--- _id: '14321' abstract: - lang: eng text: We demonstrate the possibility of a coupling between the magnetization direction of a ferromagnet and the tilting angle of adsorbed achiral molecules. To illustrate the mechanism of the coupling, we analyze a minimal Stoner model that includes Rashba spin–orbit coupling due to the electric field on the surface of the ferromagnet. The proposed mechanism allows us to study magnetic anisotropy of the system with an extended Stoner–Wohlfarth model and argue that adsorbed achiral molecules can change magnetocrystalline anisotropy of the substrate. Our research aims to motivate further experimental studies of the current-free chirality induced spin selectivity effect involving both enantiomers. acknowledgement: "We thank Zhanybek Alpichshev, Mohammad Reza Safari, Binghai Yan, and Yossi Paltiel for enlightening discussions.\r\nM.L. acknowledges support from the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). A. C. received funding from the European Union’s Horizon Europe research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 101062862 - NeqMolRot." article_number: '104103' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Ragheed full_name: Al Hyder, Ragheed id: d1c405be-ae15-11ed-8510-ccf53278162e last_name: Al Hyder - first_name: Alberto full_name: Cappellaro, Alberto id: 9d13b3cb-30a2-11eb-80dc-f772505e8660 last_name: Cappellaro orcid: 0000-0001-6110-2359 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Al Hyder R, Cappellaro A, Lemeshko M, Volosniev A. Achiral dipoles on a ferromagnet can affect its magnetization direction. The Journal of Chemical Physics. 2023;159(10). doi:10.1063/5.0165806 apa: Al Hyder, R., Cappellaro, A., Lemeshko, M., & Volosniev, A. (2023). Achiral dipoles on a ferromagnet can affect its magnetization direction. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/5.0165806 chicago: Al Hyder, Ragheed, Alberto Cappellaro, Mikhail Lemeshko, and Artem Volosniev. “Achiral Dipoles on a Ferromagnet Can Affect Its Magnetization Direction.” The Journal of Chemical Physics. AIP Publishing, 2023. https://doi.org/10.1063/5.0165806. ieee: R. Al Hyder, A. Cappellaro, M. Lemeshko, and A. Volosniev, “Achiral dipoles on a ferromagnet can affect its magnetization direction,” The Journal of Chemical Physics, vol. 159, no. 10. AIP Publishing, 2023. ista: Al Hyder R, Cappellaro A, Lemeshko M, Volosniev A. 2023. Achiral dipoles on a ferromagnet can affect its magnetization direction. The Journal of Chemical Physics. 159(10), 104103. mla: Al Hyder, Ragheed, et al. “Achiral Dipoles on a Ferromagnet Can Affect Its Magnetization Direction.” The Journal of Chemical Physics, vol. 159, no. 10, 104103, AIP Publishing, 2023, doi:10.1063/5.0165806. short: R. Al Hyder, A. Cappellaro, M. Lemeshko, A. Volosniev, The Journal of Chemical Physics 159 (2023). date_created: 2023-09-13T09:25:09Z date_published: 2023-09-11T00:00:00Z date_updated: 2023-09-20T09:48:12Z day: '11' ddc: - '530' department: - _id: MiLe doi: 10.1063/5.0165806 ec_funded: 1 external_id: arxiv: - '2306.17592' pmid: - '37694742' file: - access_level: open_access checksum: 507ab65ab29e2c987c94cabad7c5370b content_type: application/pdf creator: acappell date_created: 2023-09-13T09:34:20Z date_updated: 2023-09-13T09:34:20Z file_id: '14322' file_name: 104103_1_5.0165806.pdf file_size: 5749653 relation: main_file success: 1 file_date_updated: 2023-09-13T09:34:20Z has_accepted_license: '1' intvolume: ' 159' issue: '10' keyword: - Physical and Theoretical Chemistry - General Physics and Astronomy language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: bd7b5202-d553-11ed-ba76-9b1c1b258338 grant_number: '101062862' name: Non-equilibrium Field Theory of Molecular Rotations - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 issn: - 0021-9606 publication_status: published publisher: AIP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Achiral dipoles on a ferromagnet can affect its magnetization direction tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 159 year: '2023' ... --- _id: '12836' abstract: - lang: eng text: Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two-dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high-power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2 to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton-polaritons presents an attractive approach to control optical responses without the need for large magnets or high-intensity optical pump powers. acknowledgement: The authors acknowledge insightful discussions with Prof. Wang Yao and graphics by Rezlind Bushati. M.K. and N.Y. acknowledge support from NSF grants NSF DMR-1709996 and NSF OMA 1936276. S.G. was supported by the Army Research Office Multidisciplinary University Research Initiative program (W911NF-17-1-0312) and V.M.M. by the Army Research Office grant (W911NF-22-1-0091). K.M acknowledges the SPARC program that supported his collaboration with the CUNY team. The authors acknowledge the Nanofabrication facility at the CUNY Advanced Science Research Center where the cavity devices were fabricated. article_number: '2202631' article_processing_charge: No article_type: original author: - first_name: Mandeep full_name: Khatoniar, Mandeep last_name: Khatoniar - first_name: Nicholas full_name: Yama, Nicholas last_name: Yama - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Sriram full_name: Guddala, Sriram last_name: Guddala - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi - first_name: Kausik full_name: Majumdar, Kausik last_name: Majumdar - first_name: Vinod full_name: Menon, Vinod last_name: Menon citation: ama: Khatoniar M, Yama N, Ghazaryan A, et al. Optical manipulation of Layer–Valley coherence via strong exciton–photon coupling in microcavities. Advanced Optical Materials. 2023;11(13). doi:10.1002/adom.202202631 apa: Khatoniar, M., Yama, N., Ghazaryan, A., Guddala, S., Ghaemi, P., Majumdar, K., & Menon, V. (2023). Optical manipulation of Layer–Valley coherence via strong exciton–photon coupling in microcavities. Advanced Optical Materials. Wiley. https://doi.org/10.1002/adom.202202631 chicago: Khatoniar, Mandeep, Nicholas Yama, Areg Ghazaryan, Sriram Guddala, Pouyan Ghaemi, Kausik Majumdar, and Vinod Menon. “Optical Manipulation of Layer–Valley Coherence via Strong Exciton–Photon Coupling in Microcavities.” Advanced Optical Materials. Wiley, 2023. https://doi.org/10.1002/adom.202202631. ieee: M. Khatoniar et al., “Optical manipulation of Layer–Valley coherence via strong exciton–photon coupling in microcavities,” Advanced Optical Materials, vol. 11, no. 13. Wiley, 2023. ista: Khatoniar M, Yama N, Ghazaryan A, Guddala S, Ghaemi P, Majumdar K, Menon V. 2023. Optical manipulation of Layer–Valley coherence via strong exciton–photon coupling in microcavities. Advanced Optical Materials. 11(13), 2202631. mla: Khatoniar, Mandeep, et al. “Optical Manipulation of Layer–Valley Coherence via Strong Exciton–Photon Coupling in Microcavities.” Advanced Optical Materials, vol. 11, no. 13, 2202631, Wiley, 2023, doi:10.1002/adom.202202631. short: M. Khatoniar, N. Yama, A. Ghazaryan, S. Guddala, P. Ghaemi, K. Majumdar, V. Menon, Advanced Optical Materials 11 (2023). date_created: 2023-04-16T22:01:09Z date_published: 2023-07-04T00:00:00Z date_updated: 2023-10-04T11:15:17Z day: '04' department: - _id: MiLe doi: 10.1002/adom.202202631 external_id: arxiv: - '2211.08755' isi: - '000963866700001' intvolume: ' 11' isi: 1 issue: '13' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2211.08755 month: '07' oa: 1 oa_version: Preprint publication: Advanced Optical Materials publication_identifier: eissn: - 2195-1071 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Optical manipulation of Layer–Valley coherence via strong exciton–photon coupling in microcavities type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2023' ... --- _id: '14037' abstract: - lang: eng text: 'Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions.' acknowledgement: N.M.-S. acknowledges the support of the Ministry of Energy, Israel, as part of the scholarship program for graduate students in the fields of energy. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). Y.P. acknowledges the support of the Ministry of Innovation, Science and Technology, Israel Grant No. 1001593872. Y.P acknowledges the support of the BSF-NSF 094 Grant No. 2022503. article_number: e2300828120 article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Ofek full_name: Vardi, Ofek last_name: Vardi - first_name: Naama full_name: Maroudas-Sklare, Naama last_name: Maroudas-Sklare - first_name: Yuval full_name: Kolodny, Yuval last_name: Kolodny - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Amijai full_name: Saragovi, Amijai last_name: Saragovi - first_name: Nir full_name: Galili, Nir last_name: Galili - first_name: Stav full_name: Ferrera, Stav last_name: Ferrera - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Nir full_name: Yuran, Nir last_name: Yuran - first_name: Hagit P. full_name: Affek, Hagit P. last_name: Affek - first_name: Boaz full_name: Luz, Boaz last_name: Luz - first_name: Yonaton full_name: Goldsmith, Yonaton last_name: Goldsmith - first_name: Nir full_name: Keren, Nir last_name: Keren - first_name: Shira full_name: Yochelis, Shira last_name: Yochelis - first_name: Itay full_name: Halevy, Itay last_name: Halevy - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Yossi full_name: Paltiel, Yossi last_name: Paltiel citation: ama: Vardi O, Maroudas-Sklare N, Kolodny Y, et al. Nuclear spin effects in biological processes. Proceedings of the National Academy of Sciences of the United States of America. 