--- _id: '12716' abstract: - lang: eng text: "The process of detecting and evaluating sensory information to guide behaviour is termed perceptual decision-making (PDM), and is critical for the ability of an organism to interact with its external world. Individuals with autism, a neurodevelopmental condition primarily characterised by social and communication difficulties, frequently exhibit altered sensory processing and PDM difficulties are widely reported. Recent technological advancements have pushed forward our understanding of the genetic changes accompanying this condition, however our understanding of how these mutations affect the function of specific neuronal circuits and bring about the corresponding behavioural changes remains limited. Here, we use an innate PDM task, the looming avoidance response (LAR) paradigm, to identify a convergent behavioural abnormality across three molecularly distinct genetic mouse models of autism (Cul3, Setd5 and Ptchd1). Although mutant mice can rapidly detect threatening visual stimuli, their responses are consistently delayed, requiring longer to initiate an appropriate response than their wild-type siblings. Mutant animals show abnormal adaptation in both their stimulus- evoked escape responses and exploratory dynamics following repeated stimulus presentations. Similarly delayed behavioural responses are observed in wild-type animals when faced with more ambiguous threats, suggesting the mutant phenotype could arise from a dysfunction in the flexible control of this PDM process.\r\nOur knowledge of the core neuronal circuitry mediating the LAR facilitated a detailed dissection of the neuronal mechanisms underlying the behavioural impairment. In vivo extracellular recording revealed that visual responses were unaffected within a key brain region for the rapid processing of visual threats, the superior colliculus (SC), indicating that the behavioural delay was unlikely to originate from sensory impairments. Delayed behavioural responses were recapitulated in the Setd5 model following optogenetic stimulation of the excitatory output neurons of the SC, which are known to mediate escape initiation through the activation of cells in the underlying dorsal periaqueductal grey (dPAG). In vitro patch-clamp recordings of dPAG cells uncovered a stark hypoexcitability phenotype in two out of the three genetic models investigated (Setd5 and Ptchd1), that in Setd5, is mediated by the misregulation of voltage-gated potassium channels. Overall, our results show that the ability to use visual information to drive efficient escape responses is impaired in three diverse genetic mouse models of autism and that, in one of the models studied, this behavioural delay likely originates from differences in the intrinsic excitability of a key subcortical node, the dPAG. Furthermore, this work showcases the use of an innate behavioural paradigm to mechanistically dissect PDM processes in autism." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: LifeSc - _id: M-Shop - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Burnett, Laura id: 3B717F68-F248-11E8-B48F-1D18A9856A87 last_name: Burnett orcid: 0000-0002-8937-410X citation: ama: Burnett L. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. 2023. doi:10.15479/at:ista:12716 apa: Burnett, L. (2023). To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12716 chicago: Burnett, Laura. “To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12716. ieee: L. Burnett, “To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism,” Institute of Science and Technology Austria, 2023. ista: Burnett L. 2023. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. mla: Burnett, Laura. To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12716. short: L. Burnett, To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism, Institute of Science and Technology Austria, 2023. date_created: 2023-03-08T15:19:45Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-04-05T10:59:04Z day: '10' ddc: - '599' - '573' degree_awarded: PhD department: - _id: GradSch - _id: MaJö doi: 10.15479/at:ista:12716 ec_funded: 1 file: - access_level: closed checksum: 6c6d9cc2c4cdacb74e6b1047a34d7332 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12717' file_name: Burnett_Thesis_2023.docx file_size: 23029260 relation: source_file - access_level: open_access checksum: cebc77705288bf4382db9b3541483cd0 content_type: application/pdf creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12718' file_name: Burnett_Thesis_2023_pdfA.pdf file_size: 11959869 relation: main_file success: 1 file_date_updated: 2023-03-08T15:08:46Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '178' project: - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12826' abstract: - lang: eng text: "During navigation, animals can infer the structure of the environment by computing the optic flow cues elicited by their own movements, and subsequently use this information to instruct proper locomotor actions. These computations require a panoramic assessment of the visual environment in order to disambiguate similar sensory experiences that may require distinct behavioral responses. The estimation of the global motion patterns is therefore essential for successful navigation. Yet, our understanding of the algorithms and implementations that enable coherent panoramic visual perception remains scarce. Here I pursue this problem by dissecting the functional aspects of interneuronal communication in the lobula plate tangential cell network in Drosophila melanogaster. The results presented in the thesis demonstrate that the basis for effective interpretation of the optic flow in this circuit are stereotyped synaptic connections that mediate the formation of distinct subnetworks, each extracting a particular pattern of global motion. \r\nFirstly, I show that gap junctions are essential for a correct interpretation of binocular motion cues by horizontal motion-sensitive cells. HS cells form electrical synapses with contralateral H2 neurons that are involved in detecting yaw rotation and translation. I developed an FlpStop-mediated mutant of a gap junction protein ShakB that disrupts these electrical synapses. While the loss of electrical synapses does not affect the tuning of the direction selectivity in HS neurons, it severely alters their sensitivity to horizontal motion in the contralateral side. These physiological changes result in an inappropriate integration of binocular motion cues in walking animals. While wild-type flies form a binocular perception of visual motion by non-linear integration of monocular optic flow cues, the mutant flies sum the monocular inputs linearly. These results indicate that rather than averaging signals in neighboring neurons, gap-junctions operate in conjunction with chemical synapses to mediate complex non-linear optic flow computations.