TY - DATA AB - Datasets of the publication "Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster". AU - Puixeu Sala, Gemma ID - 12933 TI - Data from: Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster ER - TY - JOUR AB - Inversions are thought to play a key role in adaptation and speciation, suppressing recombination between diverging populations. Genes influencing adaptive traits cluster in inversions, and changes in inversion frequencies are associated with environmental differences. However, in many organisms, it is unclear if inversions are geographically and taxonomically widespread. The intertidal snail, Littorina saxatilis, is one such example. Strong associations between putative polymorphic inversions and phenotypic differences have been demonstrated between two ecotypes of L. saxatilis in Sweden and inferred elsewhere, but no direct evidence for inversion polymorphism currently exists across the species range. Using whole genome data from 107 snails, most inversion polymorphisms were found to be widespread across the species range. The frequencies of some inversion arrangements were significantly different among ecotypes, suggesting a parallel adaptive role. Many inversions were also polymorphic in the sister species, L. arcana, hinting at an ancient origin. AU - Reeve, James AU - Butlin, Roger K. AU - Koch, Eva L. AU - Stankowski, Sean AU - Faria, Rui ID - 14463 JF - Molecular Ecology SN - 0962-1083 TI - Chromosomal inversion polymorphisms are widespread across the species ranges of rough periwinkles (Littorina saxatilis and L. arcana) ER - TY - THES AB - For self-incompatibility (SI) to be stable in a population, theory predicts that sufficient inbreeding depression (ID) is required: the fitness of offspring from self-mated individuals must be low enough to prevent the spread of self-compatibility (SC). Reviews of natural plant populations have supported this theory, with SI species generally showing high levels of ID. However, there is thought to be an under-sampling of self-incompatible taxa in the current literature. In this thesis, I study inbreeding depression in the SI plant species Antirrhinum majus using both greenhouse crosses and a large collected field dataset. Additionally, the gametophytic S-locus of A. majus is highly heterozygous and polymorphic, thus making assembly and discovery of S-alleles very difficult. Here, 206 new alleles of the male component SLFs are presented, along with a phylogeny showing the high conservation with alleles from another Antirrhinum species. Lastly, selected sites within the protein structure of SLFs are investigated, with one site in particular highlighted as potentially being involved in the SI recognition mechanism. AU - Arathoon, Louise S ID - 14651 SN - 2663 - 337X TI - Investigating inbreeding depression and the self-incompatibility locus of Antirrhinum majus ER - TY - JOUR AB - Chromosomal rearrangements (CRs) have been known since almost the beginning of genetics. While an important role for CRs in speciation has been suggested, evidence primarily stems from theoretical and empirical studies focusing on the microevolutionary level (i.e., on taxon pairs where speciation is often incomplete). Although the role of CRs in eukaryotic speciation at a macroevolutionary level has been supported by associations between species diversity and rates of evolution of CRs across phylogenies, these findings are limited to a restricted range of CRs and taxa. Now that more broadly applicable and precise CR detection approaches have become available, we address the challenges in filling some of the conceptual and empirical gaps between micro- and macroevolutionary studies on the role of CRs in speciation. We synthesize what is known about the macroevolutionary impact of CRs and suggest new research avenues to overcome the pitfalls of previous studies to gain a more comprehensive understanding of the evolutionary significance of CRs in speciation across the tree of life. AU - Lucek, Kay AU - Giménez, Mabel D. AU - Joron, Mathieu AU - Rafajlović, Marina AU - Searle, Jeremy B. AU - Walden, Nora AU - Westram, Anja M AU - Faria, Rui ID - 14742 IS - 11 JF - Cold Spring Harbor Perspectives in Biology KW - General Biochemistry KW - Genetics and Molecular Biology SN - 1943-0264 TI - The impact of chromosomal rearrangements in speciation: From micro- to macroevolution VL - 15 ER - TY - JOUR AB - Understanding the phenotypic and genetic architecture of reproductive isolation is a long‐standing goal of speciation research. In several systems, large‐effect loci contributing to barrier phenotypes have been characterized, but such causal connections are rarely known for more complex genetic architectures. In this study, we combine “top‐down” and “bottom‐up” approaches with demographic modelling toward an integrated understanding of speciation across a monkeyflower hybrid zone. Previous work suggests that pollinator visitation acts as a primary barrier to gene flow between two divergent red‐ and yellow‐flowered ecotypes ofMimulus aurantiacus. Several candidate isolating traits and anonymous single nucleotide polymorphism loci under divergent selection have been identified, but their genomic positions remain unknown. Here, we report findings from demographic analyses that indicate this hybrid zone formed by secondary contact, but that subsequent gene flow was restricted by widespread barrier loci across the genome. Using a novel, geographic cline‐based genome scan, we demonstrate that candidate barrier loci are broadly distributed across the genome, rather than mapping to one or a few “islands of speciation.” Quantitative trait locus (QTL) mapping reveals that most floral traits are highly polygenic, with little evidence that QTL colocalize, indicating that most traits are genetically independent. Finally, we find little evidence that QTL and candidate barrier loci overlap, suggesting that some loci contribute to other forms of reproductive isolation. Our findings highlight the challenges of understanding the genetic architecture of reproductive isolation and reveal that barriers to gene flow other than pollinator isolation may play an important role in this system. AU - Stankowski, Sean AU - Chase, Madeline A. AU - McIntosh, Hanna AU - Streisfeld, Matthew A. ID - 14787 IS - 8 JF - Molecular Ecology KW - Genetics KW - Ecology KW - Evolution KW - Behavior and Systematics SN - 0962-1083 TI - Integrating top‐down and bottom‐up approaches to understand the genetic architecture of speciation across a monkeyflower hybrid zone VL - 32 ER -