--- _id: '14850' abstract: - lang: eng text: Elaborate sexual signals are thought to have evolved and be maintained to serve as honest indicators of signaller quality. One measure of quality is health, which can be affected by parasite infection. Cnemaspis mysoriensis is a diurnal gecko that is often infested with ectoparasites in the wild, and males of this species express visual (coloured gular patches) and chemical (femoral gland secretions) traits that receivers could assess during social interactions. In this paper, we tested whether ectoparasites affect individual health, and whether signal quality is an indicator of ectoparasite levels. In wild lizards, we found that ectoparasite level was negatively correlated with body condition in both sexes. Moreover, some characteristics of both visual and chemical traits in males were strongly associated with ectoparasite levels. Specifically, males with higher ectoparasite levels had yellow gular patches with lower brightness and chroma, and chemical secretions with a lower proportion of aromatic compounds. We then determined whether ectoparasite levels in males influence female behaviour. Using sequential choice trials, wherein females were provided with either the visual or the chemical signals of wild-caught males that varied in ectoparasite level, we found that only chemical secretions evoked an elevated female response towards less parasitised males. Simultaneous choice trials in which females were exposed to the chemical secretions from males that varied in parasite level further confirmed a preference for males with lower parasites loads. Overall, we find that although health (body condition) or ectoparasite load can be honestly advertised through multiple modalities, the parasite-mediated female response is exclusively driven by chemical signals. acknowledgement: "We thank Anuradha Batabyal and Shakilur Kabir for scientific discussions, and help with sampling and colour analyses. We thank Muralidhar and the central LCMS facility of the IISc for their technical support with the GCMS.\r\nResearch funding was provided by the Department of Science and Technology Fund for Improvement of S&T Infrastructure (DST-FIST), the Department of Biotechnology-Indian Institute of Science (DBT-IISc) partnership program and a Science and Engineering Research Board (SERB) grant to M.T. (EMR/2017/002228). Open Access funding provided by Indian Institute of Science. Deposited in PMC for immediate release." article_number: jeb246217 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Arka full_name: Pal, Arka id: 6AAB2240-CA9A-11E9-9C1A-D9D1E5697425 last_name: Pal orcid: 0000-0002-4530-8469 - first_name: Mihir full_name: Joshi, Mihir last_name: Joshi - first_name: Maria full_name: Thaker, Maria last_name: Thaker citation: ama: Pal A, Joshi M, Thaker M. Too much information? Males convey parasite levels using more signal modalities than females utilise. Journal of Experimental Biology. 2024;227(1). doi:10.1242/jeb.246217 apa: Pal, A., Joshi, M., & Thaker, M. (2024). Too much information? Males convey parasite levels using more signal modalities than females utilise. Journal of Experimental Biology. The Company of Biologists. https://doi.org/10.1242/jeb.246217 chicago: Pal, Arka, Mihir Joshi, and Maria Thaker. “Too Much Information? Males Convey Parasite Levels Using More Signal Modalities than Females Utilise.” Journal of Experimental Biology. The Company of Biologists, 2024. https://doi.org/10.1242/jeb.246217. ieee: A. Pal, M. Joshi, and M. Thaker, “Too much information? Males convey parasite levels using more signal modalities than females utilise,” Journal of Experimental Biology, vol. 227, no. 1. The Company of Biologists, 2024. ista: Pal A, Joshi M, Thaker M. 2024. Too much information? Males convey parasite levels using more signal modalities than females utilise. Journal of Experimental Biology. 