--- _id: '12716' abstract: - lang: eng text: "The process of detecting and evaluating sensory information to guide behaviour is termed perceptual decision-making (PDM), and is critical for the ability of an organism to interact with its external world. Individuals with autism, a neurodevelopmental condition primarily characterised by social and communication difficulties, frequently exhibit altered sensory processing and PDM difficulties are widely reported. Recent technological advancements have pushed forward our understanding of the genetic changes accompanying this condition, however our understanding of how these mutations affect the function of specific neuronal circuits and bring about the corresponding behavioural changes remains limited. Here, we use an innate PDM task, the looming avoidance response (LAR) paradigm, to identify a convergent behavioural abnormality across three molecularly distinct genetic mouse models of autism (Cul3, Setd5 and Ptchd1). Although mutant mice can rapidly detect threatening visual stimuli, their responses are consistently delayed, requiring longer to initiate an appropriate response than their wild-type siblings. Mutant animals show abnormal adaptation in both their stimulus- evoked escape responses and exploratory dynamics following repeated stimulus presentations. Similarly delayed behavioural responses are observed in wild-type animals when faced with more ambiguous threats, suggesting the mutant phenotype could arise from a dysfunction in the flexible control of this PDM process.\r\nOur knowledge of the core neuronal circuitry mediating the LAR facilitated a detailed dissection of the neuronal mechanisms underlying the behavioural impairment. In vivo extracellular recording revealed that visual responses were unaffected within a key brain region for the rapid processing of visual threats, the superior colliculus (SC), indicating that the behavioural delay was unlikely to originate from sensory impairments. Delayed behavioural responses were recapitulated in the Setd5 model following optogenetic stimulation of the excitatory output neurons of the SC, which are known to mediate escape initiation through the activation of cells in the underlying dorsal periaqueductal grey (dPAG). In vitro patch-clamp recordings of dPAG cells uncovered a stark hypoexcitability phenotype in two out of the three genetic models investigated (Setd5 and Ptchd1), that in Setd5, is mediated by the misregulation of voltage-gated potassium channels. Overall, our results show that the ability to use visual information to drive efficient escape responses is impaired in three diverse genetic mouse models of autism and that, in one of the models studied, this behavioural delay likely originates from differences in the intrinsic excitability of a key subcortical node, the dPAG. Furthermore, this work showcases the use of an innate behavioural paradigm to mechanistically dissect PDM processes in autism." acknowledged_ssus: - _id: PreCl - _id: Bio - _id: LifeSc - _id: M-Shop - _id: CampIT alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Burnett, Laura id: 3B717F68-F248-11E8-B48F-1D18A9856A87 last_name: Burnett orcid: 0000-0002-8937-410X citation: ama: Burnett L. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. 2023. doi:10.15479/at:ista:12716 apa: Burnett, L. (2023). To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12716 chicago: Burnett, Laura. “To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12716. ieee: L. Burnett, “To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism,” Institute of Science and Technology Austria, 2023. ista: Burnett L. 2023. To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism. Institute of Science and Technology Austria. mla: Burnett, Laura. To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12716. short: L. Burnett, To Flee, or Not to Flee? Using Innate Defensive Behaviours to Investigate Rapid Perceptual Decision-Making through Subcortical Circuits in Mouse Models of Autism, Institute of Science and Technology