@article{9394, abstract = {Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab‐/Wave‐adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow.}, author = {Koch, Eva L. and Morales, Hernán E. and Larsson, Jenny and Westram, Anja M and Faria, Rui and Lemmon, Alan R. and Lemmon, E. Moriarty and Johannesson, Kerstin and Butlin, Roger K.}, issn = {2056-3744}, journal = {Evolution Letters}, number = {3}, pages = {196--213}, publisher = {Wiley}, title = {{Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis}}, doi = {10.1002/evl3.227}, volume = {5}, year = {2021}, } @article{9392, abstract = {Humans conceptualize the diversity of life by classifying individuals into types we call ‘species’1. The species we recognize influence political and financial decisions and guide our understanding of how units of diversity evolve and interact. Although the idea of species may seem intuitive, a debate about the best way to define them has raged even before Darwin2. So much energy has been devoted to the so-called ‘species problem’ that no amount of discourse will ever likely solve it2,3. Dozens of species concepts are currently recognized3, but we lack a concrete understanding of how much researchers actually disagree and the factors that cause them to think differently1,2. To address this, we used a survey to quantify the species problem for the first time. The results indicate that the disagreement is extensive: two randomly chosen respondents will most likely disagree on the nature of species. The probability of disagreement is not predicted by researcher experience or broad study system, but tended to be lower among researchers with similar focus, training and who study the same organism. Should we see this diversity of perspectives as a problem? We argue that we should not.}, author = {Stankowski, Sean and Ravinet, Mark}, issn = {18790445}, journal = {Current Biology}, number = {9}, pages = {R428--R429}, publisher = {Cell Press}, title = {{Quantifying the use of species concepts}}, doi = {10.1016/j.cub.2021.03.060}, volume = {31}, year = {2021}, } @misc{12987, abstract = {Chromosomal inversion polymorphisms, segments of chromosomes that are flipped in orientation and occur in reversed order in some individuals, have long been recognized to play an important role in local adaptation. They can reduce recombination in heterozygous individuals and thus help to maintain sets of locally adapted alleles. In a wide range of organisms, populations adapted to different habitats differ in frequency of inversion arrangements. However, getting a full understanding of the importance of inversions for adaptation requires confirmation of their influence on traits under divergent selection. Here, we studied a marine snail, Littorina saxatilis, that has evolved ecotypes adapted to wave exposure or crab predation. These two types occur in close proximity on different parts of the shore. Gene flow between them exists in contact zones. However, they exhibit strong phenotypic divergence in several traits under habitat-specific selection, including size, shape and behaviour. We used crosses between these ecotypes to identify genomic regions that explain variation in these traits by using QTL analysis and variance partitioning across linkage groups. We could show that previously detected inversion regions contribute to adaptive divergence. Some inversions influenced multiple traits suggesting that they contain sets of locally adaptive alleles. Our study also identified regions without known inversions that are important for phenotypic divergence. Thus, we provide a more complete overview of the importance of inversions in relation to the remaining genome.}, author = {Koch, Eva and Morales, Hernán E. and Larsson, Jenny and Westram, Anja M and Faria, Rui and Lemmon, Alan R. and Lemmon, E. Moriarty and Johannesson, Kerstin and Butlin, Roger K.}, publisher = {Dryad}, title = {{Data from: Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis}}, doi = {10.5061/DRYAD.ZGMSBCCB4}, year = {2021}, } @article{9410, abstract = {Antibiotic concentrations vary dramatically in the body and the environment. Hence, understanding the dynamics of resistance evolution along antibiotic concentration gradients is critical for predicting and slowing the emergence and spread of resistance. While it has been shown that increasing the concentration of an antibiotic slows resistance evolution, how adaptation to one antibiotic concentration correlates with fitness at other points along the gradient has not received much attention. Here, we selected populations of Escherichia coli at several points along a concentration gradient for three different antibiotics, asking how rapidly resistance evolved and whether populations became specialized to the antibiotic concentration they were selected on. Populations selected at higher concentrations evolved resistance more slowly but exhibited equal or higher fitness across the whole gradient. Populations selected at lower concentrations evolved resistance rapidly, but overall fitness in the presence of antibiotics was lower. However, these populations readily adapted to higher concentrations upon subsequent selection. Our results indicate that resistance management strategies must account not only for the rates of resistance evolution but also for the fitness of evolved strains.}, author = {Lagator, Mato and Uecker, Hildegard and Neve, Paul}, issn = {1744957X}, journal = {Biology letters}, number = {5}, publisher = {Royal Society of London}, title = {{Adaptation at different points along antibiotic concentration gradients}}, doi = {10.1098/rsbl.2020.0913}, volume = {17}, year = {2021}, } @article{9470, abstract = {A key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance.}, author = {Berdan, Emma L. and Blanckaert, Alexandre and Slotte, Tanja and Suh, Alexander and Westram, Anja M and Fragata, Inês}, issn = {1365294X}, journal = {Molecular Ecology}, number = {12}, pages = {2710--2723}, publisher = {Wiley}, title = {{Unboxing mutations: Connecting mutation types with evolutionary consequences}}, doi = {10.1111/mec.15936}, volume = {30}, year = {2021}, } @article{9816, abstract = {Aims: Mass antigen testing programs have been challenged because of an alleged insufficient specificity, leading to a large number of false positives. The objective of this study is to derive a lower bound of the specificity of the SD Biosensor Standard Q Ag-Test in large scale practical use. Methods: Based on county data from the nationwide tests for SARS-CoV-2 in Slovakia between 31.10.–1.11. 