--- _id: '11128' abstract: - lang: eng text: "Although we often see studies focusing on simple or even discrete traits in studies of colouration,\r\nthe variation of “appearance” phenotypes found in nature is often more complex, continuous\r\nand high-dimensional. Therefore, we developed automated methods suitable for large datasets\r\nof genomes and images, striving to account for their complex nature, while minimising human\r\nbias. We used these methods on a dataset of more than 20, 000 plant SNP genomes and\r\ncorresponding fower images from a hybrid zone of two subspecies of Antirrhinum majus with\r\ndistinctly coloured fowers to improve our understanding of the genetic nature of the fower\r\ncolour in our study system.\r\nFirstly, we use the advantage of large numbers of genotyped plants to estimate the haplotypes in\r\nthe main fower colour regulating region. We study colour- and geography-related characteristics\r\nof the estimated haplotypes and how they connect to their relatedness. We show discrepancies\r\nfrom the expected fower colour distributions given the genotype and identify particular\r\nhaplotypes leading to unexpected phenotypes. We also confrm a signifcant defcit of the\r\ndouble recessive recombinant and quite surprisingly, we show that haplotypes of the most\r\nfrequent parental type are much less variable than others.\r\nSecondly, we introduce our pipeline capable of processing tens of thousands of full fower\r\nimages without human interaction and summarising each image into a set of informative scores.\r\nWe show the compatibility of these machine-measured fower colour scores with the previously\r\nused manual scores and study impact of external efect on the resulting scores. Finally, we use\r\nthe machine-measured fower colour scores to ft and examine a phenotype cline across the\r\nhybrid zone in Planoles using full fower images as opposed to discrete, manual scores and\r\ncompare it with the genotypic cline." acknowledged_ssus: - _id: ScienComp - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Lenka full_name: Matejovicova, Lenka id: 2DFDEC72-F248-11E8-B48F-1D18A9856A87 last_name: Matejovicova citation: ama: Matejovicova L. Genetic basis of flower colour as a model for adaptive evolution. 2022. doi:10.15479/at:ista:11128 apa: Matejovicova, L. (2022). Genetic basis of flower colour as a model for adaptive evolution. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11128 chicago: Matejovicova, Lenka. “Genetic Basis of Flower Colour as a Model for Adaptive Evolution.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11128. ieee: L. Matejovicova, “Genetic basis of flower colour as a model for adaptive evolution,” Institute of Science and Technology Austria, 2022. ista: Matejovicova L. 2022. Genetic basis of flower colour as a model for adaptive evolution. Institute of Science and Technology Austria. mla: Matejovicova, Lenka. Genetic Basis of Flower Colour as a Model for Adaptive Evolution. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11128. short: L. Matejovicova, Genetic Basis of Flower Colour as a Model for Adaptive Evolution, Institute of Science and Technology Austria, 2022. date_created: 2022-04-07T08:19:54Z date_published: 2022-04-06T00:00:00Z date_updated: 2023-06-23T06:26:41Z day: '06' ddc: - '576' - '582' degree_awarded: PhD department: - _id: GradSch - _id: NiBa doi: 10.15479/at:ista:11128 file: - access_level: open_access checksum: e9609bc4e8f8e20146fc1125fd4f1bf7 content_type: application/pdf creator: cchlebak date_created: 2022-04-07T08:11:34Z date_updated: 2022-04-07T08:11:34Z file_id: '11129' file_name: LenkaPhD_Official_PDFA.pdf file_size: 11906472 relation: main_file - access_level: closed checksum: 99d67040432fd07a225643a212ee8588 content_type: application/x-zip-compressed creator: cchlebak date_created: 2022-04-07T08:11:51Z date_updated: 2022-04-07T08:11:51Z file_id: '11130' file_name: LenkaPhD Official_source.zip file_size: 23036766 relation: source_file file_date_updated: 2022-04-07T08:11:51Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '112' publication_identifier: isbn: - 978-3-99078-016-9 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Genetic basis of flower colour as a model for adaptive evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10604' abstract: - lang: eng text: Maternally inherited Wolbachia transinfections are being introduced into natural mosquito populations to reduce the transmission of dengue, Zika, and other arboviruses. Wolbachia-induced cytoplasmic incompatibility provides a frequency-dependent reproductive advantage to infected females that can spread transinfections within and among populations. However, because transinfections generally reduce host fitness, they tend to spread within populations only after their frequency exceeds a critical threshold. This produces bistability with stable equilibrium frequencies at both 0 and 1, analogous to the bistability produced by underdominance between alleles or karyotypes and by population dynamics under Allee effects. Here, we analyze how stochastic frequency variation produced by finite population size can facilitate the local spread of variants with bistable dynamics into areas where invasion is unexpected from deterministic models. Our exemplar is the establishment of wMel Wolbachia in the Aedes aegypti population of Pyramid Estates (PE), a small community in far north Queensland, Australia. In 2011, wMel was stably introduced into Gordonvale, separated from PE by barriers to A. aegypti dispersal. After nearly 6 years during which wMel was observed only at low frequencies in PE, corresponding to an apparent equilibrium between immigration and selection, wMel rose to fixation by 2018. Using analytic