TY - JOUR AB - The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1’s functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1’s enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching. AU - Düllberg, Christian F AU - Auer, Albert AU - Canigova, Nikola AU - Loibl, Katrin AU - Loose, Martin ID - 8988 IS - 1 JF - PNAS SN - 00278424 TI - In vitro reconstitution reveals phosphoinositides as cargo-release factors and activators of the ARF6 GAP ADAP1 VL - 118 ER - TY - JOUR AB - Gradients of chemokines and growth factors guide migrating cells and morphogenetic processes. Migration of antigen-presenting dendritic cells from the interstitium into the lymphatic system is dependent on chemokine CCL21, which is secreted by endothelial cells of the lymphatic capillary, binds heparan sulfates and forms gradients decaying into the interstitium. Despite the importance of CCL21 gradients, and chemokine gradients in general, the mechanisms of gradient formation are unclear. Studies on fibroblast growth factors have shown that limited diffusion is crucial for gradient formation. Here, we used the mouse dermis as a model tissue to address the necessity of CCL21 anchoring to lymphatic capillary heparan sulfates in the formation of interstitial CCL21 gradients. Surprisingly, the absence of lymphatic endothelial heparan sulfates resulted only in a modest decrease of CCL21 levels at the lymphatic capillaries and did neither affect interstitial CCL21 gradient shape nor dendritic cell migration toward lymphatic capillaries. Thus, heparan sulfates at the level of the lymphatic endothelium are dispensable for the formation of a functional CCL21 gradient. AU - Vaahtomeri, Kari AU - Moussion, Christine AU - Hauschild, Robert AU - Sixt, Michael K ID - 9259 JF - Frontiers in Immunology TI - Shape and function of interstitial chemokine CCL21 gradients are independent of heparan sulfates produced by lymphatic endothelium VL - 12 ER - TY - JOUR AB - In this issue of Developmental Cell, Doyle and colleagues identify periodic anterior contraction as a characteristic feature of fibroblasts and mesenchymal cancer cells embedded in 3D collagen gels. This contractile mechanism generates a matrix prestrain required for crawling in fibrous 3D environments. AU - Gärtner, Florian R AU - Sixt, Michael K ID - 9294 IS - 6 JF - Developmental Cell SN - 15345807 TI - Engaging the front wheels to drive through fibrous terrain VL - 56 ER - TY - JOUR AB - Attachment of adhesive molecules on cell culture surfaces to restrict cell adhesion to defined areas and shapes has been vital for the progress of in vitro research. In currently existing patterning methods, a combination of pattern properties such as stability, precision, specificity, high-throughput outcome, and spatiotemporal control is highly desirable but challenging to achieve. Here, we introduce a versatile and high-throughput covalent photoimmobilization technique, comprising a light-dose-dependent patterning step and a subsequent functionalization of the pattern via click chemistry. This two-step process is feasible on arbitrary surfaces and allows for generation of sustainable patterns and gradients. The method is validated in different biological systems by patterning adhesive ligands on cell-repellent surfaces, thereby constraining the growth and migration of cells to the designated areas. We then implement a sequential photopatterning approach by adding a second switchable patterning step, allowing for spatiotemporal control over two distinct surface patterns. As a proof of concept, we reconstruct the dynamics of the tip/stalk cell switch during angiogenesis. Our results show that the spatiotemporal control provided by our “sequential photopatterning” system is essential for mimicking dynamic biological processes and that our innovative approach has great potential for further applications in cell science. AU - Zisis, Themistoklis AU - Schwarz, Jan AU - Balles, Miriam AU - Kretschmer, Maibritt AU - Nemethova, Maria AU - Chait, Remy P AU - Hauschild, Robert AU - Lange, Janina AU - Guet, Calin C AU - Sixt, Michael K AU - Zahler, Stefan ID - 9822 IS - 30 JF - ACS Applied Materials and Interfaces SN - 19448244 TI - Sequential and switchable patterning for studying cellular processes under spatiotemporal control VL - 13 ER - TY - JOUR AB - Hematopoietic-specific protein 1 (Hem1) is an essential subunit of the WAVE regulatory complex (WRC) in immune cells. WRC is crucial for Arp2/3 complex activation and the protrusion of branched actin filament networks. Moreover, Hem1 loss of function in immune cells causes autoimmune diseases in humans. Here, we show that genetic removal of Hem1 in macrophages diminishes frequency and efficacy of phagocytosis as well as phagocytic cup formation in addition to defects in lamellipodial protrusion and migration. Moreover, Hem1-null macrophages displayed strong defects in cell adhesion despite unaltered podosome formation and concomitant extracellular matrix degradation. Specifically, dynamics of both adhesion and de-adhesion as well as concomitant phosphorylation of paxillin and focal adhesion kinase (FAK) were significantly compromised. Accordingly, disruption of WRC function in non-hematopoietic cells coincided with both defects in adhesion turnover and altered FAK and paxillin phosphorylation. Consistently, platelets exhibited reduced adhesion and diminished integrin αIIbβ3 activation upon WRC removal. Interestingly, adhesion phenotypes, but not lamellipodia formation, were partially rescued by small molecule activation of FAK. A full rescue of the phenotype, including lamellipodia formation, required not only the presence of WRCs but also their binding to and activation by Rac. Collectively, our results uncover that WRC impacts on integrin-dependent processes in a FAK-dependent manner, controlling formation and dismantling of adhesions, relevant for properly grabbing onto extracellular surfaces and particles during cell edge expansion, like in migration or phagocytosis. AU - Stahnke, Stephanie AU - Döring, Hermann AU - Kusch, Charly AU - de Gorter, David J.J. AU - Dütting, Sebastian AU - Guledani, Aleks AU - Pleines, Irina AU - Schnoor, Michael AU - Sixt, Michael K AU - Geffers, Robert AU - Rohde, Manfred AU - Müsken, Mathias AU - Kage, Frieda AU - Steffen, Anika AU - Faix, Jan AU - Nieswandt, Bernhard AU - Rottner, Klemens AU - Stradal, Theresia E.B. ID - 10834 IS - 10 JF - Current Biology KW - General Agricultural and Biological Sciences KW - General Biochemistry KW - Genetics and Molecular Biology SN - 0960-9822 TI - Loss of Hem1 disrupts macrophage function and impacts migration, phagocytosis, and integrin-mediated adhesion VL - 31 ER - TY - JOUR AB - Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell–cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin–mediated cell–cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality. AU - Leithner, Alexander F AU - Altenburger, LM AU - Hauschild, R AU - Assen, Frank P AU - Rottner, K AU - TEB, Stradal AU - Diz-Muñoz, A AU - Stein, JV AU - Sixt, Michael K ID - 9094 IS - 4 JF - Journal of Cell Biology SN - 0021-9525 TI - Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse VL - 220 ER - TY - JOUR AB - De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs. AU - Morandell, Jasmin AU - Schwarz, Lena A AU - Basilico, Bernadette AU - Tasciyan, Saren AU - Dimchev, Georgi A AU - Nicolas, Armel AU - Sommer, Christoph M AU - Kreuzinger, Caroline AU - Dotter, Christoph AU - Knaus, Lisa AU - Dobler, Zoe AU - Cacci, Emanuele AU - Schur, Florian KM AU - Danzl, Johann G AU - Novarino, Gaia ID - 9429 IS - 1 JF - Nature Communications KW - General Biochemistry KW - Genetics and Molecular Biology TI - Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development VL - 12 ER - TY - THES AB - Bacteria-host interactions represent a continuous trade-off between benefit and risk. Thus, the host immune response is faced with a non-trivial problem – accommodate beneficial commensals and remove harmful pathogens. This is especially difficult as molecular patterns, such as lipopolysaccharide or specific surface organelles such as pili, are conserved in both, commensal and pathogenic bacteria. Type 1 pili, tightly regulated by phase variation, are considered an important virulence factor of pathogenic bacteria as they facilitate invasion into host cells. While invasion represents a de