Austria, 2023. date_created: 2023-03-08T15:19:45Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-04-05T10:59:04Z day: '10' ddc: - '599' - '573' degree_awarded: PhD department: - _id: GradSch - _id: MaJö doi: 10.15479/at:ista:12716 ec_funded: 1 file: - access_level: closed checksum: 6c6d9cc2c4cdacb74e6b1047a34d7332 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12717' file_name: Burnett_Thesis_2023.docx file_size: 23029260 relation: source_file - access_level: open_access checksum: cebc77705288bf4382db9b3541483cd0 content_type: application/pdf creator: lburnett date_created: 2023-03-08T15:08:46Z date_updated: 2023-03-08T15:08:46Z file_id: '12718' file_name: Burnett_Thesis_2023_pdfA.pdf file_size: 11959869 relation: main_file success: 1 file_date_updated: 2023-03-08T15:08:46Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '178' project: - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: To flee, or not to flee? Using innate defensive behaviours to investigate rapid perceptual decision-making through subcortical circuits in mouse models of autism type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12826' abstract: - lang: eng text: "During navigation, animals can infer the structure of the environment by computing the optic flow cues elicited by their own movements, and subsequently use this information to instruct proper locomotor actions. These computations require a panoramic assessment of the visual environment in order to disambiguate similar sensory experiences that may require distinct behavioral responses. The estimation of the global motion patterns is therefore essential for successful navigation. Yet, our understanding of the algorithms and implementations that enable coherent panoramic visual perception remains scarce. Here I pursue this problem by dissecting the functional aspects of interneuronal communication in the lobula plate tangential cell network in Drosophila melanogaster. The results presented in the thesis demonstrate that the basis for effective interpretation of the optic flow in this circuit are stereotyped synaptic connections that mediate the formation of distinct subnetworks, each extracting a particular pattern of global motion. \r\nFirstly, I show that gap junctions are essential for a correct interpretation of binocular motion cues by horizontal motion-sensitive cells. HS cells form electrical synapses with contralateral H2 neurons that are involved in detecting yaw rotation and translation. I developed an FlpStop-mediated mutant of a gap junction protein ShakB that disrupts these electrical synapses. While the loss of electrical synapses does not affect the tuning of the direction selectivity in HS neurons, it severely alters their sensitivity to horizontal motion in the contralateral side. These physiological changes result in an inappropriate integration of binocular motion cues in walking animals. While wild-type flies form a binocular perception of visual motion by non-linear integration of monocular optic flow cues, the mutant flies sum the monocular inputs linearly. These results indicate that rather than averaging signals in neighboring neurons, gap-junctions operate in conjunction with chemical synapses to mediate complex non-linear optic flow computations.\r\nSecondly, I show that stochastic manipulation of neuronal activity in the lobula plate tangential cell network is a powerful approach to study the neuronal implementation of optic flow-based navigation in flies. Tangential neurons form multiple subnetworks, each mediating course-stabilizing response to a particular global pattern of visual motion. Application of genetic mosaic techniques can provide sparse optogenetic activation of HS cells in numerous combinations. These distinct combinations of activated neurons drive an array of distinct behavioral responses, providing important insights into how visuomotor transformation is performed in the lobula plate tangential cell network. This approach can be complemented by stochastic silencing of tangential neurons, enabling direct assessment of the functional role of individual tangential neurons in the processing of specific visual motion patterns.