TY - THES AB - Natural environments are never constant but subject to spatial and temporal change on all scales, increasingly so due to human activity. Hence, it is crucial to understand the impact of environmental variation on evolutionary processes. In this thesis, I present three topics that share the common theme of environmental variation, yet illustrate its effect from different perspectives. First, I show how a temporally fluctuating environment gives rise to second-order selection on a modifier for stress-induced mutagenesis. Without fluctuations, when populations are adapted to their environment, mutation rates are minimized. I argue that a stress-induced mutator mechanism may only be maintained if the population is repeatedly subjected to diverse environmental challenges, and I outline implications of the presented results to antibiotic treatment strategies. Second, I discuss my work on the evolution of dispersal. Besides reproducing known results about the effect of heterogeneous habitats on dispersal, it identifies spatial changes in dispersal type frequencies as a source for selection for increased propensities to disperse. This concept contains effects of relatedness that are known to promote dispersal, and I explain how it identifies other forces selecting for dispersal and puts them on a common scale. Third, I analyse genetic variances of phenotypic traits under multivariate stabilizing selection. For the case of constant environments, I generalize known formulae of equilibrium variances to multiple traits and discuss how the genetic variance of a focal trait is influenced by selection on background traits. I conclude by presenting ideas and preliminary work aiming at including environmental fluctuations in the form of moving trait optima into the model. AU - Novak, Sebastian ID - 1125 SN - 2663-337X TI - Evolutionary proccesses in variable emvironments ER - TY - JOUR AB - Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. AU - Friedlander, Tamar AU - Prizak, Roshan AU - Guet, Calin C AU - Barton, Nicholas H AU - Tkacik, Gasper ID - 1358 JF - Nature Communications TI - Intrinsic limits to gene regulation by global crosstalk VL - 7 ER - TY - GEN AB - Much of quantitative genetics is based on the ‘infinitesimal model’, under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load’, and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects. AU - Barton, Nicholas H ID - 9710 TI - Data from: How does epistasis influence the response to selection? ER - TY - GEN AB - Viral capsids are structurally constrained by interactions among the amino acids (AAs) of their constituent proteins. Therefore, epistasis is expected to evolve among physically interacting sites and to influence the rates of substitution. To study the evolution of epistasis, we focused on the major structural protein of the ϕX174 phage family by, first, reconstructing the ancestral protein sequences of 18 species using a Bayesian statistical framework. The inferred ancestral reconstruction differed at eight AAs, for a total of 256 possible ancestral haplotypes. For each ancestral haplotype and the extant species, we estimated, in silico, the distribution of free energies and epistasis of the capsid structure. We found that free energy has not significantly increased but epistasis has. We decomposed epistasis up to fifth order and found that higher-order epistasis sometimes compensates pairwise interactions making the free energy seem additive. The dN/dS ratio is low, suggesting strong purifying selection, and that structure is under stabilizing selection. We synthesized phages carrying ancestral haplotypes of the coat protein gene and measured their fitness experimentally. Our findings indicate that stabilizing mutations can have higher fitness, and that fitness optima do not necessarily coincide with energy minima. AU - Fernandes Redondo, Rodrigo A AU - de Vladar, Harold AU - Włodarski, Tomasz AU - Bollback, Jonathan P ID - 9864 TI - Data from evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family ER - TY - JOUR AB - Background and aims Angiosperms display remarkable diversity in flower colour, implying that transitions between pigmentation phenotypes must have been common. Despite progress in understanding transitions between anthocyanin (blue, purple, pink or red) and unpigmented (white) flowers, little is known about the evolutionary patterns of flower-colour transitions in lineages with both yellow and anthocyanin-pigmented flowers. This study investigates the relative rates of evolutionary transitions between different combinations of yellow- and anthocyanin-pigmentation phenotypes in the tribe Antirrhineae. Methods We surveyed taxonomic literature for data on anthocyanin and yellow floral pigmentation for 369 species across the tribe. We then reconstructed the phylogeny of 169 taxa and used phylogenetic comparative methods to estimate transition rates among pigmentation phenotypes across the phylogeny. Key Results In contrast to previous studies we found a bias towards transitions involving a gain in pigmentation, although transitions to phenotypes with both anthocyanin and yellow taxa are nevertheless extremely rare. Despite the dominance of yellow and anthocyanin-pigmented taxa, transitions between these phenotypes are constrained to move through a white intermediate stage, whereas transitions to double-pigmentation are very rare. The most abundant transitions are between anthocyanin-pigmented and unpigmented flowers, and similarly the most abundant polymorphic taxa were those with anthocyanin-pigmented and unpigmented flowers. Conclusions Our findings show that pigment evolution is limited by the presence of other floral pigments. This interaction between anthocyanin and yellow pigments constrains the breadth of potential floral diversity observed in nature. In particular, they suggest that selection has repeatedly acted to promote the spread of single-pigmented phenotypes across the Antirrhineae phylogeny. Furthermore, the correlation between transition rates and polymorphism suggests that the forces causing and maintaining variance in the short term reflect evolutionary processes on longer time scales. AU - Ellis, Thomas AU - Field, David ID - 1382 IS - 7 JF - Annals of Botany TI - Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae VL - 117 ER - TY - DATA AB - We collected flower colour information on species in the tribe Antirrhineae from taxonomic literature. We also retreived molecular data from GenBank for as many of these species as possible to estimate phylogenetic relationships among these taxa. We then used the R package 'diversitree' to examine patterns of evolutionary transitions between anthocyanin and yellow pigmentation across the phylogeny. For full details of the methods see: Ellis TJ and Field DL "Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae”, Annals of Botany (in press) AU - Ellis, Thomas AU - Field, David ID - 5550 TI - Flower colour data and phylogeny (NEXUS) files ER - TY - THES AB - Hybrid zones represent evolutionary laboratories, where recombination brings together alleles in combinations which have not previously been tested by selection. This provides an excellent opportunity to test the effect of molecular variation on fitness, and how this variation is able to spread through populations in a natural context. The snapdragon Antirrhinum majus is polymorphic in the wild for two loci controlling the distribution of yellow and magenta floral pigments. Where the yellow A. m. striatum and the magenta A. m. pseudomajus meet along a valley in the Spanish Pyrenees they form a stable hybrid zone Alleles at these loci recombine to give striking transgressive variation for flower colour. The sharp transition in phenotype over ~1km implies strong selection maintaining the hybrid zone. An indirect assay of pollinator visitation in the field found that pollinators forage in a positive-frequency dependent manner on Antirrhinum, matching previous data on fruit set. Experimental arrays and paternity analysis of wild-pollinated seeds demonstrated assortative mating for pigmentation alleles, and that pollinator behaviour alone is sufficient to explain this pattern. Selection by pollinators should be sufficiently strong to maintain the hybrid zone, although other mechanisms may be at work. At a broader scale I examined evolutionary transitions between yellow and anthocyanin pigmentation in the tribe Antirrhinae, and found that selection has acted strate that pollinators are a major determinant of reproductive success and mating patterns in wild Antirrhinum. AU - Ellis, Thomas ID - 1398 SN - 2663-337X TI - The role of pollinator-mediated selection in the maintenance of a flower color polymorphism in an Antirrhinum majus hybrid zone ER - TY - THES AB - Evolution of gene regulation is important for phenotypic evolution and diversity. Sequence-specific binding of regulatory proteins is one of the key regulatory mechanisms determining gene expression. Although there has been intense interest in evolution of regulatory binding sites in the last decades, a theoretical understanding is far from being complete. In this thesis, I aim at a better understanding of the evolution of transcriptional regulatory binding sequences by using biophysical and population genetic models. In the first part of the thesis, I discuss how to formulate the evolutionary dynamics of binding se- quences in a single isolated binding site and in promoter/enhancer regions. I develop a theoretical framework bridging between a thermodynamical model for transcription and a mutation-selection-drift model for monomorphic populations. I mainly address the typical evolutionary rates, and how they de- pend on biophysical parameters (e.g. binding length and specificity) and population genetic parameters (e.g. population size and selection strength). In the second part of the thesis, I analyse empirical data for a better evolutionary and biophysical understanding of sequence-specific binding of bacterial RNA polymerase. First, I infer selection on regulatory and non-regulatory binding sites of RNA polymerase in the E. coli K12 genome. Second, I infer the chemical potential of RNA polymerase, an important but unknown physical parameter defining the threshold energy for strong binding. Furthermore, I try to understand the relation between the lac promoter sequence diversity and the LacZ activity variation among 20 bacterial isolates by constructing a simple but biophysically motivated gene expression model. Lastly, I lay out a statistical framework to predict adaptive point mutations in de novo promoter evolution in a selection experiment. AU - Tugrul, Murat ID - 1131 SN - 2663-337X TI - Evolution of transcriptional regulatory sequences ER - TY - DATA AB - Genotypic, phenotypic and demographic data for 2128 wild snapdragons and 1127 open-pollinated progeny from a natural hybrid zone, collected as part of Tom Ellis' PhD thesis (submitted) February 2016). Tissue samples were sent to LGC Genomics in Berlin for DNA extraction, and genotyping at 70 SNP markers by KASPR genotyping. 29 of these SNPs failed to amplify reliably, and have been removed from this dataset. Other data were retreived from an online database of this population at www.antspec.org. AU - Field, David AU - Ellis, Thomas ID - 5553 KW - paternity assignment KW - pedigree KW - matting patterns KW - assortative mating KW - Antirrhinum majus KW - frequency-dependent selection KW - plant-pollinator interaction TI - Inference of mating patterns among wild snapdragons in a natural hybrid zone in 2012 ER - TY - DATA AB - Data from array experiments investigating pollinator behaviour on snapdragons in controlled conditions, and their effect on plant mating. Data were collected as part of Tom Ellis' PhD thesis , submitted February 2016. We placed a total of 36 plants in a grid inside a closed organza tent, with a single hive of commercially bred bumblebees (Bombus hortorum). We used only the yellow-flowered Antirrhinum majus striatum and the magenta-flowered Antirrhinum majus pseudomajus, at ratios of 6:36, 12:24, 18:18, 24:12 and 30:6. After 24 hours to learn how to deal with snapdragons, I observed pollinators foraging on plants, and recorded the transitions between plants. Thereafter seeds on plants were allowed to develops. A sample of these were grown to maturity when their flower colour could be determined, and they were scored as yellow, magenta, or hybrid. AU - Ellis, Thomas ID - 5551 TI - Data on pollinator observations and offpsring phenotypes ER -