approximations and statistical analyses, we demonstrate that the observed fixation of wMel at PE is consistent with both stochastic transition past an unstable threshold frequency and deterministic transformation produced by steady immigration at a rate just above the threshold required for deterministic invasion. The indeterminacy results from a delicate balance of parameters needed to produce the delayed transition observed. Our analyses suggest that once Wolbachia transinfections are established locally through systematic introductions, stochastic “threshold crossing” is likely to only minimally enhance spatial spread, providing a local ratchet that slightly—but systematically—aids area-wide transformation of disease-vector populations in heterogeneous landscapes. acknowledgement: We thank S. O'Neill, C. Simmons, and the World Mosquito Project for providing access to unpublished data. S. Ritchie provided valuable insights into Aedes aegypti biology and the literature describing A. aegypti populations near Cairns. We thank B. Cooper for help with the figures and D. Shropshire, S. O'Neill, S. Ritchie, A. Hoffmann, B. Cooper, and members of the Cooper lab for comments on an earlier draft. Comments from three reviewers greatly improved our presentation. article_processing_charge: No article_type: original author: - first_name: Michael full_name: Turelli, Michael last_name: Turelli - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Turelli M, Barton NH. Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics, and disease control. Evolution Letters. 2022;6(1):92-105. doi:10.1002/evl3.270 apa: Turelli, M., & Barton, N. H. (2022). Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics, and disease control. Evolution Letters. Wiley. https://doi.org/10.1002/evl3.270 chicago: Turelli, Michael, and Nicholas H Barton. “Why Did the Wolbachia Transinfection Cross the Road? Drift, Deterministic Dynamics, and Disease Control.” Evolution Letters. Wiley, 2022. https://doi.org/10.1002/evl3.270. ieee: M. Turelli and N. H. Barton, “Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics, and disease control,” Evolution Letters, vol. 6, no. 1. Wiley, pp. 92–105, 2022. ista: Turelli M, Barton NH. 2022. Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics, and disease control. Evolution Letters. 6(1), 92–105. mla: Turelli, Michael, and Nicholas H. Barton. “Why Did the Wolbachia Transinfection Cross the Road? Drift, Deterministic Dynamics, and Disease Control.” Evolution Letters, vol. 6, no. 1, Wiley, 2022, pp. 92–105, doi:10.1002/evl3.270. short: M. Turelli, N.H. Barton, Evolution Letters 6 (2022) 92–105. date_created: 2022-01-09T09:45:17Z date_published: 2022-02-01T00:00:00Z date_updated: 2023-08-02T13:50:09Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1002/evl3.270 external_id: isi: - '000754412600008' file: - access_level: open_access checksum: 7e9a37e3b65b480cd7014a6a4a7e460a content_type: application/pdf creator: dernst date_created: 2022-07-29T06:59:10Z date_updated: 2022-07-29T06:59:10Z file_id: '11689' file_name: 2022_EvolutionLetters_Turelli.pdf file_size: 2435185 relation: main_file success: 1 file_date_updated: 2022-07-29T06:59:10Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '1' keyword: - genetics - ecology - evolution - behavior and systematics language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 92-105 publication: Evolution Letters publication_identifier: eissn: - 2056-3744 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '11686' relation: research_data status: public status: public title: Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics, and disease control type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2022' ... --- _id: '11686' abstract: - lang: eng text: Maternally inherited Wolbachia transinfections are being introduced into natural mosquito populations to reduce the transmission of dengue, Zika and other arboviruses. Wolbachia-induced cytoplasmic incompatibility provides a frequency-dependent reproductive advantage to infected females that can spread transinfections within and among populations. However, because transinfections generally reduce host fitness, they tend to spread within populations only after their frequency exceeds a critical threshold. This produces bistability with stable equilibrium frequencies at both 0 and 1, analogous to the bistability produced by underdominance between alleles or karyotypes and by population dynamics under Allee effects. Here, we analyze how stochastic frequency variation produced by finite population size can facilitate the local spread of variants with bistable dynamics into areas where invasion is unexpected from deterministic models. Our exemplar is the establishment of wMel Wolbachia in the Aedes aegypti population of Pyramid Estates (PE), a small community in far north Queensland, Australia. In 2011, wMel was stably introduced into Gordonvale, separated from PE by barriers to Ae. aegypti dispersal. After nearly six years during which wMel was observed only at low frequencies in PE, corresponding to an apparent equilibrium between immigration and selection, wMel rose to fixation by 2018. Using analytic approximations and statistical analyses, we demonstrate that the observed fixation of wMel at PE is consistent with both stochastic transition past an unstable threshold frequency and deterministic transformation produced by steady immigration at a rate just above the threshold required for deterministic invasion. The indeterminacy results from a delicate balance of parameters needed to produce the delayed transition observed. Our analyses suggest that once Wolbachia transinfections are established locally through systematic introductions, stochastic “threshold crossing” is likely to only minimally enhance spatial spread, providing a local ratchet that slightly – but systematically – aids area-wide transformation of disease-vector populations in heterogeneous landscapes. acknowledgement: 'Bill and Melinda Gates Foundation, Award: OPP1180815' article_processing_charge: No author: - first_name: Michael full_name: Turelli, Michael last_name: Turelli - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Turelli M, Barton NH. Wolbachia frequency data from: Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics and disease control. 