2020 we calculate a lower confidence bound for the specificity. As positive test results were not systematically verified by PCR tests, we base the lower bound on a worst case assumption, assuming all positives to be false positives. Results: 3,625,332 persons from 79 counties were tested. The lowest positivity rate was observed in the county of Rožňava where 100 out of 34307 (0.29%) tests were positive. This implies a test specificity of at least 99.6% (97.5% one-sided lower confidence bound, adjusted for multiplicity). Conclusion: The obtained lower bound suggests a higher specificity compared to earlier studies in spite of the underlying worst case assumption and the application in a mass testing setting. The actual specificity is expected to exceed 99.6% if the prevalence in the respective regions was non-negligible at the time of testing. To our knowledge, this estimate constitutes the first bound obtained from large scale practical use of an antigen test.}, author = {Hledik, Michal and Polechova, Jitka and Beiglböck, Mathias and Herdina, Anna Nele and Strassl, Robert and Posch, Martin}, issn = {1932-6203}, journal = {PLoS ONE}, number = {7}, publisher = {Public Library of Science}, title = {{Analysis of the specificity of a COVID-19 antigen test in the Slovak mass testing program}}, doi = {10.1371/journal.pone.0255267}, volume = {16}, year = {2021}, } @article{9252, abstract = {This paper analyses the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat‐dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.}, author = {Szep, Eniko and Sachdeva, Himani and Barton, Nicholas H}, issn = {1558-5646}, journal = {Evolution}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics, General Agricultural and Biological Sciences}, number = {5}, pages = {1030--1045}, publisher = {Wiley}, title = {{Polygenic local adaptation in metapopulations: A stochastic eco‐evolutionary model}}, doi = {10.1111/evo.14210}, volume = {75}, year = {2021}, } @article{9374, abstract = {If there are no constraints on the process of speciation, then the number of species might be expected to match the number of available niches and this number might be indefinitely large. One possible constraint is the opportunity for allopatric divergence. In 1981, Felsenstein used a simple and elegant model to ask if there might also be genetic constraints. He showed that progress towards speciation could be described by the build‐up of linkage disequilibrium among divergently selected loci and between these loci and those contributing to other forms of reproductive isolation. Therefore, speciation is opposed by recombination, because it tends to break down linkage disequilibria. Felsenstein then introduced a crucial distinction between “two‐allele” models, which are subject to this effect, and “one‐allele” models, which are free from the recombination constraint. These fundamentally important insights have been the foundation for both empirical and theoretical studies of speciation ever since.}, author = {Butlin, Roger K. and Servedio, Maria R. and Smadja, Carole M. and Bank, Claudia and Barton, Nicholas H and Flaxman, Samuel M. and Giraud, Tatiana and Hopkins, Robin and Larson, Erica L. and Maan, Martine E. and Meier, Joana and Merrill, Richard and Noor, Mohamed A. F. and Ortiz‐Barrientos, Daniel and Qvarnström, Anna}, issn = {1558-5646}, journal = {Evolution}, keywords = {Genetics, Ecology, Evolution, Behavior and Systematics, General Agricultural and Biological Sciences}, number = {5}, pages = {978--988}, publisher = {Wiley}, title = {{Homage to Felsenstein 1981, or why are there so few/many species?}}, doi = {10.1111/evo.14235}, volume = {75}, year = {2021}, } @misc{13062, abstract = {This paper analyzes the conditions for local adaptation in a metapopulation with infinitely many islands under a model of hard selection, where population size depends on local fitness. Each island belongs to one of two distinct ecological niches or habitats. Fitness is influenced by an additive trait which is under habitat-dependent directional selection. Our analysis is based on the diffusion approximation and accounts for both genetic drift and demographic stochasticity. By neglecting linkage disequilibria, it yields the joint distribution of allele frequencies and population size on each island. We find that under hard selection, the conditions for local adaptation in a rare habitat are more restrictive for more polygenic traits: even moderate migration load per locus at very many loci is sufficient for population sizes to decline. This further reduces the efficacy of selection at individual loci due to increased drift and because smaller populations are more prone to swamping due to migration, causing a positive feedback between increasing maladaptation and declining population sizes. Our analysis also highlights the importance of demographic stochasticity, which exacerbates the decline in numbers of maladapted populations, leading to population collapse in the rare habitat at significantly lower migration than predicted by deterministic arguments.}, author = {Szep, Eniko and Sachdeva, Himani and Barton, Nicholas H}, publisher = {Dryad}, title = {{Supplementary code for: Polygenic local adaptation in metapopulations: A stochastic eco-evolutionary model}}, doi = {10.5061/DRYAD.8GTHT76P1}, year = {2021}, } @article{9383, abstract = {A primary roadblock to our understanding of speciation is that it usually occurs over a timeframe that is too long to study from start to finish. The idea of a speciation continuum provides something of a solution to this problem; rather than observing the entire process, we can simply reconstruct it from the multitude of speciation events that surround us. But what do we really mean when we talk about the speciation continuum, and can it really help us understand speciation? We explored these questions using a literature review and online survey of speciation researchers. Although most researchers were familiar with the concept and thought it was useful, our survey revealed extensive disagreement about what the speciation continuum actually tells us. This is due partly to the lack of a clear definition. Here, we provide an explicit definition that is compatible with the Biological Species Concept. That is, the speciation continuum is a continuum of reproductive isolation. After outlining the logic of the definition in light of alternatives, we explain why attempts to reconstruct the speciation process from present‐day populations will ultimately fail. We then outline how we think the speciation continuum concept can continue to act as a foundation for understanding the continuum of reproductive isolation that surrounds us.}, author = {Stankowski, Sean and Ravinet, Mark}, issn = {1558-5646}, journal = {Evolution}, number = {6}, pages = {1256--1273}, publisher = {Oxford University Press}, title = {{Defining the speciation continuum}}, doi = {10.1111/evo.14215}, volume = {75}, year = {2021}, }