facto passive mechanism for pathogens to escape the host immune response, we demonstrate a fundamental role of type 1 pili as active modulators of the innate and adaptive immune response. AU - Tomasek, Kathrin ID - 10307 SN - 2663-337X TI - Pathogenic Escherichia coli hijack the host immune response ER - TY - GEN AB - A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on dendritic cells as a previously undescribed binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of pathogenic bacteria to CD14 lead to reduced dendritic cell migration and blunted expression of co-stimulatory molecules, both rate-limiting factors of T cell activation. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease. AU - Tomasek, Kathrin AU - Leithner, Alexander F AU - Glatzová, Ivana AU - Lukesch, Michael S. AU - Guet, Calin C AU - Sixt, Michael K ID - 10316 T2 - bioRxiv TI - Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14 ER - TY - JOUR AB - T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities. AU - Obeidy, Peyman AU - Ju, Lining A. AU - Oehlers, Stefan H. AU - Zulkhernain, Nursafwana S. AU - Lee, Quintin AU - Galeano Niño, Jorge L. AU - Kwan, Rain Y.Q. AU - Tikoo, Shweta AU - Cavanagh, Lois L. AU - Mrass, Paulus AU - Cook, Adam J.L. AU - Jackson, Shaun P. AU - Biro, Maté AU - Roediger, Ben AU - Sixt, Michael K AU - Weninger, Wolfgang ID - 7234 IS - 2 JF - Immunology and Cell Biology SN - 08189641 TI - Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes VL - 98 ER - TY - JOUR AB - A two-dimensional mathematical model for cells migrating without adhesion capabilities is presented and analyzed. Cells are represented by their cortex, which is modeled as an elastic curve, subject to an internal pressure force. Net polymerization or depolymerization in the cortex is modeled via local addition or removal of material, driving a cortical flow. The model takes the form of a fully nonlinear degenerate parabolic system. An existence analysis is carried out by adapting ideas from the theory of gradient flows. Numerical simulations show that these simple rules can account for the behavior observed in experiments, suggesting a possible mechanical mechanism for adhesion-independent motility. AU - Jankowiak, Gaspard AU - Peurichard, Diane AU - Reversat, Anne AU - Schmeiser, Christian AU - Sixt, Michael K ID - 7623 IS - 3 JF - Mathematical Models and Methods in Applied Sciences SN - 02182025 TI - Modeling adhesion-independent cell migration VL - 30 ER - TY - JOUR AB - Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence. AU - Kopf, Aglaja AU - Renkawitz, Jörg AU - Hauschild, Robert AU - Girkontaite, Irute AU - Tedford, Kerry AU - Merrin, Jack AU - Thorn-Seshold, Oliver AU - Trauner, Dirk AU - Häcker, Hans AU - Fischer, Klaus Dieter AU - Kiermaier, Eva AU - Sixt, Michael K ID - 7875 IS - 6 JF - The Journal of Cell Biology TI - Microtubules control cellular shape and coherence in amoeboid migrating cells VL - 219 ER - TY - JOUR AB - In contrast to lymph nodes, the lymphoid regions of the spleen—the white pulp—are located deep within the organ, yielding the trafficking paths of T cells in the white pulp largely invisible. In an intravital microscopy tour de force reported in this issue of Immunity, Chauveau et al. show that T cells perform unidirectional, perivascular migration through the enigmatic marginal zone bridging channels. AU - Sixt, Michael K AU - Lämmermann, Tim ID - 7876 IS - 5 JF - Immunity SN - 10747613 TI - T cells: Bridge-and-channel commute to the white pulp VL - 52 ER - TY - JOUR AB - Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration. AU - Damiano-Guercio, Julia AU - Kurzawa, Laëtitia AU - Müller, Jan AU - Dimchev, Georgi A AU - Schaks, Matthias AU - Nemethova, Maria AU - Pokrant, Thomas AU - Brühmann, Stefan AU - Linkner, Joern AU - Blanchoin, Laurent AU - Sixt, Michael K AU - Rottner, Klemens AU - Faix, Jan ID - 7909 JF - eLife TI - Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion VL - 9 ER - TY - JOUR AB - The WAVE regulatory complex (WRC) is crucial for assembly of the peripheral branched actin network constituting one of the main drivers of eukaryotic cell migration. Here, we uncover an essential role of the