2023;120(32). doi:10.1073/pnas.2300828120 apa: Vardi, O., Maroudas-Sklare, N., Kolodny, Y., Volosniev, A., Saragovi, A., Galili, N., … Paltiel, Y. (2023). Nuclear spin effects in biological processes. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2300828120 chicago: Vardi, Ofek, Naama Maroudas-Sklare, Yuval Kolodny, Artem Volosniev, Amijai Saragovi, Nir Galili, Stav Ferrera, et al. “Nuclear Spin Effects in Biological Processes.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2023. https://doi.org/10.1073/pnas.2300828120. ieee: O. Vardi et al., “Nuclear spin effects in biological processes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 32. National Academy of Sciences, 2023. ista: Vardi O, Maroudas-Sklare N, Kolodny Y, Volosniev A, Saragovi A, Galili N, Ferrera S, Ghazaryan A, Yuran N, Affek HP, Luz B, Goldsmith Y, Keren N, Yochelis S, Halevy I, Lemeshko M, Paltiel Y. 2023. Nuclear spin effects in biological processes. Proceedings of the National Academy of Sciences of the United States of America. 120(32), e2300828120. mla: Vardi, Ofek, et al. “Nuclear Spin Effects in Biological Processes.” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 32, e2300828120, National Academy of Sciences, 2023, doi:10.1073/pnas.2300828120. short: O. Vardi, N. Maroudas-Sklare, Y. Kolodny, A. Volosniev, A. Saragovi, N. Galili, S. Ferrera, A. Ghazaryan, N. Yuran, H.P. Affek, B. Luz, Y. Goldsmith, N. Keren, S. Yochelis, I. Halevy, M. Lemeshko, Y. Paltiel, Proceedings of the National Academy of Sciences of the United States of America 120 (2023). date_created: 2023-08-13T22:01:12Z date_published: 2023-07-31T00:00:00Z date_updated: 2023-10-17T11:45:25Z day: '31' ddc: - '530' department: - _id: MiLe doi: 10.1073/pnas.2300828120 ec_funded: 1 external_id: pmid: - '37523549' file: - access_level: open_access checksum: a5ed64788a5acef9b9a300a26fa5a177 content_type: application/pdf creator: dernst date_created: 2023-08-14T07:43:45Z date_updated: 2023-08-14T07:43:45Z file_id: '14047' file_name: 2023_PNAS_Vardi.pdf file_size: 1003092 relation: main_file success: 1 file_date_updated: 2023-08-14T07:43:45Z has_accepted_license: '1' intvolume: ' 120' issue: '32' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Nuclear spin effects in biological processes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 120 year: '2023' ... --- _id: '14486' abstract: - lang: eng text: We present a minimal model of ferroelectric large polarons, which are suggested as one of the mechanisms responsible for the unique charge transport properties of hybrid perovskites. We demonstrate that short-ranged charge–rotor interactions lead to long-range ferroelectric ordering of rotors, which strongly affects the carrier mobility. In the nonperturbative regime, where our theory cannot be reduced to any of the earlier models, we reveal that the polaron is characterized by large coherence length and a roughly tenfold increase of the effective mass as compared to the bare mass. These results are in good agreement with other theoretical predictions for ferroelectric polarons. Our model establishes a general phenomenological framework for ferroelectric polarons providing the starting point for future studies of their role in the transport properties of hybrid organic-inorganic perovskites. acknowledgement: We thank Zh. Alpichshev, A. Volosniev, and A. V. Zampetaki for fruitful discussions and comments. This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). article_number: '043016' article_processing_charge: Yes article_type: original author: - first_name: Georgios full_name: Koutentakis, Georgios id: d7b23d3a-9e21-11ec-b482-f76739596b95 last_name: Koutentakis - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Koutentakis G, Ghazaryan A, Lemeshko M. Rotor lattice model of ferroelectric large polarons. Physical Review Research. 2023;5(4). doi:10.1103/PhysRevResearch.5.043016 apa: Koutentakis, G., Ghazaryan, A., & Lemeshko, M. (2023). Rotor lattice model of ferroelectric large polarons. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.5.043016 chicago: Koutentakis, Georgios, Areg Ghazaryan, and Mikhail Lemeshko. “Rotor Lattice Model of Ferroelectric Large Polarons.” Physical Review Research. American Physical Society, 2023. https://doi.org/10.1103/PhysRevResearch.5.043016. ieee: G. Koutentakis, A. Ghazaryan, and M. Lemeshko, “Rotor lattice model of ferroelectric large polarons,” Physical Review Research, vol. 5, no. 4. American Physical Society, 2023. ista: Koutentakis G, Ghazaryan A, Lemeshko M. 2023. Rotor lattice model of ferroelectric large polarons. Physical Review Research. 5(4), 043016. mla: Koutentakis, Georgios, et al. “Rotor Lattice Model of Ferroelectric Large Polarons.” Physical Review Research, vol. 5, no. 4, 043016, American Physical Society, 2023, doi:10.1103/PhysRevResearch.5.043016. short: G. Koutentakis, A. Ghazaryan, M. Lemeshko, Physical Review Research 5 (2023). date_created: 2023-11-05T23:00:53Z date_published: 2023-10-05T00:00:00Z date_updated: 2023-11-07T07:53:39Z day: '05' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevResearch.5.043016 ec_funded: 1 external_id: arxiv: - '2301.09875' file: - access_level: open_access checksum: cb8de8fed6e09df1a18bd5a5aec5c55c content_type: application/pdf creator: dernst date_created: 2023-11-07T07:52:46Z date_updated: 2023-11-07T07:52:46Z file_id: '14493' file_name: 2023_PhysReviewResearch_Koutentakis.pdf file_size: 1127522 relation: main_file success: 1 file_date_updated: 2023-11-07T07:52:46Z has_accepted_license: '1' intvolume: ' 5' issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Rotor lattice model of ferroelectric large polarons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '14513' abstract: - lang: eng text: Cold atomic gases have become a paradigmatic system for exploring fundamental physics, which at the same time allows for applications in quantum technologies. The accelerating developments in the field have led to a highly advanced set of engineering techniques that, for example, can tune interactions, shape the external geometry, select among a large set of atomic species with different properties, or control the number of atoms. In particular, it is possible to operate in lower dimensions and drive atomic systems into the strongly correlated regime. In this review, we discuss recent advances in few-body cold atom systems confined in low dimensions from a theoretical viewpoint. We mainly focus on bosonic systems in one dimension and provide an introduction to the static properties before we review the state-of-the-art research into quantum dynamical processes stimulated by the presence of correlations. Besides discussing the fundamental physical phenomena arising in these systems, we also provide an overview of the calculational and numerical tools and methods that are commonly used, thus delivering a balanced and comprehensive overview of the field. We conclude by giving an outlook on possible future directions that are interesting to explore in these correlated systems. acknowledgement: This review could not have been written without the many fruitful discussions and great collaborations with colleagues throughout the years, there are too many to mention. Here we acknowledge conversations regarding the context of the review with Joachim Brand, Fabian Brauneis, Adolfo del Campo, Alberto Cappellaro, Panagiotis Giannakeas, Tommaso Macrí, Oleksandr Marchukov, Lukas Rammelmüller and Manuel Valiente. S. I. M. acknowledges support from the NSF through a grant for ITAMP at Harvard University. T.F. acknowledges support from JSPS KAKENHI Grant Number JP23K03290 and T.F. and Th.B. acknowledge support from the Okinawa Institute for Science and Technology Graduate University, and JST Grant Number JPMJPF2221. A.F. and R. E. B. acknowledge support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) - Edital Universal 406563/2021-7. A. G. V. acknowledges support by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. P. S. is supported by the Cluster of Excellence ‘Advanced Imaging of Matter’ of the Deutsche Forschungsgemeinschaft (DFG) - EXC2056 - project ID 390715994. N. T. Z. is partially supported by the Independent Research Fund Denmark . article_processing_charge: No article_type: original author: - first_name: S. I. full_name: Mistakidis, S. I. last_name: Mistakidis - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: R. E. full_name: Barfknecht, R. E. last_name: Barfknecht - first_name: T. full_name: Fogarty, T. last_name: Fogarty - first_name: Th full_name: Busch, Th last_name: Busch - first_name: A. full_name: Foerster, A. last_name: Foerster - first_name: P. full_name: Schmelcher, P. last_name: Schmelcher - first_name: N. T. full_name: Zinner, N. T. last_name: Zinner citation: ama: Mistakidis SI, Volosniev A, Barfknecht RE, et al. Few-body Bose gases in low dimensions - A laboratory for quantum dynamics. Physics Reports. 2023;1042:1-108. doi:10.1016/j.physrep.2023.10.004 apa: Mistakidis, S. I., Volosniev, A., Barfknecht, R. E., Fogarty, T., Busch, T., Foerster, A., … Zinner, N. T. (2023). Few-body Bose gases in low dimensions - A laboratory for quantum dynamics. Physics Reports. Elsevier. https://doi.org/10.1016/j.physrep.2023.10.004 chicago: Mistakidis, S. I., Artem Volosniev, R. E. Barfknecht, T. Fogarty, Th Busch, A. Foerster, P. Schmelcher, and N. T. Zinner. “Few-Body Bose Gases in Low Dimensions - A Laboratory for Quantum Dynamics.” Physics Reports. Elsevier, 2023. https://doi.org/10.1016/j.physrep.2023.10.004. ieee: S. I. Mistakidis et al., “Few-body Bose gases in low dimensions - A laboratory for quantum dynamics,” Physics Reports, vol. 1042. Elsevier, pp. 1–108, 2023. ista: Mistakidis SI, Volosniev A, Barfknecht RE, Fogarty T, Busch T, Foerster A, Schmelcher P, Zinner NT. 2023. Few-body Bose gases in low dimensions - A laboratory for quantum dynamics. Physics Reports. 