227(1), jeb246217. mla: Pal, Arka, et al. “Too Much Information? Males Convey Parasite Levels Using More Signal Modalities than Females Utilise.” Journal of Experimental Biology, vol. 227, no. 1, jeb246217, The Company of Biologists, 2024, doi:10.1242/jeb.246217. short: A. Pal, M. Joshi, M. Thaker, Journal of Experimental Biology 227 (2024). date_created: 2024-01-22T08:14:49Z date_published: 2024-01-10T00:00:00Z date_updated: 2024-01-23T12:13:08Z day: '10' ddc: - '570' department: - _id: NiBa doi: 10.1242/jeb.246217 external_id: pmid: - '38054353' file: - access_level: open_access checksum: 136325372f6f45abaa62a71e2d23bfb6 content_type: application/pdf creator: dernst date_created: 2024-01-23T12:08:24Z date_updated: 2024-01-23T12:08:24Z file_id: '14877' file_name: 2024_JourExperimBiology_Pal.pdf file_size: 594128 relation: main_file success: 1 file_date_updated: 2024-01-23T12:08:24Z has_accepted_license: '1' intvolume: ' 227' issue: '1' keyword: - Insect Science - Molecular Biology - Animal Science and Zoology - Aquatic Science - Physiology - Ecology - Evolution - Behavior and Systematics language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 publication: Journal of Experimental Biology publication_identifier: eissn: - 0022-0949 issn: - 1477-9145 publication_status: published publisher: The Company of Biologists quality_controlled: '1' related_material: link: - relation: software url: https://github.com/arka-pal/Cnemaspis-SexualSignaling status: public title: Too much information? Males convey parasite levels using more signal modalities than females utilise tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 227 year: '2024' ... --- _id: '14711' abstract: - lang: eng text: "In nature, different species find their niche in a range of environments, each with its unique characteristics. While some thrive in uniform (homogeneous) landscapes where environmental conditions stay relatively consistent across space, others traverse the complexities of spatially heterogeneous terrains. Comprehending how species are distributed and how they interact within these landscapes holds the key to gaining insights into their evolutionary dynamics while also informing conservation and management strategies.\r\n\r\nFor species inhabiting heterogeneous landscapes, when the rate of dispersal is low compared to spatial fluctuations in selection pressure, localized adaptations may emerge. Such adaptation in response to varying selection strengths plays an important role in the persistence of populations in our rapidly changing world. Hence, species in nature are continuously in a struggle to adapt to local environmental conditions, to ensure their continued survival. Natural populations can often adapt in time scales short enough for evolutionary changes to influence ecological dynamics and vice versa, thereby creating a feedback between evolution and demography. The analysis of this feedback and the relative contributions of gene flow, demography, drift, and natural selection to genetic variation and differentiation has remained a recurring theme in evolutionary biology. Nevertheless, the effective role of these forces in maintaining variation and shaping patterns of diversity is not fully understood. Even in homogeneous environments devoid of local adaptations, such understanding remains elusive. Understanding this feedback is crucial, for example in determining the conditions under which extinction risk can be mitigated in peripheral populations subject to deleterious mutation accumulation at the edges of species’ ranges\r\nas well as in highly fragmented populations.\r\n\r\nIn this thesis we explore both uniform and spatially heterogeneous metapopulations, investigating and providing theoretical insights into the dynamics of local adaptation in the latter and examining the dynamics of load and extinction as well as the impact of joint ecological and evolutionary (eco-evolutionary) dynamics in the former. The thesis is divided into 5 chapters.\r\n\r\nChapter 1 provides a general introduction into the subject matter, clarifying concepts and ideas used throughout the thesis. In chapter 2, we explore how fast a species distributed across a heterogeneous landscape adapts to changing conditions marked by alterations in carrying capacity, selection pressure, and migration rate.\r\n\r\nIn chapter 3, we investigate how migration selection and drift influences adaptation and the maintenance of variation in a metapopulation with three habitats, an extension of previous models of adaptation in two habitats. We further develop analytical approximations for the critical threshold required for polymorphism to persist.