\r\n\tTaken together, the findings presented in this thesis suggest that establishing specific activity patterns of tangential cells via stereotyped synaptic connectivity is a key to efficient optic flow-based navigation in Drosophila melanogaster." acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Victoria full_name: Pokusaeva, Victoria id: 3184041C-F248-11E8-B48F-1D18A9856A87 last_name: Pokusaeva orcid: 0000-0001-7660-444X citation: ama: Pokusaeva V. Neural control of optic flow-based navigation in Drosophila melanogaster. 2023. doi:10.15479/at:ista:12826 apa: Pokusaeva, V. (2023). Neural control of optic flow-based navigation in Drosophila melanogaster. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12826 chicago: Pokusaeva, Victoria. “Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12826. ieee: V. Pokusaeva, “Neural control of optic flow-based navigation in Drosophila melanogaster,” Institute of Science and Technology Austria, 2023. ista: Pokusaeva V. 2023. Neural control of optic flow-based navigation in Drosophila melanogaster. Institute of Science and Technology Austria. mla: Pokusaeva, Victoria. Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12826. short: V. Pokusaeva, Neural Control of Optic Flow-Based Navigation in Drosophila Melanogaster, Institute of Science and Technology Austria, 2023. date_created: 2023-04-14T14:56:04Z date_published: 2023-04-18T00:00:00Z date_updated: 2023-06-23T09:47:36Z day: '18' ddc: - '570' - '571' degree_awarded: PhD department: - _id: MaJö - _id: GradSch doi: 10.15479/at:ista:12826 ec_funded: 1 file: - access_level: closed checksum: 5f589a9af025f7eeebfd0c186209913e content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: vpokusae date_created: 2023-04-20T09:14:38Z date_updated: 2023-04-20T09:26:51Z file_id: '12857' file_name: Thesis_Pokusaeva.docx file_size: 14507243 relation: source_file - access_level: open_access checksum: bbeed76db45a996b4c91a9abe12ce0ec content_type: application/pdf creator: vpokusae date_created: 2023-04-20T09:14:44Z date_updated: 2023-04-20T09:14:44Z file_id: '12858' file_name: Thesis_Pokusaeva.pdf file_size: 10090711 relation: main_file success: 1 file_date_updated: 2023-04-20T09:26:51Z has_accepted_license: '1' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '04' oa: 1 oa_version: Published Version page: '106' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 title: Neural control of optic flow-based navigation in Drosophila melanogaster tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13230' abstract: - lang: eng text: 'To interpret the sensory environment, the brain combines ambiguous sensory measurements with knowledge that reflects context-specific prior experience. But environmental contexts can change abruptly and unpredictably, resulting in uncertainty about the current context. Here we address two questions: how should context-specific prior knowledge optimally guide the interpretation of sensory stimuli in changing environments, and do human decision-making strategies resemble this optimum? We probe these questions with a task in which subjects report the orientation of ambiguous visual stimuli that were drawn from three dynamically switching distributions, representing different environmental contexts. We derive predictions for an ideal Bayesian observer that leverages knowledge about the statistical structure of the task to maximize decision accuracy, including knowledge about the dynamics of the environment. We show that its decisions are biased by the dynamically changing task context. The magnitude of this decision bias depends on the observer’s continually evolving belief about the current context. The model therefore not only predicts that decision bias will grow as the context is indicated more reliably, but also as the stability of the environment increases, and as the number of trials since the last context switch