1042, 1–108. mla: Mistakidis, S. I., et al. “Few-Body Bose Gases in Low Dimensions - A Laboratory for Quantum Dynamics.” Physics Reports, vol. 1042, Elsevier, 2023, pp. 1–108, doi:10.1016/j.physrep.2023.10.004. short: S.I. Mistakidis, A. Volosniev, R.E. Barfknecht, T. Fogarty, T. Busch, A. Foerster, P. Schmelcher, N.T. Zinner, Physics Reports 1042 (2023) 1–108. date_created: 2023-11-12T23:00:54Z date_published: 2023-11-29T00:00:00Z date_updated: 2023-11-13T08:01:57Z day: '29' department: - _id: MiLe doi: 10.1016/j.physrep.2023.10.004 ec_funded: 1 external_id: arxiv: - '2202.11071' intvolume: ' 1042' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2202.11071 month: '11' oa: 1 oa_version: Preprint page: 1-108 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physics Reports publication_identifier: issn: - 0370-1573 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Few-body Bose gases in low dimensions - A laboratory for quantum dynamics type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1042 year: '2023' ... --- _id: '14658' abstract: - lang: eng text: "We investigate spin-charge separation of a spin-\r\n1\r\n2\r\n Fermi system confined in a triple well where multiple bands are occupied. We assume that our finite fermionic system is close to fully spin polarized while being doped by a hole and an impurity fermion with opposite spin. Our setup involves ferromagnetic couplings among the particles in different bands, leading to the development of strong spin-transport correlations in an intermediate interaction regime. Interactions are then strong enough to lift the degeneracy among singlet and triplet spin configurations in the well of the spin impurity but not strong enough to prohibit hole-induced magnetic excitations to the singlet state. Despite the strong spin-hole correlations, the system exhibits spin-charge deconfinement allowing for long-range entanglement of the spatial and spin degrees of freedom." acknowledgement: This work has been funded by the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG)-EXC 2056-Project ID No. 390715994. G.M.K. gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413. article_number: '043039' article_processing_charge: Yes article_type: original author: - first_name: J. M. full_name: Becker, J. M. last_name: Becker - first_name: Georgios full_name: Koutentakis, Georgios id: d7b23d3a-9e21-11ec-b482-f76739596b95 last_name: Koutentakis - first_name: P. full_name: Schmelcher, P. last_name: Schmelcher citation: ama: Becker JM, Koutentakis G, Schmelcher P. Spin-charge correlations in finite one-dimensional multiband Fermi systems. Physical Review Research. 2023;5(4). doi:10.1103/PhysRevResearch.5.043039 apa: Becker, J. M., Koutentakis, G., & Schmelcher, P. (2023). Spin-charge correlations in finite one-dimensional multiband Fermi systems. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.5.043039 chicago: Becker, J. M., Georgios Koutentakis, and P. Schmelcher. “Spin-Charge Correlations in Finite One-Dimensional Multiband Fermi Systems.” Physical Review Research. American Physical Society, 2023. https://doi.org/10.1103/PhysRevResearch.5.043039. ieee: J. M. Becker, G. Koutentakis, and P. Schmelcher, “Spin-charge correlations in finite one-dimensional multiband Fermi systems,” Physical Review Research, vol. 5, no. 4. American Physical Society, 2023. ista: Becker JM, Koutentakis G, Schmelcher P. 2023. Spin-charge correlations in finite one-dimensional multiband Fermi systems. Physical Review Research. 5(4), 043039. mla: Becker, J. M., et al. “Spin-Charge Correlations in Finite One-Dimensional Multiband Fermi Systems.” Physical Review Research, vol. 5, no. 4, 043039, American Physical Society, 2023, doi:10.1103/PhysRevResearch.5.043039. short: J.M. Becker, G. Koutentakis, P. Schmelcher, Physical Review Research 5 (2023). date_created: 2023-12-10T23:00:58Z date_published: 2023-10-12T00:00:00Z date_updated: 2023-12-11T10:55:52Z day: '12' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevResearch.5.043039 ec_funded: 1 external_id: arxiv: - '2305.09529' file: - access_level: open_access checksum: ee31c0d0de5d1b65591990ae6705a601 content_type: application/pdf creator: dernst date_created: 2023-12-11T10:49:07Z date_updated: 2023-12-11T10:49:07Z file_id: '14672' file_name: 2023_PhysReviewResearch_Becker.pdf file_size: 2362158 relation: main_file success: 1 file_date_updated: 2023-12-11T10:49:07Z has_accepted_license: '1' intvolume: ' 5' issue: '4' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Spin-charge correlations in finite one-dimensional multiband Fermi systems tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '14650' abstract: - lang: eng text: We study the out-of-equilibrium quantum dynamics of dipolar polarons, i.e., impurities immersed in a dipolar Bose-Einstein condensate, after a quench of the impurity-boson interaction. We show that the dipolar nature of the condensate and of the impurity results in anisotropic relaxation dynamics, in particular, anisotropic dressing of the polaron. More relevantly for cold-atom setups, quench dynamics is strongly affected by the interplay between dipolar anisotropy and trap geometry. Our findings pave the way for simulating impurities in anisotropic media utilizing experiments with dipolar mixtures. acknowledgement: "We thank Lauriane Chomaz for useful discussions and comments on the manuscript. We also\r\nthank Ragheed Al Hyder for comments on the manuscript.\r\nG.B. acknowledges support from the Austrian Science Fund (FWF),\r\nunder Project No. M2641-N27. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC2181/1-\r\n390900948 (the Heidelberg STRUCTURES Excellence Cluster). A. G. V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the\r\nMarie Skłodowska-Curie Grant Agreement No. 754411. L.A.P.A acknowledges by the PNRR\r\nMUR project PE0000023 - NQSTI and the Deutsche Forschungsgemeinschaft (DFG, German\r\nResearch Foundation) under Germany’s Excellence Strategy - EXC - 2123 Quantum Frontiers390837967 and FOR2247." article_number: '232' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Luis full_name: Santos, Luis last_name: Santos - first_name: Luisllu A. full_name: Peña Ardila, Luisllu A. last_name: Peña Ardila citation: ama: Volosniev A, Bighin G, Santos L, Peña Ardila LA. Non-equilibrium dynamics of dipolar polarons. SciPost Physics. 2023;15(6). doi:10.21468/scipostphys.15.6.232 apa: Volosniev, A., Bighin, G., Santos, L., & Peña Ardila, L. A. (2023). Non-equilibrium dynamics of dipolar polarons. SciPost Physics. SciPost Foundation. https://doi.org/10.21468/scipostphys.15.6.232 chicago: Volosniev, Artem, Giacomo Bighin, Luis Santos, and Luisllu A. Peña Ardila. “Non-Equilibrium Dynamics of Dipolar Polarons.” SciPost Physics. SciPost Foundation, 2023. https://doi.org/10.21468/scipostphys.15.6.232. ieee: A. Volosniev, G. Bighin, L. Santos, and L. A. Peña Ardila, “Non-equilibrium dynamics of dipolar polarons,” SciPost Physics, vol. 15, no. 6. SciPost Foundation, 2023. ista: Volosniev A, Bighin G, Santos L, Peña Ardila LA. 2023. Non-equilibrium dynamics of dipolar polarons. SciPost Physics. 15(6), 232. mla: Volosniev, Artem, et al. “Non-Equilibrium Dynamics of Dipolar Polarons.” SciPost Physics, vol. 15, no. 6, 232, SciPost Foundation, 2023, doi:10.21468/scipostphys.15.6.232. short: A. Volosniev, G. Bighin, L. Santos, L.A. Peña Ardila, SciPost Physics 15 (2023). date_created: 2023-12-10T13:03:07Z date_published: 2023-12-07T00:00:00Z date_updated: 2023-12-11T07:44:08Z day: '07' ddc: - '530' department: - _id: MiLe doi: 10.21468/scipostphys.15.6.232 ec_funded: 1 external_id: arxiv: - '2305.17969' file: - access_level: open_access checksum: e664372a1fe9d628a9bb1d135ebab7d8 content_type: application/pdf creator: dernst date_created: 2023-12-11T07:42:04Z date_updated: 2023-12-11T07:42:04Z file_id: '14669' file_name: 2023_SciPostPhysics_Volosniev.pdf file_size: 3543541 relation: main_file success: 1 file_date_updated: 2023-12-11T07:42:04Z has_accepted_license: '1' intvolume: ' 15' issue: '6' keyword: - General Physics and Astronomy language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: SciPost Physics publication_identifier: issn: - 2542-4653 publication_status: published publisher: SciPost Foundation quality_controlled: '1' status: public title: Non-equilibrium dynamics of dipolar polarons tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2023' ... --- _id: '13278' abstract: - lang: eng text: We present a numerical analysis of spin-1/2 fermions in a one-dimensional harmonic potential in the presence of a magnetic point-like impurity at the center of the trap. The model represents a few-body analogue of a magnetic impurity in the vicinity of an s-wave superconductor. Already for a few particles we find a ground-state level crossing between sectors with different fermion parities. We interpret this crossing as a few-body precursor of a quantum phase transition, which occurs when the impurity "breaks" a Cooper pair. This picture is further corroborated by analyzing density-density correlations in momentum space. Finally, we discuss how the system may be realized with existing cold-atoms platforms. article_number: '006' article_processing_charge: No article_type: original author: - first_name: Lukas full_name: Rammelmüller, Lukas last_name: Rammelmüller - first_name: David full_name: Huber, David last_name: Huber - first_name: Matija full_name: Čufar, Matija last_name: Čufar - first_name: Joachim full_name: Brand, Joachim last_name: Brand - first_name: Hans-Werner full_name: Hammer, Hans-Werner last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Rammelmüller L, Huber D, Čufar M, Brand J, Hammer H-W, Volosniev A. Magnetic impurity in a one-dimensional few-fermion system. SciPost Physics. 