\r\n\r\nThe focus of chapter 4 of the thesis is on understanding the interplay between ecology and evolution as coupled processes. We investigate how eco-evolutionary feedback between migration, selection, drift, and demography influences eco-evolutionary outcomes in marginal populations subject to deleterious mutation accumulation. Using simulations as well as theoretical approximations of the coupled dynamics of population size and allele frequency, we analyze how gene flow from a large mainland source influences genetic load and population size on an island (i.e., in a marginal population) under genetically realistic assumptions. Analyses of this sort are important because small isolated populations, are repeatedly affected by complex interactions between ecological and evolutionary processes, which can lead to their death. Understanding these interactions can therefore provide an insight into the conditions under which extinction risk can be mitigated in peripheral populations thus, contributing to conservation and restoration efforts.\r\n\r\nChapter 5 extends the analysis in chapter 4 to consider the dynamics of load (due to deleterious mutation accumulation) and extinction risk in a metapopulation. We explore the role of gene flow, selection, and dominance on load and extinction risk and further pinpoint critical thresholds required for metapopulation persistence.\r\n\r\nOverall this research contributes to our understanding of ecological and evolutionary mechanisms that shape species’ persistence in fragmented landscapes, a crucial foundation for successful conservation efforts and biodiversity management." acknowledged_ssus: - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Oluwafunmilola O full_name: Olusanya, Oluwafunmilola O id: 41AD96DC-F248-11E8-B48F-1D18A9856A87 last_name: Olusanya orcid: 0000-0003-1971-8314 citation: ama: Olusanya OO. Local adaptation, genetic load and extinction in metapopulations. 2024. doi:10.15479/at:ista:14711 apa: Olusanya, O. O. (2024). Local adaptation, genetic load and extinction in metapopulations. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14711 chicago: Olusanya, Oluwafunmilola O. “Local Adaptation, Genetic Load and Extinction in Metapopulations.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:14711. ieee: O. O. Olusanya, “Local adaptation, genetic load and extinction in metapopulations,” Institute of Science and Technology Austria, 2024. ista: Olusanya OO. 2024. Local adaptation, genetic load and extinction in metapopulations. Institute of Science and Technology Austria. mla: Olusanya, Oluwafunmilola O. Local Adaptation, Genetic Load and Extinction in Metapopulations. Institute of Science and Technology Austria, 2024, doi:10.15479/at:ista:14711. short: O.O. Olusanya, Local Adaptation, Genetic Load and Extinction in Metapopulations, Institute of Science and Technology Austria, 2024. date_created: 2023-12-26T22:49:53Z date_published: 2024-01-19T00:00:00Z date_updated: 2024-01-26T12:00:54Z day: '19' ddc: - '576' degree_awarded: PhD department: - _id: NiBa - _id: GradSch doi: 10.15479/at:ista:14711 ec_funded: 1 file: - access_level: closed checksum: de179b1c6758f182ff0c70d8b38c1501 content_type: application/zip creator: oolusany date_created: 2024-01-03T18:30:13Z date_updated: 2024-01-03T18:30:13Z file_id: '14730' file_name: FinalSubmission_Thesis_OLUSANYA.zip file_size: 16986244 relation: source_file - access_level: open_access checksum: 0e331585e3cd4823320aab4e69e64ccf content_type: application/pdf creator: oolusany date_created: 2024-01-03T18:31:34Z date_updated: 2024-01-03T18:31:34Z file_id: '14731' file_name: FinalSubmission2_Thesis_OLUSANYA.pdf file_size: 6460403 relation: main_file success: 1 file_date_updated: 2024-01-03T18:31:34Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '01' oa: 1 oa_version: Published Version page: '183' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: c08d3278-5a5b-11eb-8a69-fdb09b55f4b8 grant_number: P32896 name: Causes and consequences of population fragmentation - _id: 34c872fe-11ca-11ed-8bc3-8534b82131e6 grant_number: '26380' name: Polygenic Adaptation in a Metapopulation publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10658' relation: part_of_dissertation status: public - id: '10787' relation: part_of_dissertation status: public - id: '14732' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Jitka full_name: Polechova, Jitka last_name: Polechova - first_name: Himani full_name: Sachdeva, Himani last_name: Sachdeva title: Local adaptation, genetic load and extinction in metapopulations tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '14796' abstract: - lang: eng text: Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer–specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer–specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step. acknowledgement: "We thank J. Galindo, M. Montaño-Rendón, N. Mikhailova, A. Blakeslee, E. Arnason, and P. Kemppainen for providing samples; R. Turney, G. Sotelo, J. Larsson, T. Broquet, and S. Loisel for help collecting samples; Science Animated for providing the snail cartoons shown in Fig. 1; M. Dunning for help in developing bioinformatic pipelines; R. Faria, H. Morales, and V. Sousa for advice; and M. Hahn, J. Slate, M. Ravinet, J. Raeymaekers, A. Comeault, and N. Barton for feedback on a draft manuscript.\r\nThis work was supported by the Natural Environment Research Council (grant NE/P001610/1 to R.K.B.), the European Research Council (grant ERC-2015-AdG693030-BARRIERS to R.K.B.), the Norwegian Research Council (RCN Project 315287 to A.M.W.), and the Swedish Research Council (grant 2020-05385 to E.L.)." article_processing_charge: No article_type: original author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Zuzanna B. full_name: Zagrodzka, Zuzanna B. last_name: Zagrodzka - first_name: Martin D. full_name: Garlovsky, Martin D. last_name: Garlovsky - first_name: Arka full_name: Pal, Arka id: 6AAB2240-CA9A-11E9-9C1A-D9D1E5697425 last_name: Pal orcid: 0000-0002-4530-8469 - first_name: Daria full_name: Shipilina, Daria id: 428A94B0-F248-11E8-B48F-1D18A9856A87 last_name: Shipilina orcid: 0000-0002-1145-9226 - first_name: Diego Fernando full_name: Garcia Castillo, Diego Fernando id: ae681a14-dc74-11ea-a0a7-c6ef18161701 last_name: Garcia Castillo - first_name: Hila full_name: Lifchitz, Hila id: d6ab5470-2fb3-11ed-8633-986a9b84edac last_name: Lifchitz - first_name: Alan full_name: Le Moan, Alan last_name: Le Moan - first_name: Erica full_name: Leder, Erica last_name: Leder - first_name: James full_name: Reeve, James last_name: Reeve - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Stankowski S, Zagrodzka ZB, Garlovsky MD, et al. The genetic basis of a recent transition to live-bearing in marine snails. Science. 2024;383(6678):114-119. doi:10.1126/science.adi2982 apa: Stankowski, S., Zagrodzka, Z. B., Garlovsky, M. D., Pal, A., Shipilina, D., Garcia Castillo, D. F., … Butlin, R. K. (2024). The genetic basis of a recent transition to live-bearing in marine snails. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adi2982 chicago: Stankowski, Sean, Zuzanna B. Zagrodzka, Martin D. Garlovsky, Arka Pal, Daria Shipilina, Diego Fernando Garcia Castillo, Hila Lifchitz, et al. “The Genetic Basis of a Recent Transition to Live-Bearing in Marine Snails.” Science. American Association for the Advancement of Science, 2024. https://doi.org/10.1126/science.adi2982. ieee: S. Stankowski et al., “The genetic basis of a recent transition to live-bearing in marine snails,” Science, vol. 383, no. 6678. American Association for the Advancement of Science, pp. 114–119, 2024. ista: Stankowski S, Zagrodzka ZB, Garlovsky MD, Pal A, Shipilina D, Garcia Castillo DF, Lifchitz H, Le Moan A, Leder E, Reeve J, Johannesson K, Westram AM, Butlin RK. 2024. The genetic basis of a recent transition to live-bearing in marine snails. Science. 383(6678), 114–119. mla: Stankowski, Sean, et al. “The Genetic Basis of a Recent Transition to Live-Bearing in Marine Snails.” Science, vol. 383, no. 6678, American Association for the Advancement of Science, 2024, pp. 114–19, doi:10.1126/science.adi2982. short: S. Stankowski, Z.B. Zagrodzka, M.D. Garlovsky, A. Pal, D. Shipilina, D.F. Garcia Castillo, H. Lifchitz, A. Le Moan, E. Leder, J. Reeve, K. Johannesson, A.M. Westram, R.K. Butlin, Science 383 (2024) 114–119. date_created: 2024-01-14T23:00:56Z date_published: 2024-01-05T00:00:00Z date_updated: 2024-03-05T09:35:25Z day: '05' department: - _id: NiBa - _id: GradSch doi: 10.1126/science.adi2982 external_id: pmid: - '38175895' intvolume: ' 383' issue: '6678' language: - iso: eng month: '01' oa_version: None page: 114-119 pmid: 1 publication: Science publication_identifier: eissn: - 1095-9203 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/the-snail-or-the-egg/ record: - id: '14812' relation: research_data status: public scopus_import: '1' status: public title: The genetic basis of a recent transition to live-bearing in marine snails type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 383 year: '2024' ... --- _id: '15020' abstract: - lang: eng text: "This thesis consists of four distinct pieces of work within theoretical biology, with two themes in common: the concept of optimization in biological systems, and the use of information-theoretic tools to quantify biological stochasticity and statistical uncertainty.