@article{6786,
abstract = {Dipolar coupling plays a fundamental role in the interaction between electrically or magnetically polarized species such as magnetic atoms and dipolar molecules in a gas or dipolar excitons in the solid state. Unlike Coulomb or contactlike interactions found in many atomic, molecular, and condensed-matter systems, this interaction is long-ranged and highly anisotropic, as it changes from repulsive to attractive depending on the relative positions and orientation of the dipoles. Because of this unique property, many exotic, symmetry-breaking collective states have been recently predicted for cold dipolar gases, but only a few have been experimentally detected and only in dilute atomic dipolar Bose-Einstein condensates. Here, we report on the first observation of attractive dipolar coupling between excitonic dipoles using a new design of stacked semiconductor bilayers. We show that the presence of a dipolar exciton fluid in one bilayer modifies the spatial distribution and increases the binding energy of excitonic dipoles in a vertically remote layer. The binding energy changes are explained using a many-body polaron model describing the deformation of the exciton cloud due to its interaction with a remote dipolar exciton. The surprising nonmonotonic dependence on the cloud density indicates the important role of dipolar correlations, which is unique to dense, strongly interacting dipolar solid-state systems. Our concept provides a route for the realization of dipolar lattices with strong anisotropic interactions in semiconductor systems, which open the way for the observation of theoretically predicted new and exotic collective phases, as well as for engineering and sensing their collective excitations.},
author = {Hubert, Colin and Baruchi, Yifat and Mazuz-Harpaz, Yotam and Cohen, Kobi and Biermann, Klaus and Lemeshko, Mikhail and West, Ken and Pfeiffer, Loren and Rapaport, Ronen and Santos, Paulo},
issn = {2160-3308},
journal = {Physical Review X},
number = {2},
publisher = {APS},
title = {{Attractive dipolar coupling between stacked exciton fluids}},
doi = {10.1103/PhysRevX.9.021026},
volume = {9},
year = {2019},
}
@article{6092,
abstract = {In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital angular momentum, and lattice degrees of freedom, understanding which is key for molecular magnets, nano-magneto-mechanics, spintronics, and ultrafast magnetism. Until now, the timescales of electron-to-lattice angular momentum transfer remain unclear, since modeling this process on a microscopic level requires the addition of an infinite amount of quantum angular momenta. We show that this problem can be solved by reformulating it in terms of the recently discovered angulon quasiparticles, which results in a rotationally invariant quantum many-body theory. In particular, we demonstrate that nonperturbative effects take place even if the electron-phonon coupling is weak and give rise to angular momentum transfer on femtosecond timescales.},
author = {Mentink, Johann H and Katsnelson, Mikhail and Lemeshko, Mikhail},
journal = {Physical Review B},
number = {6},
publisher = {APS},
title = {{Quantum many-body dynamics of the Einstein-de Haas effect}},
doi = {10.1103/PhysRevB.99.064428},
volume = {99},
year = {2019},
}
@article{5886,
abstract = {Problems involving quantum impurities, in which one or a few particles are interacting with a macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and condensed-matter physics. In this paper we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron–a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon–a quasiparticle formed out of a rotating molecule in a bosonic bath. We benchmark these approaches against established theories, evaluating their accuracy as a function of the impurity-bath coupling.},
author = {Li, Xiang and Bighin, Giacomo and Yakaboylu, Enderalp and Lemeshko, Mikhail},
issn = {00268976},
journal = {Molecular Physics},
publisher = {Taylor and Francis},
title = {{Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon}},
doi = {10.1080/00268976.2019.1567852},
year = {2019},
}
@article{6632,
abstract = {We consider a two-component Bose gas in two dimensions at a low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, interspecies interactions induce a nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization-group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases.},
author = {Karle, Volker and Defenu, Nicolò and Enss, Tilman},
issn = {24699934},
journal = {Physical Review A},
number = {6},
publisher = {APS},
title = {{Coupled superfluidity of binary Bose mixtures in two dimensions}},
doi = {10.1103/PhysRevA.99.063627},
volume = {99},
year = {2019},
}
@inproceedings{6646,
abstract = {We demonstrate robust retention of valley coherence and its control via polariton pseudospin precession through the optical TE-TM splitting in bilayer WS2 microcavity exciton polaritons at room temperature.},
author = {Khatoniar, Mandeep and Yama, Nicholas and Ghazaryan, Areg and Guddala, Sriram and Ghaemi, Pouyan and Menon, Vinod},
booktitle = {CLEO: Applications and Technology},
isbn = {9781943580576},
location = {San Jose, CA, United States},
publisher = {OSA},
title = {{Room temperature control of valley coherence in bilayer WS2 exciton polaritons}},
doi = {10.1364/cleo_at.2019.jtu2a.52},
year = {2019},
}
@article{294,
abstract = {We developed a method to calculate two-photon processes in quantum mechanics that replaces the infinite summation over the intermediate states by a perturbation expansion. This latter consists of a series of commutators that involve position, momentum, and Hamiltonian quantum operators. We analyzed several single- and many-particle cases for which a closed-form solution to the perturbation expansion exists, as well as more complicated cases for which a solution is found by convergence. Throughout the article, Rayleigh and Raman scattering are taken as examples of two-photon processes. The present method provides a clear distinction between the Thomson scattering, regarded as classical scattering, and quantum contributions. Such a distinction lets us derive general results concerning light scattering. Finally, possible extensions to the developed formalism are discussed.},
author = {Fratini, Filippo and Safari, Laleh and Amaro, Pedro and Santos, José},
journal = {Physical Review A - Atomic, Molecular, and Optical Physics},
number = {4},
publisher = {American Physical Society},
title = {{Two-photon processes based on quantum commutators}},
doi = {10.1103/PhysRevA.97.043842},
volume = {97},
year = {2018},
}
@article{415,
abstract = {Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the “angulon” quasiparticle [M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field.},
author = {Rzadkowski, Wojciech and Lemeshko, Mikhail},
journal = {The Journal of Chemical Physics},
number = {10},
publisher = {AIP},
title = {{Effect of a magnetic field on molecule–solvent angular momentum transfer }},
doi = { 10.1063/1.5017591 },
volume = {148},
year = {2018},
}
@article{427,
abstract = {We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.},
author = {Amaro, Pedro and Loureiro, Ulisses and Safari, Laleh and Fratini, Filippo and Indelicato, Paul and Stöhlker, Thomas and Santos, José},
journal = { Physical Review A - Atomic, Molecular, and Optical Physics},
number = {2},
publisher = {American Physical Society},
title = {{Quantum interference in laser spectroscopy of highly charged lithiumlike ions}},
doi = {10.1103/PhysRevA.97.022510},
volume = {97},
year = {2018},
}
@article{435,
abstract = {It is shown that two fundamentally different phenomena, the bound states in continuum and the spectral singularity (or time-reversed spectral singularity), can occur simultaneously. This can be achieved in a rectangular core dielectric waveguide with an embedded active (or absorbing) layer. In such a system a two-dimensional bound state in a continuum is created in the plane of a waveguide cross section, and it is emitted or absorbed along the waveguide core. The idea can be used for experimental implementation of a laser or a coherent-perfect-absorber for a photonic bound state that resides in a continuous spectrum.},
author = {Midya, Bikashkali and Konotop, Vladimir},
journal = {Optics Letters},
number = {3},
pages = {607 -- 610},
publisher = {OSA},
title = {{Coherent-perfect-absorber and laser for bound states in a continuum}},
doi = {10.1364/OL.43.000607},
volume = {43},
year = {2018},
}
@article{195,
abstract = {We demonstrate that identical impurities immersed in a two-dimensional many-particle bath can be viewed as flux-tube-charged-particle composites described by fractional statistics. In particular, we find that the bath manifests itself as an external magnetic flux tube with respect to the impurities, and hence the time-reversal symmetry is broken for the effective Hamiltonian describing the impurities. The emerging flux tube acts as a statistical gauge field after a certain critical coupling. This critical coupling corresponds to the intersection point between the quasiparticle state and the phonon wing, where the angular momentum is transferred from the impurity to the bath. This amounts to a novel configuration with emerging anyons. The proposed setup paves the way to realizing anyons using electrons interacting with superfluid helium or lattice phonons, as well as using atomic impurities in ultracold gases.},
author = {Yakaboylu, Enderalp and Lemeshko, Mikhail},
journal = {Physical Review B - Condensed Matter and Materials Physics},
number = {4},
publisher = {American Physical Society},
title = {{Anyonic statistics of quantum impurities in two dimensions}},
doi = {10.1103/PhysRevB.98.045402},
volume = {98},
year = {2018},
}