2023;14(1). doi:10.21468/scipostphys.14.1.006 apa: Rammelmüller, L., Huber, D., Čufar, M., Brand, J., Hammer, H.-W., & Volosniev, A. (2023). Magnetic impurity in a one-dimensional few-fermion system. SciPost Physics. SciPost Foundation. https://doi.org/10.21468/scipostphys.14.1.006 chicago: Rammelmüller, Lukas, David Huber, Matija Čufar, Joachim Brand, Hans-Werner Hammer, and Artem Volosniev. “Magnetic Impurity in a One-Dimensional Few-Fermion System.” SciPost Physics. SciPost Foundation, 2023. https://doi.org/10.21468/scipostphys.14.1.006. ieee: L. Rammelmüller, D. Huber, M. Čufar, J. Brand, H.-W. Hammer, and A. Volosniev, “Magnetic impurity in a one-dimensional few-fermion system,” SciPost Physics, vol. 14, no. 1. SciPost Foundation, 2023. ista: Rammelmüller L, Huber D, Čufar M, Brand J, Hammer H-W, Volosniev A. 2023. Magnetic impurity in a one-dimensional few-fermion system. SciPost Physics. 14(1), 006. mla: Rammelmüller, Lukas, et al. “Magnetic Impurity in a One-Dimensional Few-Fermion System.” SciPost Physics, vol. 14, no. 1, 006, SciPost Foundation, 2023, doi:10.21468/scipostphys.14.1.006. short: L. Rammelmüller, D. Huber, M. Čufar, J. Brand, H.-W. Hammer, A. Volosniev, SciPost Physics 14 (2023). date_created: 2023-07-24T10:48:23Z date_published: 2023-01-24T00:00:00Z date_updated: 2023-12-13T11:39:32Z day: '24' ddc: - '530' department: - _id: MiLe doi: 10.21468/scipostphys.14.1.006 external_id: arxiv: - '2204.01606' isi: - '001000325800008' file: - access_level: open_access checksum: ffdb70b9ae7aa45ea4ea6096ecbd6431 content_type: application/pdf creator: dernst date_created: 2023-07-31T08:44:38Z date_updated: 2023-07-31T08:44:38Z file_id: '13328' file_name: 2023_SciPostPhysics_Rammelmueller.pdf file_size: 1163444 relation: main_file success: 1 file_date_updated: 2023-07-31T08:44:38Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '1' keyword: - General Physics and Astronomy language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: SciPost Physics publication_identifier: issn: - 2542-4653 publication_status: published publisher: SciPost Foundation quality_controlled: '1' scopus_import: '1' status: public title: Magnetic impurity in a one-dimensional few-fermion system tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '14246' abstract: - lang: eng text: The model of a ring threaded by the Aharonov-Bohm flux underlies our understanding of a coupling between gauge potentials and matter. The typical formulation of the model is based upon a single particle picture, and should be extended when interactions with other particles become relevant. Here, we illustrate such an extension for a particle in an Aharonov-Bohm ring subject to interactions with a weakly interacting Bose gas. We show that the ground state of the system can be described using the Bose-polaron concept—a particle dressed by interactions with a bosonic environment. We connect the energy spectrum to the effective mass of the polaron, and demonstrate how to change currents in the system by tuning boson-particle interactions. Our results suggest the Aharonov-Bohm ring as a platform for studying coherence and few- to many-body crossover of quasi-particles that arise from an impurity immersed in a medium. acknowledgement: "Open Access funding enabled and organized by Projekt DEAL.\r\nWe would like to thank Jonas Jager for sharing his data with us in the early stages of this project. We thank Joachim Brand and Ray Yang for sharing with us data from Yang et al.46. This work has received funding from the DFG Project no. 413495248 [VO 2437/1-1] (F.B., H.-W.H., A.G.V.). We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG - German Research Foundation) and the Open Access Publishing Fund of the Technical University of Darmstadt." article_number: '224' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Fabian full_name: Brauneis, Fabian last_name: Brauneis - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Hans-Werner full_name: Hammer, Hans-Werner last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Brauneis F, Ghazaryan A, Hammer H-W, Volosniev A. Emergence of a Bose polaron in a small ring threaded by the Aharonov-Bohm flux. Communications Physics. 2023;6. doi:10.1038/s42005-023-01281-2 apa: Brauneis, F., Ghazaryan, A., Hammer, H.-W., & Volosniev, A. (2023). Emergence of a Bose polaron in a small ring threaded by the Aharonov-Bohm flux. Communications Physics. Springer Nature. https://doi.org/10.1038/s42005-023-01281-2 chicago: Brauneis, Fabian, Areg Ghazaryan, Hans-Werner Hammer, and Artem Volosniev. “Emergence of a Bose Polaron in a Small Ring Threaded by the Aharonov-Bohm Flux.” Communications Physics. Springer Nature, 2023. https://doi.org/10.1038/s42005-023-01281-2. ieee: F. Brauneis, A. Ghazaryan, H.-W. Hammer, and A. Volosniev, “Emergence of a Bose polaron in a small ring threaded by the Aharonov-Bohm flux,” Communications Physics, vol. 6. Springer Nature, 2023. ista: Brauneis F, Ghazaryan A, Hammer H-W, Volosniev A. 2023. Emergence of a Bose polaron in a small ring threaded by the Aharonov-Bohm flux. Communications Physics. 6, 224. mla: Brauneis, Fabian, et al. “Emergence of a Bose Polaron in a Small Ring Threaded by the Aharonov-Bohm Flux.” Communications Physics, vol. 6, 224, Springer Nature, 2023, doi:10.1038/s42005-023-01281-2. short: F. Brauneis, A. Ghazaryan, H.-W. Hammer, A. Volosniev, Communications Physics 6 (2023). date_created: 2023-08-28T12:36:49Z date_published: 2023-08-22T00:00:00Z date_updated: 2023-12-13T12:21:09Z day: '22' ddc: - '530' department: - _id: MiLe doi: 10.1038/s42005-023-01281-2 external_id: arxiv: - '2301.10488' isi: - '001052577500002' file: - access_level: open_access checksum: 6edfc59b0ee7dc406d0968b05236e83d content_type: application/pdf creator: dernst date_created: 2023-09-05T08:45:49Z date_updated: 2023-09-05T08:45:49Z file_id: '14268' file_name: 2023_CommPhysics_Brauneis.pdf file_size: 855960 relation: main_file success: 1 file_date_updated: 2023-09-05T08:45:49Z has_accepted_license: '1' intvolume: ' 6' isi: 1 keyword: - General Physics and Astronomy language: - iso: eng month: '08' oa: 1 oa_version: Published Version publication: Communications Physics publication_identifier: issn: - 2399-3650 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Emergence of a Bose polaron in a small ring threaded by the Aharonov-Bohm flux tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2023' ... --- _id: '14238' abstract: - lang: eng text: We demonstrate that a sodium dimer, Na2(13Σ+u), residing on the surface of a helium nanodroplet, can be set into rotation by a nonresonant 1.0 ps infrared laser pulse. The time-dependent degree of alignment measured, exhibits a periodic, gradually decreasing structure that deviates qualitatively from that expected for gas-phase dimers. Comparison to alignment dynamics calculated from the time-dependent rotational Schrödinger equation shows that the deviation is due to the alignment dependent interaction between the dimer and the droplet surface. This interaction confines the dimer to the tangential plane of the droplet surface at the point where it resides and is the reason that the observed alignment dynamics is also well described by a 2D quantum rotor model. acknowledgement: H. S. acknowledges support from The Villum Foundation through a Villum Investigator Grant No. 25886. M. L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). F. J. and R. E. Z. acknowledge support from the Centre for Scientific Computing, Aarhus and the JKU scientific computing administration, Linz, respectively. article_number: '053201' article_processing_charge: No article_type: original author: - first_name: Lorenz full_name: Kranabetter, Lorenz last_name: Kranabetter - first_name: Henrik H. full_name: Kristensen, Henrik H. last_name: Kristensen - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Constant A. full_name: Schouder, Constant A. last_name: Schouder - first_name: Adam S. full_name: Chatterley, Adam S. last_name: Chatterley - first_name: Paul full_name: Janssen, Paul last_name: Janssen - first_name: Frank full_name: Jensen, Frank last_name: Jensen - first_name: Robert E. full_name: Zillich, Robert E. last_name: Zillich - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt citation: ama: Kranabetter L, Kristensen HH, Ghazaryan A, et al. Nonadiabatic laser-induced alignment dynamics of molecules on a surface. Physical Review Letters. 2023;131(5). doi:10.1103/PhysRevLett.131.053201 apa: Kranabetter, L., Kristensen, H. H., Ghazaryan, A., Schouder, C. A., Chatterley, A. S., Janssen, P., … Stapelfeldt, H. (2023). Nonadiabatic laser-induced alignment dynamics of molecules on a surface. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.131.053201 chicago: Kranabetter, Lorenz, Henrik H. Kristensen, Areg Ghazaryan, Constant A. Schouder, Adam S. Chatterley, Paul Janssen, Frank Jensen, Robert E. Zillich, Mikhail Lemeshko, and Henrik Stapelfeldt. “Nonadiabatic Laser-Induced Alignment Dynamics of Molecules on a Surface.