2022. doi:10.25338/B81931' apa: 'Turelli, M., & Barton, N. H. (2022). Wolbachia frequency data from: Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics and disease control. Dryad. https://doi.org/10.25338/B81931' chicago: 'Turelli, Michael, and Nicholas H Barton. “Wolbachia Frequency Data from: Why Did the Wolbachia Transinfection Cross the Road? Drift, Deterministic Dynamics and Disease Control.” Dryad, 2022. https://doi.org/10.25338/B81931.' ieee: 'M. Turelli and N. H. Barton, “Wolbachia frequency data from: Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics and disease control.” Dryad, 2022.' ista: 'Turelli M, Barton NH. 2022. Wolbachia frequency data from: Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics and disease control, Dryad, 10.25338/B81931.' mla: 'Turelli, Michael, and Nicholas H. Barton. Wolbachia Frequency Data from: Why Did the Wolbachia Transinfection Cross the Road? Drift, Deterministic Dynamics and Disease Control. Dryad, 2022, doi:10.25338/B81931.' short: M. Turelli, N.H. Barton, (2022). date_created: 2022-07-29T06:45:41Z date_published: 2022-01-06T00:00:00Z date_updated: 2023-08-02T13:50:08Z day: '06' ddc: - '570' department: - _id: NiBa doi: 10.25338/B81931 keyword: - Biological sciences main_file_link: - open_access: '1' url: https://doi.org/10.25338/B81931 month: '01' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '10604' relation: used_in_publication status: public status: public title: 'Wolbachia frequency data from: Why did the Wolbachia transinfection cross the road? Drift, deterministic dynamics and disease control' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2022' ... --- _id: '10736' abstract: - lang: eng text: Predicting function from sequence is a central problem of biology. Currently, this is possible only locally in a narrow mutational neighborhood around a wildtype sequence rather than globally from any sequence. Using random mutant libraries, we developed a biophysical model that accounts for multiple features of σ70 binding bacterial promoters to predict constitutive gene expression levels from any sequence. We experimentally and theoretically estimated that 10–20% of random sequences lead to expression and ~80% of non-expressing sequences are one mutation away from a functional promoter. The potential for generating expression from random sequences is so pervasive that selection acts against σ70-RNA polymerase binding sites even within inter-genic, promoter-containing regions. This pervasiveness of σ70-binding sites implies that emergence of promoters is not the limiting step in gene regulatory evolution. Ultimately, the inclusion of novel features of promoter function into a mechanistic model enabled not only more accurate predictions of gene expression levels, but also identified that promoters evolve more rapidly than previously thought. acknowledgement: 'We thank Hande Acar, Nicholas H Barton, Rok Grah, Tiago Paixao, Maros Pleska, Anna Staron, and Murat Tugrul for insightful comments and input on the manuscript. This work was supported by: Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant number 216779/Z/19/Z) to ML; IPC Grant from IST Austria to ML and SS; European Research Council Funding Programme 7 (2007–2013, grant agreement number 648440) to JPB.' article_number: e64543 article_processing_charge: No article_type: original author: - first_name: Mato full_name: Lagator, Mato id: 345D25EC-F248-11E8-B48F-1D18A9856A87 last_name: Lagator - first_name: Srdjan full_name: Sarikas, Srdjan id: 35F0286E-F248-11E8-B48F-1D18A9856A87 last_name: Sarikas - first_name: Magdalena full_name: Steinrueck, Magdalena last_name: Steinrueck - first_name: David full_name: Toledo-Aparicio, David last_name: Toledo-Aparicio - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 citation: ama: Lagator M, Sarikas S, Steinrueck M, et al. Predicting bacterial promoter function and evolution from random sequences. eLife. 2022;11. doi:10.7554/eLife.64543 apa: Lagator, M., Sarikas, S., Steinrueck, M., Toledo-Aparicio, D., Bollback, J. P., Guet, C. C., & Tkačik, G. (2022). Predicting bacterial promoter function and evolution from random sequences. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.64543 chicago: Lagator, Mato, Srdjan Sarikas, Magdalena Steinrueck, David Toledo-Aparicio, Jonathan P Bollback, Calin C Guet, and Gašper Tkačik. “Predicting Bacterial Promoter Function and Evolution from Random Sequences.” ELife. eLife Sciences Publications, 2022. https://doi.org/10.7554/eLife.64543. ieee: M. Lagator et al., “Predicting bacterial promoter function and evolution from random sequences,” eLife, vol. 11. eLife Sciences Publications, 2022. ista: Lagator M, Sarikas S, Steinrueck M, Toledo-Aparicio D, Bollback JP, Guet CC, Tkačik G. 2022. Predicting bacterial promoter function and evolution from random sequences. eLife. 