\r\nSecondly, I show that stochastic manipulation of neuronal activity in the lobula plate tangential cell network is a powerful approach to study the neuronal implementation of optic flow-based navigation in flies. Tangential neurons form multiple subnetworks, each mediating course-stabilizing response to a particular global pattern of visual motion. Application of genetic mosaic techniques can provide sparse optogenetic activation of HS cells in numerous combinations. These distinct combinations of activated neurons drive an array of distinct behavioral responses, providing important insights into how visuomotor transformation is performed in the lobula plate tangential cell network. This approach can be complemented by stochastic silencing of tangential neurons, enabling direct assessment of the functional role of individual tangential neurons in the processing of specific visual motion patterns.\r\n\tTaken together, the findings presented in this thesis suggest that establishing specific activity patterns of tangential cells via stereotyped synaptic connectivity is a key to efficient optic flow-based navigation in Drosophila melanogaster." acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Victoria full_name: Pokusaeva, Victoria id: 3184041C-F248-11E8-B48F-1D18A9856A87 last_name: Pokusaeva orcid: 0000-0001-7660-444X citation: ama: Pokusaeva V. Neural control of optic flow-based navigation in Drosophila melanogaster. 2023. doi:10.15479/at:ista:12826 apa: Pokusaeva, V. (2023). Neural control of optic flow-based navigation in Drosophila melanogaster. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12826 chicago: Pokusaeva, Victoria. “Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12826. ieee: V. Pokusaeva, “Neural control of optic flow-based navigation in Drosophila melanogaster,” Institute of Science and Technology Austria, 2023. ista: Pokusaeva V. 2023. Neural control of optic flow-based navigation in Drosophila melanogaster. Institute of Science and Technology Austria. mla: Pokusaeva, Victoria. Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12826. short: V. Pokusaeva, Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster, Institute of Science and Technology Austria, 2023. date_created: 2023-04-14T14:56:04Z date_published: 2023-04-18T00:00:00Z date_updated: 2023-06-23T09:47:36Z day: '18' ddc: - '570' - '571' degree_awarded: PhD department: - _id: MaJö - _id: GradSch doi: 10.15479/at:ista:12826 ec_funded: 1 file: - access_level: closed checksum: 5f589a9af025f7eeebfd0c186209913e content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: vpokusae date_created: 2023-04-20T09:14:38Z date_updated: 2023-04-20T09:26:51Z file_id: '12857' file_name: Thesis_Pokusaeva.docx file_size: 14507243 relation: source_file - access_level: open_access checksum: bbeed76db45a996b4c91a9abe12ce0ec content_type: application/pdf creator: vpokusae date_created: 2023-04-20T09:14:44Z date_updated: 2023-04-20T09:14:44Z file_id: '12858' file_name: Thesis_Pokusaeva.pdf file_size: 10090711 relation: main_file success: 1 file_date_updated: 2023-04-20T09:26:51Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '04' oa: 1 oa_version: Published Version page: '106' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: Neural control of optic flow-based navigation in Drosophila melanogaster tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13230' abstract: - lang: eng text: 'To interpret the sensory environment, the brain combines ambiguous sensory measurements with knowledge that reflects context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages knowledge about the statistical structure of the task to maximize decision accuracy, including knowledge about the dynamics of the environment. We show that its decisions are biased by the dynamically changing task context. The magnitude of this decision bias depends on the observer’s continually evolving belief about the current context. The model therefore not only predicts that decision bias will grow as the context is indicated more reliably, but also as the stability of the environment increases, and as the number of trials since the last context switch grows. Analysis of human choice data validates all three predictions, suggesting that the brain leverages knowledge of the statistical structure of environmental change when interpreting ambiguous sensory signals.' acknowledgement: The authors thank Corey Ziemba and Zoe Boundy-Singer for valuable discussion and feedback. article_number: e1011104 article_processing_charge: No article_type: original author: - first_name: Julie A. full_name: Charlton, Julie A. last_name: Charlton - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Yoon H. full_name: Bai, Yoon H. last_name: Bai - first_name: Ann M. full_name: Hermundstad, Ann M. last_name: Hermundstad - first_name: Robbe L.T. full_name: Goris, Robbe L.T. last_name: Goris citation: ama: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 2023;19(6). doi:10.1371/journal.pcbi.1011104 apa: Charlton, J. A., Mlynarski, W. F., Bai, Y. H., Hermundstad, A. M., & Goris, R. L. T. (2023). Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1011104 chicago: Charlton, Julie A., Wiktor F Mlynarski, Yoon H. Bai, Ann M. Hermundstad, and Robbe L.T. Goris. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pcbi.1011104. ieee: J. A. Charlton, W. F. Mlynarski, Y. H. Bai, A. M. Hermundstad, and R. L. T. Goris, “Environmental dynamics shape perceptual decision bias,” PLoS Computational Biology, vol. 19, no. 6. Public Library of Science, 2023. ista: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. 2023. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 19(6), e1011104. mla: Charlton, Julie A., et al. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology, vol. 19, no. 6, e1011104, Public Library of Science, 2023, doi:10.1371/journal.pcbi.1011104. short: J.A. Charlton, W.F. Mlynarski, Y.H. Bai, A.M. Hermundstad, R.L.T. Goris, PLoS Computational Biology 19 (2023). date_created: 2023-07-16T22:01:09Z date_published: 2023-06-08T00:00:00Z date_updated: 2023-08-02T06:33:50Z day: '08' ddc: - '570' department: - _id: MaJö doi: 10.1371/journal.pcbi.1011104 external_id: isi: - '001003410200003' pmid: - '37289753' file: - access_level: open_access checksum: 800761fa2c647fabd6ad034589bc526e content_type: application/pdf creator: dernst date_created: 2023-07-18T08:07:59Z date_updated: 2023-07-18T08:07:59Z file_id: '13247' file_name: 2023_PloSCompBio_Charlton.pdf file_size: 2281868 relation: main_file success: 1 file_date_updated: 2023-07-18T08:07:59Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Environmental dynamics shape perceptual decision bias tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '12349' abstract: - lang: eng text: Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. We show experimentally that, in agreement with our predictions, receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types. acknowledged_ssus: - _id: ScienComp - _id: PreCl - _id: LifeSc - _id: Bio acknowledgement: We thank Hiroki Asari for sharing the dataset of naturalistic images, Anton Sumser for sharing visual stimulus code, Yoav Ben Simon for initial explorative work with the generation of AAVs, and Tomas Vega-Zuñiga for help with immunostainings. We also thank Gasper Tkacik and members of the Neuroethology group for their comments on the manuscript. This research was supported by the Scientific Service Units of IST Austria through resources provided by Scientific Computing, the Preclinical Facility, the Lab Support Facility, and the Imaging and Optics Facility. This work was supported by European Union Horizon 2020 Marie Skłodowska-Curie grant 665385 (DG), Austrian Science Fund (FWF) stand-alone grant P 34015 (WM), Human Frontiers Science Program LT000256/2018-L (AS), EMBO ALTF 1098-2017 (AS) and the European Research Council Starting Grant 756502 (MJ). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Divyansh full_name: Gupta, Divyansh id: 2A485EBE-F248-11E8-B48F-1D18A9856A87 last_name: Gupta orcid: 0000-0001-7400-6665 - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Anton L full_name: Sumser, Anton L id: 3320A096-F248-11E8-B48F-1D18A9856A87 last_name: Sumser orcid: 0000-0002-4792-1881 - first_name: Olga full_name: Symonova, Olga id: 3C0C7BC6-F248-11E8-B48F-1D18A9856A87 last_name: Symonova orcid: 0000-0003-2012-9947 - first_name: Jan full_name: Svaton, Jan id: f7f724c3-9d6f-11ed-9f44-e5c5f3a5bee2 last_name: Svaton orcid: 0000-0002-6198-2939 - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 citation: ama: Gupta D, Mlynarski WF, Sumser AL, Symonova O, Svaton J, Jösch MA. Panoramic visual statistics shape retina-wide organization of receptive fields. Nature Neuroscience. 2023;26:606-614. doi:10.1038/s41593-023-01280-0 apa: Gupta, D., Mlynarski, W. F., Sumser, A. L., Symonova, O., Svaton, J., & Jösch, M. A. (2023). Panoramic visual statistics shape retina-wide organization of receptive fields. Nature Neuroscience. Springer Nature. https://doi.org/10.1038/s41593-023-01280-0 chicago: Gupta, Divyansh, Wiktor F Mlynarski, Anton L Sumser, Olga Symonova, Jan Svaton, and Maximilian A Jösch. “Panoramic Visual Statistics Shape Retina-Wide Organization of Receptive Fields.” Nature Neuroscience. Springer Nature, 2023. https://doi.org/10.1038/s41593-023-01280-0. ieee: D. Gupta, W. F. Mlynarski, A. L. Sumser, O. Symonova, J. Svaton, and M. A. Jösch, “Panoramic visual statistics shape retina-wide organization of receptive fields,” Nature Neuroscience, vol. 26. Springer Nature, pp. 606–614, 2023. ista: Gupta D, Mlynarski WF, Sumser AL, Symonova O, Svaton J, Jösch MA. 2023. Panoramic visual statistics shape retina-wide organization of receptive fields. Nature Neuroscience. 26, 606–614. mla: Gupta, Divyansh, et al. “Panoramic Visual Statistics Shape Retina-Wide Organization of Receptive Fields.” Nature Neuroscience, vol. 26, Springer Nature, 2023, pp. 606–14, doi:10.1038/s41593-023-01280-0. short: D. Gupta, W.F. Mlynarski, A.L. Sumser, O. Symonova, J. Svaton, M.A. Jösch, Nature Neuroscience 26 (2023) 606–614. date_created: 2023-01-23T14:14:19Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-10-04T11:41:05Z day: '01' ddc: - '570' department: - _id: GradSch - _id: MaJö doi: 10.1038/s41593-023-01280-0 ec_funded: 1 external_id: isi: - '000955258300002' pmid: - '36959418' file: - access_level: open_access checksum: a33d91e398e548f34003170e10988368 content_type: application/pdf creator: dernst date_created: 2023-10-04T11:40:51Z date_updated: 2023-10-04T11:40:51Z file_id: '14395' file_name: 2023_NatureNeuroscience_Gupta.pdf file_size: 6144866 relation: main_file success: 1 file_date_updated: 2023-10-04T11:40:51Z has_accepted_license: '1' intvolume: ' 26' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 606-614 pmid: 1 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 626c45b5-2b32-11ec-9570-e509828c1ba6 grant_number: P34015 name: Efficient coding with biophysical realism - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention - _id: 266D407A-B435-11E9-9278-68D0E5697425 grant_number: LT000256 name: Neuronal networks of salience and spatial detection in the murine superior colliculus - _id: 264FEA02-B435-11E9-9278-68D0E5697425 grant_number: ALTF 1098-2017 name: Connecting sensory with motor processing in the superior colliculus publication: Nature Neuroscience publication_identifier: eissn: - 1546-1726 issn: - 1097-6256 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12370' relation: research_data status: public scopus_import: '1' status: public title: Panoramic visual statistics shape retina-wide organization of receptive fields tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2023' ... --- _id: '12531' abstract: - lang: eng text: "All visual experiences of the vertebrates begin with light being converted into electrical signals\r\nby the eye retina. Retinal ganglion cells (RGCs) are the neurons of the innermost layer of the\r\nmammal retina, and they transmit visual information to the rest of the brain.