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/PhysRevLett.131.053201. ieee: L. Kranabetter et al., “Nonadiabatic laser-induced alignment dynamics of molecules on a surface,” Physical Review Letters, vol. 131, no. 5. American Physical Society, 2023. ista: Kranabetter L, Kristensen HH, Ghazaryan A, Schouder CA, Chatterley AS, Janssen P, Jensen F, Zillich RE, Lemeshko M, Stapelfeldt H. 2023. Nonadiabatic laser-induced alignment dynamics of molecules on a surface. Physical Review Letters. 131(5), 053201. mla: Kranabetter, Lorenz, et al. “Nonadiabatic Laser-Induced Alignment Dynamics of Molecules on a Surface.” Physical Review Letters, vol. 131, no. 5, 053201, American Physical Society, 2023, doi:10.1103/PhysRevLett.131.053201. short: L. Kranabetter, H.H. Kristensen, A. Ghazaryan, C.A. Schouder, A.S. Chatterley, P. Janssen, F. Jensen, R.E. Zillich, M. Lemeshko, H. Stapelfeldt, Physical Review Letters 131 (2023). date_created: 2023-08-27T22:01:16Z date_published: 2023-08-04T00:00:00Z date_updated: 2023-12-13T12:18:54Z day: '04' department: - _id: MiLe doi: 10.1103/PhysRevLett.131.053201 ec_funded: 1 external_id: arxiv: - '2308.15247' isi: - '001101784100001' pmid: - '37595218' intvolume: ' 131' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2308.15247 month: '08' oa: 1 oa_version: Preprint pmid: 1 project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Nonadiabatic laser-induced alignment dynamics of molecules on a surface type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 131 year: '2023' ... --- _id: '14756' abstract: - lang: eng text: "We prove the r-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer r: the 2-groupoid of 2-dimensional fully extended r-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced Spin 2r -action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the rth power of their Serre automorphisms. For r=1, we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to r=2.\r\nTo construct examples, we explicitly describe Spin 2r​-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half of these do not factor through the oriented bordism 2-category." acknowledgement: "N.C. is supported by the DFG Heisenberg Programme.\r\nWe are grateful to Tobias Dyckerhoff, Lukas Müller, Ingo Runkel, and Christopher Schommer-Pries for helpful discussions." article_processing_charge: Yes article_type: original author: - first_name: Nils full_name: Carqueville, Nils last_name: Carqueville - first_name: Lorant full_name: Szegedy, Lorant id: 7943226E-220E-11EA-94C7-D59F3DDC885E last_name: Szegedy orcid: 0000-0003-2834-5054 citation: ama: Carqueville N, Szegedy L. Fully extended r-spin TQFTs. Quantum Topology. 2023;14(3):467-532. doi:10.4171/qt/193 apa: Carqueville, N., & Szegedy, L. (2023). Fully extended r-spin TQFTs. Quantum Topology. European Mathematical Society. https://doi.org/10.4171/qt/193 chicago: Carqueville, Nils, and Lorant Szegedy. “Fully Extended R-Spin TQFTs.” Quantum Topology. European Mathematical Society, 2023. https://doi.org/10.4171/qt/193. ieee: N. Carqueville and L. Szegedy, “Fully extended r-spin TQFTs,” Quantum Topology, vol. 14, no. 3. European Mathematical Society, pp. 467–532, 2023. ista: Carqueville N, Szegedy L. 2023. Fully extended r-spin TQFTs. Quantum Topology. 14(3), 467–532. mla: Carqueville, Nils, and Lorant Szegedy. “Fully Extended R-Spin TQFTs.” Quantum Topology, vol. 14, no. 3, European Mathematical Society, 2023, pp. 467–532, doi:10.4171/qt/193. short: N. Carqueville, L. Szegedy, Quantum Topology 14 (2023) 467–532. date_created: 2024-01-08T13:14:48Z date_published: 2023-10-16T00:00:00Z date_updated: 2024-01-09T09:27:46Z day: '16' ddc: - '530' department: - _id: MiLe doi: 10.4171/qt/193 file: - access_level: open_access checksum: b0590aff6e7ec89cc149ba94d459d3a3 content_type: application/pdf creator: dernst date_created: 2024-01-09T09:25:34Z date_updated: 2024-01-09T09:25:34Z file_id: '14764' file_name: 2023_QuantumTopol_Carqueville.pdf file_size: 707344 relation: main_file success: 1 file_date_updated: 2024-01-09T09:25:34Z has_accepted_license: '1' intvolume: ' 14' issue: '3' keyword: - Geometry and Topology - Mathematical Physics language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 467-532 publication: Quantum Topology publication_identifier: issn: - 1663-487X publication_status: published publisher: European Mathematical Society quality_controlled: '1' scopus_import: '1' status: public title: Fully extended r-spin TQFTs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '10845' abstract: - lang: eng text: We study an impurity with a resonance level whose position coincides with the Fermi energy of the surrounding Fermi gas. An impurity causes a rapid variation of the scattering phase shift for fermions at the Fermi surface, introducing a new characteristic length scale into the problem. We investigate manifestations of this length scale in the self-energy of the impurity and in the density of the bath. Our calculations reveal a model-independent deformation of the density of the Fermi gas, which is determined by the width of the resonance. To provide a broader picture, we investigate time evolution of the density in quench dynamics, and study the behavior of the system at finite temperatures. Finally, we briefly discuss implications of our findings for the Fermi-polaron problem. acknowledgement: M.L. acknowledges support by the Austrian Science Fund (FWF), under Project No. P29902-N27, and by the European Research Council (ERC) starting Grant No. 801770 (ANGULON). A.G.V. acknowledges support by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. article_number: '013160' article_processing_charge: No article_type: original author: - first_name: Mikhail full_name: Maslov, Mikhail id: 2E65BB0E-F248-11E8-B48F-1D18A9856A87 last_name: Maslov orcid: 0000-0003-4074-2570 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Maslov M, Lemeshko M, Volosniev A. Impurity with a resonance in the vicinity of the Fermi energy. Physical Review Research. 2022;4. doi:10.1103/PhysRevResearch.4.013160 apa: Maslov, M., Lemeshko, M., & Volosniev, A. (2022). Impurity with a resonance in the vicinity of the Fermi energy. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.4.013160 chicago: Maslov, Mikhail, Mikhail Lemeshko, and Artem Volosniev. “Impurity with a Resonance in the Vicinity of the Fermi Energy.” Physical Review Research. American Physical Society, 2022. https://doi.org/10.1103/PhysRevResearch.4.013160. ieee: M. Maslov, M. Lemeshko, and A. Volosniev, “Impurity with a resonance in the vicinity of the Fermi energy,” Physical Review Research, vol. 4. American Physical Society, 2022. ista: Maslov M, Lemeshko M, Volosniev A. 2022. Impurity with a resonance in the vicinity of the Fermi energy. Physical Review Research. 4, 013160. mla: Maslov, Mikhail, et al. “Impurity with a Resonance in the Vicinity of the Fermi Energy.” Physical Review Research, vol. 4, 013160, American Physical Society, 2022, doi:10.1103/PhysRevResearch.4.013160. short: M. Maslov, M. Lemeshko, A. Volosniev, Physical Review Research 4 (2022). date_created: 2022-03-13T23:01:46Z date_published: 2022-03-01T00:00:00Z date_updated: 2022-03-14T08:42:24Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevResearch.4.013160 ec_funded: 1 external_id: arxiv: - '2111.13570' file: - access_level: open_access checksum: 62f64b3421a969656ebf52467fa7b6e8 content_type: application/pdf creator: dernst date_created: 2022-03-14T08:38:49Z date_updated: 2022-03-14T08:38:49Z file_id: '10848' file_name: 2022_PhysicalReviewResearch_Maslov.pdf file_size: 1258324 relation: main_file success: 1 file_date_updated: 2022-03-14T08:38:49Z has_accepted_license: '1' intvolume: ' 4' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Impurity with a resonance in the vicinity of the Fermi energy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2022' ... --- _id: '10771' abstract: - lang: eng text: A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects—in electron transmission, electron transport, and chemical reactions—is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified. article_number: '2106629' article_processing_charge: No article_type: review author: - first_name: Ferdinand full_name: Evers, Ferdinand last_name: Evers - first_name: Amnon full_name: Aharony, Amnon last_name: Aharony - first_name: Nir full_name: Bar-Gill, Nir last_name: Bar-Gill - first_name: Ora full_name: Entin-Wohlman, Ora last_name: Entin-Wohlman - first_name: Per full_name: Hedegård, Per last_name: Hedegård - first_name: Oded full_name: Hod, Oded last_name: Hod - first_name: Pavel full_name: Jelinek, Pavel last_name: Jelinek - first_name: Grzegorz full_name: Kamieniarz, Grzegorz last_name: Kamieniarz - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Karen full_name: Michaeli, Karen last_name: Michaeli - first_name: Vladimiro full_name: Mujica, Vladimiro last_name: Mujica - first_name: Ron full_name: Naaman, Ron last_name: Naaman - first_name: Yossi full_name: Paltiel, Yossi last_name: Paltiel - first_name: Sivan full_name: Refaely-Abramson, Sivan last_name: Refaely-Abramson - first_name: Oren full_name: Tal, Oren last_name: Tal - first_name: Jos full_name: Thijssen, Jos last_name: Thijssen - first_name: Michael full_name: Thoss, Michael last_name: Thoss - first_name: Jan M. full_name: Van Ruitenbeek, Jan M. last_name: Van Ruitenbeek - first_name: Latha full_name: Venkataraman, Latha last_name: Venkataraman - first_name: David H. full_name: Waldeck, David H. last_name: Waldeck - first_name: Binghai full_name: Yan, Binghai last_name: Yan - first_name: Leeor full_name: Kronik, Leeor last_name: Kronik citation: ama: 'Evers F, Aharony A, Bar-Gill N, et al. Theory of chirality induced spin selectivity: Progress and challenges. Advanced Materials. 