11, e64543. mla: Lagator, Mato, et al. “Predicting Bacterial Promoter Function and Evolution from Random Sequences.” ELife, vol. 11, e64543, eLife Sciences Publications, 2022, doi:10.7554/eLife.64543. short: M. Lagator, S. Sarikas, M. Steinrueck, D. Toledo-Aparicio, J.P. Bollback, C.C. Guet, G. Tkačik, ELife 11 (2022). date_created: 2022-02-06T23:01:32Z date_published: 2022-01-26T00:00:00Z date_updated: 2023-08-02T14:09:02Z day: '26' ddc: - '576' department: - _id: CaGu - _id: GaTk - _id: NiBa doi: 10.7554/eLife.64543 ec_funded: 1 external_id: isi: - '000751104400001' pmid: - '35080492' file: - access_level: open_access checksum: decdcdf600ff51e9a9703b49ca114170 content_type: application/pdf creator: cchlebak date_created: 2022-02-07T07:14:09Z date_updated: 2022-02-07T07:14:09Z file_id: '10739' file_name: 2022_ELife_Lagator.pdf file_size: 5604343 relation: main_file success: 1 file_date_updated: 2022-02-07T07:14:09Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2578D616-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '648440' name: Selective Barriers to Horizontal Gene Transfer publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Predicting bacterial promoter function and evolution from random sequences tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2022' ... --- _id: '11334' abstract: - lang: eng text: Hybridization is a common evolutionary process with multiple possible outcomes. In vertebrates, interspecific hybridization has repeatedly generated parthenogenetic hybrid species. However, it is unknown whether the generation of parthenogenetic hybrids is a rare outcome of frequent hybridization between sexual species within a genus or the typical outcome of rare hybridization events. Darevskia is a genus of rock lizards with both hybrid parthenogenetic and sexual species. Using capture sequencing, we estimate phylogenetic relationships and gene flow among the sexual species, to determine how introgressive hybridization relates to the origins of parthenogenetic hybrids. We find evidence for widespread hybridization with gene flow, both between recently diverged species and deep branches. Surprisingly, we find no signal of gene flow between parental species of the parthenogenetic hybrids, suggesting that the parental pairs were either reproductively or geographically isolated early in their divergence. The generation of parthenogenetic hybrids in Darevskia is, then, a rare outcome of the total occurrence of hybridization within the genus, but the typical outcome when specific species pairs hybridize. Our results question the conventional view that parthenogenetic lineages are generated by hybridization in a window of divergence. Instead, they suggest that some lineages possess specific properties that underpin successful parthenogenetic reproduction. acknowledgement: "The authors thank A. van der Meijden and F. Ahmadzadeh for providing specimens and tissue samples, and A. Vardanyan, C. Corti, F. Jorge, and S. Drovetski for support during field work. The authors also thank S. Qiu for assistance with python scripting, S. Rocha for her support in BEAST analysis, and B. Wielstra for his comments on\r\na previous version of the manuscript. SF was funded by FCT grant SFRH/BD/81483/2011 (a PhD individual grant). AMW was funded by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 797747. TS acknowledges funding from the Swiss National Science Foundation (grants\r\nPP00P3_170627 and 31003A_182495). The work was carried out under financial support of the projects “Preserving Armenian biodiversity: Joint Portuguese – Armenian program for training in modern conservation biology” of Gulbenkian Foundation (Portugal) and PTDC/BIABEC/101256/2008 of Fundação para a Ciência e a Tecnologia (FCT, Portugal)." article_processing_charge: No article_type: original author: - first_name: Susana full_name: Freitas, Susana last_name: Freitas - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Tanja full_name: Schwander, Tanja last_name: Schwander - first_name: Marine full_name: Arakelyan, Marine last_name: Arakelyan - first_name: Çetin full_name: Ilgaz, Çetin last_name: Ilgaz - first_name: Yusuf full_name: Kumlutas, Yusuf last_name: Kumlutas - first_name: David James full_name: Harris, David James last_name: Harris - first_name: Miguel A. full_name: Carretero, Miguel A. last_name: Carretero - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: 'Freitas S, Westram AM, Schwander T, et al. Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution. 2022;76(5):899-914. doi:10.1111/evo.14462' apa: 'Freitas, S., Westram, A. M., Schwander, T., Arakelyan, M., Ilgaz, Ç., Kumlutas, Y., … Butlin, R. K. (2022). Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution. Wiley. https://doi.org/10.1111/evo.14462' chicago: 'Freitas, Susana, Anja M Westram, Tanja Schwander, Marine Arakelyan, Çetin Ilgaz, Yusuf Kumlutas, David James Harris, Miguel A. Carretero, and Roger K. Butlin. “Parthenogenesis in Darevskia Lizards: A Rare Outcome of Common Hybridization, Not a Common Outcome of Rare Hybridization.” Evolution. Wiley, 2022. https://doi.org/10.1111/evo.14462.' ieee: 'S. Freitas et al., “Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization,” Evolution, vol. 76, no. 5. Wiley, pp. 899–914, 2022.' ista: 'Freitas S, Westram AM, Schwander T, Arakelyan M, Ilgaz Ç, Kumlutas Y, Harris DJ, Carretero MA, Butlin RK. 2022. Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution. 