hematopoietic-specific WRC component HEM1 for immune cell development. Germline-encoded HEM1 deficiency underlies an inborn error of immunity with systemic autoimmunity, at cellular level marked by WRC destabilization, reduced filamentous actin, and failure to assemble lamellipodia. Hem1−/− mice display systemic autoimmunity, phenocopying the human disease. In the absence of Hem1, B cells become deprived of extracellular stimuli necessary to maintain the strength of B cell receptor signaling at a level permissive for survival of non-autoreactive B cells. This shifts the balance of B cell fate choices toward autoreactive B cells and thus autoimmunity. AU - Salzer, Elisabeth AU - Zoghi, Samaneh AU - Kiss, Máté G. AU - Kage, Frieda AU - Rashkova, Christina AU - Stahnke, Stephanie AU - Haimel, Matthias AU - Platzer, René AU - Caldera, Michael AU - Ardy, Rico Chandra AU - Hoeger, Birgit AU - Block, Jana AU - Medgyesi, David AU - Sin, Celine AU - Shahkarami, Sepideh AU - Kain, Renate AU - Ziaee, Vahid AU - Hammerl, Peter AU - Bock, Christoph AU - Menche, Jörg AU - Dupré, Loïc AU - Huppa, Johannes B. AU - Sixt, Michael K AU - Lomakin, Alexis AU - Rottner, Klemens AU - Binder, Christoph J. AU - Stradal, Theresia E.B. AU - Rezaei, Nima AU - Boztug, Kaan ID - 8132 IS - 49 JF - Science Immunology TI - The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity VL - 5 ER - TY - JOUR AB - Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets. AU - Nicolai, Leo AU - Schiefelbein, Karin AU - Lipsky, Silvia AU - Leunig, Alexander AU - Hoffknecht, Marie AU - Pekayvaz, Kami AU - Raude, Ben AU - Marx, Charlotte AU - Ehrlich, Andreas AU - Pircher, Joachim AU - Zhang, Zhe AU - Saleh, Inas AU - Marel, Anna-Kristina AU - Löf, Achim AU - Petzold, Tobias AU - Lorenz, Michael AU - Stark, Konstantin AU - Pick, Robert AU - Rosenberger, Gerhild AU - Weckbach, Ludwig AU - Uhl, Bernd AU - Xia, Sheng AU - Reichel, Christoph Andreas AU - Walzog, Barbara AU - Schulz, Christian AU - Zheden, Vanessa AU - Bender, Markus AU - Li, Rong AU - Massberg, Steffen AU - Gärtner, Florian R ID - 8787 JF - Nature Communications TI - Vascular surveillance by haptotactic blood platelets in inflammation and infection VL - 11 ER - TY - JOUR AB - Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells. AU - Montesinos López, Juan C AU - Abuzeineh, A AU - Kopf, Aglaja AU - Juanes Garcia, Alba AU - Ötvös, Krisztina AU - Petrášek, J AU - Sixt, Michael K AU - Benková, Eva ID - 8142 IS - 17 JF - The Embo Journal SN - 0261-4189 TI - Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage VL - 39 ER - TY - JOUR AB - Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour. AU - Reversat, Anne AU - Gärtner, Florian R AU - Merrin, Jack AU - Stopp, Julian A AU - Tasciyan, Saren AU - Aguilera Servin, Juan L AU - De Vries, Ingrid AU - Hauschild, Robert AU - Hons, Miroslav AU - Piel, Matthieu AU - Callan-Jones, Andrew AU - Voituriez, Raphael AU - Sixt, Michael K ID - 7885 JF - Nature SN - 00280836 TI - Cellular locomotion using environmental topography VL - 582 ER - TY - JOUR AU - Sixt, Michael K AU - Huttenlocher, Anna ID - 8190 IS - 8 JF - The Journal of Cell Biology TI - Zena Werb (1945-2020): Cell biology in context VL - 219 ER - TY - JOUR AB - Platelets are small anucleate cellular fragments that are released by megakaryocytes and safeguard vascular integrity through a process termed ‘haemostasis’. However, platelets have important roles beyond haemostasis as they contribute to the initiation and coordination of intravascular immune responses. They continuously monitor blood vessel integrity and tightly coordinate vascular trafficking and functions of multiple cell types. In this way platelets act as ‘patrolling officers of the vascular highway’ that help to establish effective immune responses to infections and cancer. Here we discuss the distinct biological features of platelets that allow them to shape immune responses to pathogens and tumour cells, highlighting the parallels between these responses. AU - Gärtner, Florian R AU - Massberg, Steffen ID - 6824 IS - 12 JF - Nature Reviews Immunology SN - 1474-1733 TI - Patrolling the vascular borders: Platelets in immunity to infection and cancer VL - 19 ER -