2022;34(13). doi:10.1002/adma.202106629' apa: 'Evers, F., Aharony, A., Bar-Gill, N., Entin-Wohlman, O., Hedegård, P., Hod, O., … Kronik, L. (2022). Theory of chirality induced spin selectivity: Progress and challenges. Advanced Materials. Wiley. https://doi.org/10.1002/adma.202106629' chicago: 'Evers, Ferdinand, Amnon Aharony, Nir Bar-Gill, Ora Entin-Wohlman, Per Hedegård, Oded Hod, Pavel Jelinek, et al. “Theory of Chirality Induced Spin Selectivity: Progress and Challenges.” Advanced Materials. Wiley, 2022. https://doi.org/10.1002/adma.202106629.' ieee: 'F. Evers et al., “Theory of chirality induced spin selectivity: Progress and challenges,” Advanced Materials, vol. 34, no. 13. Wiley, 2022.' ista: 'Evers F, Aharony A, Bar-Gill N, Entin-Wohlman O, Hedegård P, Hod O, Jelinek P, Kamieniarz G, Lemeshko M, Michaeli K, Mujica V, Naaman R, Paltiel Y, Refaely-Abramson S, Tal O, Thijssen J, Thoss M, Van Ruitenbeek JM, Venkataraman L, Waldeck DH, Yan B, Kronik L. 2022. Theory of chirality induced spin selectivity: Progress and challenges. Advanced Materials. 34(13), 2106629.' mla: 'Evers, Ferdinand, et al. “Theory of Chirality Induced Spin Selectivity: Progress and Challenges.” Advanced Materials, vol. 34, no. 13, 2106629, Wiley, 2022, doi:10.1002/adma.202106629.' short: F. Evers, A. Aharony, N. Bar-Gill, O. Entin-Wohlman, P. Hedegård, O. Hod, P. Jelinek, G. Kamieniarz, M. Lemeshko, K. Michaeli, V. Mujica, R. Naaman, Y. Paltiel, S. Refaely-Abramson, O. Tal, J. Thijssen, M. Thoss, J.M. Van Ruitenbeek, L. Venkataraman, D.H. Waldeck, B. Yan, L. Kronik, Advanced Materials 34 (2022). date_created: 2022-02-20T23:01:33Z date_published: 2022-04-01T00:00:00Z date_updated: 2023-08-02T14:30:22Z day: '01' department: - _id: MiLe doi: 10.1002/adma.202106629 external_id: arxiv: - '2108.09998' isi: - '000753795900001' intvolume: ' 34' isi: 1 issue: '13' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2108.09998 month: '04' oa: 1 oa_version: Preprint publication: Advanced Materials publication_identifier: eissn: - '15214095' issn: - '09359648' publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Theory of chirality induced spin selectivity: Progress and challenges' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2022' ... --- _id: '11552' abstract: - lang: eng text: Rotational dynamics of D2 molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD+ ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant BHe of the in-droplet D2 molecule, determined by Fourier analysis, is the same as Bgas for an isolated D2 molecule. Our observations show that the D2 molecules inside helium nanodroplets essentially rotate as free D2 molecules. article_number: '243201' article_processing_charge: No author: - first_name: Junjie full_name: Qiang, Junjie last_name: Qiang - first_name: Lianrong full_name: Zhou, Lianrong last_name: Zhou - first_name: Peifen full_name: Lu, Peifen last_name: Lu - first_name: Kang full_name: Lin, Kang last_name: Lin - first_name: Yongzhe full_name: Ma, Yongzhe last_name: Ma - first_name: Shengzhe full_name: Pan, Shengzhe last_name: Pan - first_name: Chenxu full_name: Lu, Chenxu last_name: Lu - first_name: Wenyu full_name: Jiang, Wenyu last_name: Jiang - first_name: Fenghao full_name: Sun, Fenghao last_name: Sun - first_name: Wenbin full_name: Zhang, Wenbin last_name: Zhang - first_name: Hui full_name: Li, Hui last_name: Li - first_name: Xiaochun full_name: Gong, Xiaochun last_name: Gong - first_name: Ilya Sh full_name: Averbukh, Ilya Sh last_name: Averbukh - first_name: Yehiam full_name: Prior, Yehiam last_name: Prior - first_name: Constant A. full_name: Schouder, Constant A. last_name: Schouder - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt - first_name: Igor full_name: Cherepanov, Igor id: 339C7E5A-F248-11E8-B48F-1D18A9856A87 last_name: Cherepanov - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Wolfgang full_name: Jäger, Wolfgang last_name: Jäger - first_name: Jian full_name: Wu, Jian last_name: Wu citation: ama: Qiang J, Zhou L, Lu P, et al. Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets. Physical Review Letters. 2022;128(24). doi:10.1103/PhysRevLett.128.243201 apa: Qiang, J., Zhou, L., Lu, P., Lin, K., Ma, Y., Pan, S., … Wu, J. (2022). Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.128.243201 chicago: Qiang, Junjie, Lianrong Zhou, Peifen Lu, Kang Lin, Yongzhe Ma, Shengzhe Pan, Chenxu Lu, et al. “Femtosecond Rotational Dynamics of D2 Molecules in Superfluid Helium Nanodroplets.” Physical Review Letters. American Physical Society, 2022. https://doi.org/10.1103/PhysRevLett.128.243201. ieee: J. Qiang et al., “Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets,” Physical Review Letters, vol. 128, no. 24. American Physical Society, 2022. ista: Qiang J, Zhou L, Lu P, Lin K, Ma Y, Pan S, Lu C, Jiang W, Sun F, Zhang W, Li H, Gong X, Averbukh IS, Prior Y, Schouder CA, Stapelfeldt H, Cherepanov I, Lemeshko M, Jäger W, Wu J. 2022. Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets. Physical Review Letters. 128(24), 243201. mla: Qiang, Junjie, et al. “Femtosecond Rotational Dynamics of D2 Molecules in Superfluid Helium Nanodroplets.” Physical Review Letters, vol. 128, no. 24, 243201, American Physical Society, 2022, doi:10.1103/PhysRevLett.128.243201. short: J. Qiang, L. Zhou, P. Lu, K. Lin, Y. Ma, S. Pan, C. Lu, W. Jiang, F. Sun, W. Zhang, H. Li, X. Gong, I.S. Averbukh, Y. Prior, C.A. Schouder, H. Stapelfeldt, I. Cherepanov, M. Lemeshko, W. Jäger, J. Wu, Physical Review Letters 128 (2022). date_created: 2022-07-10T22:01:52Z date_published: 2022-06-16T00:00:00Z date_updated: 2023-08-03T11:54:14Z day: '16' department: - _id: MiLe doi: 10.1103/PhysRevLett.128.243201 ec_funded: 1 external_id: arxiv: - '2201.09281' isi: - '000820659700002' intvolume: ' 128' isi: 1 issue: '24' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2201.09281 month: '06' oa: 1 oa_version: Submitted Version project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Physical Review Letters publication_identifier: eissn: - '10797114' issn: - '00319007' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 128 year: '2022' ... --- _id: '11590' abstract: - lang: eng text: 'We investigate the ground-state properties of weakly repulsive one-dimensional bosons in the presence of an attractive zero-range impurity potential. First, we derive mean-field solutions to the problem on a finite ring for the two asymptotic cases: (i) all bosons are bound to the impurity and (ii) all bosons are in a scattering state. Moreover, we derive the critical line that separates these regimes in the parameter space. In the thermodynamic limit, this critical line determines the maximum number of bosons that can be bound by the impurity potential, forming an artificial atom. Second, we validate the mean-field results using the flow equation approach and the multi-layer multi-configuration time-dependent Hartree method for atomic mixtures. While beyond-mean-field effects destroy long-range order in the Bose gas, the critical boson number is unaffected. Our findings are important for understanding such artificial atoms in low-density Bose gases with static and mobile impurities.' acknowledgement: This work has received funding from the DFG Project No. 413495248 [VO 2437/1-1] (FB, H-WH, AGV) and European Union's Horizon 2020 research and innovation programme under the Marie Skĺodowska-Curie Grant Agreement No. 754411 (AGV). ML acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). SIM acknowledges support from the NSF through a grant for ITAMP at Harvard University. article_number: '063036' article_processing_charge: No article_type: original author: - first_name: Fabian full_name: Brauneis, Fabian last_name: Brauneis - first_name: Timothy G. full_name: Backert, Timothy G. last_name: Backert - first_name: Simeon I. full_name: Mistakidis, Simeon I. last_name: Mistakidis - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Hans Werner full_name: Hammer, Hans Werner last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Brauneis F, Backert TG, Mistakidis SI, Lemeshko M, Hammer HW, Volosniev A. Artificial atoms from cold bosons in one dimension. New Journal of Physics. 2022;24(6). doi:10.1088/1367-2630/ac78d8 apa: Brauneis, F., Backert, T. G., Mistakidis, S. I., Lemeshko, M., Hammer, H. W., & Volosniev, A. (2022). Artificial atoms from cold bosons in one dimension. New Journal of Physics. IOP Publishing. https://doi.org/10.1088/1367-2630/ac78d8 chicago: Brauneis, Fabian, Timothy G. Backert, Simeon I. Mistakidis, Mikhail Lemeshko, Hans Werner Hammer, and Artem Volosniev. “Artificial Atoms from Cold Bosons in One Dimension.” New Journal of Physics. IOP Publishing, 2022. https://doi.org/10.1088/1367-2630/ac78d8. ieee: F. Brauneis, T. G. Backert, S. I. Mistakidis, M. Lemeshko, H. W. Hammer, and A. Volosniev, “Artificial atoms from cold bosons in one dimension,” New Journal of Physics, vol. 24, no. 6. IOP Publishing, 2022. ista: Brauneis F, Backert TG, Mistakidis SI, Lemeshko M, Hammer HW, Volosniev A. 2022. Artificial atoms from cold bosons in one dimension. New Journal of Physics. 24(6), 063036. mla: Brauneis, Fabian, et al. “Artificial Atoms from Cold Bosons in One Dimension.” New Journal of Physics, vol. 24, no. 6, 063036, IOP Publishing, 2022, doi:10.1088/1367-2630/ac78d8. short: F. Brauneis, T.G. Backert, S.I. Mistakidis, M. Lemeshko, H.W. Hammer, A. Volosniev, New Journal of Physics 24 (2022). date_created: 2022-07-17T22:01:55Z date_published: 2022-06-01T00:00:00Z date_updated: 2023-08-03T11:57:41Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/ac78d8 ec_funded: 1 external_id: isi: - '000818530000001' file: - access_level: open_access checksum: dc67b60f2e50e9ef2bd820ca0d7333d2 content_type: application/pdf creator: dernst date_created: 2022-07-18T06:33:13Z date_updated: 2022-07-18T06:33:13Z file_id: '11594' file_name: 2022_NewJournalPhysics_Brauneis.pdf file_size: 3415721 relation: main_file success: 1 file_date_updated: 2022-07-18T06:33:13Z has_accepted_license: '1' intvolume: ' 24' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: New Journal of Physics publication_identifier: issn: - 1367-2630 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Artificial atoms from cold bosons in one dimension tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 24 year: '2022' ... --- _id: '11592' abstract: - lang: eng text: 'We compare recent experimental results [Science 375, 528 (2022)] of the superfluid unitary Fermi gas near the critical temperature with a thermodynamic model based on the elementary excitations of the system. We find good agreement between experimental data and our theory for several quantities such as first sound, second sound, and superfluid fraction. We also show that mode mixing between first and second sound occurs. Finally, we characterize the response amplitude to a density perturbation: Close to the critical temperature both first and second sound can be excited through a density perturbation, whereas at lower temperatures only the first sound mode exhibits a significant response.' acknowledgement: The authors gratefully acknowledge stimulating discussions with T. Enss, and thank an anonymous referee for suggestions and remarks that allowed us to improve the original manuscript. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). article_number: '063329' article_processing_charge: No article_type: original author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Alberto full_name: Cappellaro, Alberto id: 9d13b3cb-30a2-11eb-80dc-f772505e8660 last_name: Cappellaro orcid: 0000-0001-6110-2359 - first_name: L. full_name: Salasnich, L. last_name: Salasnich citation: ama: 'Bighin G, Cappellaro A, Salasnich L. Unitary Fermi superfluid near the critical temperature: Thermodynamics and sound modes from elementary excitations. Physical Review A. 2022;105(6). doi:10.1103/PhysRevA.105.063329' apa: 'Bighin, G., Cappellaro, A., & Salasnich, L. (2022). Unitary Fermi superfluid near the critical temperature: Thermodynamics and sound modes from elementary excitations. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.105.063329' chicago: 'Bighin, Giacomo, Alberto Cappellaro, and L. Salasnich. “Unitary Fermi Superfluid near the Critical Temperature: Thermodynamics and Sound Modes from Elementary Excitations.” Physical Review A. American Physical Society, 2022. https://doi.org/10.1103/PhysRevA.105.063329.' ieee: 'G. Bighin, A. Cappellaro, and L. Salasnich, “Unitary Fermi superfluid near the critical temperature: Thermodynamics and sound modes from elementary excitations,” Physical Review A, vol. 105, no. 6. American Physical Society, 2022.' ista: 'Bighin G, Cappellaro A, Salasnich L. 2022. Unitary Fermi superfluid near the critical temperature: Thermodynamics and sound modes from elementary excitations. Physical Review A. 105(6), 063329.' mla: 'Bighin, Giacomo, et al. “Unitary Fermi Superfluid near the Critical Temperature: Thermodynamics and Sound Modes from Elementary Excitations.” Physical Review A, vol. 105, no. 6, 063329, American Physical Society, 2022, doi:10.1103/PhysRevA.105.063329.' short: G. Bighin, A. Cappellaro, L. Salasnich, Physical Review A 105 (2022). date_created: 2022-07-17T22:01:55Z date_published: 2022-06-30T00:00:00Z date_updated: 2023-08-03T12:00:11Z day: '30' department: - _id: MiLe doi: 10.1103/PhysRevA.105.063329 external_id: arxiv: - '2206.03924' isi: - '000829758500010' intvolume: ' 105' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2206.03924' month: '06' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Unitary Fermi superfluid near the critical temperature: Thermodynamics and sound modes from elementary excitations' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 105 year: '2022' ... --- _id: '11998' abstract: - lang: eng text: Recently it became possible to study highly excited rotational states of molecules in superfluid helium through nonadiabatic alignment experiments (Cherepanov et al 2021 Phys. Rev. A 104 L061303). This calls for theoretical approaches that go beyond explaining renormalized values of molecular spectroscopic constants, which suffices when only the lowest few rotational states are involved. As the first step in this direction, here we present a basic quantum mechanical model describing highly excited rotational states of molecules in superfluid helium nanodroplets. We show that a linear molecule immersed in a superfluid can be seen as an effective symmetric top, similar to the rotational structure of radicals, such as OH or NO, but with the angular momentum of the superfluid playing the role of the electronic angular momentum in free molecules. The simple theory sheds light onto what happens when the rotational angular momentum of the molecule increases beyond the lowest excited states accessible by infrared spectroscopy. In addition, the model allows to estimate the effective rotational and centrifugal distortion constants for a broad range of species and to explain the crossover between light and heavy molecules in superfluid 4He in terms of the many-body wavefunction structure. Some of the above mentioned insights can be acquired by analyzing a simple 2 × 2 matrix. acknowledgement: IC acknowledges the support by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. GB acknowledges support from the Austrian Science Fund (FWF), under Project No. M2461-N27 and from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). ML acknowledges support by the Austrian Science Fund (FWF), under Project No. P29902-N27, and by the European Research Council (ERC) starting Grant No. 801770 (ANGULON). HS acknowledges support from the Independent Research Fund Denmark (Project No. 8021-00232B) and from the Villum Fonden through a Villum Investigator Grant No. 25886. article_number: '075004' article_processing_charge: Yes article_type: original author: - first_name: Igor full_name: Cherepanov, Igor id: 339C7E5A-F248-11E8-B48F-1D18A9856A87 last_name: Cherepanov - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Constant A. full_name: Schouder, Constant A. last_name: Schouder - first_name: Adam S. full_name: Chatterley, Adam S. last_name: Chatterley - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Cherepanov I, Bighin G, Schouder CA, Chatterley AS, Stapelfeldt H, Lemeshko M. A simple model for high rotational excitations of molecules in a superfluid. New Journal of Physics. 2022;24(7). doi:10.1088/1367-2630/ac8113 apa: Cherepanov, I., Bighin, G., Schouder, C. A., Chatterley, A. S., Stapelfeldt, H., & Lemeshko, M. (2022). A simple model for high rotational excitations of molecules in a superfluid. New Journal of Physics. IOP. https://doi.org/10.1088/1367-2630/ac8113 chicago: Cherepanov, Igor, Giacomo Bighin, Constant A. Schouder, Adam S. Chatterley, Henrik Stapelfeldt, and Mikhail Lemeshko. “A Simple Model for High Rotational Excitations of Molecules in a Superfluid.” New Journal of Physics. IOP, 2022. https://doi.org/10.1088/1367-2630/ac8113. ieee: I. Cherepanov, G. Bighin, C. A. Schouder, A. S. Chatterley, H. Stapelfeldt, and M. Lemeshko, “A simple model for high rotational excitations of molecules in a superfluid,” New Journal of Physics, vol. 24, no. 7. IOP, 2022. ista: Cherepanov I, Bighin G, Schouder CA, Chatterley AS, Stapelfeldt H, Lemeshko M. 2022. A simple model for high rotational excitations of molecules in a superfluid. New Journal of Physics. 24(7), 075004. mla: Cherepanov, Igor, et al. “A Simple Model for High Rotational Excitations of Molecules in a Superfluid.” New Journal of Physics, vol. 24, no. 7, 075004, IOP, 2022, doi:10.1088/1367-2630/ac8113. short: I. Cherepanov, G. Bighin, C.A. Schouder, A.S. Chatterley, H. Stapelfeldt, M. Lemeshko, New Journal of Physics 24 (2022). date_created: 2022-08-28T22:02:01Z date_published: 2022-08-11T00:00:00Z date_updated: 2023-08-03T13:19:06Z day: '11' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/ac8113 ec_funded: 1 external_id: isi: - '000839216900001' file: - access_level: open_access checksum: 10116a08d3489befc13dba2cc44490f1 content_type: application/pdf creator: alisjak date_created: 2022-08-29T09:57:40Z date_updated: 2022-08-29T09:57:40Z file_id: '12005' file_name: 2022_NewJournalofPhysics_Cherepanov.pdf file_size: 1912882 relation: main_file success: 1 file_date_updated: 2022-08-29T09:57:40Z has_accepted_license: '1' intvolume: ' 24' isi: 1 issue: '7' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: New Journal of Physics publication_identifier: issn: - 1367-2630 publication_status: published publisher: IOP quality_controlled: '1' scopus_import: '1' status: public title: A simple model for high rotational excitations of molecules in a superfluid tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 24 year: '2022' ... --- _id: '11997' abstract: - lang: eng text: "We study the fate of an impurity in an ultracold heteronuclear Bose mixture, focusing on the experimentally relevant case of a ⁴¹K - ⁸⁷Rb mixture, with the impurity in a ⁴¹K hyperfine state. Our paper provides a comprehensive description of an impurity in a BEC mixture with contact interactions across its phase diagram. We present results for the miscible and immiscible regimes, as well as for the impurity in a self-bound quantum droplet. Here, varying the interactions, we find exotic states where the impurity localizes either at the center or\r\nat the surface of the droplet. " acknowledgement: We thank A. Simoni for providing the calculations of the intercomponent scattering lengths. We gratefully acknowledge stimulating discussions with L. A. Peña Ardila, R. Schmidt, H. Silva, V. Zampronio, and M. Prevedelli for careful reading. G.B. acknowledges support from the Austrian Science Fund (FWF) under Project No. M2641-N27. T.M. acknowledges CNPq for support through Bolsa de produtividade em Pesquisa No. 311079/2015-6. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy No. EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). This work was supported by the Serrapilheira Institute (Grant No. Serra-1812-27802). We thank the High-Performance Computing Center (NPAD) at UFRN for providing computational resources. article_number: '023301' article_processing_charge: No article_type: original author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: A. full_name: Burchianti, A. last_name: Burchianti - first_name: F. full_name: Minardi, F. last_name: Minardi - first_name: T. full_name: Macrì, T. last_name: Macrì citation: ama: Bighin G, Burchianti A, Minardi F, Macrì T. Impurity in a heteronuclear two-component Bose mixture. Physical Review A. 2022;106(2). doi:10.1103/PhysRevA.106.023301 apa: Bighin, G., Burchianti, A., Minardi, F., & Macrì, T. (2022). Impurity in a heteronuclear two-component Bose mixture. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.106.023301 chicago: Bighin, Giacomo, A. Burchianti, F. Minardi, and T. Macrì. “Impurity in a Heteronuclear Two-Component Bose Mixture.” Physical Review A. American Physical Society, 2022. https://doi.org/10.1103/PhysRevA.106.023301. ieee: G. Bighin, A. Burchianti, F. Minardi, and T. Macrì, “Impurity in a heteronuclear two-component Bose mixture,” Physical Review A, vol. 106, no. 2. American Physical Society, 2022. ista: Bighin G, Burchianti A, Minardi F, Macrì T. 2022. Impurity in a heteronuclear two-component Bose mixture. Physical Review A. 106(2), 023301. mla: Bighin, Giacomo, et al. “Impurity in a Heteronuclear Two-Component Bose Mixture.” Physical Review A, vol. 106, no. 2, 023301, American Physical Society, 2022, doi:10.1103/PhysRevA.106.023301. short: G. Bighin, A. Burchianti, F. Minardi, T. Macrì, Physical Review A 106 (2022). date_created: 2022-08-28T22:02:00Z date_published: 2022-08-04T00:00:00Z date_updated: 2023-08-03T13:20:42Z day: '04' department: - _id: MiLe doi: 10.1103/PhysRevA.106.023301 external_id: arxiv: - '2109.07451' isi: - '000837953600006' intvolume: ' 106' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2109.07451 month: '08' oa: 1 oa_version: Preprint project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Impurity in a heteronuclear two-component Bose mixture type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 106 year: '2022' ... --- _id: '12139' abstract: - lang: eng text: We demonstrate the formation of robust zero-energy modes close to magnetic impurities in the iron-based superconductor FeSe1-z Tez. We find that the Zeeman field generated by the impurity favors a spin-triplet interorbital pairing as opposed to the spin-singlet intraorbital pairing prevalent in the bulk. The preferred spin-triplet pairing preserves time-reversal symmetry and is topological, as robust, topologically protected zero modes emerge at the boundary between regions with different pairing states. Moreover, the zero modes form Kramers doublets that are insensitive to the direction of the spin polarization or to the separation between impurities. We argue that our theoretical results are consistent with recent experimental measurements on FeSe1-z Tez. acknowledgement: "We thank Armin Rahmani, Andrey V. Chubukov, Jay D. Sau and Ruixing Zhang for fruitful discussions. AK and PG are supported by NSF-DMR2037996. PG also acknowledges support from NSF-DMR1824265. RMF was supported by the U. S. Department of Energy, Office\r\nof Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Award No. DE-SC0020045. Part of this work was performed at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1607611. " article_number: L201107 article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Ammar full_name: Kirmani, Ammar last_name: Kirmani - first_name: Rafael M. full_name: Fernandes, Rafael M. last_name: Fernandes - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi citation: ama: Ghazaryan A, Kirmani A, Fernandes RM, Ghaemi P. Anomalous Shiba states in topological iron-based superconductors. Physical Review B. 2022;106(20). doi:10.1103/physrevb.106.l201107 apa: Ghazaryan, A., Kirmani, A., Fernandes, R. M., & Ghaemi, P. (2022). Anomalous Shiba states in topological iron-based superconductors. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.106.l201107 chicago: Ghazaryan, Areg, Ammar Kirmani, Rafael M. Fernandes, and Pouyan Ghaemi. “Anomalous Shiba States in Topological Iron-Based Superconductors.” Physical Review B. American Physical Society, 2022. https://doi.org/10.1103/physrevb.106.l201107. ieee: A. Ghazaryan, A. Kirmani, R. M. Fernandes, and P. Ghaemi, “Anomalous Shiba states in topological iron-based superconductors,” Physical Review B, vol. 106, no. 20. American Physical Society, 2022. ista: Ghazaryan A, Kirmani A, Fernandes RM, Ghaemi P. 2022. Anomalous Shiba states in topological iron-based superconductors. Physical Review B. 106(20), L201107. mla: Ghazaryan, Areg, et al. “Anomalous Shiba States in Topological Iron-Based Superconductors.” Physical Review B, vol. 106, no. 20, L201107, American Physical Society, 2022, doi:10.1103/physrevb.106.l201107. short: A. Ghazaryan, A. Kirmani, R.M. Fernandes, P. Ghaemi, Physical Review B 106 (2022). date_created: 2023-01-12T12:04:43Z date_published: 2022-11-15T00:00:00Z date_updated: 2023-08-04T08:55:31Z day: '15' department: - _id: MiLe doi: 10.1103/physrevb.106.l201107 external_id: arxiv: - '2207.12425' isi: - '000893171800001' intvolume: ' 106' isi: 1 issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2207.12425' month: '11' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Anomalous Shiba states in topological iron-based superconductors type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 106 year: '2022' ... --- _id: '12150' abstract: - lang: eng text: Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of nonadditive systems very well. In particular, we recover exact diagonalization in all regimes tested and observe substantial improvement over the standard coherent state estimates in the most challenging intermediate-coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications. acknowledgement: 'We acknowledge fruitful discussions with G. Bighin, G. Fabiani, A. Ghazaryan, C. Lampert, and A. Volosniev at various stages of this work. W.R. acknowledges support through a DOC Fellowship of the Austrian Academy of Sciences and has received funding from the EU Horizon 2020 programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. M.L. and J.H.M. acknowledge support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON) and Synergy Grant No. 856538 (3D-MAGiC), respectively. This work is part of the Shell-NWO/FOMinitiative “Computational sciences for energy research” of Shell and Chemical Sciences, Earth and Life Sciences, Physical Sciences, FOM and STW. ' article_number: '155127' article_processing_charge: No article_type: original author: - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Johan H. full_name: Mentink, Johan H. last_name: Mentink citation: ama: Rzadkowski W, Lemeshko M, Mentink JH. Artificial neural network states for nonadditive systems. Physical Review B. 2022;106(15). doi:10.1103/physrevb.106.155127 apa: Rzadkowski, W., Lemeshko, M., & Mentink, J. H. (2022). Artificial neural network states for nonadditive systems. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.106.155127 chicago: Rzadkowski, Wojciech, Mikhail Lemeshko, and Johan H. Mentink. “Artificial Neural Network States for Nonadditive Systems.” Physical Review B. American Physical Society, 2022. https://doi.org/10.1103/physrevb.106.155127. ieee: W. Rzadkowski, M. Lemeshko, and J. H. Mentink, “Artificial neural network states for nonadditive systems,” Physical Review B, vol. 106, no. 15. American Physical Society, 2022. ista: Rzadkowski W, Lemeshko M, Mentink JH. 2022. Artificial neural network states for nonadditive systems. Physical Review B. 106(15), 155127. mla: Rzadkowski, Wojciech, et al. “Artificial Neural Network States for Nonadditive Systems.” Physical Review B, vol. 106, no. 15, 155127, American Physical Society, 2022, doi:10.1103/physrevb.106.155127. short: W. Rzadkowski, M. Lemeshko, J.H. Mentink, Physical Review B 106 (2022). date_created: 2023-01-12T12:07:49Z date_published: 2022-10-15T00:00:00Z date_updated: 2023-08-04T09:01:48Z day: '15' department: - _id: MiLe doi: 10.1103/physrevb.106.155127 ec_funded: 1 external_id: arxiv: - '2105.15193' isi: - '000875189100005' intvolume: ' 106' isi: 1 issue: '15' language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.2105.15193' month: '10' oa: 1 oa_version: Preprint project: - _id: 05A235A0-7A3F-11EA-A408-12923DDC885E grant_number: '25681' name: Analytic and machine learning approaches to composite quantum impurities - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Artificial neural network states for nonadditive systems type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 106 year: '2022' ...