76(5), 899–914.' mla: 'Freitas, Susana, et al. “Parthenogenesis in Darevskia Lizards: A Rare Outcome of Common Hybridization, Not a Common Outcome of Rare Hybridization.” Evolution, vol. 76, no. 5, Wiley, 2022, pp. 899–914, doi:10.1111/evo.14462.' short: S. Freitas, A.M. Westram, T. Schwander, M. Arakelyan, Ç. Ilgaz, Y. Kumlutas, D.J. Harris, M.A. Carretero, R.K. Butlin, Evolution 76 (2022) 899–914. date_created: 2022-04-24T22:01:44Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-08-03T07:00:28Z day: '01' ddc: - '570' department: - _id: NiBa - _id: BeVi doi: 10.1111/evo.14462 ec_funded: 1 external_id: isi: - '000781632500001' pmid: - '35323995' file: - access_level: open_access checksum: c27c025ae9afcf6c804d46a909775ee5 content_type: application/pdf creator: dernst date_created: 2022-08-05T06:19:28Z date_updated: 2022-08-05T06:19:28Z file_id: '11729' file_name: 2022_Evolution_Freitas.pdf file_size: 2855214 relation: main_file success: 1 file_date_updated: 2022-08-05T06:19:28Z has_accepted_license: '1' intvolume: ' 76' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 899-914 pmid: 1 project: - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: Evolution publication_identifier: eissn: - 1558-5646 issn: - 0014-3820 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Parthenogenesis in Darevskia lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 76 year: '2022' ... --- _id: '11447' abstract: - lang: eng text: Empirical essays of fitness landscapes suggest that they may be rugged, that is having multiple fitness peaks. Such fitness landscapes, those that have multiple peaks, necessarily have special local structures, called reciprocal sign epistasis (Poelwijk et al. in J Theor Biol 272:141–144, 2011). Here, we investigate the quantitative relationship between the number of fitness peaks and the number of reciprocal sign epistatic interactions. Previously, it has been shown (Poelwijk et al. in J Theor Biol 272:141–144, 2011) that pairwise reciprocal sign epistasis is a necessary but not sufficient condition for the existence of multiple peaks. Applying discrete Morse theory, which to our knowledge has never been used in this context, we extend this result by giving the minimal number of reciprocal sign epistatic interactions required to create a given number of peaks. acknowledgement: We are grateful to Herbert Edelsbrunner and Jeferson Zapata for helpful discussions. Open access funding provided by Austrian Science Fund (FWF). Partially supported by the ERC Consolidator (771209–CharFL) and the FWF Austrian Science Fund (I5127-B) grants to FAK. article_number: '74' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Raimundo J full_name: Saona Urmeneta, Raimundo J id: BD1DF4C4-D767-11E9-B658-BC13E6697425 last_name: Saona Urmeneta orcid: 0000-0001-5103-038X - first_name: Fyodor full_name: Kondrashov, Fyodor id: 44FDEF62-F248-11E8-B48F-1D18A9856A87 last_name: Kondrashov orcid: 0000-0001-8243-4694 - first_name: Kseniia full_name: Khudiakova, Kseniia id: 4E6DC800-AE37-11E9-AC72-31CAE5697425 last_name: Khudiakova orcid: 0000-0002-6246-1465 citation: ama: Saona Urmeneta RJ, Kondrashov F, Khudiakova K. Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. 2022;84(8). doi:10.1007/s11538-022-01029-z apa: Saona Urmeneta, R. J., Kondrashov, F., & Khudiakova, K. (2022). Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. Springer Nature. https://doi.org/10.1007/s11538-022-01029-z chicago: Saona Urmeneta, Raimundo J, Fyodor Kondrashov, and Kseniia Khudiakova. “Relation between the Number of Peaks and the Number of Reciprocal Sign Epistatic Interactions.” Bulletin of Mathematical Biology. Springer Nature, 2022. https://doi.org/10.1007/s11538-022-01029-z. ieee: R. J. Saona Urmeneta, F. Kondrashov, and K. Khudiakova, “Relation between the number of peaks and the number of reciprocal sign epistatic interactions,” Bulletin of Mathematical Biology, vol. 84, no. 8. Springer Nature, 2022. ista: Saona Urmeneta RJ, Kondrashov F, Khudiakova K. 2022. Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. 84(8), 74. mla: Saona Urmeneta, Raimundo J., et al. “Relation between the Number of Peaks and the Number of Reciprocal Sign Epistatic Interactions.” Bulletin of Mathematical Biology, vol. 84, no. 8, 74, Springer Nature, 2022, doi:10.1007/s11538-022-01029-z. short: R.J. Saona Urmeneta, F. Kondrashov, K. Khudiakova, Bulletin of Mathematical Biology 84 (2022). date_created: 2022-06-17T16:16:15Z date_published: 2022-06-17T00:00:00Z date_updated: 2023-08-03T07:20:53Z day: '17' ddc: - '510' - '570' department: - _id: GradSch - _id: NiBa - _id: JaMa doi: 10.1007/s11538-022-01029-z ec_funded: 1 external_id: isi: - '000812509800001' file: - access_level: open_access checksum: 05a1fe7d10914a00c2bca9b447993a65 content_type: application/pdf creator: dernst date_created: 2022-06-20T07:51:32Z date_updated: 2022-06-20T07:51:32Z file_id: '11455' file_name: 2022_BulletinMathBiology_Saona.pdf file_size: 463025 relation: main_file success: 1 file_date_updated: 2022-06-20T07:51:32Z has_accepted_license: '1' intvolume: ' 84' isi: 1 issue: '8' keyword: - Computational Theory and Mathematics - General Agricultural and Biological Sciences - Pharmacology - General Environmental Science - General Biochemistry - Genetics and Molecular Biology - General Mathematics - Immunology - General Neuroscience language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 26580278-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771209' name: Characterizing the fitness landscape on population and global scales - _id: c098eddd-5a5b-11eb-8a69-abe27170a68f grant_number: I05127 name: Evolutionary analysis of gene regulation publication: Bulletin of Mathematical Biology publication_identifier: eissn: - 1522-9602 issn: - 0092-8240 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1007/s11538-022-01118-z scopus_import: '1' status: public title: Relation between the number of peaks and the number of reciprocal sign epistatic interactions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 84 year: '2022' ... --- _id: '11546' abstract: - lang: eng text: Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. acknowledgement: We thank the editor and two anonymous reviewers for their helpful and interesting comments on this manuscript. article_number: '20210203' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger full_name: Butlin, Roger last_name: Butlin - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Westram AM, Faria R, Johannesson K, Butlin R, Barton NH. Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. 2022;377(1856). doi:10.1098/rstb.2021.0203' apa: 'Westram, A. M., Faria, R., Johannesson, K., Butlin, R., & Barton, N. H. (2022). Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society of London. https://doi.org/10.1098/rstb.2021.0203' chicago: 'Westram, Anja M, Rui Faria, Kerstin Johannesson, Roger Butlin, and Nicholas H Barton. “Inversions and Parallel Evolution.” Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society of London, 2022. https://doi.org/10.1098/rstb.2021.0203.' ieee: 'A. M. Westram, R. Faria, K. Johannesson, R. Butlin, and N. H. Barton, “Inversions and parallel evolution,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, no. 1856. Royal Society of London, 2022.' ista: 'Westram AM, Faria R, Johannesson K, Butlin R, Barton NH. 2022. Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences. 377(1856), 20210203.' mla: 'Westram, Anja M., et al. “Inversions and Parallel Evolution.” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, no. 1856, 20210203, Royal Society of London, 2022, doi:10.1098/rstb.2021.0203.' short: 'A.M. Westram, R. Faria, K. Johannesson, R. Butlin, N.H. Barton, Philosophical Transactions of the Royal Society B: Biological Sciences 377 (2022).' date_created: 2022-07-08T11:41:56Z date_published: 2022-08-01T00:00:00Z date_updated: 2023-08-03T11:55:42Z day: '01' ddc: - '570' department: - _id: BeVi - _id: NiBa doi: 10.1098/rstb.2021.0203 external_id: isi: - '000812317300005' file: - access_level: open_access checksum: 49f69428f3dcf5ce3ff281f7d199e9df content_type: application/pdf creator: dernst date_created: 2023-02-02T08:20:29Z date_updated: 2023-02-02T08:20:29Z file_id: '12479' file_name: 2022_PhilosophicalTransactionsB_Westram.pdf file_size: 920304 relation: main_file success: 1 file_date_updated: 2023-02-02T08:20:29Z has_accepted_license: '1' intvolume: ' 377' isi: 1 issue: '1856' keyword: - General Agricultural and Biological Sciences - General Biochemistry - Genetics and Molecular Biology language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 05959E1C-7A3F-11EA-A408-12923DDC885E grant_number: P32166 name: The maintenance of alternative adaptive peaks in snapdragons publication: 'Philosophical Transactions of the Royal Society B: Biological Sciences' publication_identifier: eissn: - 1471-2970 issn: - 0962-8436 publication_status: published publisher: Royal Society of London quality_controlled: '1' scopus_import: '1' status: public title: Inversions and parallel evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 377 year: '2022' ... --- _id: '11640' abstract: - lang: eng text: Spatially explicit population genetic models have long been developed, yet have rarely been used to test hypotheses about the spatial distribution of genetic diversity or the genetic divergence between populations. Here, we use spatially explicit coalescence simulations to explore the properties of the island and the two-dimensional stepping stone models under a wide range of scenarios with spatio-temporal variation in deme size. We avoid the simulation of genetic data, using the fact that under the studied models, summary statistics of genetic diversity and divergence can be approximated from coalescence times. We perform the simulations using gridCoal, a flexible spatial wrapper for the software msprime (Kelleher et al., 2016, Theoretical Population Biology, 95, 13) developed herein. In gridCoal, deme sizes can change arbitrarily across space and time, as well as migration rates between individual demes. We identify different factors that can cause a deviation from theoretical expectations, such as the simulation time in comparison to the effective deme size and the spatio-temporal autocorrelation across the grid. Our results highlight that FST, a measure of the strength of population structure, principally depends on recent demography, which makes it robust to temporal variation in deme size. In contrast, the amount of genetic diversity is dependent on the distant past when Ne is large, therefore longer run times are needed to estimate Ne than FST. Finally, we illustrate the use of gridCoal on a real-world example, the range expansion of silver fir (Abies alba Mill.) since the last glacial maximum, using different degrees of spatio-temporal variation in deme size. acknowledgement: ES was supported by an IST studentship provided by IST Austria. BT was funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Independent Fellowship (704172, RACE). This project received further funding awarded to KC from the Swiss National Science Foundation (SNSF CRSK-3_190288) and the Swiss Federal Research Institute WSL. We thank Nick Barton for many invaluable discussions and his comments on the thesis chapter and this manuscript. We thank Peter Ralph and Jerome Kelleher for useful discussions and Bisschop Gertjan for comments on this manuscript. We thank Fortunat Joos for providing us with the raw data from the LPX-Bern model for silver fir, and Willy Tinner for helpful insights about the demographic history of silver fir. We also thank the editor Alana Alexander for useful comments and advice on the manuscript. Open access funding provided by Eidgenossische Technische Hochschule Zurich. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Eniko full_name: Szep, Eniko id: 485BB5A4-F248-11E8-B48F-1D18A9856A87 last_name: Szep - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Katalin full_name: Csilléry, Katalin last_name: Csilléry citation: ama: Szep E, Trubenova B, Csilléry K. Using gridCoal to assess whether standard population genetic theory holds in the presence of spatio-temporal heterogeneity in population size. Molecular Ecology Resources. 