\r\nChapter 2 develops a statistical framework for studying biological systems which we believe to be optimized for a particular utility function, such as retinal neurons conveying information about visual stimuli. We formalize such beliefs as maximum-entropy Bayesian priors, constrained by the expected utility. We explore how such priors aid inference of system parameters with limited data and enable optimality hypothesis testing: is the utility higher than by chance?\r\nChapter 3 examines the ultimate biological optimization process: evolution by natural selection. As some individuals survive and reproduce more successfully than others, populations evolve towards fitter genotypes and phenotypes. We formalize this as accumulation of genetic information, and use population genetics theory to study how much such information can be accumulated per generation and maintained in the face of random mutation and genetic drift. We identify the population size and fitness variance as the key quantities that control information accumulation and maintenance.\r\nChapter 4 reuses the concept of genetic information from Chapter 3, but from a different perspective: we ask how much genetic information organisms actually need, in particular in the context of gene regulation. For example, how much information is needed to bind transcription factors at correct locations within the genome? Population genetics provides us with a refined answer: with an increasing population size, populations achieve higher fitness by maintaining more genetic information. Moreover, regulatory parameters experience selection pressure to optimize the fitness-information trade-off, i.e. minimize the information needed for a given fitness. This provides an evolutionary derivation of the optimization priors introduced in Chapter 2.\r\nChapter 5 proves an upper bound on mutual information between a signal and a communication channel output (such as neural activity). Mutual information is an important utility measure for biological systems, but its practical use can be difficult due to the large dimensionality of many biological channels. Sometimes, a lower bound on mutual information is computed by replacing the high-dimensional channel outputs with decodes (signal estimates). Our result provides a corresponding upper bound, provided that the decodes are the maximum posterior estimates of the signal." acknowledged_ssus: - _id: ScienComp alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michal full_name: Hledik, Michal id: 4171253A-F248-11E8-B48F-1D18A9856A87 last_name: Hledik citation: ama: Hledik M. Genetic information and biological optimization. 2024. doi:10.15479/at:ista:15020 apa: Hledik, M. (2024). Genetic information and biological optimization. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:15020 chicago: Hledik, Michal. “Genetic Information and Biological Optimization.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:15020. ieee: M. Hledik, “Genetic information and biological optimization,” Institute of Science and Technology Austria, 2024. ista: Hledik M. 2024. Genetic information and biological optimization. Institute of Science and Technology Austria. mla: Hledik, Michal. Genetic Information and Biological Optimization. Institute of Science and Technology Austria, 2024, doi:10.15479/at:ista:15020. short: M. Hledik, Genetic Information and Biological Optimization, Institute of Science and Technology Austria, 2024. date_created: 2024-02-23T14:02:04Z date_published: 2024-02-23T00:00:00Z date_updated: 2024-03-06T14:22:52Z day: '23' ddc: - '576' - '519' degree_awarded: PhD department: - _id: GradSch - _id: NiBa - _id: GaTk doi: 10.15479/at:ista:15020 ec_funded: 1 file: - access_level: open_access checksum: b2d3da47c98d481577a4baf68944fe41 content_type: application/pdf creator: mhledik date_created: 2024-02-23T13:50:53Z date_updated: 2024-02-23T13:50:53Z file_id: '15021' file_name: hledik thesis pdfa 2b.pdf file_size: 7102089 relation: main_file success: 1 - access_level: closed checksum: eda9b9430da2610fee7ce1c1419a479a content_type: application/zip creator: mhledik date_created: 2024-02-23T13:50:54Z date_updated: 2024-02-23T14:20:16Z file_id: '15022' file_name: hledik thesis source.zip file_size: 14014790 relation: source_file file_date_updated: 2024-02-23T14:20:16Z has_accepted_license: '1' keyword: - Theoretical biology - Optimality - Evolution - Information language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '158' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 2665AAFE-B435-11E9-9278-68D0E5697425 grant_number: RGP0034/2018 name: Can evolution minimize spurious signaling crosstalk to reach optimal performance? - _id: bd6958e0-d553-11ed-ba76-86eba6a76c00 grant_number: '101055327' name: Understanding the evolution of continuous genomes publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7553' relation: part_of_dissertation status: public - id: '12081' relation: part_of_dissertation status: public - id: '7606' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Genetic information and biological optimization type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2024' ... --- _id: '15099' abstract: - lang: eng text: Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems. acknowledgement: KJ, MR, and RKB were supported by grants from the Swedish Research Council (2021-0419, 2021-05243, and 2018-03695, respectively). RKB was also supported by the Leverhulme Trust (RPG-2021-141), RF by FCT- Portuguese Science Foundation (PTDC/BIA-EVL/1614/2021 and 2020.00275.CEECIND), and AMW by Norwegian Research Council RCN (Project number 315287). We thank the members of the Integration of Speciation Research network for stimulating discussions, the Littorina research community for important contributions of data and analyses, and Cynthia Riginos for useful comments on an earlier draft. article_processing_charge: Yes (in subscription journal) article_type: review author: - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Alan full_name: Le Moan, Alan last_name: Le Moan - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski citation: ama: Johannesson K, Faria R, Le Moan A, et al. Diverse pathways to speciation revealed by marine snails. Trends in Genetics. 2024. doi:10.1016/j.tig.2024.01.002 apa: Johannesson, K., Faria, R., Le Moan, A., Rafajlović, M., Westram, A. M., Butlin, R. K., & Stankowski, S. (2024). Diverse pathways to speciation revealed by marine snails. Trends in Genetics. Cell Press. https://doi.org/10.1016/j.tig.2024.01.002 chicago: Johannesson, Kerstin, Rui Faria, Alan Le Moan, Marina Rafajlović, Anja M Westram, Roger K. Butlin, and Sean Stankowski. “Diverse Pathways to Speciation Revealed by Marine Snails.” Trends in Genetics. Cell Press, 2024. https://doi.org/10.1016/j.tig.2024.01.002. ieee: K. Johannesson et al., “Diverse pathways to speciation revealed by marine snails,” Trends in Genetics. Cell Press, 2024. ista: Johannesson K, Faria R, Le Moan A, Rafajlović M, Westram AM, Butlin RK, Stankowski S. 2024. Diverse pathways to speciation revealed by marine snails. Trends in Genetics. mla: Johannesson, Kerstin, et al. “Diverse Pathways to Speciation Revealed by Marine Snails.” Trends in Genetics, Cell Press, 2024, doi:10.1016/j.tig.2024.01.002. short: K. Johannesson, R. Faria, A. Le Moan, M. Rafajlović, A.M. Westram, R.K. Butlin, S. Stankowski, Trends in Genetics (2024). date_created: 2024-03-10T23:00:54Z date_published: 2024-02-22T00:00:00Z date_updated: 2024-03-13T12:08:57Z day: '22' ddc: - '570' department: - _id: NiBa doi: 10.1016/j.tig.2024.01.002 external_id: pmid: - '38395682' has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.tig.2024.01.002 month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Trends in Genetics publication_identifier: eissn: - 1362-4555 issn: - 0168-9525 publication_status: epub_ahead publisher: Cell Press quality_controlled: '1' scopus_import: '1' status: public title: Diverse pathways to speciation revealed by marine snails tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ...