@article{11447, abstract = {Empirical essays of fitness landscapes suggest that they may be rugged, that is having multiple fitness peaks. Such fitness landscapes, those that have multiple peaks, necessarily have special local structures, called reciprocal sign epistasis (Poelwijk et al. in J Theor Biol 272:141–144, 2011). Here, we investigate the quantitative relationship between the number of fitness peaks and the number of reciprocal sign epistatic interactions. Previously, it has been shown (Poelwijk et al. in J Theor Biol 272:141–144, 2011) that pairwise reciprocal sign epistasis is a necessary but not sufficient condition for the existence of multiple peaks. Applying discrete Morse theory, which to our knowledge has never been used in this context, we extend this result by giving the minimal number of reciprocal sign epistatic interactions required to create a given number of peaks.}, author = {Saona Urmeneta, Raimundo J and Kondrashov, Fyodor and Khudiakova, Kseniia}, issn = {1522-9602}, journal = {Bulletin of Mathematical Biology}, keywords = {Computational Theory and Mathematics, General Agricultural and Biological Sciences, Pharmacology, General Environmental Science, General Biochemistry, Genetics and Molecular Biology, General Mathematics, Immunology, General Neuroscience}, number = {8}, publisher = {Springer Nature}, title = {{Relation between the number of peaks and the number of reciprocal sign epistatic interactions}}, doi = {10.1007/s11538-022-01029-z}, volume = {84}, year = {2022}, } @article{11546, abstract = {Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions.}, author = {Westram, Anja M and Faria, Rui and Johannesson, Kerstin and Butlin, Roger and Barton, Nicholas H}, issn = {1471-2970}, journal = {Philosophical Transactions of the Royal Society B: Biological Sciences}, keywords = {General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology}, number = {1856}, publisher = {Royal Society of London}, title = {{Inversions and parallel evolution}}, doi = {10.1098/rstb.2021.0203}, volume = {377}, year = {2022}, } @article{11640, abstract = {Spatially explicit population genetic models have long been developed, yet have rarely been used to test hypotheses about the spatial distribution of genetic diversity or the genetic divergence between populations. Here, we use spatially explicit coalescence simulations to explore the properties of the island and the two-dimensional stepping stone models under a wide range of scenarios with spatio-temporal variation in deme size. We avoid the simulation of genetic data, using the fact that under the studied models, summary statistics of genetic diversity and divergence can be approximated from coalescence times. We perform the simulations using gridCoal, a flexible spatial wrapper for the software msprime (Kelleher et al., 2016, Theoretical Population Biology, 95, 13) developed herein. In gridCoal, deme sizes can change arbitrarily across space and time, as well as migration rates between individual demes. We identify different factors that can cause a deviation from theoretical expectations, such as the simulation time in comparison to the effective deme size and the spatio-temporal autocorrelation across the grid. Our results highlight that FST, a measure of the strength of population structure, principally depends on recent demography, which makes it robust to temporal variation in deme size. In contrast, the amount of genetic diversity is dependent on the distant past when Ne is large, therefore longer run times are needed to estimate Ne than FST. Finally, we illustrate the use of gridCoal on a real-world example, the range expansion of silver fir (Abies alba Mill.) since the last glacial maximum, using different degrees of spatio-temporal variation in deme size.}, author = {Szep, Eniko and Trubenova, Barbora and Csilléry, Katalin}, issn = {1755-0998}, journal = {Molecular Ecology Resources}, number = {8}, pages = {2941--2955}, publisher = {Wiley}, title = {{Using gridCoal to assess whether standard population genetic theory holds in the presence of spatio-temporal heterogeneity in population size}}, doi = {10.1111/1755-0998.13676}, volume = {22}, year = {2022}, } @article{12001, abstract = {Sexual antagonism is a common hypothesis for driving the evolution of sex chromosomes, whereby recombination suppression is favored between sexually antagonistic loci and the sex-determining locus to maintain beneficial combinations of alleles. This results in the formation of a sex-determining region. Chromosomal inversions may contribute to recombination suppression but their precise role in sex chromosome evolution remains unclear. Because local adaptation is frequently facilitated through the suppression of recombination between adaptive loci by chromosomal inversions, there is potential for inversions that cover sex-determining regions to be involved in local adaptation as well, particularly if habitat variation creates environment-dependent sexual antagonism. With these processes in mind, we investigated sex determination in a well-studied example of local adaptation within a species: the intertidal snail, Littorina saxatilis. Using SNP data from a Swedish hybrid zone, we find novel evidence for a female-heterogametic sex determination system that is restricted to one ecotype. Our results suggest that four putative chromosomal inversions, two previously described and two newly discovered, span the putative sex chromosome pair. We determine their differing associations with sex, which suggest distinct strata of differing ages. The same inversions are found in the second ecotype but do not show any sex association. The striking disparity in inversion-sex associations between ecotypes that are connected by gene flow across a habitat transition that is just a few meters wide indicates a difference in selective regime that has produced a distinct barrier to the spread of the newly discovered sex-determining region between ecotypes. Such sex chromosome-environment interactions have not previously been uncovered in L. saxatilis and are known in few other organisms. A combination of both sex-specific selection and divergent natural selection is required to explain these highly unusual patterns.}, author = {Hearn, Katherine E. and Koch, Eva L. and Stankowski, Sean and Butlin, Roger K. and Faria, Rui and Johannesson, Kerstin and Westram, Anja M}, issn = {2056-3744}, journal = {Evolution Letters}, number = {5}, pages = {358--374}, publisher = {Oxford Academic}, title = {{Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis}}, doi = {10.1002/evl3.295}, volume = {6}, year = {2022}, } @article{12157, abstract = {Polygenic adaptation is thought to be ubiquitous, yet remains poorly understood. Here, we model this process analytically, in the plausible setting of a highly polygenic, quantitative trait that experiences a sudden shift in the fitness optimum. We show how the mean phenotype changes over time, depending on the effect sizes of loci that contribute to variance in the trait, and characterize the allele dynamics at these loci. Notably, we describe the two phases of the allele dynamics: The first is a rapid phase, in which directional selection introduces small frequency differences between alleles whose effects are aligned with or opposed to the shift, ultimately leading to small differences in their probability of fixation during a second, longer phase, governed by stabilizing selection. As we discuss, key results should hold in more general settings and have important implications for efforts to identify the genetic basis of adaptation in humans and other species.}, author = {Hayward, Laura and Sella, Guy}, issn = {2050-084X}, journal = {eLife}, keywords = {General Immunology and Microbiology, General Biochemistry, Genetics and Molecular Biology, General Medicine, General Neuroscience}, publisher = {eLife Sciences Publications}, title = {{Polygenic adaptation after a sudden change in environment}}, doi = {10.7554/elife.66697}, volume = {11}, year = {2022}, }