TY - JOUR AB - Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response. AU - Castro, João Pl AU - Yancoskie, Michelle N. AU - Marchini, Marta AU - Belohlavy, Stefanie AU - Hiramatsu, Layla AU - Kučka, Marek AU - Beluch, William H. AU - Naumann, Ronald AU - Skuplik, Isabella AU - Cobb, John AU - Barton, Nicholas H AU - Rolian, Campbell AU - Chan, Yingguang Frank ID - 6713 JF - eLife TI - An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice VL - 8 ER - TY - JOUR AB - More than 100 years after Grigg’s influential analysis of species’ borders, the causes of limits to species’ ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species’ ranges to shift in response to climate change—and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal—a measure of environmental heterogeneity—and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an ‘expansion threshold’: adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species’ range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter—the strength of genetic drift—is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with ‘neighbourhood size’—the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and testable prediction for formation of the range margin and collapse of the species’ range. AU - Polechova, Jitka ID - 315 IS - 6 JF - PLoS Biology SN - 15449173 TI - Is the sky the limit? On the expansion threshold of a species’ range VL - 16 ER - TY - GEN AB - Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. AU - Faria, Rui AU - Chaube, Pragya AU - Morales, Hernán E. AU - Larsson, Tomas AU - Lemmon, Alan R. AU - Lemmon, Emily M. AU - Rafajlović, Marina AU - Panova, Marina AU - Ravinet, Mark AU - Johannesson, Kerstin AU - Westram, Anja M AU - Butlin, Roger K. ID - 9837 TI - Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes ER - TY - JOUR AB - Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. AU - Payne, Pavel AU - Geyrhofer, Lukas AU - Barton, Nicholas H AU - Bollback, Jonathan P ID - 423 JF - eLife TI - CRISPR-based herd immunity can limit phage epidemics in bacterial populations VL - 7 ER - TY - GEN AB - Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. AU - Payne, Pavel AU - Geyrhofer, Lukas AU - Barton, Nicholas H AU - Bollback, Jonathan P ID - 9840 TI - Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations ER -