@article{195,
abstract = {We demonstrate that identical impurities immersed in a two-dimensional many-particle bath can be viewed as flux-tube-charged-particle composites described by fractional statistics. In particular, we find that the bath manifests itself as an external magnetic flux tube with respect to the impurities, and hence the time-reversal symmetry is broken for the effective Hamiltonian describing the impurities. The emerging flux tube acts as a statistical gauge field after a certain critical coupling. This critical coupling corresponds to the intersection point between the quasiparticle state and the phonon wing, where the angular momentum is transferred from the impurity to the bath. This amounts to a novel configuration with emerging anyons. The proposed setup paves the way to realizing anyons using electrons interacting with superfluid helium or lattice phonons, as well as using atomic impurities in ultracold gases.},
author = {Yakaboylu, Enderalp and Lemeshko, Mikhail},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {4},
publisher = {American Physical Society},
title = {{Anyonic statistics of quantum impurities in two dimensions}},
doi = {10.1103/PhysRevB.98.045402},
volume = {98},
year = {2018},
}
@article{417,
abstract = {We introduce a Diagrammatic Monte Carlo (DiagMC) approach to complex molecular impurities with rotational degrees of freedom interacting with a many-particle environment. The treatment is based on the diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach works at arbitrary coupling, is free of systematic errors and of finite size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model, however, the method is quite general and can be applied to a broad variety of quantum impurities possessing angular momentum degrees of freedom. },
author = {Bighin, Giacomo and Tscherbul, Timur and Lemeshko, Mikhail},
journal = {Physical Review Letters},
number = {16},
publisher = {APS Physics},
title = {{Diagrammatic Monte Carlo approach to rotating molecular impurities}},
doi = {10.1103/PhysRevLett.121.165301},
volume = {121},
year = {2018},
}
@article{6339,
abstract = {We introduce a diagrammatic Monte Carlo approach to angular momentum properties of quantum many-particle systems possessing a macroscopic number of degrees of freedom. The treatment is based on a diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach is applicable at arbitrary coupling, is free of systematic errors and of finite-size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model; however, the method is quite general and can be applied to a broad variety of systems in which particles exchange quantum angular momentum with their many-body environment.},
author = {Bighin, Giacomo and Tscherbul, Timur and Lemeshko, Mikhail},
journal = {Physical Review Letters},
number = {16},
publisher = {APS},
title = {{Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems}},
doi = {10.1103/physrevlett.121.165301},
volume = {121},
year = {2018},
}
@article{420,
abstract = {We analyze the theoretical derivation of the beyond-mean-field equation of state for two-dimensional gas of dilute, ultracold alkali-metal atoms in the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensate (BEC) crossover. We show that at zero temperature our theory — considering Gaussian fluctuations on top of the mean-field equation of state — is in very good agreement with experimental data. Subsequently, we investigate the superfluid density at finite temperature and its renormalization due to the proliferation of vortex–antivortex pairs. By doing so, we determine the Berezinskii–Kosterlitz–Thouless (BKT) critical temperature — at which the renormalized superfluid density jumps to zero — as a function of the inter-atomic potential strength. We find that the Nelson–Kosterlitz criterion overestimates the BKT temperature with respect to the renormalization group equations, this effect being particularly relevant in the intermediate regime of the crossover.},
author = {Bighin, Giacomo and Salasnich, Luca},
journal = {International Journal of Modern Physics B},
number = {17},
pages = {1840022},
publisher = {World Scientific Publishing},
title = {{Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover}},
doi = {10.1142/S0217979218400222},
volume = {32},
year = {2018},
}
@article{5983,
abstract = {We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom.},
author = {Yakaboylu, Enderalp and Midya, Bikashkali and Deuchert, Andreas and Leopold, Nikolai K and Lemeshko, Mikhail},
issn = {2469-9950},
journal = {Physical Review B},
number = {22},
publisher = {American Physical Society},
title = {{Theory of the rotating polaron: Spectrum and self-localization}},
doi = {10.1103/physrevb.98.224506},
volume = {98},
year = {2018},
}
@article{5794,
abstract = {We present an approach to interacting quantum many-body systems based on the notion of quantum groups, also known as q-deformed Lie algebras. In particular, we show that, if the symmetry of a free quantum particle corresponds to a Lie group G, in the presence of a many-body environment this particle can be described by a deformed group, Gq. Crucially, the single deformation parameter, q, contains all the information about the many-particle interactions in the system. We exemplify our approach by considering a quantum rotor interacting with a bath of bosons, and demonstrate that extracting the value of q from closed-form solutions in the perturbative regime allows one to predict the behavior of the system for arbitrary values of the impurity-bath coupling strength, in good agreement with nonperturbative calculations. Furthermore, the value of the deformation parameter allows one to predict at which coupling strengths rotor-bath interactions result in a formation of a stable quasiparticle. The approach based on quantum groups does not only allow for a drastic simplification of impurity problems, but also provides valuable insights into hidden symmetries of interacting many-particle systems.},
author = {Yakaboylu, Enderalp and Shkolnikov, Mikhail and Lemeshko, Mikhail},
issn = {00319007},
journal = {Physical Review Letters},
number = {25},
publisher = {American Physical Society},
title = {{Quantum groups as hidden symmetries of quantum impurities}},
doi = {10.1103/PhysRevLett.121.255302},
volume = {121},
year = {2018},
}
@article{1015,
abstract = {Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations.},
author = {Bighin, Giacomo and Salasnich, Luca},
issn = {20452322},
journal = {Scientific Reports},
publisher = {Nature Publishing Group},
title = {{Vortices and antivortices in two-dimensional ultracold Fermi gases}},
doi = {10.1038/srep45702},
volume = {7},
year = {2017},
}
@article{939,
abstract = {We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.},
author = {Midya, Bikashkali and Konotop, Vladimir},
issn = {00319007},
journal = {Physical Review Letters},
number = {3},
publisher = {American Physical Society},
title = {{Waveguides with absorbing boundaries: Nonlinearity controlled by an exceptional point and solitons}},
doi = {10.1103/PhysRevLett.119.033905},
volume = {119},
year = {2017},
}
@article{996,
abstract = {Iodine (I 2 ) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by ⟨cos 2 θ 2D ⟩ , is measured as a function of the laser intensity. The results are well described by ⟨cos 2 θ 2D ⟩ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a ∼ 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of ⟨cos 2 θ 2D ⟩ achieved in He droplets exceed 0.96. },
author = {Shepperson, Benjamin and Chatterley, Adam and Søndergaard, Anders and Christiansen, Lars and Lemeshko, Mikhail and Stapelfeldt, Henrik},
issn = {00219606},
journal = {The Journal of Chemical Physics},
number = {1},
publisher = {AIP},
title = {{Strongly aligned molecules inside helium droplets in the near-adiabatic regime}},
doi = {10.1063/1.4983703},
volume = {147},
year = {2017},
}
@article{1109,
abstract = {Rotation of molecules embedded in He nanodroplets is explored by a combination of fs laser-induced alignment experiments and angulon quasiparticle theory. We demonstrate that at low fluence of the fs alignment pulse, the molecule and its solvation shell can be set into coherent collective rotation lasting long enough to form revivals. With increasing fluence, however, the revivals disappear -- instead, rotational dynamics as rapid as for an isolated molecule is observed during the first few picoseconds. Classical calculations trace this phenomenon to transient decoupling of the molecule from its He shell. Our results open novel opportunities for studying non-equilibrium solute-solvent dynamics and quantum thermalization. },
author = {Shepperson, Benjamin and Søndergaard, Anders and Christiansen, Lars and Kaczmarczyk, Jan and Zillich, Robert and Lemeshko, Mikhail and Stapelfeldt, Henrik},
journal = {Physical Review Letters},
number = {20},
publisher = {American Physical Society},
title = {{Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking-free}},
doi = {10.1103/PhysRevLett.118.203203},
volume = {118},
year = {2017},
}