\r\nIt has been shown that RGCs vary in their morphology and genetic profiles, moreover they can\r\nbe unambiguously grouped into subtypes that share the same morphological and/or molecular\r\nproperties. However, in terms of RGCs function, it remains unclear how many distinct types\r\nthere are and what response properties their typology relies on. Even given the recent studies\r\nthat successfully classified RGCs in a patch of the retina [1] and in scotopic conditions [2], the\r\nquestion remains whether the found subtypes persist across the entire retina.\r\nIn this work, using a novel imaging method, we show that, when sampled from a large portion\r\nof the retina, RGCs can not be clearly divided into functional subtypes. We found that in\r\nphotopic conditions, which implies more prominent natural scene statistic differences across\r\nthe visual field, response properties can be exhibited by cells differently depending on their\r\nlocation in the retina, which leads to formation of a gradient of features rather than distinct\r\nclasses.\r\nThis finding suggests that RGCs follow a global organization across the visual field of the\r\nanimal, adapting each RGC subtype to the requirements imposed by the natural scene statistics." alternative_title: - ISTA Master's Thesis article_processing_charge: No author: - first_name: Kseniia full_name: Kirillova, Kseniia id: 8e3f931e-dc85-11ea-9058-e7b957bf23f0 last_name: Kirillova citation: ama: Kirillova K. Panoramic functional gradients across the mouse retina. 2023. doi:10.15479/at:ista:12531 apa: Kirillova, K. (2023). Panoramic functional gradients across the mouse retina. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12531 chicago: Kirillova, Kseniia. “Panoramic Functional Gradients across the Mouse Retina.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12531. ieee: K. Kirillova, “Panoramic functional gradients across the mouse retina,” Institute of Science and Technology Austria, 2023. ista: Kirillova K. 2023. Panoramic functional gradients across the mouse retina. Institute of Science and Technology Austria. mla: Kirillova, Kseniia. Panoramic Functional Gradients across the Mouse Retina. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12531. short: K. Kirillova, Panoramic Functional Gradients across the Mouse Retina, Institute of Science and Technology Austria, 2023. date_created: 2023-02-09T07:45:05Z date_published: 2023-02-08T00:00:00Z date_updated: 2024-02-09T23:30:04Z day: '08' ddc: - '570' degree_awarded: MS department: - _id: GradSch - _id: MaJö doi: 10.15479/at:ista:12531 file: - access_level: open_access checksum: 57d8da3a6c749eb1556b7435fe266a5f content_type: application/pdf creator: cchlebak date_created: 2023-02-09T08:03:32Z date_updated: 2024-02-09T23:30:03Z embargo: 2024-02-08 file_id: '12532' file_name: Thesis_Kseniia___ISTA__istaustriathesis_PDF-A.pdf file_size: 8369317 relation: main_file - access_level: closed checksum: 87fb44318e4f9eb9da2ad9ad6ca8e76f content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-02-10T09:32:06Z date_updated: 2024-02-09T23:30:03Z embargo_to: open_access file_id: '12535' file_name: Thesis Kseniia - ISTA [istaustriathesis]-FINAL.zip file_size: 11204408 relation: source_file file_date_updated: 2024-02-09T23:30:03Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '02' oa: 1 oa_version: Published Version page: '46' publication_identifier: issn: - 2791-4585 publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: Panoramic functional gradients across the mouse retina tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2023' ... --- _id: '12226' abstract: - lang: eng text: "Background: Biases of DNA repair can shape the nucleotide landscape of genomes at evolutionary timescales. The molecular mechanisms of those biases are still poorly understood because it is difficult to isolate the contributions of DNA repair from those of DNA damage.\r\n\r\nResults: Here, we develop a genome-wide assay whereby the same DNA lesion is repaired in different genomic contexts. We insert thousands of barcoded transposons carrying a reporter of DNA mismatch repair in the genome of mouse embryonic stem cells. Upon inducing a double-strand break between tandem repeats, a mismatch is generated if the break is repaired through single-strand annealing. The resolution of the mismatch showed a 60–80% bias in favor of the strand with the longest 3′ flap. The location of the lesion in the genome and the type of mismatch had little influence on the bias. Instead, we observe a complete reversal of the bias when the longest 3′ flap is moved to the opposite strand by changing the position of the double-strand break in the reporter.\r\n\r\nConclusions: These results suggest that the processing of the double-strand break has a major influence on the repair of mismatches during single-strand annealing." acknowledgement: We acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC RGPIN-2020-06377), the Spanish Ministry of Economy, Industry and Competitiveness (“Centro de Excelencia Severo Ochoa 2013-2017”, Plan Estatal PGC2018-099807-B-I00), of the CERCA Programme/Generalitat de Catalunya, and of the European Research Council (Synergy Grant 609989). VOP was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie programme (665385). We also acknowledge the support of the Spanish Ministry of Economy and Competitiveness (MEIC) to the EMBL partnership. article_number: '93' article_processing_charge: No article_type: original author: - first_name: Victoria full_name: Pokusaeva, Victoria id: 3184041C-F248-11E8-B48F-1D18A9856A87 last_name: Pokusaeva orcid: 0000-0001-7660-444X - first_name: Aránzazu Rosado full_name: Diez, Aránzazu Rosado last_name: Diez - first_name: Lorena full_name: Espinar, Lorena last_name: Espinar - first_name: Albert Torelló full_name: Pérez, Albert Torelló last_name: Pérez - first_name: Guillaume J. full_name: Filion, Guillaume J. last_name: Filion citation: ama: Pokusaeva V, Diez AR, Espinar L, Pérez AT, Filion GJ. Strand asymmetry influences mismatch resolution during single-strand annealing. Genome Biology. 2022;23. doi:10.1186/s13059-022-02665-3 apa: Pokusaeva, V., Diez, A. R., Espinar, L., Pérez, A. T., & Filion, G. J. (2022). Strand asymmetry influences mismatch resolution during single-strand annealing. Genome Biology. Springer Nature. https://doi.org/10.1186/s13059-022-02665-3 chicago: Pokusaeva, Victoria, Aránzazu Rosado Diez, Lorena Espinar, Albert Torelló Pérez, and Guillaume J. Filion. “Strand Asymmetry Influences Mismatch Resolution during Single-Strand Annealing.” Genome Biology. Springer Nature, 2022. https://doi.org/10.1186/s13059-022-02665-3. ieee: V. Pokusaeva, A. R. Diez, L. Espinar, A. T. Pérez, and G. J. Filion, “Strand asymmetry influences mismatch resolution during single-strand annealing,” Genome Biology, vol. 23. Springer Nature, 2022. ista: Pokusaeva V, Diez AR, Espinar L, Pérez AT, Filion GJ. 2022. Strand asymmetry influences mismatch resolution during single-strand annealing. Genome Biology. 23, 93. mla: Pokusaeva, Victoria, et al. “Strand Asymmetry Influences Mismatch Resolution during Single-Strand Annealing.” Genome Biology, vol. 23, 93, Springer Nature, 2022, doi:10.1186/s13059-022-02665-3. short: V. Pokusaeva, A.R. Diez, L. Espinar, A.T. Pérez, G.J. Filion, Genome Biology 23 (2022). date_created: 2023-01-16T09:48:44Z date_published: 2022-04-12T00:00:00Z date_updated: 2023-08-04T09:27:00Z day: '12' ddc: - '570' department: - _id: MaJö doi: 10.1186/s13059-022-02665-3 ec_funded: 1 external_id: isi: - '000781953800001' pmid: - '35414014' file: - access_level: open_access checksum: 17bb091fec04d82ba20a3458c4cfd2bd content_type: application/pdf creator: dernst date_created: 2023-01-27T09:01:40Z date_updated: 2023-01-27T09:01:40Z file_id: '12419' file_name: 2022_GenomeBiology_Pokusaeva.pdf file_size: 4939342 relation: main_file success: 1 file_date_updated: 2023-01-27T09:01:40Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Genome Biology publication_identifier: issn: - 1474-760X publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: software url: 'https://github.com/cellcomplexitylab/strand_asymmetry ' - relation: software url: https://hub.docker.com/r/gui11aume/strand_asymmetry scopus_import: '1' status: public title: Strand asymmetry influences mismatch resolution during single-strand annealing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2022' ... --- _id: '12288' abstract: - lang: eng text: To understand the function of neuronal circuits, it is crucial to disentangle the connectivity patterns within the network. However, most tools currently used to explore connectivity have low throughput, low selectivity, or limited accessibility. Here, we report the development of an improved packaging system for the production of the highly neurotropic RVdGenvA-CVS-N2c rabies viral vectors, yielding titers orders of magnitude higher with no background contamination, at a fraction of the production time, while preserving the efficiency of transsynaptic labeling. Along with the production pipeline, we developed suites of ‘starter’ AAV and bicistronic RVdG-CVS-N2c vectors, enabling retrograde labeling from a wide range of neuronal populations, tailored for diverse experimental requirements. We demonstrate the power and flexibility of the new system by uncovering hidden local and distal inhibitory connections in the mouse hippocampal formation and by imaging the functional properties of a cortical microcircuit across weeks. Our novel production pipeline provides a convenient approach to generate new rabies vectors, while our toolkit flexibly and efficiently expands the current capacity to label, manipulate and image the neuronal activity of interconnected neuronal circuits in vitro and in vivo. acknowledged_ssus: - _id: Bio - _id: PreCl acknowledgement: We thank F Marr for technical assistance, A Murray for RVdG-CVS-N2c viruses and Neuro2A packaging cell-lines and J Watson for reading the manuscript. This research was supported by the Scientific Service Units (SSU) of IST-Austria through resources provided by the Imaging and Optics Facility (IOF) and the Preclinical Facility (PCF). This project was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC advanced grant No 692692, PJ, ERC starting grant No 756502, MJ), the Fond zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award, PJ), the Human Frontier Science Program (LT000256/2018-L, AS) and EMBO (ALTF 1098-2017, AS). article_number: '79848' article_processing_charge: No article_type: original author: - first_name: Anton L full_name: Sumser, Anton L id: 3320A096-F248-11E8-B48F-1D18A9856A87 last_name: Sumser orcid: 0000-0002-4792-1881 - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 - first_name: Peter M full_name: Jonas, Peter M id: 353C1B58-F248-11E8-B48F-1D18A9856A87 last_name: Jonas orcid: 0000-0001-5001-4804 - first_name: Yoav full_name: Ben Simon, Yoav id: 43DF3136-F248-11E8-B48F-1D18A9856A87 last_name: Ben Simon citation: ama: Sumser AL, Jösch MA, Jonas PM, Ben Simon Y. Fast, high-throughput production of improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling. eLife. 2022;11. doi:10.7554/elife.79848 apa: Sumser, A. L., Jösch, M. A., Jonas, P. M., & Ben Simon, Y. (2022). Fast, high-throughput production of improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.79848 chicago: Sumser, Anton L, Maximilian A Jösch, Peter M Jonas, and Yoav Ben Simon. “Fast, High-Throughput Production of Improved Rabies Viral Vectors for Specific, Efficient and Versatile Transsynaptic Retrograde Labeling.” ELife. eLife Sciences Publications, 2022. https://doi.org/10.7554/elife.79848. ieee: A. L. Sumser, M. A. Jösch, P. M. Jonas, and Y. Ben Simon, “Fast, high-throughput production of improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling,” eLife, vol. 11. eLife Sciences Publications, 2022. ista: Sumser AL, Jösch MA, Jonas PM, Ben Simon Y. 2022. Fast, high-throughput production of improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling. eLife. 11, 79848. mla: Sumser, Anton L., et al. “Fast, High-Throughput Production of Improved Rabies Viral Vectors for Specific, Efficient and Versatile Transsynaptic Retrograde Labeling.” ELife, vol. 11, 79848, eLife Sciences Publications, 2022, doi:10.7554/elife.79848. short: A.L. Sumser, M.A. Jösch, P.M. Jonas, Y. Ben Simon, ELife 11 (2022). date_created: 2023-01-16T10:04:15Z date_published: 2022-09-15T00:00:00Z date_updated: 2023-08-04T10:29:48Z day: '15' ddc: - '570' department: - _id: MaJö - _id: PeJo doi: 10.7554/elife.79848 ec_funded: 1 external_id: isi: - '000892204300001' pmid: - '36040301' file: - access_level: open_access checksum: 5a2a65e3e7225090c3d8199f3bbd7b7b content_type: application/pdf creator: dernst date_created: 2023-01-30T11:50:53Z date_updated: 2023-01-30T11:50:53Z file_id: '12463' file_name: 2022_eLife_Sumser.pdf file_size: 8506811 relation: main_file success: 1 file_date_updated: 2023-01-30T11:50:53Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Immunology and Microbiology - General Biochemistry - Genetics and Molecular Biology - General Medicine - General Neuroscience language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25B7EB9E-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '692692' name: Biophysics and circuit function of a giant cortical glumatergic synapse - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention - _id: 25C5A090-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00312 name: The Wittgenstein Prize - _id: 266D407A-B435-11E9-9278-68D0E5697425 grant_number: LT000256 name: Neuronal networks of salience and spatial detection in the murine superior colliculus - _id: 264FEA02-B435-11E9-9278-68D0E5697425 grant_number: ALTF 1098-2017 name: Connecting sensory with motor processing in the superior colliculus publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Fast, high-throughput production of improved rabies viral vectors for specific, efficient and versatile transsynaptic retrograde labeling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2022' ... --- _id: '9955' abstract: - lang: eng text: Neurons can change their classical neurotransmitters during ontogeny, sometimes going through stages of dual release. Here, we explored the development of the neurotransmitter identity of neurons of the avian nucleus isthmi parvocellularis (Ipc), whose axon terminals are retinotopically arranged in the optic tectum (TeO) and exert a focal gating effect upon the ascending transmission of retinal inputs. Although cholinergic and glutamatergic markers are both found in Ipc neurons and terminals of adult pigeons and chicks, the mRNA expression of the vesicular acetylcholine transporter, VAChT, is weak or absent. To explore how the Ipc neurotransmitter identity is established during ontogeny, we analyzed the expression of mRNAs coding for cholinergic (ChAT, VAChT, and CHT) and glutamatergic (VGluT2 and VGluT3) markers in chick embryos at different developmental stages. We found that between E12 and E18, Ipc neurons expressed all cholinergic mRNAs and also VGluT2 mRNA; however, from E16 through posthatch stages, VAChT mRNA expression was specifically diminished. Our ex vivo deposits of tracer crystals and intracellular filling experiments revealed that Ipc axons exhibit a mature paintbrush morphology late in development, experiencing marked morphological transformations during the period of presumptive dual vesicular transmitter release. Additionally, although ChAT protein immunoassays increasingly label the growing Ipc axon, this labeling was consistently restricted to sparse portions of the terminal branches. Combined, these results suggest that the synthesis of glutamate and acetylcholine, and their vesicular release, is complexly linked to the developmental processes of branching, growing and remodeling of these unique axons. acknowledgement: 'This work was supported by FONDECYT grants 1151432 and 1210169 to Gonzalo J. Marín. FONDECYT grant 1210069 to Jorge Mpodozis. Spanish Ministry of Science, Innovation and Universities (MCIU), State Research Agency (AEI) and European Regional Development Fund (FEDER), PGC2018-098229-B-100 to José L Ferrán. Spanish Ministry of Economy and Competitiveness Excellency Grant BFU2014-57516P (with European Community FEDER support), and a Seneca Foundation (Autonomous Community of Murcia) Excellency Research contract, ref: 19904/ GERM/15; project name: Genoarchitectonic Brain Development and Applications to Neurodegenerative Diseases and Cancer (5672 Fundación Séneca) to Luis Puelles. The authors gratefully acknowledge the valuable editorial help provided by Sara Fernández-Collemann. The authors also thank Elisa Sentis and Solano Henríquez for expert technical help.' article_processing_charge: No article_type: original author: - first_name: Rosana full_name: Reyes‐Pinto, Rosana last_name: Reyes‐Pinto - first_name: José L. full_name: Ferrán, José L. last_name: Ferrán - first_name: Tomas A full_name: Vega Zuniga, Tomas A id: 2E7C4E78-F248-11E8-B48F-1D18A9856A87 last_name: Vega Zuniga - first_name: Cristian full_name: González‐Cabrera, Cristian last_name: González‐Cabrera - first_name: Harald full_name: Luksch, Harald last_name: Luksch - first_name: Jorge full_name: Mpodozis, Jorge last_name: Mpodozis - first_name: Luis full_name: Puelles, Luis last_name: Puelles - first_name: Gonzalo J. full_name: Marín, Gonzalo J. last_name: Marín citation: ama: Reyes‐Pinto R, Ferrán JL, Vega Zuniga TA, et al. Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum. Journal of Comparative Neurology. 2022;530(2):553-573. doi:10.1002/cne.25229 apa: Reyes‐Pinto, R., Ferrán, J. L., Vega Zuniga, T. A., González‐Cabrera, C., Luksch, H., Mpodozis, J., … Marín, G. J. (2022). Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum. Journal of Comparative Neurology. Wiley. https://doi.org/10.1002/cne.25229 chicago: Reyes‐Pinto, Rosana, José L. Ferrán, Tomas A Vega Zuniga, Cristian González‐Cabrera, Harald Luksch, Jorge Mpodozis, Luis Puelles, and Gonzalo J. Marín. “Change in the Neurochemical Signature and Morphological Development of the Parvocellular Isthmic Projection to the Avian Tectum.” Journal of Comparative Neurology. Wiley, 2022. https://doi.org/10.1002/cne.25229. ieee: R. Reyes‐Pinto et al., “Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum,” Journal of Comparative Neurology, vol. 530, no. 2. Wiley, pp. 553–573, 2022. ista: Reyes‐Pinto R, Ferrán JL, Vega Zuniga TA, González‐Cabrera C, Luksch H, Mpodozis J, Puelles L, Marín GJ. 2022. Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum. Journal of Comparative Neurology. 530(2), 553–573. mla: Reyes‐Pinto, Rosana, et al. “Change in the Neurochemical Signature and Morphological Development of the Parvocellular Isthmic Projection to the Avian Tectum.” Journal of Comparative Neurology, vol. 530, no. 2, Wiley, 2022, pp. 553–73, doi:10.1002/cne.25229. short: R. Reyes‐Pinto, J.L. Ferrán, T.A. Vega Zuniga, C. González‐Cabrera, H. Luksch, J. Mpodozis, L. Puelles, G.J. Marín, Journal of Comparative Neurology 530 (2022) 553–573. date_created: 2021-08-23T08:40:59Z date_published: 2022-02-01T00:00:00Z date_updated: 2023-08-11T10:58:17Z day: '01' department: - _id: MaJö doi: 10.1002/cne.25229 external_id: isi: - '000686420000001' pmid: - '34363623' intvolume: ' 530' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: 553-573 pmid: 1 publication: Journal of Comparative Neurology publication_identifier: eissn: - 1096-9861 issn: - 0021-9967 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 530 year: '2022' ... --- _id: '7551' abstract: - lang: eng text: Novelty facilitates formation of memories. The detection of novelty and storage of contextual memories are both mediated by the hippocampus, yet the mechanisms that link these two functions remain to be defined. Dentate granule cells (GCs) of the dorsal hippocampus fire upon novelty exposure forming engrams of contextual memory. However, their key excitatory inputs from the entorhinal cortex are not responsive to novelty and are insufficient to make dorsal GCs fire reliably. Here we uncover a powerful glutamatergic pathway to dorsal GCs from ventral hippocampal mossy cells (MCs) that relays novelty, and is necessary and sufficient for driving dorsal GCs activation. Furthermore, manipulation of ventral MCs activity bidirectionally regulates novelty-induced contextual memory acquisition. Our results show that ventral MCs activity controls memory formation through an intra-hippocampal interaction mechanism gated by novelty. acknowledgement: We thank Peter Jonas and Peter Somogyi for critically reading the manuscript, Satoshi Kida for helpful discussion, Taijia Makinen for providing the Prox1-creERT2 mouse line, and Hiromu Yawo for the VAMP2-Venus construct. We also thank Vivek Jayaraman, Ph.D.; Rex A. Kerr, Ph.D.; Douglas S. Kim, Ph.D.; Loren L. Looger, Ph.D.; and Karel Svoboda, Ph.D. from the GENIE Project, Janelia Farm Research Campus, Howard Hughes Medical Institute for the viral constructs used for GCaMP6s expression. We also thank Jacqueline Montanaro, Vanessa Zheden, David Kleindienst, and Laura Burnett for technical assistance, as well as Robert Beattie for imaging assistance. This work was supported by a European Research Council Advanced Grant 694539 to R.S. article_processing_charge: No article_type: original author: - first_name: Felipe A full_name: Fredes Tolorza, Felipe A id: 384825DA-F248-11E8-B48F-1D18A9856A87 last_name: Fredes Tolorza - first_name: Maria A full_name: Silva Sifuentes, Maria A id: 371B3D6E-F248-11E8-B48F-1D18A9856A87 last_name: Silva Sifuentes - first_name: Peter full_name: Koppensteiner, Peter id: 3B8B25A8-F248-11E8-B48F-1D18A9856A87 last_name: Koppensteiner - first_name: Kenta full_name: Kobayashi, Kenta last_name: Kobayashi - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 - first_name: Ryuichi full_name: Shigemoto, Ryuichi id: 499F3ABC-F248-11E8-B48F-1D18A9856A87 last_name: Shigemoto orcid: 0000-0001-8761-9444 citation: ama: Fredes Tolorza FA, Silva Sifuentes MA, Koppensteiner P, Kobayashi K, Jösch MA, Shigemoto R. Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Current Biology. 2021;31(1):P25-38.E5. doi:10.1016/j.cub.2020.09.074 apa: Fredes Tolorza, F. A., Silva Sifuentes, M. A., Koppensteiner, P., Kobayashi, K., Jösch, M. A., & Shigemoto, R. (2021). Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2020.09.074 chicago: Fredes Tolorza, Felipe A, Maria A Silva Sifuentes, Peter Koppensteiner, Kenta Kobayashi, Maximilian A Jösch, and Ryuichi Shigemoto. “Ventro-Dorsal Hippocampal Pathway Gates Novelty-Induced Contextual Memory Formation.” Current Biology. Elsevier, 2021. https://doi.org/10.1016/j.cub.2020.09.074. ieee: F. A. Fredes Tolorza, M. A. Silva Sifuentes, P. Koppensteiner, K. Kobayashi, M. A. Jösch, and R. Shigemoto, “Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation,” Current Biology, vol. 31, no. 1. Elsevier, p. P25–38.E5, 2021. ista: Fredes Tolorza FA, Silva Sifuentes MA, Koppensteiner P, Kobayashi K, Jösch MA, Shigemoto R. 2021. Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Current Biology. 31(1), P25–38.E5. mla: Fredes Tolorza, Felipe A., et al. “Ventro-Dorsal Hippocampal Pathway Gates Novelty-Induced Contextual Memory Formation.” Current Biology, vol. 31, no. 1, Elsevier, 2021, p. P25–38.E5, doi:10.1016/j.cub.2020.09.074. short: F.A. Fredes Tolorza, M.A. Silva Sifuentes, P. Koppensteiner, K. Kobayashi, M.A. Jösch, R. Shigemoto, Current Biology 31 (2021) P25–38.E5. date_created: 2020-02-28T10:56:18Z date_published: 2021-01-11T00:00:00Z date_updated: 2023-08-04T10:47:11Z day: '11' ddc: - '570' department: - _id: MaJö - _id: RySh doi: 10.1016/j.cub.2020.09.074 ec_funded: 1 external_id: isi: - '000614361000020' file: - access_level: open_access checksum: b7b9c8bc84a08befce365c675229a7d1 content_type: application/pdf creator: dernst date_created: 2020-10-19T13:31:28Z date_updated: 2020-10-19T13:31:28Z file_id: '8678' file_name: 2021_CurrentBiology_Fredes.pdf file_size: 4915964 relation: main_file success: 1 file_date_updated: 2020-10-19T13:31:28Z has_accepted_license: '1' intvolume: ' 31' isi: 1 issue: '1' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '01' oa: 1 oa_version: Published Version page: P25-38.E5 project: - _id: 25CA28EA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694539' name: 'In situ analysis of single channel subunit composition in neurons: physiological implication in synaptic plasticity and behaviour' publication: Current Biology publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/remembering-novelty/ status: public title: Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 31 year: '2021' ... --- _id: '8643' abstract: - lang: eng text: The parabigeminal nucleus (PBG) is the mammalian homologue to the isthmic complex of other vertebrates. Optogenetic stimulation of the PBG induces freezing and escape in mice, a result thought to be caused by a PBG projection to the central nucleus of the amygdala. However, the isthmic complex, including the PBG, has been classically considered satellite nuclei of the Superior Colliculus (SC), which upon stimulation of its medial part also triggers fear and avoidance reactions. As the PBG-SC connectivity is not well characterized, we investigated whether the topology of the PBG projection to the SC could be related to the behavioral consequences of PBG stimulation. To that end, we performed immunohistochemistry, in situ hybridization and neural tracer injections in the SC and PBG in a diurnal rodent, the Octodon degus. We found that all PBG neurons expressed both glutamatergic and cholinergic markers and were distributed in clearly defined anterior (aPBG) and posterior (pPBG) subdivisions. The pPBG is connected reciprocally and topographically to the ipsilateral SC, whereas the aPBG receives afferent axons from the ipsilateral SC and projected exclusively to the contralateral SC. This contralateral projection forms a dense field of terminals that is restricted to the medial SC, in correspondence with the SC representation of the aerial binocular field which, we also found, in O. degus prompted escape reactions upon looming stimulation. Therefore, this specialized topography allows binocular interactions in the SC region controlling responses to aerial predators, suggesting a link between the mechanisms by which the SC and PBG produce defensive behaviors. acknowledgement: 'We thank Elisa Sentis and Solano Henriquez for their expert technical assistance. Dr. David Sterratt for his helpful advice in using the Retistruct package. Dr. Joao Botelho for his valuable assistance in scanning the retinas. To Mrs. Diane Greenstein for kindly reading and correcting our manuscript. Macarena Ruiz for her helpful comments during figures elaboration. Dr. Alexia Nunez-Parra for kindly providing us with the transgenic mouse line. Dr. Harald Luksch for granting us access to the confocal microscope at his lab. This study was supported by: FONDECYT 1151432 (to G.M.), FONDECYT 1170027 (to J.M.) and Doctoral fellowship CONICYT 21161599 (to A.D.).' article_number: '16220' article_processing_charge: No article_type: original author: - first_name: Alfonso full_name: Deichler, Alfonso last_name: Deichler - first_name: Denisse full_name: Carrasco, Denisse last_name: Carrasco - first_name: Luciana full_name: Lopez-Jury, Luciana last_name: Lopez-Jury - first_name: Tomas A full_name: Vega Zuniga, Tomas A id: 2E7C4E78-F248-11E8-B48F-1D18A9856A87 last_name: Vega Zuniga - first_name: Natalia full_name: Marquez, Natalia last_name: Marquez - first_name: Jorge full_name: Mpodozis, Jorge last_name: Mpodozis - first_name: Gonzalo full_name: Marin, Gonzalo last_name: Marin citation: ama: Deichler A, Carrasco D, Lopez-Jury L, et al. A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents. Scientific Reports. 2020;10. doi:10.1038/s41598-020-72848-0 apa: Deichler, A., Carrasco, D., Lopez-Jury, L., Vega Zuniga, T. A., Marquez, N., Mpodozis, J., & Marin, G. (2020). A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-020-72848-0 chicago: Deichler, Alfonso, Denisse Carrasco, Luciana Lopez-Jury, Tomas A Vega Zuniga, Natalia Marquez, Jorge Mpodozis, and Gonzalo Marin. “A Specialized Reciprocal Connectivity Suggests a Link between the Mechanisms by Which the Superior Colliculus and Parabigeminal Nucleus Produce Defensive Behaviors in Rodents.” Scientific Reports. Springer Nature, 2020. https://doi.org/10.1038/s41598-020-72848-0. ieee: A. Deichler et al., “A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents,” Scientific Reports, vol. 10. Springer Nature, 2020. ista: Deichler A, Carrasco D, Lopez-Jury L, Vega Zuniga TA, Marquez N, Mpodozis J, Marin G. 2020. A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents. Scientific Reports. 10, 16220. mla: Deichler, Alfonso, et al. “A Specialized Reciprocal Connectivity Suggests a Link between the Mechanisms by Which the Superior Colliculus and Parabigeminal Nucleus Produce Defensive Behaviors in Rodents.” Scientific Reports, vol. 10, 16220, Springer Nature, 2020, doi:10.1038/s41598-020-72848-0. short: A. Deichler, D. Carrasco, L. Lopez-Jury, T.A. Vega Zuniga, N. Marquez, J. Mpodozis, G. Marin, Scientific Reports 10 (2020). date_created: 2020-10-11T22:01:14Z date_published: 2020-10-01T00:00:00Z date_updated: 2023-08-22T09:58:21Z day: '01' ddc: - '570' department: - _id: MaJö doi: 10.1038/s41598-020-72848-0 external_id: isi: - '000577142600032' file: - access_level: open_access checksum: f6dd99954f1c0ffb4da5a1d2d739bf31 content_type: application/pdf creator: dernst date_created: 2020-10-12T12:39:10Z date_updated: 2020-10-12T12:39:10Z file_id: '8651' file_name: 2020_ScientificReport_Deichler.pdf file_size: 3906744 relation: main_file success: 1 file_date_updated: 2020-10-12T12:39:10Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: Scientific Reports publication_identifier: eissn: - '20452322' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2020' ...