@article{5680, abstract = {Pollinators display a remarkable diversity of foraging strategies with flowering plants, from primarily mutualistic interactions to cheating through nectar robbery. Despite numerous studies on the effect of nectar robbing on components of plant fitness, its contribution to reproductive isolation is unclear. We experimentally tested the impact of different pollinator strategies in a natural hybrid zone between two subspecies of Antirrhinum majus with alternate flower colour guides. On either side of a steep cline in flower colour between Antirrhinum majus pseudomajus (magenta) and A. m. striatum (yellow), we quantified the behaviour of all floral visitors at different time points during the flowering season. Using long-run camera surveys, we quantify the impact of nectar robbing on the number of flowers visited per inflorescence and the flower probing time. We further experimentally tested the effect of nectar robbing on female reproductive success by manipulating the intensity of robbing. While robbing increased over time the number of legitimate visitors tended to decrease concomitantly. We found that the number of flowers pollinated on a focal inflorescence decreased with the number of prior robbing events. However, in the manipulative experiment, fruit set and fruit volume did not vary significantly between low robbing and control treatments. Our findings challenge the idea that robbers have a negative impact on plant fitness through female function. This study also adds to our understanding of the components of pollinator-mediated reproductive isolation and the maintenance of Antirrhinum hybrid zones.}, author = {Andalo, Christophe and Burrus, Monique and Paute, Sandrine and Lauzeral, Christine and Field, David}, issn = {23818115}, journal = {Botany Letters}, number = {1}, pages = {80--92}, publisher = {Taylor and Francis}, title = {{Prevalence of legitimate pollinators and nectar robbers and the consequences for fruit set in an Antirrhinum majus hybrid zone}}, doi = {10.1080/23818107.2018.1545142}, volume = {166}, year = {2019}, } @article{6022, abstract = {The evolution of new species is made easier when traits under divergent ecological selection are also mating cues. Such ecological mating cues are now considered more common than previously thought, but we still know little about the genetic changes underlying their evolution or more generally about the genetic basis for assortative mating behaviors. Both tight physical linkage and the existence of large-effect preference loci will strengthen genetic associations between behavioral and ecological barriers, promoting the evolution of assortative mating. The warning patterns of Heliconius melpomene and H. cydno are under disruptive selection due to increased predation of nonmimetic hybrids and are used during mate recognition. We carried out a genome-wide quantitative trait locus (QTL) analysis of preference behaviors between these species and showed that divergent male preference has a simple genetic basis. We identify three QTLs that together explain a large proportion (approximately 60%) of the difference in preference behavior observed between the parental species. One of these QTLs is just 1.2 (0-4.8) centiMorgans (cM) from the major color pattern gene optix, and, individually, all three have a large effect on the preference phenotype. Genomic divergence between H. cydno and H. melpomene is high but broadly heterogenous, and admixture is reduced at the preference-optix color pattern locus but not the other preference QTLs. The simple genetic architecture we reveal will facilitate the evolution and maintenance of new species despite ongoing gene flow by coupling behavioral and ecological aspects of reproductive isolation.}, author = {Merrill, Richard M. and Rastas, Pasi and Martin, Simon H. and Melo Hurtado, Maria C and Barker, Sarah and Davey, John and Mcmillan, W. Owen and Jiggins, Chris D.}, journal = {PLoS Biology}, number = {2}, publisher = {Public Library of Science}, title = {{Genetic dissection of assortative mating behavior}}, doi = {10.1371/journal.pbio.2005902}, volume = {17}, year = {2019}, } @misc{9801, author = {Merrill, Richard M. and Rastas, Pasi and Martin, Simon H. and Melo Hurtado, Maria C and Barker, Sarah and Davey, John and Mcmillan, W. Owen and Jiggins, Chris D.}, publisher = {Public Library of Science}, title = {{Raw behavioral data}}, doi = {10.1371/journal.pbio.2005902.s006}, year = {2019}, } @article{6095, abstract = {Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.}, author = {Faria, Rui and Chaube, Pragya and Morales, Hernán E. and Larsson, Tomas and Lemmon, Alan R. and Lemmon, Emily M. and Rafajlović, Marina and Panova, Marina and Ravinet, Mark and Johannesson, Kerstin and Westram, Anja M and Butlin, Roger K.}, issn = {1365-294X}, journal = {Molecular Ecology}, number = {6}, pages = {1375--1393}, publisher = {Wiley}, title = {{Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes}}, doi = {10.1111/mec.14972}, volume = {28}, year = {2019}, } @article{6230, abstract = {Great care is needed when interpreting claims about the genetic basis of human variation based on data from genome-wide association studies.}, author = {Barton, Nicholas H and Hermisson, Joachim and Nordborg, Magnus}, issn = {2050084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Why structure matters}}, doi = {10.7554/eLife.45380}, volume = {8}, year = {2019}, }