2022;22(8):2941-2955. doi:10.1111/1755-0998.13676 apa: Szep, E., Trubenova, B., & Csilléry, K. (2022). Using gridCoal to assess whether standard population genetic theory holds in the presence of spatio-temporal heterogeneity in population size. Molecular Ecology Resources. Wiley. https://doi.org/10.1111/1755-0998.13676 chicago: Szep, Eniko, Barbora Trubenova, and Katalin Csilléry. “Using GridCoal to Assess Whether Standard Population Genetic Theory Holds in the Presence of Spatio-Temporal Heterogeneity in Population Size.” Molecular Ecology Resources. Wiley, 2022. https://doi.org/10.1111/1755-0998.13676. ieee: E. Szep, B. Trubenova, and K. Csilléry, “Using gridCoal to assess whether standard population genetic theory holds in the presence of spatio-temporal heterogeneity in population size,” Molecular Ecology Resources, vol. 22, no. 8. Wiley, pp. 2941–2955, 2022. ista: Szep E, Trubenova B, Csilléry K. 2022. Using gridCoal to assess whether standard population genetic theory holds in the presence of spatio-temporal heterogeneity in population size. Molecular Ecology Resources. 22(8), 2941–2955. mla: Szep, Eniko, et al. “Using GridCoal to Assess Whether Standard Population Genetic Theory Holds in the Presence of Spatio-Temporal Heterogeneity in Population Size.” Molecular Ecology Resources, vol. 22, no. 8, Wiley, 2022, pp. 2941–55, doi:10.1111/1755-0998.13676. short: E. Szep, B. Trubenova, K. Csilléry, Molecular Ecology Resources 22 (2022) 2941–2955. date_created: 2022-07-24T22:01:43Z date_published: 2022-11-01T00:00:00Z date_updated: 2023-08-03T12:11:01Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/1755-0998.13676 ec_funded: 1 external_id: isi: - '000825873600001' file: - access_level: open_access checksum: 3102e203e77b884bffffdbe8e548da88 content_type: application/pdf creator: dernst date_created: 2023-02-02T08:11:23Z date_updated: 2023-02-02T08:11:23Z file_id: '12477' file_name: 2022_MolecularEcologyRes_Szep.pdf file_size: 6431779 relation: main_file success: 1 file_date_updated: 2023-02-02T08:11:23Z has_accepted_license: '1' intvolume: ' 22' isi: 1 issue: '8' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 2941-2955 project: - _id: 25AEDD42-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '704172' name: Rate of Adaptation in Changing Environment publication: Molecular Ecology Resources publication_identifier: eissn: - 1755-0998 issn: - 1755-098X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Using gridCoal to assess whether standard population genetic theory holds in the presence of spatio-temporal heterogeneity in population size tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 22 year: '2022' ... --- _id: '12001' abstract: - lang: eng text: 'Sexual antagonism is a common hypothesis for driving the evolution of sex chromosomes, whereby recombination suppression is favored between sexually antagonistic loci and the sex-determining locus to maintain beneficial combinations of alleles. This results in the formation of a sex-determining region. Chromosomal inversions may contribute to recombination suppression but their precise role in sex chromosome evolution remains unclear. Because local adaptation is frequently facilitated through the suppression of recombination between adaptive loci by chromosomal inversions, there is potential for inversions that cover sex-determining regions to be involved in local adaptation as well, particularly if habitat variation creates environment-dependent sexual antagonism. With these processes in mind, we investigated sex determination in a well-studied example of local adaptation within a species: the intertidal snail, Littorina saxatilis. Using SNP data from a Swedish hybrid zone, we find novel evidence for a female-heterogametic sex determination system that is restricted to one ecotype. Our results suggest that four putative chromosomal inversions, two previously described and two newly discovered, span the putative sex chromosome pair. We determine their differing associations with sex, which suggest distinct strata of differing ages. The same inversions are found in the second ecotype but do not show any sex association. The striking disparity in inversion-sex associations between ecotypes that are connected by gene flow across a habitat transition that is just a few meters wide indicates a difference in selective regime that has produced a distinct barrier to the spread of the newly discovered sex-determining region between ecotypes. Such sex chromosome-environment interactions have not previously been uncovered in L. saxatilis and are known in few other organisms. A combination of both sex-specific selection and divergent natural selection is required to explain these highly unusual patterns.' acknowledgement: We thank A. Wright and four anonymous reviewers for valuable comments on an earlier draft of this manuscript and all members of the Littorina group for helpful discussions. This work was supported by a European Research Council grant to RKB and by a Natural Environment Research Council studentship to KEH through the ACCE doctoral training program. KJ acknowledges support from the Swedish Science Research Council VR (Vetenskaprådet) (2017-03798). RF was supported by an FCT CEEC (Fundação para a Ciênca e a Tecnologia, Concurso Estímulo ao Emprego Científico) contract (2020.00275.CEECIND). article_processing_charge: Yes article_type: original author: - first_name: Katherine E. full_name: Hearn, Katherine E. last_name: Hearn - first_name: Eva L. full_name: Koch, Eva L. last_name: Koch - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 citation: ama: Hearn KE, Koch EL, Stankowski S, et al. Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis. Evolution Letters. 2022;6(5):358-374. doi:10.1002/evl3.295 apa: Hearn, K. E., Koch, E. L., Stankowski, S., Butlin, R. K., Faria, R., Johannesson, K., & Westram, A. M. (2022). Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis. Evolution Letters. Oxford Academic. https://doi.org/10.1002/evl3.295 chicago: Hearn, Katherine E., Eva L. Koch, Sean Stankowski, Roger K. Butlin, Rui Faria, Kerstin Johannesson, and Anja M Westram. “Differing Associations between Sex Determination and Sex-Linked Inversions in Two Ecotypes of Littorina Saxatilis.” Evolution Letters. Oxford Academic, 2022. https://doi.org/10.1002/evl3.295. ieee: K. E. Hearn et al., “Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis,” Evolution Letters, vol. 6, no. 5. Oxford Academic, pp. 358–374, 2022. ista: Hearn KE, Koch EL, Stankowski S, Butlin RK, Faria R, Johannesson K, Westram AM. 2022. Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis. Evolution Letters. 6(5), 358–374. mla: Hearn, Katherine E., et al. “Differing Associations between Sex Determination and Sex-Linked Inversions in Two Ecotypes of Littorina Saxatilis.” Evolution Letters, vol. 6, no. 5, Oxford Academic, 2022, pp. 358–74, doi:10.1002/evl3.295. short: K.E. Hearn, E.L. Koch, S. Stankowski, R.K. Butlin, R. Faria, K. Johannesson, A.M. Westram, Evolution Letters 6 (2022) 358–374. date_created: 2022-08-28T22:02:02Z date_published: 2022-10-01T00:00:00Z date_updated: 2023-08-03T13:18:17Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1002/evl3.295 external_id: isi: - '000839621100001' file: - access_level: open_access checksum: 2dcd06186a11b7d1be4cddc6b189f8fb content_type: application/pdf creator: dernst date_created: 2023-02-27T07:17:42Z date_updated: 2023-02-27T07:17:42Z file_id: '12686' file_name: 2022_EvolutionLetters_Hearn.pdf file_size: 2368965 relation: main_file success: 1 file_date_updated: 2023-02-27T07:17:42Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '5' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 358-374 publication: Evolution Letters publication_identifier: eissn: - 2056-3744 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2022' ... --- _id: '12157' abstract: - lang: eng text: 'Polygenic adaptation is thought to be ubiquitous, yet remains poorly understood. Here, we model this process analytically, in the plausible setting of a highly polygenic, quantitative trait that experiences a sudden shift in the fitness optimum. We show how the mean phenotype changes over time, depending on the effect sizes of loci that contribute to variance in the trait, and characterize the allele dynamics at these loci. Notably, we describe the two phases of the allele dynamics: The first is a rapid phase, in which directional selection introduces small frequency differences between alleles whose effects are aligned with or opposed to the shift, ultimately leading to small differences in their probability of fixation during a second, longer phase, governed by stabilizing selection. As we discuss, key results should hold in more general settings and have important implications for efforts to identify the genetic basis of adaptation in humans and other species.' acknowledgement: "We thank Guy Amster, Jeremy Berg, Nick Barton, Yuval Simons and Molly Przeworski for many helpful discussions, and Jeremy Berg, Graham Coop, Joachim Hermisson, Guillaume Martin, Will Milligan, Peter Ralph, Yuval Simons, Leo Speidel and Molly Przeworski for comments on the manuscript.\r\nNational Institutes of Health GM115889 Laura Katharine Hayward Guy Sella \r\nNational Institutes of Health GM121372 Laura Katharine Hayward" article_number: '66697' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Hayward, Laura id: fc885ee5-24bf-11eb-ad7b-bcc5104c0c1b last_name: Hayward - first_name: Guy full_name: Sella, Guy last_name: Sella citation: ama: Hayward L, Sella G. Polygenic adaptation after a sudden change in environment. eLife. 2022;11. doi:10.7554/elife.66697 apa: Hayward, L., & Sella, G. (2022). Polygenic adaptation after a sudden change in environment. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.66697 chicago: Hayward, Laura, and Guy Sella. “Polygenic Adaptation after a Sudden Change in Environment.” ELife. eLife Sciences Publications, 2022. https://doi.org/10.7554/elife.66697. ieee: L. Hayward and G. Sella, “Polygenic adaptation after a sudden change in environment,” eLife, vol. 11. eLife Sciences Publications, 2022. ista: Hayward L, Sella G. 2022. Polygenic adaptation after a sudden change in environment. eLife. 11, 66697. mla: Hayward, Laura, and Guy Sella. “Polygenic Adaptation after a Sudden Change in Environment.” ELife, vol. 11, 66697, eLife Sciences Publications, 2022, doi:10.7554/elife.66697. short: L. Hayward, G. Sella, ELife 11 (2022). date_created: 2023-01-12T12:09:00Z date_published: 2022-09-26T00:00:00Z date_updated: 2023-08-04T09:04:58Z day: '26' ddc: - '570' department: - _id: NiBa doi: 10.7554/elife.66697 external_id: isi: - '000890735600001' file: - access_level: open_access checksum: 28de155b231ac1c8d4501c98b2fb359a content_type: application/pdf creator: dernst date_created: 2023-01-24T12:21:32Z date_updated: 2023-01-24T12:21:32Z file_id: '12363' file_name: 2022_eLife_Hayward.pdf file_size: 18935612 relation: main_file success: 1 file_date_updated: 2023-01-24T12:21:32Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Immunology and Microbiology - General Biochemistry - Genetics and Molecular Biology - General Medicine - General Neuroscience language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Polygenic adaptation after a sudden change in environment tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2022' ...