grows. Analysis of human choice data validates all three predictions, suggesting that the brain leverages knowledge of the statistical structure of environmental change when interpreting ambiguous sensory signals.' acknowledgement: The authors thank Corey Ziemba and Zoe Boundy-Singer for valuable discussion and feedback. article_number: e1011104 article_processing_charge: No article_type: original author: - first_name: Julie A. full_name: Charlton, Julie A. last_name: Charlton - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Yoon H. full_name: Bai, Yoon H. last_name: Bai - first_name: Ann M. full_name: Hermundstad, Ann M. last_name: Hermundstad - first_name: Robbe L.T. full_name: Goris, Robbe L.T. last_name: Goris citation: ama: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 2023;19(6). doi:10.1371/journal.pcbi.1011104 apa: Charlton, J. A., Mlynarski, W. F., Bai, Y. H., Hermundstad, A. M., & Goris, R. L. T. (2023). Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1011104 chicago: Charlton, Julie A., Wiktor F Mlynarski, Yoon H. Bai, Ann M. Hermundstad, and Robbe L.T. Goris. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology. Public Library of Science, 2023. https://doi.org/10.1371/journal.pcbi.1011104. ieee: J. A. Charlton, W. F. Mlynarski, Y. H. Bai, A. M. Hermundstad, and R. L. T. Goris, “Environmental dynamics shape perceptual decision bias,” PLoS Computational Biology, vol. 19, no. 6. Public Library of Science, 2023. ista: Charlton JA, Mlynarski WF, Bai YH, Hermundstad AM, Goris RLT. 2023. Environmental dynamics shape perceptual decision bias. PLoS Computational Biology. 19(6), e1011104. mla: Charlton, Julie A., et al. “Environmental Dynamics Shape Perceptual Decision Bias.” PLoS Computational Biology, vol. 19, no. 6, e1011104, Public Library of Science, 2023, doi:10.1371/journal.pcbi.1011104. short: J.A. Charlton, W.F. Mlynarski, Y.H. Bai, A.M. Hermundstad, R.L.T. Goris, PLoS Computational Biology 19 (2023). date_created: 2023-07-16T22:01:09Z date_published: 2023-06-08T00:00:00Z date_updated: 2023-08-02T06:33:50Z day: '08' ddc: - '570' department: - _id: MaJö doi: 10.1371/journal.pcbi.1011104 external_id: isi: - '001003410200003' pmid: - '37289753' file: - access_level: open_access checksum: 800761fa2c647fabd6ad034589bc526e content_type: application/pdf creator: dernst date_created: 2023-07-18T08:07:59Z date_updated: 2023-07-18T08:07:59Z file_id: '13247' file_name: 2023_PloSCompBio_Charlton.pdf file_size: 2281868 relation: main_file success: 1 file_date_updated: 2023-07-18T08:07:59Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: PLoS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Environmental dynamics shape perceptual decision bias tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2023' ... --- _id: '12349' abstract: - lang: eng text: Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. We show experimentally that, in agreement with our predictions, receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types. acknowledged_ssus: - _id: ScienComp - _id: PreCl - _id: LifeSc - _id: Bio acknowledgement: We thank Hiroki Asari for sharing the dataset of naturalistic images, Anton Sumser for sharing visual stimulus code, Yoav Ben Simon for initial explorative work with the generation of AAVs, and Tomas Vega-Zuñiga for help with immunostainings. We also thank Gasper Tkacik and members of the Neuroethology group for their comments on the manuscript. This research was supported by the Scientific Service Units of IST Austria through resources provided by Scientific Computing, the Preclinical Facility, the Lab Support Facility, and the Imaging and Optics Facility. This work was supported by European Union Horizon 2020 Marie Skłodowska-Curie grant 665385 (DG), Austrian Science Fund (FWF) stand-alone grant P 34015 (WM), Human Frontiers Science Program LT000256/2018-L (AS), EMBO ALTF 1098-2017 (AS) and the European Research Council Starting Grant 756502 (MJ). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Divyansh full_name: Gupta, Divyansh id: 2A485EBE-F248-11E8-B48F-1D18A9856A87 last_name: Gupta orcid: 0000-0001-7400-6665 - first_name: Wiktor F full_name: Mlynarski, Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - first_name: Anton L full_name: Sumser, Anton L id: 3320A096-F248-11E8-B48F-1D18A9856A87 last_name: Sumser orcid: 0000-0002-4792-1881 - first_name: Olga full_name: Symonova, Olga id: 3C0C7BC6-F248-11E8-B48F-1D18A9856A87 last_name: Symonova orcid: 0000-0003-2012-9947 - first_name: Jan full_name: Svaton, Jan id: f7f724c3-9d6f-11ed-9f44-e5c5f3a5bee2 last_name: Svaton orcid: 0000-0002-6198-2939 - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 citation: ama: Gupta D, Mlynarski WF, Sumser AL, Symonova O, Svaton J, Jösch MA. Panoramic visual statistics shape retina-wide organization of receptive fields. Nature Neuroscience. 2023;26:606-614. doi:10.1038/s41593-023-01280-0 apa: Gupta, D., Mlynarski, W. F., Sumser, A. L., Symonova, O., Svaton, J., & Jösch, M. A. (2023). Panoramic visual statistics shape retina-wide organization of receptive fields. Nature Neuroscience. Springer Nature. https://doi.org/10.1038/s41593-023-01280-0 chicago: Gupta, Divyansh, Wiktor F Mlynarski, Anton L Sumser, Olga Symonova, Jan Svaton, and Maximilian A Jösch. “Panoramic Visual Statistics Shape Retina-Wide Organization of Receptive Fields.” Nature Neuroscience. Springer Nature, 2023. https://doi.org/10.1038/s41593-023-01280-0. ieee: D. Gupta, W. F. Mlynarski, A. L. Sumser, O. Symonova, J. Svaton, and M. A. Jösch, “Panoramic visual statistics shape retina-wide organization of receptive fields,” Nature Neuroscience, vol. 26. Springer Nature, pp. 606–614, 2023. ista: Gupta D, Mlynarski WF, Sumser AL, Symonova O, Svaton J, Jösch MA. 2023. Panoramic visual statistics shape retina-wide organization of receptive fields. Nature Neuroscience. 26, 606–614. mla: Gupta, Divyansh, et al. “Panoramic Visual Statistics Shape Retina-Wide Organization of Receptive Fields.” Nature Neuroscience, vol. 26, Springer Nature, 2023, pp. 606–14, doi:10.1038/s41593-023-01280-0. short: D. Gupta, W.F. Mlynarski, A.L. Sumser, O. Symonova, J. Svaton, M.A. Jösch, Nature Neuroscience 26 (2023) 606–614. date_created: 2023-01-23T14:14:19Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-10-04T11:41:05Z day: '01' ddc: - '570' department: - _id: GradSch - _id: MaJö doi: 10.1038/s41593-023-01280-0 ec_funded: 1 external_id: isi: - '000955258300002' pmid: - '36959418' file: - access_level: open_access checksum: a33d91e398e548f34003170e10988368 content_type: application/pdf creator: dernst date_created: 2023-10-04T11:40:51Z date_updated: 2023-10-04T11:40:51Z file_id: '14395' file_name: 2023_NatureNeuroscience_Gupta.pdf file_size: 6144866 relation: main_file success: 1 file_date_updated: 2023-10-04T11:40:51Z has_accepted_license: '1' intvolume: ' 26' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 606-614 pmid: 1 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 626c45b5-2b32-11ec-9570-e509828c1ba6 grant_number: P34015 name: Efficient coding with biophysical realism - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention - _id: 266D407A-B435-11E9-9278-68D0E5697425 grant_number: LT000256 name: Neuronal networks of salience and spatial detection in the murine superior colliculus - _id: 264FEA02-B435-11E9-9278-68D0E5697425 grant_number: ALTF 1098-2017 name: Connecting sensory with motor processing in the superior colliculus publication: Nature Neuroscience publication_identifier: eissn: - 1546-1726 issn: - 1097-6256 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12370' relation: research_data status: public scopus_import: '1' status: public title: Panoramic visual statistics shape retina-wide organization of receptive fields tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2023' ... --- _id: '12370' abstract: - lang: eng text: 'Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. We show experimentally that, in agreement with our predictions, receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types. ' acknowledged_ssus: - _id: ScienComp - _id: M-Shop - _id: Bio - _id: PreCl - _id: LifeSc article_processing_charge: No author: - first_name: Divyansh full_name: Gupta, Divyansh id: 2A485EBE-F248-11E8-B48F-1D18A9856A87 last_name: Gupta orcid: 0000-0001-7400-6665 - first_name: Anton L full_name: Sumser, Anton L id: 3320A096-F248-11E8-B48F-1D18A9856A87 last_name: Sumser orcid: 0000-0002-4792-1881 - first_name: Maximilian A full_name: Jösch, Maximilian A id: 2BD278E6-F248-11E8-B48F-1D18A9856A87 last_name: Jösch orcid: 0000-0002-3937-1330 citation: ama: 'Gupta D, Sumser AL, Jösch MA. Research Data for: Panoramic visual statistics shape retina-wide organization of receptive fields. 2023. doi:10.15479/AT:ISTA:12370' apa: 'Gupta, D., Sumser, A. L., & Jösch, M. A. (2023). Research Data for: Panoramic visual statistics shape retina-wide organization of receptive fields. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:12370' chicago: 'Gupta, Divyansh, Anton L Sumser, and Maximilian A Jösch. “Research Data for: Panoramic Visual Statistics Shape Retina-Wide Organization of Receptive Fields.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/AT:ISTA:12370.' ieee: 'D. Gupta, A. L. Sumser, and M. A. Jösch, “Research Data for: Panoramic visual statistics shape retina-wide organization of receptive fields.” Institute of Science and Technology Austria, 2023.' ista: 'Gupta D, Sumser AL, Jösch MA. 2023. Research Data for: Panoramic visual statistics shape retina-wide organization of receptive fields, Institute of Science and Technology Austria, 10.15479/AT:ISTA:12370.' mla: 'Gupta, Divyansh, et al. Research Data for: Panoramic Visual Statistics Shape Retina-Wide Organization of Receptive Fields. Institute of Science and Technology Austria, 2023, doi:10.15479/AT:ISTA:12370.' short: D. Gupta, A.L. Sumser, M.A. Jösch, (2023). contributor: - contributor_type: researcher first_name: Olga id: 3C0C7BC6-F248-11E8-B48F-1D18A9856A87 last_name: Symonova - contributor_type: researcher first_name: Wiktor F id: 358A453A-F248-11E8-B48F-1D18A9856A87 last_name: Mlynarski - contributor_type: researcher first_name: Jan id: f7f724c3-9d6f-11ed-9f44-e5c5f3a5bee2 last_name: Svaton date_created: 2023-01-25T12:45:18Z date_published: 2023-01-26T00:00:00Z date_updated: 2023-10-04T11:41:04Z day: '26' ddc: - '571' department: - _id: GradSch - _id: MaJö doi: 10.15479/AT:ISTA:12370 ec_funded: 1 file: - access_level: open_access checksum: 172cd1c315cbf063c122298396bc17a7 content_type: text/plain creator: dgupta date_created: 2023-01-26T10:51:34Z date_updated: 2023-01-26T10:51:34Z file_id: '12396' file_name: readme_exvivo.txt file_size: 1917 relation: main_file success: 1 - access_level: open_access checksum: d3cecda51cad86b1182195731c01a14f content_type: text/plain creator: dgupta date_created: 2023-01-26T10:50:50Z date_updated: 2023-01-26T10:50:50Z file_id: '12397' file_name: readme_invivo.txt file_size: 1585 relation: main_file success: 1 - access_level: open_access checksum: b85018b27f2c43a6d94ee0e8b841220d content_type: application/octet-stream creator: dgupta date_created: 2023-01-26T10:43:30Z date_updated: 2023-01-26T10:43:30Z file_id: '12398' file_name: exvivo_RFs.mat file_size: 5019459775 relation: main_file success: 1 - access_level: open_access checksum: f75dccd96a3f837cdeed65b5134e697e content_type: application/octet-stream creator: dgupta date_created: 2023-01-26T10:40:35Z date_updated: 2023-01-26T10:40:35Z file_id: '12399' file_name: RGC_in_vivo_RFs_selected.mat file_size: 94999721 relation: main_file success: 1 - access_level: open_access checksum: d41836ffe03ea0efb677de31287c8d2e content_type: application/octet-stream creator: dgupta date_created: 2023-01-25T16:03:49Z date_updated: 2023-01-25T16:03:49Z file_id: '12382' file_name: invivo_BL6-eyeGC8m-dC-3_210924_1534_Result.mat file_size: 720893739 relation: main_file success: 1 - access_level: open_access checksum: 0a0cba5208241a95f9bb7684d0a43afa content_type: application/octet-stream creator: dgupta date_created: 2023-01-25T16:03:30Z date_updated: 2023-01-25T16:03:30Z file_id: '12383' file_name: invivo_BL6-eyeGC8m-dC-3_211026_1235_Result.mat file_size: 248122209 relation: main_file success: 1 - access_level: open_access checksum: cf72c1f325631212f305ff1a6d342bc3 content_type: application/octet-stream creator: dgupta date_created: 2023-01-25T16:04:54Z date_updated: 2023-01-25T16:04:54Z file_id: '12384' file_name: invivo_BL6-eyeGC8m-dC-3_211202_1505_Result.mat file_size: 1757729346 relation: main_file success: 1 - access_level: open_access checksum: f4cd25f37d433a7dced3aa8cc326c755 content_type: application/octet-stream creator: dgupta date_created: 2023-01-25T16:04:41Z date_updated: 2023-01-25T16:04:41Z file_id: '12385' file_name: invivo_BL6-eyeGC8m-dC-3_211208_1738_Result.mat file_size: 1177344595 relation: main_file success: 1 - access_level: open_access checksum: 8c31637d447f2088fdb5ba1c6775f243 content_type: application/octet-stream creator: dgupta date_created: 2023-01-25T16:06:22Z date_updated: 2023-01-25T16:06:22Z file_id: '12386' file_name: invivo_BL6-eyeGC8m-dC-3_220111_1735_Result.mat file_size: 2246592895 relation: main_file success: 1 - access_level: open_access checksum: 246d660ef06a9151c59b74490d991460 content_type: application/octet-stream creator: dgupta date_created: 2023-01-25T16:07:41Z date_updated: 2023-01-25T16:07:41Z file_id: '12387' file_name: invivo_BL6-eyeGC8m-dC-4_220216_0950_Result.mat file_size: 2151341770 relation: main_file success: 1 - access_level: open_access checksum: b32987dd4589d05b9dfadb93d4178c0d content_type: application/octet-stream creator: dgupta date_created: 2023-01-26T10:19:02Z date_updated: 2023-01-26T10:19:02Z file_id: '12393' file_name: invivo_BL6-eyeGC8m-dC-4_220428_1351_Result.mat file_size: 3719145736 relation: main_file success: 1 - access_level: open_access checksum: 6c88ca7d1df405f04002146d251dc22e content_type: application/octet-stream creator: dgupta date_created: 2023-01-26T10:34:46Z date_updated: 2023-01-26T10:34:46Z file_id: '12395' file_name: invivo_BL6-eyeGC8m-dC-4_220502_1357_Result.mat file_size: 5818789752 relation: main_file success: 1 - access_level: open_access checksum: 494057076bb0b0a28e4b7146bb50113c content_type: application/octet-stream creator: dgupta date_created: 2023-01-26T10:23:19Z date_updated: 2023-01-26T10:23:19Z file_id: '12394' file_name: invivo_BL6-eyeGC8m-dC-4_220524_1726_Result.mat file_size: 2614677996 relation: main_file success: 1 - access_level: open_access checksum: e51015d43ede6b1628803c58e424f99f content_type: application/octet-stream creator: dgupta date_created: 2023-01-25T16:20:51Z date_updated: 2023-01-25T16:20:51Z file_id: '12388' file_name: invivo_BL6-eyeGC8m-dC-5_220613_1750_Result.mat file_size: 1840481462 relation: main_file success: 1 - access_level: open_access checksum: 9483686a44e69eadea428b705c33a9a2 content_type: application/octet-stream creator: dgupta date_created: 2023-01-25T16:23:02Z date_updated: 2023-01-25T16:23:02Z file_id: '12389' file_name: invivo_BL6-eyeGC8m-dC-5_220630_1518_Result.mat file_size: 1617777136 relation: main_file success: 1 file_date_updated: 2023-01-26T10:51:34Z has_accepted_license: '1' license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '01' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 626c45b5-2b32-11ec-9570-e509828c1ba6 grant_number: P34015 name: Efficient coding with biophysical realism - _id: 2634E9D2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '756502' name: Circuits of Visual Attention - _id: 266D407A-B435-11E9-9278-68D0E5697425 grant_number: LT000256 name: Neuronal networks of salience and spatial detection in the murine superior colliculus - _id: 264FEA02-B435-11E9-9278-68D0E5697425 grant_number: ALTF 1098-2017 name: Connecting sensory with motor processing in the superior colliculus publisher: Institute of Science and Technology Austria related_material: record: - id: '12349' relation: used_in_publication status: public status: public title: 'Research Data for: Panoramic visual statistics shape retina-wide organization of receptive fields' tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ...