory for traveling waves for the F–KPP with constant coefficients. Moreover, in the particular case of the quadratic (monostable) nonlinear growth–decay rate in the generalized F–KPP we study in detail the influence of the variance in diffusion and mean displacement rates of the two genotypes on the minimal wave propagation speed. acknowledgement: "We thank Nick Barton, Katarína Bod’ová, and Sr\r\n-\r\ndan Sarikas for constructive feed-\r\nback and support. Furthermore, we would like to express our deep gratitude to the anonymous referees (one\r\nof whom, Jimmy Garnier, agreed to reveal his identity) and the editor Max Souza, for very helpful and\r\ndetailed comments and suggestions that significantly helped us to improve the manuscript. This project has\r\nreceived funding from the European Union’s Seventh Framework Programme for research, technological\r\ndevelopment and demonstration under Grant Agreement 618091 Speed of Adaptation in Population Genet-\r\nics and Evolutionary Computation (SAGE) and the European Research Council (ERC) Grant No. 250152\r\n(SN), from the Scientific Grant Agency of the Slovak Republic under the Grant 1/0459/13 and by the Slovak\r\nResearch and Development Agency under the Contract No. APVV-14-0378 (RK). RK would also like to\r\nthank IST Austria for its hospitality during the work on this project." author: - first_name: Richard full_name: Kollár, Richard last_name: Kollár - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak citation: ama: Kollár R, Novak S. Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. 2017;79(3):525-559. doi:10.1007/s11538-016-0244-3 apa: Kollár, R., & Novak, S. (2017). Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. Springer. https://doi.org/10.1007/s11538-016-0244-3 chicago: Kollár, Richard, and Sebastian Novak. “Existence of Traveling Waves for the Generalized F–KPP Equation.” Bulletin of Mathematical Biology. Springer, 2017. https://doi.org/10.1007/s11538-016-0244-3. ieee: R. Kollár and S. Novak, “Existence of traveling waves for the generalized F–KPP equation,” Bulletin of Mathematical Biology, vol. 79, no. 3. Springer, pp. 525–559, 2017. ista: Kollár R, Novak S. 2017. Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. 79(3), 525–559. mla: Kollár, Richard, and Sebastian Novak. “Existence of Traveling Waves for the Generalized F–KPP Equation.” Bulletin of Mathematical Biology, vol. 79, no. 3, Springer, 2017, pp. 525–59, doi:10.1007/s11538-016-0244-3. short: R. Kollár, S. Novak, Bulletin of Mathematical Biology 79 (2017) 525–559. date_created: 2018-12-11T11:50:38Z date_published: 2017-03-01T00:00:00Z date_updated: 2021-01-12T06:48:58Z day: '01' department: - _id: NiBa doi: 10.1007/s11538-016-0244-3 ec_funded: 1 intvolume: ' 79' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1607.00944 month: '03' oa: 1 oa_version: Preprint page: 525-559 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Bulletin of Mathematical Biology publication_status: published publisher: Springer publist_id: '6160' quality_controlled: '1' scopus_import: 1 status: public title: Existence of traveling waves for the generalized F–KPP equation type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 79 year: '2017' ... --- _id: '570' abstract: - lang: eng text: 'Most phenotypes are determined by molecular systems composed of specifically interacting molecules. However, unlike for individual components, little is known about the distributions of mutational effects of molecular systems as a whole. We ask how the distribution of mutational effects of a transcriptional regulatory system differs from the distributions of its components, by first independently, and then simultaneously, mutating a transcription factor and the associated promoter it represses. We find that the system distribution exhibits increased phenotypic variation compared to individual component distributions - an effect arising from intermolecular epistasis between the transcription factor and its DNA-binding site. In large part, this epistasis can be qualitatively attributed to the structure of the transcriptional regulatory system and could therefore be a common feature in prokaryotes. Counter-intuitively, intermolecular epistasis can alleviate the constraints of individual components, thereby increasing phenotypic variation that selection could act on and facilitating adaptive evolution. ' article_number: e28921 author: - first_name: Mato full_name: Lagator, Mato id: 345D25EC-F248-11E8-B48F-1D18A9856A87 last_name: Lagator - first_name: Srdjan full_name: Sarikas, Srdjan id: 35F0286E-F248-11E8-B48F-1D18A9856A87 last_name: Sarikas - first_name: Hande full_name: Acar, Hande id: 2DDF136A-F248-11E8-B48F-1D18A9856A87 last_name: Acar orcid: 0000-0003-1986-9753 - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 citation: ama: Lagator M, Sarikas S, Acar H, Bollback JP, Guet CC. Regulatory network structure determines patterns of intermolecular epistasis. eLife. 2017;6. doi:10.7554/eLife.28921 apa: Lagator, M., Sarikas, S., Acar, H., Bollback, J. P., & Guet, C. C. (2017). Regulatory network structure determines patterns of intermolecular epistasis. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.28921 chicago: Lagator, Mato, Srdjan Sarikas, Hande Acar, Jonathan P Bollback, and Calin C Guet. “Regulatory Network Structure Determines Patterns of Intermolecular Epistasis.” ELife. eLife Sciences Publications, 2017. https://doi.org/10.7554/eLife.28921. ieee: M. Lagator, S. Sarikas, H. Acar, J. P. Bollback, and C. C. Guet, “Regulatory network structure determines patterns of intermolecular epistasis,” eLife, vol. 6. eLife Sciences Publications, 2017. ista: Lagator M, Sarikas S, Acar H, Bollback JP, Guet CC. 2017. Regulatory network structure determines patterns of intermolecular epistasis. eLife. 6, e28921. mla: Lagator, Mato, et al. “Regulatory Network Structure Determines Patterns of Intermolecular Epistasis.” ELife, vol. 6, e28921, eLife Sciences Publications, 2017, doi:10.7554/eLife.28921. short: M. Lagator, S. Sarikas, H. Acar, J.P. Bollback, C.C. Guet, ELife 6 (2017). date_created: 2018-12-11T11:47:14Z date_published: 2017-11-13T00:00:00Z date_updated: 2021-01-12T08:03:15Z day: '13' ddc: - '576' department: - _id: CaGu - _id: JoBo - _id: NiBa doi: 10.7554/eLife.28921 ec_funded: 1 file: - access_level: open_access checksum: 273ab17f33305e4eaafd911ff88e7c5b content_type: application/pdf creator: system date_created: 2018-12-12T10:14:42Z date_updated: 2020-07-14T12:47:10Z file_id: '5096' file_name: IST-2017-918-v1+1_elife-28921-figures-v3.pdf file_size: 8453470 relation: main_file - access_level: open_access checksum: b433f90576c7be597cd43367946f8e7f content_type: application/pdf creator: system date_created: 2018-12-12T10:14:43Z date_updated: 2020-07-14T12:47:10Z file_id: '5097' file_name: IST-2017-918-v1+2_elife-28921-v3.pdf file_size: 1953221 relation: main_file file_date_updated: 2020-07-14T12:47:10Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2578D616-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '648440' name: Selective Barriers to Horizontal Gene Transfer publication: eLife publication_identifier: issn: - 2050084X publication_status: published publisher: eLife Sciences Publications publist_id: '7244' pubrep_id: '918' quality_controlled: '1' scopus_import: 1 status: public title: Regulatory network structure determines patterns of intermolecular epistasis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2017' ... --- _id: '611' abstract: - lang: eng text: Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution. The sRNAs repress a pigment biosynthesis gene, creating a yellow highlight at the site of pollinator entry. The inverted duplication exhibits steep clines in allele frequency in a natural hybrid zone, showing that the allele is under selection. Thus, regulatory interactions of evolutionarily recent sRNAs can be acted upon by selection and contribute to the evolution of phenotypic diversity. author: - first_name: Desmond full_name: Bradley, Desmond last_name: Bradley - first_name: Ping full_name: Xu, Ping last_name: Xu - first_name: Irina full_name: Mohorianu, Irina last_name: Mohorianu - first_name: Annabel full_name: Whibley, Annabel last_name: Whibley - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Hugo full_name: Tavares, Hugo last_name: Tavares - first_name: Matthew full_name: Couchman, Matthew last_name: Couchman - first_name: Lucy full_name: Copsey, Lucy last_name: Copsey - first_name: Rosemary full_name: Carpenter, Rosemary last_name: Carpenter - first_name: Miaomiao full_name: Li, Miaomiao last_name: Li - first_name: Qun full_name: Li, Qun last_name: Li - first_name: Yongbiao full_name: Xue, Yongbiao last_name: Xue - first_name: Tamas full_name: Dalmay, Tamas last_name: Dalmay - first_name: Enrico full_name: Coen, Enrico last_name: Coen citation: ama: Bradley D, Xu P, Mohorianu I, et al. Evolution of flower color pattern through selection on regulatory small RNAs. Science. 2017;358(6365):925-928. doi:10.1126/science.aao3526 apa: Bradley, D., Xu, P., Mohorianu, I., Whibley, A., Field, D., Tavares, H., … Coen, E. (2017). Evolution of flower color pattern through selection on regulatory small RNAs. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aao3526 chicago: Bradley, Desmond, Ping Xu, Irina Mohorianu, Annabel Whibley, David Field, Hugo Tavares, Matthew Couchman, et al. “Evolution of Flower Color Pattern through Selection on Regulatory Small RNAs.” Science. American Association for the Advancement of Science, 2017. https://doi.org/10.1126/science.aao3526. ieee: D. Bradley et al., “Evolution of flower color pattern through selection on regulatory small RNAs,” Science, vol. 358, no. 6365. American Association for the Advancement of Science, pp. 925–928, 2017. ista: Bradley D, Xu P, Mohorianu I, Whibley A, Field D, Tavares H, Couchman M, Copsey L, Carpenter R, Li M, Li Q, Xue Y, Dalmay T, Coen E. 2017. Evolution of flower color pattern through selection on regulatory small RNAs. Science. 358(6365), 925–928. mla: Bradley, Desmond, et al. “Evolution of Flower Color Pattern through Selection on Regulatory Small RNAs.” Science, vol. 358, no. 6365, American Association for the Advancement of Science, 2017, pp. 925–28, doi:10.1126/science.aao3526. short: D. Bradley, P. Xu, I. Mohorianu, A. Whibley, D. Field, H. Tavares, M. Couchman, L. Copsey, R. Carpenter, M. Li, Q. Li, Y. Xue, T. Dalmay, E. Coen, Science 358 (2017) 925–928. date_created: 2018-12-11T11:47:29Z date_published: 2017-11-17T00:00:00Z date_updated: 2021-01-12T08:06:10Z day: '17' department: - _id: NiBa doi: 10.1126/science.aao3526 intvolume: ' 358' issue: '6365' language: - iso: eng month: '11' oa_version: None page: 925 - 928 publication: Science publication_identifier: issn: - '00368075' publication_status: published publisher: American Association for the Advancement of Science publist_id: '7193' quality_controlled: '1' scopus_import: 1 status: public title: Evolution of flower color pattern through selection on regulatory small RNAs type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 358 year: '2017' ... --- _id: '626' abstract: - lang: eng text: 'Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence may be as fast as 1∕M.' author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Alison full_name: Etheridge, Alison last_name: Etheridge - first_name: Amandine full_name: Véber, Amandine last_name: Véber citation: ama: 'Barton NH, Etheridge A, Véber A. The infinitesimal model: Definition derivation and implications. Theoretical Population Biology. 2017;118:50-73. doi:10.1016/j.tpb.2017.06.001' apa: 'Barton, N. H., Etheridge, A., & Véber, A. (2017). The infinitesimal model: Definition derivation and implications. Theoretical Population Biology. Academic Press. https://doi.org/10.1016/j.tpb.2017.06.001' chicago: 'Barton, Nicholas H, Alison Etheridge, and Amandine Véber. “The Infinitesimal Model: Definition Derivation and Implications.” Theoretical Population Biology. Academic Press, 2017. https://doi.org/10.1016/j.tpb.2017.06.001.' ieee: 'N. H. Barton, A. Etheridge, and A. Véber, “The infinitesimal model: Definition derivation and implications,” Theoretical Population Biology, vol. 118. Academic Press, pp. 50–73, 2017.' ista: 'Barton NH, Etheridge A, Véber A. 2017. The infinitesimal model: Definition derivation and implications. Theoretical Population Biology. 118, 50–73.' mla: 'Barton, Nicholas H., et al. “The Infinitesimal Model: Definition Derivation and Implications.” Theoretical Population Biology, vol. 118, Academic Press, 2017, pp. 50–73, doi:10.1016/j.tpb.2017.06.001.' short: N.H. Barton, A. Etheridge, A. Véber, Theoretical Population Biology 118 (2017) 50–73. date_created: 2018-12-11T11:47:34Z date_published: 2017-12-01T00:00:00Z date_updated: 2021-01-12T08:06:50Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1016/j.tpb.2017.06.001 ec_funded: 1 file: - access_level: open_access checksum: 7dd02bfcfe8f244f4a6c19091aedf2c8 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:45Z date_updated: 2020-07-14T12:47:25Z file_id: '4964' file_name: IST-2017-908-v1+1_1-s2.0-S0040580917300886-main_1_.pdf file_size: 1133924 relation: main_file file_date_updated: 2020-07-14T12:47:25Z has_accepted_license: '1' intvolume: ' 118' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 50 - 73 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Theoretical Population Biology publication_identifier: issn: - '00405809' publication_status: published publisher: Academic Press publist_id: '7169' pubrep_id: '908' quality_controlled: '1' scopus_import: 1 status: public title: 'The infinitesimal model: Definition derivation and implications' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 118 year: '2017' ... --- _id: '9849' abstract: - lang: eng text: This text provides additional information about the model, a derivation of the analytic results in Eq (4), and details about simulations of an additional parameter set. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Modelling and simulation details. 2017. doi:10.1371/journal.pcbi.1005609.s001 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Modelling and simulation details. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s001 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Modelling and Simulation Details.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s001. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Modelling and simulation details.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Modelling and simulation details, Public Library of Science, 10.1371/journal.pcbi.1005609.s001. mla: Lukacisinova, Marta, et al. Modelling and Simulation Details. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s001. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:02:34Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: NiBa - _id: CaGu doi: 10.1371/journal.pcbi.1005609.s001 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Modelling and simulation details type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9850' abstract: - lang: eng text: In this text, we discuss how a cost of resistance and the possibility of lethal mutations impact our model. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Extensions of the model. 2017. doi:10.1371/journal.pcbi.1005609.s002 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Extensions of the model. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s002 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Extensions of the Model.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s002. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Extensions of the model.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Extensions of the model, Public Library of Science, 10.1371/journal.pcbi.1005609.s002. mla: Lukacisinova, Marta, et al. Extensions of the Model. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s002. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:05:24Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: CaGu - _id: NiBa doi: 10.1371/journal.pcbi.1005609.s002 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Extensions of the model type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ...