--- _id: '14828' abstract: - lang: eng text: Production of hydrogen at large scale requires development of non-noble, inexpensive, and high-performing catalysts for constructing water-splitting devices. Herein, we report the synthesis of Zn-doped NiO heterostructure (ZnNiO) catalysts at room temperature via a coprecipitation method followed by drying (at 80 °C, 6 h) and calcination at an elevated temperature of 400 °C for 5 h under three distinct conditions, namely, air, N2, and vacuum. The vacuum-synthesized catalyst demonstrates a low overpotential of 88 mV at −10 mA cm–2 and a small Tafel slope of 73 mV dec–1 suggesting relatively higher charge transfer kinetics for hydrogen evolution reactions (HER) compared with the specimens synthesized under N2 or O2 atmosphere. It also demonstrates an oxygen evolution (OER) overpotential of 260 mV at 10 mA cm–2 with a low Tafel slope of 63 mV dec–1. In a full-cell water-splitting device, the vacuum-synthesized ZnNiO heterostructure demonstrates a cell voltage of 1.94 V at 50 mA cm–2 and shows remarkable stability over 24 h at a high current density of 100 mA cm–2. It is also demonstrated in this study that Zn-doping, surface, and interface engineering in transition-metal oxides play a crucial role in efficient electrocatalytic water splitting. Also, the results obtained from density functional theory (DFT + U = 0–8 eV), where U is the on-site Coulomb repulsion parameter also known as Hubbard U, based electronic structure calculations confirm that Zn doping constructively modifies the electronic structure, in both the valence band and the conduction band, and found to be suitable in tailoring the carrier’s effective masses of electrons and holes. The decrease in electron’s effective masses together with large differences between the effective masses of electrons and holes is noticed, which is found to be mainly responsible for achieving the best water-splitting performance from a 9% Zn-doped NiO sample prepared under vacuum. acknowledgement: This work was supported by the Technology Innovation Program (20011622, Development of Battery System Applied High-Efficiency Heat Control Polymer and Part Component) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). Author acknowledge to Prof. Tsunehiro Takeuchi from Toyota Technological Institute, Nagoya, Japan for the support of computational resources. article_processing_charge: No article_type: original author: - first_name: Gundegowda Kalligowdanadoddi full_name: Kiran, Gundegowda Kalligowdanadoddi last_name: Kiran - first_name: Saurabh full_name: Singh, Saurabh id: 12d625da-9cb3-11ed-9667-af09d37d3f0a last_name: Singh orcid: 0000-0003-2209-5269 - first_name: Neelima full_name: Mahato, Neelima last_name: Mahato - first_name: Thupakula Venkata Madhukar full_name: Sreekanth, Thupakula Venkata Madhukar last_name: Sreekanth - first_name: Gowra Raghupathy full_name: Dillip, Gowra Raghupathy last_name: Dillip - first_name: Kisoo full_name: Yoo, Kisoo last_name: Yoo - first_name: Jonghoon full_name: Kim, Jonghoon last_name: Kim citation: ama: Kiran GK, Singh S, Mahato N, et al. Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. 2024;7(1):214-229. doi:10.1021/acsaem.3c02519 apa: Kiran, G. K., Singh, S., Mahato, N., Sreekanth, T. V. M., Dillip, G. R., Yoo, K., & Kim, J. (2024). Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. American Chemical Society. https://doi.org/10.1021/acsaem.3c02519 chicago: Kiran, Gundegowda Kalligowdanadoddi, Saurabh Singh, Neelima Mahato, Thupakula Venkata Madhukar Sreekanth, Gowra Raghupathy Dillip, Kisoo Yoo, and Jonghoon Kim. “Interface Engineering Modulation Combined with Electronic Structure Modification of Zn-Doped NiO Heterostructure for Efficient Water-Splitting Activity.” ACS Applied Energy Materials. American Chemical Society, 2024. https://doi.org/10.1021/acsaem.3c02519. ieee: G. K. Kiran et al., “Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity,” ACS Applied Energy Materials, vol. 7, no. 1. American Chemical Society, pp. 214–229, 2024. ista: Kiran GK, Singh S, Mahato N, Sreekanth TVM, Dillip GR, Yoo K, Kim J. 2024. Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. 7(1), 214–229. mla: Kiran, Gundegowda Kalligowdanadoddi, et al. “Interface Engineering Modulation Combined with Electronic Structure Modification of Zn-Doped NiO Heterostructure for Efficient Water-Splitting Activity.” ACS Applied Energy Materials, vol. 7, no. 1, American Chemical Society, 2024, pp. 214–29, doi:10.1021/acsaem.3c02519. short: G.K. Kiran, S. Singh, N. Mahato, T.V.M. Sreekanth, G.R. Dillip, K. Yoo, J. Kim, ACS Applied Energy Materials 7 (2024) 214–229. date_created: 2024-01-17T12:48:35Z date_published: 2024-01-08T00:00:00Z date_updated: 2024-01-22T13:47:39Z day: '08' department: - _id: MaIb doi: 10.1021/acsaem.3c02519 external_id: isi: - '001138342900001' intvolume: ' 7' isi: 1 issue: '1' keyword: - Electrical and Electronic Engineering - Materials Chemistry - Electrochemistry - Energy Engineering and Power Technology - Chemical Engineering (miscellaneous) language: - iso: eng month: '01' oa_version: None page: 214-229 publication: ACS Applied Energy Materials publication_identifier: issn: - 2574-0962 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2024' ... --- _id: '15114' abstract: - lang: eng text: As a key liquid organic hydrogen carrier, investigating the decomposition of formic acid (HCOOH) on the Pd (1 1 1) transition metal surface is imperative for harnessing hydrogen energy. Despite a multitude of studies, the major mechanisms and key intermediates involved in the dehydrogenation process of formic acid remain a great topic of debate due to ambiguous adsorbate interactions. In this research, we develop an advanced microkinetic model based on first-principles calculations, accounting for adsorbate–adsorbate interactions. Our study unveils a comprehensive mechanism for the Pd (1 1 1) surface, highlighting the significance of coverage effects in formic acid dehydrogenation. Our findings unequivocally demonstrate that H coverage on the Pd (1 1 1) surface renders formic acid more susceptible to decompose into H2 and CO2 through COOH intermediates. Consistent with experimental results, the selectivity of H2 in the decomposition of formic acid on the Pd (1 1 1) surface approaches 100 %. Considering the influence of H coverage, our kinetic analysis aligns perfectly with experimental values at a temperature of 373 K. acknowledgement: The authors acknowledge the financial support from the National Key Research and Development Project of China (2021YFA1500900, 2022YFE0113800), the National Natural Science Foundation of China (22141001, U21A20298), Zhejiang Innovation Team (2017R5203). article_number: '119959' article_processing_charge: No article_type: original author: - first_name: Zihao full_name: Yao, Zihao last_name: Yao - first_name: Xu full_name: Liu, Xu last_name: Liu - first_name: Rhys full_name: Bunting, Rhys id: 91deeae8-1207-11ec-b130-c194ad5b50c6 last_name: Bunting orcid: 0000-0001-6928-074X - first_name: Jianguo full_name: Wang, Jianguo last_name: Wang citation: ama: 'Yao Z, Liu X, Bunting R, Wang J. Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. 2024;291. doi:10.1016/j.ces.2024.119959' apa: 'Yao, Z., Liu, X., Bunting, R., & Wang, J. (2024). Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. Elsevier. https://doi.org/10.1016/j.ces.2024.119959' chicago: 'Yao, Zihao, Xu Liu, Rhys Bunting, and Jianguo Wang. “Unravelling the Reaction Mechanism for H2 Production via Formic Acid Decomposition over Pd: Coverage-Dependent Microkinetic Modeling.” Chemical Engineering Science. Elsevier, 2024. https://doi.org/10.1016/j.ces.2024.119959.' ieee: 'Z. Yao, X. Liu, R. Bunting, and J. Wang, “Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling,” Chemical Engineering Science, vol. 291. Elsevier, 2024.' ista: 'Yao Z, Liu X, Bunting R, Wang J. 2024. Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling. Chemical Engineering Science. 291, 119959.' mla: 'Yao, Zihao, et al. “Unravelling the Reaction Mechanism for H2 Production via Formic Acid Decomposition over Pd: Coverage-Dependent Microkinetic Modeling.” Chemical Engineering Science, vol. 291, 119959, Elsevier, 2024, doi:10.1016/j.ces.2024.119959.' short: Z. Yao, X. Liu, R. Bunting, J. Wang, Chemical Engineering Science 291 (2024). date_created: 2024-03-17T23:00:57Z date_published: 2024-03-04T00:00:00Z date_updated: 2024-03-19T08:47:42Z day: '04' department: - _id: MaIb doi: 10.1016/j.ces.2024.119959 intvolume: ' 291' language: - iso: eng month: '03' oa_version: None publication: Chemical Engineering Science publication_identifier: issn: - 0009-2509 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Unravelling the reaction mechanism for H2 production via formic acid decomposition over Pd: Coverage-dependent microkinetic modeling' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 291 year: '2024' ... --- _id: '15182' abstract: - lang: eng text: Thermoelectric materials convert heat into electricity, with a broad range of applications near room temperature (RT). However, the library of RT high-performance materials is limited. Traditional high-temperature synthetic methods constrain the range of materials achievable, hindering the ability to surpass crystal structure limitations and engineer defects. Here, a solution-based synthetic approach is introduced, enabling RT synthesis of powders and exploration of densification at lower temperatures to influence the material's microstructure. The approach is exemplified by Ag2Se, an n-type alternative to bismuth telluride. It is demonstrated that the concentration of Ag interstitials, grain boundaries, and dislocations are directly correlated to the sintering temperature, and achieve a figure of merit of 1.1 from RT to 100 °C after optimization. Moreover, insights into and resolve Ag2Se's challenges are provided, including stoichiometry issues leading to irreproducible performances. This work highlights the potential of RT solution synthesis in expanding the repertoire of high-performance thermoelectric materials for practical applications. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: NanoFab acknowledgement: This work was supported by the Scientific Service Units (SSU) of ISTA through resources provided by the Electron Microscopy Facility (EMF), the Lab Support Facility (LSF), and the Nanofabrication Facility (NNF). This work was financially supported by ISTA and the Werner Siemens Foundation. The USTEM Service Unit of the Technical University of Vienna is acknowledged for EBSD sample preparation and analysis. R.L.B. acknowledges the National Science Foundation for funding the mass spectrometry analysis under award DMR 1904719. J.L. is a Serra Húnter Fellow and is grateful to the ICREA Academia program and projects MICINN/FEDER PID2021-124572OB-C31 and GC 2021 SGR 01061. article_number: '2400408' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Tobias full_name: Kleinhanns, Tobias id: 8BD9DE16-AB3C-11E9-9C8C-2A03E6697425 last_name: Kleinhanns - first_name: Francesco full_name: Milillo, Francesco id: 38b830db-ea88-11ee-bf9b-929beaf79054 last_name: Milillo - first_name: Mariano full_name: Calcabrini, Mariano id: 45D7531A-F248-11E8-B48F-1D18A9856A87 last_name: Calcabrini orcid: 0000-0003-4566-5877 - first_name: Christine full_name: Fiedler, Christine id: bd3fceba-dc74-11ea-a0a7-c17f71817366 last_name: Fiedler - first_name: Sharona full_name: Horta, Sharona id: 03a7e858-01b1-11ec-8b71-99ae6c4a05bc last_name: Horta - first_name: Daniel full_name: Balazs, Daniel id: 302BADF6-85FC-11EA-9E3B-B9493DDC885E last_name: Balazs orcid: 0000-0001-7597-043X - first_name: Marissa J. full_name: Strumolo, Marissa J. last_name: Strumolo - first_name: Roger full_name: Hasler, Roger last_name: Hasler - first_name: Jordi full_name: Llorca, Jordi last_name: Llorca - first_name: Michael full_name: Tkadletz, Michael last_name: Tkadletz - first_name: Richard L. full_name: Brutchey, Richard L. last_name: Brutchey - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 citation: ama: 'Kleinhanns T, Milillo F, Calcabrini M, et al. A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se. Advanced Energy Materials. 2024. doi:10.1002/aenm.202400408' apa: 'Kleinhanns, T., Milillo, F., Calcabrini, M., Fiedler, C., Horta, S., Balazs, D., … Ibáñez, M. (2024). A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se. Advanced Energy Materials. Wiley. https://doi.org/10.1002/aenm.202400408' chicago: 'Kleinhanns, Tobias, Francesco Milillo, Mariano Calcabrini, Christine Fiedler, Sharona Horta, Daniel Balazs, Marissa J. Strumolo, et al. “A Route to High Thermoelectric Performance: Solution‐based Control of Microstructure and Composition in Ag2Se.” Advanced Energy Materials. Wiley, 2024. https://doi.org/10.1002/aenm.202400408.' ieee: 'T. Kleinhanns et al., “A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se,” Advanced Energy Materials. Wiley, 2024.' ista: 'Kleinhanns T, Milillo F, Calcabrini M, Fiedler C, Horta S, Balazs D, Strumolo MJ, Hasler R, Llorca J, Tkadletz M, Brutchey RL, Ibáñez M. 2024. A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se. Advanced Energy Materials., 2400408.' mla: 'Kleinhanns, Tobias, et al. “A Route to High Thermoelectric Performance: Solution‐based Control of Microstructure and Composition in Ag2Se.” Advanced Energy Materials, 2400408, Wiley, 2024, doi:10.1002/aenm.202400408.' short: T. Kleinhanns, F. Milillo, M. Calcabrini, C. Fiedler, S. Horta, D. Balazs, M.J. Strumolo, R. Hasler, J. Llorca, M. Tkadletz, R.L. Brutchey, M. Ibáñez, Advanced Energy Materials (2024). date_created: 2024-03-25T08:57:40Z date_published: 2024-03-13T00:00:00Z date_updated: 2024-03-25T09:21:05Z day: '13' department: - _id: MaIb - _id: LifeSc doi: 10.1002/aenm.202400408 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1002/aenm.202400408 month: '03' oa: 1 oa_version: Published Version project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Advanced Energy Materials publication_identifier: eissn: - 1614-6840 issn: - 1614-6832 publication_status: epub_ahead publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'A route to high thermoelectric performance: Solution‐based control of microstructure and composition in Ag2Se' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '15166' abstract: - lang: eng text: Reducing defects boosts room-temperature performance of a thermoelectric device acknowledgement: The authors thank the Werner-Siemens-Stiftung and the Institute of Science and Technology Austria for financial support. article_processing_charge: No article_type: letter_note author: - first_name: Navita full_name: Navita, Navita id: 6ebe278d-ba0b-11ee-8184-f34cdc671de4 last_name: Navita - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 citation: ama: Jakhar N, Ibáñez M. Electron highways are cooler. Science. 2024;383(6688):1184. doi:10.1126/science.ado4077 apa: Jakhar, N., & Ibáñez, M. (2024). Electron highways are cooler. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.ado4077 chicago: Jakhar, Navita, and Maria Ibáñez. “Electron Highways Are Cooler.” Science. American Association for the Advancement of Science, 2024. https://doi.org/10.1126/science.ado4077. ieee: N. Jakhar and M. Ibáñez, “Electron highways are cooler,” Science, vol. 383, no. 6688. American Association for the Advancement of Science, p. 1184, 2024. ista: Jakhar N, Ibáñez M. 2024. Electron highways are cooler. Science. 383(6688), 1184. mla: Jakhar, Navita, and Maria Ibáñez. “Electron Highways Are Cooler.” Science, vol. 383, no. 6688, American Association for the Advancement of Science, 2024, p. 1184, doi:10.1126/science.ado4077. short: N. Jakhar, M. Ibáñez, Science 383 (2024) 1184. date_created: 2024-03-24T23:00:58Z date_published: 2024-03-14T00:00:00Z date_updated: 2024-03-25T10:31:20Z day: '14' department: - _id: MaIb doi: 10.1126/science.ado4077 intvolume: ' 383' issue: '6688' language: - iso: eng month: '03' oa_version: None page: '1184' project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: Electron highways are cooler type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 383 year: '2024' ... --- _id: '12832' abstract: - lang: eng text: The development of cost-effective, high-activity and stable bifunctional catalysts for the oxygen reduction and evolution reactions (ORR/OER) is essential for zinc–air batteries (ZABs) to reach the market. Such catalysts must contain multiple adsorption/reaction sites to cope with the high demands of reversible oxygen electrodes. Herein, we propose a high entropy alloy (HEA) based on relatively abundant elements as a bifunctional ORR/OER catalyst. More specifically, we detail the synthesis of a CrMnFeCoNi HEA through a low-temperature solution-based approach. Such HEA displays superior OER performance with an overpotential of 265 mV at a current density of 10 mA/cm2, and a 37.9 mV/dec Tafel slope, well above the properties of a standard commercial catalyst based on RuO2. This high performance is partially explained by the presence of twinned defects, the incidence of large lattice distortions, and the electronic synergy between the different components, being Cr key to decreasing the energy barrier of the OER rate-determining step. CrMnFeCoNi also displays superior ORR performance with a half-potential of 0.78 V and an onset potential of 0.88 V, comparable with commercial Pt/C. The potential gap (Egap) between the OER overpotential and the ORR half-potential of CrMnFeCoNi is just 0.734 V. Taking advantage of these outstanding properties, ZABs are assembled using the CrMnFeCoNi HEA as air cathode and a zinc foil as the anode. The assembled cells provide an open-circuit voltage of 1.489 V, i.e. 90% of its theoretical limit (1.66 V), a peak power density of 116.5 mW/cm2, and a specific capacity of 836 mAh/g that stays stable for more than 10 days of continuous cycling, i.e. 720 cycles @ 8 mA/cm2 and 16.6 days of continuous cycling, i.e. 1200 cycles @ 5 mA/cm2. acknowledged_ssus: - _id: EM-Fac acknowledgement: 'The authors thank the support from the project COMBENERGY, PID2019-105490RB-C32, from the Spanish Ministerio de Ciencia e Innovación. The authors acknowledge funding from Generalitat de Catalunya 2021 SGR 01581 and 2021 SGR 00457. ICN2 acknowledges the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706). IREC and ICN2 are funded by the CERCA Programme from the Generalitat de Catalunya. ICN2 is supported by the Severo Ochoa program from Spanish MCIN / AEI (Grant No.: CEX2021-001214-S). ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327. This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and Generalitat de Catalunya. The authors thank the support from the project NANOGEN (PID2020-116093RB-C43), funded by MCIN/ AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”, by the “European Union”. Part of the present work has been performed in the frameworks of Universitat de Barcelona Nanoscience PhD program. This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by Electron Microscopy Facility (EMF). S. Lee. and M. Ibáñez acknowledge funding by IST Austria and the Werner Siemens Foundation. J. Llorca is a Serra Húnter Fellow and is grateful to ICREA Academia program and projects MICINN/FEDER PID2021-124572OB-C31 and GC 2017 SGR 128. L. L.Yang thanks the China Scholarship Council (CSC) for the scholarship support (202008130132). Z. F. Liang acknowledges funding from MINECO SO-FPT PhD grant (SEV-2013-0295-17-1). J. W. Chen and Y. Xu thank the support from The Key Research and Development Program of Hebei Province (No. 20314305D) and the cooperative scientific research project of the “Chunhui Program” of the Ministry of Education (2018-7). This work was supported by the Natural Science Foundation of Sichuan province (NSFSC) and funded by the Science and Technology Department of Sichuan Province (2022NSFSC1229).' article_processing_charge: No article_type: original author: - first_name: Ren full_name: He, Ren last_name: He - first_name: Linlin full_name: Yang, Linlin last_name: Yang - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Xiang full_name: Wang, Xiang last_name: Wang - first_name: Seungho full_name: Lee, Seungho id: BB243B88-D767-11E9-B658-BC13E6697425 last_name: Lee orcid: 0000-0002-6962-8598 - first_name: Ting full_name: Zhang, Ting last_name: Zhang - first_name: Lingxiao full_name: Li, Lingxiao last_name: Li - first_name: Zhifu full_name: Liang, Zhifu last_name: Liang - first_name: Jingwei full_name: Chen, Jingwei last_name: Chen - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Ahmad full_name: Ostovari Moghaddam, Ahmad last_name: Ostovari Moghaddam - first_name: Jordi full_name: Llorca, Jordi last_name: Llorca - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Ying full_name: Xu, Ying last_name: Xu - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: He R, Yang L, Zhang Y, et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. 2023;58(4):287-298. doi:10.1016/j.ensm.2023.03.022 apa: He, R., Yang, L., Zhang, Y., Wang, X., Lee, S., Zhang, T., … Cabot, A. (2023). A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. Elsevier. https://doi.org/10.1016/j.ensm.2023.03.022 chicago: He, Ren, Linlin Yang, Yu Zhang, Xiang Wang, Seungho Lee, Ting Zhang, Lingxiao Li, et al. “A CrMnFeCoNi High Entropy Alloy Boosting Oxygen Evolution/Reduction Reactions and Zinc-Air Battery Performance.” Energy Storage Materials. Elsevier, 2023. https://doi.org/10.1016/j.ensm.2023.03.022. ieee: R. He et al., “A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance,” Energy Storage Materials, vol. 58, no. 4. Elsevier, pp. 287–298, 2023. ista: He R, Yang L, Zhang Y, Wang X, Lee S, Zhang T, Li L, Liang Z, Chen J, Li J, Ostovari Moghaddam A, Llorca J, Ibáñez M, Arbiol J, Xu Y, Cabot A. 2023. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials. 58(4), 287–298. mla: He, Ren, et al. “A CrMnFeCoNi High Entropy Alloy Boosting Oxygen Evolution/Reduction Reactions and Zinc-Air Battery Performance.” Energy Storage Materials, vol. 58, no. 4, Elsevier, 2023, pp. 287–98, doi:10.1016/j.ensm.2023.03.022. short: R. He, L. Yang, Y. Zhang, X. Wang, S. Lee, T. Zhang, L. Li, Z. Liang, J. Chen, J. Li, A. Ostovari Moghaddam, J. Llorca, M. Ibáñez, J. Arbiol, Y. Xu, A. Cabot, Energy Storage Materials 58 (2023) 287–298. date_created: 2023-04-16T22:01:07Z date_published: 2023-04-01T00:00:00Z date_updated: 2023-08-01T14:08:02Z day: '01' department: - _id: MaIb doi: 10.1016/j.ensm.2023.03.022 external_id: isi: - '000967601700001' intvolume: ' 58' isi: 1 issue: '4' language: - iso: eng month: '04' oa_version: None page: 287-298 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Energy Storage Materials publication_identifier: eissn: - 2405-8297 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 58 year: '2023' ... --- _id: '13092' abstract: - lang: eng text: There is a need for the development of lead-free thermoelectric materials for medium-/high-temperature applications. Here, we report a thiol-free tin telluride (SnTe) precursor that can be thermally decomposed to produce SnTe crystals with sizes ranging from tens to several hundreds of nanometers. We further engineer SnTe–Cu2SnTe3 nanocomposites with a homogeneous phase distribution by decomposing the liquid SnTe precursor containing a dispersion of Cu1.5Te colloidal nanoparticles. The presence of Cu within the SnTe and the segregated semimetallic Cu2SnTe3 phase effectively improves the electrical conductivity of SnTe while simultaneously reducing the lattice thermal conductivity without compromising the Seebeck coefficient. Overall, power factors up to 3.63 mW m–1 K–2 and thermoelectric figures of merit up to 1.04 are obtained at 823 K, which represent a 167% enhancement compared with pristine SnTe. acknowledgement: Open Access is funded by the Austrian Science Fund (FWF). We thank Generalitat de Catalunya AGAUR─2021 SGR 01581 for financial support. B.F.N., K.X., and L.L.Y. thank the China Scholarship Council (CSC) for the scholarship support. C.C. acknowledges funding from the FWF “Lise Meitner Fellowship” grant agreement M 2889-N. J.S.L is grateful to the Science and Technology Department of Sichuan Province for the project no. 22NSFSC0966. K.H.L. was supported by the Institute of Zhejiang University-Quzhou (IZQ2021RCZX003). M.I. acknowledges the financial support from IST Austria. article_processing_charge: No article_type: original author: - first_name: Bingfei full_name: Nan, Bingfei last_name: 'Nan' - first_name: Xuan full_name: Song, Xuan last_name: Song - first_name: Cheng full_name: Chang, Cheng id: 9E331C2E-9F27-11E9-AE48-5033E6697425 last_name: Chang orcid: 0000-0002-9515-4277 - first_name: Ke full_name: Xiao, Ke last_name: Xiao - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Linlin full_name: Yang, Linlin last_name: Yang - first_name: Sharona full_name: Horta, Sharona id: 03a7e858-01b1-11ec-8b71-99ae6c4a05bc last_name: Horta - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Nan B, Song X, Chang C, et al. Bottom-up synthesis of SnTe-based thermoelectric composites. ACS Applied Materials and Interfaces. 2023;15(19):23380–23389. doi:10.1021/acsami.3c00625 apa: Nan, B., Song, X., Chang, C., Xiao, K., Zhang, Y., Yang, L., … Cabot, A. (2023). Bottom-up synthesis of SnTe-based thermoelectric composites. ACS Applied Materials and Interfaces. American Chemical Society. https://doi.org/10.1021/acsami.3c00625 chicago: Nan, Bingfei, Xuan Song, Cheng Chang, Ke Xiao, Yu Zhang, Linlin Yang, Sharona Horta, et al. “Bottom-up Synthesis of SnTe-Based Thermoelectric Composites.” ACS Applied Materials and Interfaces. American Chemical Society, 2023. https://doi.org/10.1021/acsami.3c00625. ieee: B. Nan et al., “Bottom-up synthesis of SnTe-based thermoelectric composites,” ACS Applied Materials and Interfaces, vol. 15, no. 19. American Chemical Society, pp. 23380–23389, 2023. ista: Nan B, Song X, Chang C, Xiao K, Zhang Y, Yang L, Horta S, Li J, Lim KH, Ibáñez M, Cabot A. 2023. Bottom-up synthesis of SnTe-based thermoelectric composites. ACS Applied Materials and Interfaces. 15(19), 23380–23389. mla: Nan, Bingfei, et al. “Bottom-up Synthesis of SnTe-Based Thermoelectric Composites.” ACS Applied Materials and Interfaces, vol. 15, no. 19, American Chemical Society, 2023, pp. 23380–23389, doi:10.1021/acsami.3c00625. short: B. Nan, X. Song, C. Chang, K. Xiao, Y. Zhang, L. Yang, S. Horta, J. Li, K.H. Lim, M. Ibáñez, A. Cabot, ACS Applied Materials and Interfaces 15 (2023) 23380–23389. date_created: 2023-05-28T22:01:03Z date_published: 2023-05-04T00:00:00Z date_updated: 2023-08-01T14:50:09Z day: '04' ddc: - '540' department: - _id: MaIb doi: 10.1021/acsami.3c00625 external_id: isi: - '000985497900001' pmid: - '37141543' file: - access_level: open_access checksum: 23893be46763c4c78daacddd019de821 content_type: application/pdf creator: dernst date_created: 2023-05-30T07:38:44Z date_updated: 2023-05-30T07:38:44Z file_id: '13099' file_name: 2023_ACSAppliedMaterials_Nan.pdf file_size: 5640829 relation: main_file success: 1 file_date_updated: 2023-05-30T07:38:44Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '19' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 23380–23389 pmid: 1 project: - _id: 9B8804FC-BA93-11EA-9121-9846C619BF3A grant_number: M02889 name: Bottom-up Engineering for Thermoelectric Applications publication: ACS Applied Materials and Interfaces publication_identifier: eissn: - 1944-8252 issn: - 1944-8244 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Bottom-up synthesis of SnTe-based thermoelectric composites tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2023' ... --- _id: '13093' abstract: - lang: eng text: The direct, solid state, and reversible conversion between heat and electricity using thermoelectric devices finds numerous potential uses, especially around room temperature. However, the relatively high material processing cost limits their real applications. Silver selenide (Ag2Se) is one of the very few n-type thermoelectric (TE) materials for room-temperature applications. Herein, we report a room temperature, fast, and aqueous-phase synthesis approach to produce Ag2Se, which can be extended to other metal chalcogenides. These materials reach TE figures of merit (zT) of up to 0.76 at 380 K. To improve these values, bismuth sulfide (Bi2S3) particles also prepared in an aqueous solution are incorporated into the Ag2Se matrix. In this way, a series of Ag2Se/Bi2S3 composites with Bi2S3 wt % of 0.5, 1.0, and 1.5 are prepared by solution blending and hot-press sintering. The presence of Bi2S3 significantly improves the Seebeck coefficient and power factor while at the same time decreasing the thermal conductivity with no apparent drop in electrical conductivity. Thus, a maximum zT value of 0.96 is achieved in the composites with 1.0 wt % Bi2S3 at 370 K. Furthermore, a high average zT value (zTave) of 0.93 in the 300–390 K range is demonstrated. acknowledgement: 'Open Access is funded by the Austrian Science Fund (FWF). B.N., M.L., Y.Z., K.X., and X.H. thank the China Scholarship Council (CSC) for the scholarship support. C.C. received funding from the FWF “Lise Meitner Fellowship” grant agreement M 2889-N. M.I. acknowledges the financial support from ISTA and the Werner Siemens Foundation. ICN2 acknowledges funding from Generalitat de Catalunya 2021SGR00457 and project NANOGEN (PID2020-116093RB-C43) funded by MCIN/AEI/10.13039/501100011033/. ICN2 was supported by the Severo Ochoa program from Spanish MCIN/AEI (Grant No.: CEX2021-001214-S) and was funded by the CERCA Programme/Generalitat de Catalunya. J.L. is a Serra Húnter Fellow and is grateful to the ICREA Academia program and projects MICINN/FEDER PID2021-124572OB-C31 and 2021 SGR 01061. K.H.L. acknowledges support from the National Natural Science Foundation of China (22208293). This study is part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat de Catalunya.' article_processing_charge: No article_type: original author: - first_name: Bingfei full_name: Nan, Bingfei last_name: 'Nan' - first_name: Mengyao full_name: Li, Mengyao last_name: Li - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Ke full_name: Xiao, Ke last_name: Xiao - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Cheng full_name: Chang, Cheng id: 9E331C2E-9F27-11E9-AE48-5033E6697425 last_name: Chang orcid: 0000-0002-9515-4277 - first_name: Xu full_name: Han, Xu last_name: Han - first_name: Yong full_name: Zuo, Yong last_name: Zuo - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Jordi full_name: Llorca, Jordi last_name: Llorca - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Nan B, Li M, Zhang Y, et al. Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature. ACS Applied Electronic Materials. 2023. doi:10.1021/acsaelm.3c00055 apa: Nan, B., Li, M., Zhang, Y., Xiao, K., Lim, K. H., Chang, C., … Cabot, A. (2023). Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature. ACS Applied Electronic Materials. American Chemical Society. https://doi.org/10.1021/acsaelm.3c00055 chicago: Nan, Bingfei, Mengyao Li, Yu Zhang, Ke Xiao, Khak Ho Lim, Cheng Chang, Xu Han, et al. “Engineering of Thermoelectric Composites Based on Silver Selenide in Aqueous Solution and Ambient Temperature.” ACS Applied Electronic Materials. American Chemical Society, 2023. https://doi.org/10.1021/acsaelm.3c00055. ieee: B. Nan et al., “Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature,” ACS Applied Electronic Materials. American Chemical Society, 2023. ista: Nan B, Li M, Zhang Y, Xiao K, Lim KH, Chang C, Han X, Zuo Y, Li J, Arbiol J, Llorca J, Ibáñez M, Cabot A. 2023. Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature. ACS Applied Electronic Materials. mla: Nan, Bingfei, et al. “Engineering of Thermoelectric Composites Based on Silver Selenide in Aqueous Solution and Ambient Temperature.” ACS Applied Electronic Materials, American Chemical Society, 2023, doi:10.1021/acsaelm.3c00055. short: B. Nan, M. Li, Y. Zhang, K. Xiao, K.H. Lim, C. Chang, X. Han, Y. Zuo, J. Li, J. Arbiol, J. Llorca, M. Ibáñez, A. Cabot, ACS Applied Electronic Materials (2023). date_created: 2023-05-28T22:01:03Z date_published: 2023-05-05T00:00:00Z date_updated: 2023-08-01T14:50:48Z day: '05' department: - _id: MaIb doi: 10.1021/acsaelm.3c00055 external_id: isi: - '000986859000001' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1021/acsaelm.3c00055 month: '05' oa: 1 oa_version: Published Version project: - _id: 9B8804FC-BA93-11EA-9121-9846C619BF3A grant_number: M02889 name: Bottom-up Engineering for Thermoelectric Applications - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: ACS Applied Electronic Materials publication_identifier: eissn: - 2637-6113 publication_status: epub_ahead publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Engineering of thermoelectric composites based on silver selenide in aqueous solution and ambient temperature type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2023' ... --- _id: '13235' abstract: - lang: eng text: AgSbSe2 is a promising thermoelectric (TE) p-type material for applications in the middle-temperature range. AgSbSe2 is characterized by relatively low thermal conductivities and high Seebeck coefficients, but its main limitation is moderate electrical conductivity. Herein, we detail an efficient and scalable hot-injection synthesis route to produce AgSbSe2 nanocrystals (NCs). To increase the carrier concentration and improve the electrical conductivity, these NCs are doped with Sn2+ on Sb3+ sites. Upon processing, the Sn2+ chemical state is conserved using a reducing NaBH4 solution to displace the organic ligand and anneal the material under a forming gas flow. The TE properties of the dense materials obtained from the consolidation of the NCs using a hot pressing are then characterized. The presence of Sn2+ ions replacing Sb3+ significantly increases the charge carrier concentration and, consequently, the electrical conductivity. Opportunely, the measured Seebeck coefficient varied within a small range upon Sn doping. The excellent performance obtained when Sn2+ ions are prevented from oxidation is rationalized by modeling the system. Calculated band structures disclosed that Sn doping induces convergence of the AgSbSe2 valence bands, accounting for an enhanced electronic effective mass. The dramatically enhanced carrier transport leads to a maximized power factor for AgSb0.98Sn0.02Se2 of 0.63 mW m–1 K–2 at 640 K. Thermally, phonon scattering is significantly enhanced in the NC-based materials, yielding an ultralow thermal conductivity of 0.3 W mK–1 at 666 K. Overall, a record-high figure of merit (zT) is obtained at 666 K for AgSb0.98Sn0.02Se2 at zT = 1.37, well above the values obtained for undoped AgSbSe2, at zT = 0.58 and state-of-art Pb- and Te-free materials, which makes AgSb0.98Sn0.02Se2 an excellent p-type candidate for medium-temperature TE applications. acknowledgement: Y.L. acknowledges funding from the National Natural Science Foundation of China (NSFC) (Grants No. 22209034), the Innovation and Entrepreneurship Project of Overseas Returnees in Anhui Province (Grant No. 2022LCX002). K.H.L. acknowledges financial support from the National Natural Science Foundation of China (Grant No. 22208293). Y.Z. acknowledges support from the SBIR program NanoOhmics. J.L. is grateful for the project supported by the Natural Science Foundation of Sichuan (2022NSFSC1229). M.I. acknowledges financial support from ISTA and the Werner Siemens Foundation. article_processing_charge: No article_type: original author: - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Mingquan full_name: Li, Mingquan last_name: Li - first_name: Shanhong full_name: Wan, Shanhong last_name: Wan - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Mengyao full_name: Li, Mengyao last_name: Li - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Min full_name: Hong, Min last_name: Hong - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: 'Liu Y, Li M, Wan S, et al. Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. 2023;17(12):11923–11934. doi:10.1021/acsnano.3c03541' apa: 'Liu, Y., Li, M., Wan, S., Lim, K. H., Zhang, Y., Li, M., … Cabot, A. (2023). Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. American Chemical Society. https://doi.org/10.1021/acsnano.3c03541' chicago: 'Liu, Yu, Mingquan Li, Shanhong Wan, Khak Ho Lim, Yu Zhang, Mengyao Li, Junshan Li, Maria Ibáñez, Min Hong, and Andreu Cabot. “Surface Chemistry and Band Engineering in AgSbSe₂: Toward High Thermoelectric Performance.” ACS Nano. American Chemical Society, 2023. https://doi.org/10.1021/acsnano.3c03541.' ieee: 'Y. Liu et al., “Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance,” ACS Nano, vol. 17, no. 12. American Chemical Society, pp. 11923–11934, 2023.' ista: 'Liu Y, Li M, Wan S, Lim KH, Zhang Y, Li M, Li J, Ibáñez M, Hong M, Cabot A. 2023. Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance. ACS Nano. 17(12), 11923–11934.' mla: 'Liu, Yu, et al. “Surface Chemistry and Band Engineering in AgSbSe₂: Toward High Thermoelectric Performance.” ACS Nano, vol. 17, no. 12, American Chemical Society, 2023, pp. 11923–11934, doi:10.1021/acsnano.3c03541.' short: Y. Liu, M. Li, S. Wan, K.H. Lim, Y. Zhang, M. Li, J. Li, M. Ibáñez, M. Hong, A. Cabot, ACS Nano 17 (2023) 11923–11934. date_created: 2023-07-16T22:01:11Z date_published: 2023-06-13T00:00:00Z date_updated: 2023-08-02T06:29:55Z day: '13' department: - _id: MaIb doi: 10.1021/acsnano.3c03541 external_id: isi: - '001008564800001' pmid: - '37310395' intvolume: ' 17' isi: 1 issue: '12' language: - iso: eng month: '06' oa_version: None page: 11923–11934 pmid: 1 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: ACS Nano publication_identifier: eissn: - 1936-086X issn: - 1936-0851 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Surface chemistry and band engineering in AgSbSe₂: Toward high thermoelectric performance' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2023' ... --- _id: '12885' abstract: - lang: eng text: 'High-performance semiconductors rely upon precise control of heat and charge transport. This can be achieved by precisely engineering defects in polycrystalline solids. There are multiple approaches to preparing such polycrystalline semiconductors, and the transformation of solution-processed colloidal nanoparticles is appealing because colloidal nanoparticles combine low cost with structural and compositional tunability along with rich surface chemistry. However, the multiple processes from nanoparticle synthesis to the final bulk nanocomposites are very complex. They involve nanoparticle purification, post-synthetic modifications, and finally consolidation (thermal treatments and densification). All these properties dictate the final material’s composition and microstructure, ultimately affecting its functional properties. This thesis explores the synthesis, surface chemistry and consolidation of colloidal semiconductor nanoparticles into dense solids. In particular, the transformations that take place during these processes, and their effect on the material’s transport properties are evaluated. ' acknowledged_ssus: - _id: EM-Fac - _id: NanoFab alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mariano full_name: Calcabrini, Mariano id: 45D7531A-F248-11E8-B48F-1D18A9856A87 last_name: Calcabrini orcid: 0000-0003-4566-5877 citation: ama: 'Calcabrini M. Nanoparticle-based semiconductor solids: From synthesis to consolidation. 2023. doi:10.15479/at:ista:12885' apa: 'Calcabrini, M. (2023). Nanoparticle-based semiconductor solids: From synthesis to consolidation. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12885' chicago: 'Calcabrini, Mariano. “Nanoparticle-Based Semiconductor Solids: From Synthesis to Consolidation.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12885.' ieee: 'M. Calcabrini, “Nanoparticle-based semiconductor solids: From synthesis to consolidation,” Institute of Science and Technology Austria, 2023.' ista: 'Calcabrini M. 2023. Nanoparticle-based semiconductor solids: From synthesis to consolidation. Institute of Science and Technology Austria.' mla: 'Calcabrini, Mariano. Nanoparticle-Based Semiconductor Solids: From Synthesis to Consolidation. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12885.' short: 'M. Calcabrini, Nanoparticle-Based Semiconductor Solids: From Synthesis to Consolidation, Institute of Science and Technology Austria, 2023.' date_created: 2023-05-02T07:58:57Z date_published: 2023-04-28T00:00:00Z date_updated: 2023-08-14T07:25:26Z day: '28' ddc: - '546' - '541' degree_awarded: PhD department: - _id: GradSch - _id: MaIb doi: 10.15479/at:ista:12885 ec_funded: 1 file: - access_level: closed checksum: 9347b0e09425f56fdcede5d3528404dc content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mcalcabr date_created: 2023-05-02T07:43:18Z date_updated: 2023-05-02T07:43:18Z file_id: '12887' file_name: Thesis_Calcabrini.docx file_size: 99627036 relation: source_file - access_level: open_access checksum: 2d188b76621086cd384f0b9264b0a576 content_type: application/pdf creator: mcalcabr date_created: 2023-05-02T07:42:45Z date_updated: 2023-05-02T07:42:45Z file_id: '12888' file_name: Thesis_Calcabrini_pdfa.pdf file_size: 8742220 relation: main_file success: 1 file_date_updated: 2023-05-02T07:43:18Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '82' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-028-2 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10806' relation: part_of_dissertation status: public - id: '10042' relation: part_of_dissertation status: public - id: '12237' relation: part_of_dissertation status: public - id: '9118' relation: part_of_dissertation status: public - id: '10123' relation: part_of_dissertation status: public status: public supervisor: - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 title: 'Nanoparticle-based semiconductor solids: From synthesis to consolidation' type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12113' abstract: - lang: eng text: The power factor of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film can be significantly improved by optimizing the oxidation level of the film in oxidation and reduction processes. However, precise control over the oxidation and reduction effects in PEDOT:PSS remains a challenge, which greatly sacrifices both S and σ. Here, we propose a two-step post-treatment using a mixture of ethylene glycol (EG) and Arginine (Arg) and sulfuric acid (H2SO4) in sequence to engineer high-performance PEDOT:PSS thermoelectric films. The high-polarity EG dopant removes the excess non-ionized PSS and induces benzenoid-to-quinoid conformational change in the PEDOT:PSS films. In particular, basic amino acid Arg tunes the oxidation level of PEDOT:PSS and prevents the films from over-oxidation during H2SO4 post-treatment, leading to increased S. The following H2SO4 post-treatment further induces highly orientated lamellar stacking microstructures to increase σ, yielding a maximum power factor of 170.6 μW m−1 K−2 at 460 K. Moreover, a novel trigonal-shape thermoelectric device is designed and assembled by the as-prepared PEDOT:PSS films in order to harvest heat via a vertical temperature gradient. An output power density of 33 μW cm−2 is generated at a temperature difference of 40 K, showing the potential application for low-grade wearable electronic devices. acknowledgement: Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No.22JY012), Natural Science Basic Research Program of Shaanxi (Grant No.2022JZ-31), Young Talent fund of University Association for Science and Technology in Shaanxi, China (Grant No.20210411), China Postdoctoral Science Foundation (Grant No. 2021M692621), the Foundation of Shaanxi University of Science & Technology (Grant No. 2017GBJ-03), Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology (Grant No. KFKT2022-15), and Open Foundation of Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology (Grant No. KFKT2022-15). article_number: '156101' article_processing_charge: No article_type: original author: - first_name: Li full_name: Zhang, Li last_name: Zhang - first_name: Xingyu full_name: Liu, Xingyu last_name: Liu - first_name: Ting full_name: Wu, Ting last_name: Wu - first_name: Shengduo full_name: Xu, Shengduo id: 12ab8624-4c8a-11ec-9e11-e1ac2438f22f last_name: Xu - first_name: Guoquan full_name: Suo, Guoquan last_name: Suo - first_name: Xiaohui full_name: Ye, Xiaohui last_name: Ye - first_name: Xiaojiang full_name: Hou, Xiaojiang last_name: Hou - first_name: Yanling full_name: Yang, Yanling last_name: Yang - first_name: Qingfeng full_name: Liu, Qingfeng last_name: Liu - first_name: Hongqiang full_name: Wang, Hongqiang last_name: Wang citation: ama: Zhang L, Liu X, Wu T, et al. Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. 2023;613. doi:10.1016/j.apsusc.2022.156101 apa: Zhang, L., Liu, X., Wu, T., Xu, S., Suo, G., Ye, X., … Wang, H. (2023). Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. Elsevier. https://doi.org/10.1016/j.apsusc.2022.156101 chicago: Zhang, Li, Xingyu Liu, Ting Wu, Shengduo Xu, Guoquan Suo, Xiaohui Ye, Xiaojiang Hou, Yanling Yang, Qingfeng Liu, and Hongqiang Wang. “Two-Step Post-Treatment to Deliver High Performance Thermoelectric Device with Vertical Temperature Gradient.” Applied Surface Science. Elsevier, 2023. https://doi.org/10.1016/j.apsusc.2022.156101. ieee: L. Zhang et al., “Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient,” Applied Surface Science, vol. 613. Elsevier, 2023. ista: Zhang L, Liu X, Wu T, Xu S, Suo G, Ye X, Hou X, Yang Y, Liu Q, Wang H. 2023. Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient. Applied Surface Science. 613, 156101. mla: Zhang, Li, et al. “Two-Step Post-Treatment to Deliver High Performance Thermoelectric Device with Vertical Temperature Gradient.” Applied Surface Science, vol. 613, 156101, Elsevier, 2023, doi:10.1016/j.apsusc.2022.156101. short: L. Zhang, X. Liu, T. Wu, S. Xu, G. Suo, X. Ye, X. Hou, Y. Yang, Q. Liu, H. Wang, Applied Surface Science 613 (2023). date_created: 2023-01-12T11:55:02Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-14T11:47:06Z day: '15' department: - _id: MaIb doi: 10.1016/j.apsusc.2022.156101 external_id: isi: - '000911497000001' intvolume: ' 613' isi: 1 keyword: - Surfaces - Coatings and Films - Condensed Matter Physics - Surfaces and Interfaces - General Physics and Astronomy - General Chemistry language: - iso: eng month: '03' oa_version: None publication: Applied Surface Science publication_identifier: issn: - 0169-4332 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Two-step post-treatment to deliver high performance thermoelectric device with vertical temperature gradient type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 613 year: '2023' ... --- _id: '12331' abstract: - lang: eng text: High carrier mobility is critical to improving thermoelectric performance over a broad temperature range. However, traditional doping inevitably deteriorates carrier mobility. Herein, we develop a strategy for fine tuning of defects to improve carrier mobility. To begin, n-type PbTe is created by compensating for the intrinsic Pb vacancy in bare PbTe. Excess Pb2+ reduces vacancy scattering, resulting in a high carrier mobility of ∼3400 cm2 V–1 s–1. Then, excess Ag is introduced to compensate for the remaining intrinsic Pb vacancies. We find that excess Ag exhibits a dynamic doping process with increasing temperatures, increasing both the carrier concentration and carrier mobility throughout a wide temperature range; specifically, an ultrahigh carrier mobility ∼7300 cm2 V–1 s–1 is obtained for Pb1.01Te + 0.002Ag at 300 K. Moreover, the dynamic doping-induced high carrier concentration suppresses the bipolar thermal conductivity at high temperatures. The final step is using iodine to optimize the carrier concentration to ∼1019 cm–3. Ultimately, a maximum ZT value of ∼1.5 and a large average ZTave value of ∼1.0 at 300–773 K are obtained for Pb1.01Te0.998I0.002 + 0.002Ag. These findings demonstrate that fine tuning of defects with <0.5% impurities can remarkably enhance carrier mobility and improve thermoelectric performance. acknowledgement: The National Key Research and Development Program of China (2018YFA0702100), the Basic Science Center Project of the National Natural Science Foundation of China (51788104), the National Natural Science Foundation of China (51571007 and 51772012), the Beijing Natural Science Foundation (JQ18004), the 111 Project (B17002), the National Science Fund for Distinguished Young Scholars (51925101), and the FWF “Lise Meitner Fellowship” (grant agreement M2889-N). Open Access is funded by the Austrian Science Fund (FWF). article_processing_charge: No article_type: original author: - first_name: Siqi full_name: Wang, Siqi last_name: Wang - first_name: Cheng full_name: Chang, Cheng id: 9E331C2E-9F27-11E9-AE48-5033E6697425 last_name: Chang orcid: 0000-0002-9515-4277 - first_name: Shulin full_name: Bai, Shulin last_name: Bai - first_name: Bingchao full_name: Qin, Bingchao last_name: Qin - first_name: Yingcai full_name: Zhu, Yingcai last_name: Zhu - first_name: Shaoping full_name: Zhan, Shaoping last_name: Zhan - first_name: Junqing full_name: Zheng, Junqing last_name: Zheng - first_name: Shuwei full_name: Tang, Shuwei last_name: Tang - first_name: Li Dong full_name: Zhao, Li Dong last_name: Zhao citation: ama: Wang S, Chang C, Bai S, et al. Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe. Chemistry of Materials. 2023;35(2):755-763. doi:10.1021/acs.chemmater.2c03542 apa: Wang, S., Chang, C., Bai, S., Qin, B., Zhu, Y., Zhan, S., … Zhao, L. D. (2023). Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe. Chemistry of Materials. American Chemical Society. https://doi.org/10.1021/acs.chemmater.2c03542 chicago: Wang, Siqi, Cheng Chang, Shulin Bai, Bingchao Qin, Yingcai Zhu, Shaoping Zhan, Junqing Zheng, Shuwei Tang, and Li Dong Zhao. “Fine Tuning of Defects Enables High Carrier Mobility and Enhanced Thermoelectric Performance of N-Type PbTe.” Chemistry of Materials. American Chemical Society, 2023. https://doi.org/10.1021/acs.chemmater.2c03542. ieee: S. Wang et al., “Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe,” Chemistry of Materials, vol. 35, no. 2. American Chemical Society, pp. 755–763, 2023. ista: Wang S, Chang C, Bai S, Qin B, Zhu Y, Zhan S, Zheng J, Tang S, Zhao LD. 2023. Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe. Chemistry of Materials. 35(2), 755–763. mla: Wang, Siqi, et al. “Fine Tuning of Defects Enables High Carrier Mobility and Enhanced Thermoelectric Performance of N-Type PbTe.” Chemistry of Materials, vol. 35, no. 2, American Chemical Society, 2023, pp. 755–63, doi:10.1021/acs.chemmater.2c03542. short: S. Wang, C. Chang, S. Bai, B. Qin, Y. Zhu, S. Zhan, J. Zheng, S. Tang, L.D. Zhao, Chemistry of Materials 35 (2023) 755–763. date_created: 2023-01-22T23:00:55Z date_published: 2023-01-24T00:00:00Z date_updated: 2023-08-14T12:57:44Z day: '24' ddc: - '540' department: - _id: MaIb doi: 10.1021/acs.chemmater.2c03542 external_id: isi: - '000914749700001' file: - access_level: open_access checksum: b21dca2aa7a80c068bc256bdd1fea9df content_type: application/pdf creator: dernst date_created: 2023-08-14T12:57:25Z date_updated: 2023-08-14T12:57:25Z file_id: '14055' file_name: 2023_ChemistryMaterials_Wang.pdf file_size: 2961043 relation: main_file success: 1 file_date_updated: 2023-08-14T12:57:25Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 755-763 project: - _id: 9B8804FC-BA93-11EA-9121-9846C619BF3A grant_number: M02889 name: Bottom-up Engineering for Thermoelectric Applications publication: Chemistry of Materials publication_identifier: eissn: - 1520-5002 issn: - 0897-4756 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Fine tuning of defects enables high carrier mobility and enhanced thermoelectric performance of n-type PbTe tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2023' ... --- _id: '12915' abstract: - lang: eng text: Cu2–xS and Cu2–xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2–xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5–xTe–Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5–xTe–Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5–xTe nanoparticles effectively inhibits Cu1.5–xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K. acknowledgement: 'The authors acknowledge support from the projects ENE2016-77798-C4-3-R and NANOGEN (PID2020-116093RB-C43) funded by MCIN/AEI/10.13039/501100011033/and by “ERDF A way of making Europe”, and by the “European Union”. K.X. and B.N. thank the China Scholarship Council (CSC) for scholarship support. The authors acknowledge funding from Generalitat de Catalunya 2017 SGR 327 and 2017 SGR 1246. ICN2 is supported by the Severo Ochoa program from the Spanish MCIN/AEI (Grant No.: CEX2021-001214-S). IREC and ICN2 are funded by the CERCA Programme/Generalitat de Catalunya. J.L. acknowledges support from the Natural Science Foundation of Sichuan province (2022NSFSC1229). Part of the present work was performed in the frameworks of Universitat de Barcelona Nanoscience Ph.D. program and Universitat Autònoma de Barcelona Materials Science Ph.D. program. Y.L. acknowledges funding from the National Natural Science Foundation of China (Grant No. 22209034) and the Innovation and Entrepreneurship Project of Overseas Returnees in Anhui Province (Grants No. 2022LCX002). K.H.L. acknowledges the financial support of the National Natural Science Foundation of China (Grant No. 22208293).' article_processing_charge: No article_type: original author: - first_name: Congcong full_name: Xing, Congcong last_name: Xing - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Ke full_name: Xiao, Ke last_name: Xiao - first_name: Xu full_name: Han, Xu last_name: Han - first_name: Yu full_name: Liu, Yu id: 2A70014E-F248-11E8-B48F-1D18A9856A87 last_name: Liu orcid: 0000-0001-7313-6740 - first_name: Bingfei full_name: Nan, Bingfei last_name: 'Nan' - first_name: Maria Garcia full_name: Ramon, Maria Garcia id: 1ffff7cd-ed76-11ed-8d5f-be5e7c364eb9 last_name: Ramon - first_name: Khak Ho full_name: Lim, Khak Ho last_name: Lim - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Bed full_name: Poudel, Bed last_name: Poudel - first_name: Amin full_name: Nozariasbmarz, Amin last_name: Nozariasbmarz - first_name: Wenjie full_name: Li, Wenjie last_name: Li - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Xing C, Zhang Y, Xiao K, et al. Thermoelectric performance of surface-engineered Cu1.5–xTe–Cu2Se nanocomposites. ACS Nano. 2023;17(9):8442-8452. doi:10.1021/acsnano.3c00495 apa: Xing, C., Zhang, Y., Xiao, K., Han, X., Liu, Y., Nan, B., … Cabot, A. (2023). Thermoelectric performance of surface-engineered Cu1.5–xTe–Cu2Se nanocomposites. ACS Nano. American Chemical Society. https://doi.org/10.1021/acsnano.3c00495 chicago: Xing, Congcong, Yu Zhang, Ke Xiao, Xu Han, Yu Liu, Bingfei Nan, Maria Garcia Ramon, et al. “Thermoelectric Performance of Surface-Engineered Cu1.5–XTe–Cu2Se Nanocomposites.” ACS Nano. American Chemical Society, 2023. https://doi.org/10.1021/acsnano.3c00495. ieee: C. Xing et al., “Thermoelectric performance of surface-engineered Cu1.5–xTe–Cu2Se nanocomposites,” ACS Nano, vol. 17, no. 9. American Chemical Society, pp. 8442–8452, 2023. ista: Xing C, Zhang Y, Xiao K, Han X, Liu Y, Nan B, Ramon MG, Lim KH, Li J, Arbiol J, Poudel B, Nozariasbmarz A, Li W, Ibáñez M, Cabot A. 2023. Thermoelectric performance of surface-engineered Cu1.5–xTe–Cu2Se nanocomposites. ACS Nano. 17(9), 8442–8452. mla: Xing, Congcong, et al. “Thermoelectric Performance of Surface-Engineered Cu1.5–XTe–Cu2Se Nanocomposites.” ACS Nano, vol. 17, no. 9, American Chemical Society, 2023, pp. 8442–52, doi:10.1021/acsnano.3c00495. short: C. Xing, Y. Zhang, K. Xiao, X. Han, Y. Liu, B. Nan, M.G. Ramon, K.H. Lim, J. Li, J. Arbiol, B. Poudel, A. Nozariasbmarz, W. Li, M. Ibáñez, A. Cabot, ACS Nano 17 (2023) 8442–8452. date_created: 2023-05-07T22:01:04Z date_published: 2023-05-09T00:00:00Z date_updated: 2023-10-04T11:29:22Z day: '09' department: - _id: MaIb doi: 10.1021/acsnano.3c00495 external_id: isi: - '000976063200001' pmid: - '37071412' intvolume: ' 17' isi: 1 issue: '9' language: - iso: eng month: '05' oa_version: None page: 8442-8452 pmid: 1 publication: ACS Nano publication_identifier: eissn: - 1936-086X issn: - 1936-0851 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Thermoelectric performance of surface-engineered Cu1.5–xTe–Cu2Se nanocomposites type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2023' ... --- _id: '12829' abstract: - lang: eng text: The deployment of direct formate fuel cells (DFFCs) relies on the development of active and stable catalysts for the formate oxidation reaction (FOR). Palladium, providing effective full oxidation of formate to CO2, has been widely used as FOR catalyst, but it suffers from low stability, moderate activity, and high cost. Herein, we detail a colloidal synthesis route for the incorporation of P on Pd2Sn nanoparticles. These nanoparticles are dispersed on carbon black and the obtained composite is used as electrocatalytic material for the FOR. The Pd2Sn0.8P-based electrodes present outstanding catalytic activities with record mass current densities up to 10.0 A mgPd-1, well above those of Pd1.6Sn/C reference electrode. These high current densities are further enhanced by increasing the temperature from 25 °C to 40 °C. The Pd2Sn0.8P electrode also allows for slowing down the rapid current decay that generally happens during operation and can be rapidly re-activated through potential cycling. The excellent catalytic performance obtained is rationalized using density functional theory (DFT) calculations. acknowledgement: 'This work was carried out within the framework of the project Combenergy, PID2019-105490RB-C32, financed by the Spanish MCIN/AEI/10.13039/501100011033. ICN2 is supported by the Severo Ochoa program from Spanish MCIN / AEI (Grant No.: CEX2021-001214-S). IREC and ICN2 are funded by the CERCA Programme from the Generalitat de Catalunya. Part of the present work has been performed in the frameworks of the Universitat de Barcelona Nanoscience PhD program. ICN2 acknowledges funding from Generalitat de Catalunya 2021SGR00457. This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and Generalitat de Catalunya. The authors thank the support from the project NANOGEN (PID2020-116093RB-C43), funded by MCIN/ AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”, by the European Union. The project on which these results are based has received funding from the European Union''s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No. 801342 (Tecniospring INDUSTRY) and the Government of Catalonia''s Agency for Business Competitiveness (ACCIÓ). J. Li is grateful for the project supported by the Natural Science Foundation of Sichuan (2022NSFSC1229). M.I. acknowledges funding by ISTA and the Werner Siemens Foundation.' article_number: '117369' article_processing_charge: No article_type: original author: - first_name: Guillem full_name: Montaña-Mora, Guillem last_name: Montaña-Mora - first_name: Xueqiang full_name: Qi, Xueqiang last_name: Qi - first_name: Xiang full_name: Wang, Xiang last_name: Wang - first_name: Jesus full_name: Chacón-Borrero, Jesus last_name: Chacón-Borrero - first_name: Paulina R. full_name: Martinez-Alanis, Paulina R. last_name: Martinez-Alanis - first_name: Xiaoting full_name: Yu, Xiaoting last_name: Yu - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Qian full_name: Xue, Qian last_name: Xue - first_name: Jordi full_name: Arbiol, Jordi last_name: Arbiol - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: Montaña-Mora G, Qi X, Wang X, et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction. Journal of Electroanalytical Chemistry. 2023;936. doi:10.1016/j.jelechem.2023.117369 apa: Montaña-Mora, G., Qi, X., Wang, X., Chacón-Borrero, J., Martinez-Alanis, P. R., Yu, X., … Cabot, A. (2023). Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction. Journal of Electroanalytical Chemistry. Elsevier. https://doi.org/10.1016/j.jelechem.2023.117369 chicago: Montaña-Mora, Guillem, Xueqiang Qi, Xiang Wang, Jesus Chacón-Borrero, Paulina R. Martinez-Alanis, Xiaoting Yu, Junshan Li, et al. “Phosphorous Incorporation into Palladium Tin Nanoparticles for the Electrocatalytic Formate Oxidation Reaction.” Journal of Electroanalytical Chemistry. Elsevier, 2023. https://doi.org/10.1016/j.jelechem.2023.117369. ieee: G. Montaña-Mora et al., “Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction,” Journal of Electroanalytical Chemistry, vol. 936. Elsevier, 2023. ista: Montaña-Mora G, Qi X, Wang X, Chacón-Borrero J, Martinez-Alanis PR, Yu X, Li J, Xue Q, Arbiol J, Ibáñez M, Cabot A. 2023. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction. Journal of Electroanalytical Chemistry. 936, 117369. mla: Montaña-Mora, Guillem, et al. “Phosphorous Incorporation into Palladium Tin Nanoparticles for the Electrocatalytic Formate Oxidation Reaction.” Journal of Electroanalytical Chemistry, vol. 936, 117369, Elsevier, 2023, doi:10.1016/j.jelechem.2023.117369. short: G. Montaña-Mora, X. Qi, X. Wang, J. Chacón-Borrero, P.R. Martinez-Alanis, X. Yu, J. Li, Q. Xue, J. Arbiol, M. Ibáñez, A. Cabot, Journal of Electroanalytical Chemistry 936 (2023). date_created: 2023-04-16T22:01:06Z date_published: 2023-05-01T00:00:00Z date_updated: 2023-10-04T11:52:33Z day: '01' department: - _id: MaIb doi: 10.1016/j.jelechem.2023.117369 external_id: isi: - '000967060900001' intvolume: ' 936' isi: 1 language: - iso: eng month: '05' oa_version: None project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Journal of Electroanalytical Chemistry publication_identifier: issn: - 1572-6657 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 936 year: '2023' ... --- _id: '14404' abstract: - lang: eng text: A light-triggered fabrication method extends the functionality of printable nanomaterials acknowledgement: The authors thank the Werner-Siemens-Stiftung and the Institute of Science and Technology Austria for financial support. article_processing_charge: No article_type: letter_note author: - first_name: Daniel full_name: Balazs, Daniel id: 302BADF6-85FC-11EA-9E3B-B9493DDC885E last_name: Balazs orcid: 0000-0001-7597-043X - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 citation: ama: Balazs D, Ibáñez M. Widening the use of 3D printing. Science. 2023;381(6665):1413-1414. doi:10.1126/science.adk3070 apa: Balazs, D., & Ibáñez, M. (2023). Widening the use of 3D printing. Science. AAAS. https://doi.org/10.1126/science.adk3070 chicago: Balazs, Daniel, and Maria Ibáñez. “Widening the Use of 3D Printing.” Science. AAAS, 2023. https://doi.org/10.1126/science.adk3070. ieee: D. Balazs and M. Ibáñez, “Widening the use of 3D printing,” Science, vol. 381, no. 6665. AAAS, pp. 1413–1414, 2023. ista: Balazs D, Ibáñez M. 2023. Widening the use of 3D printing. Science. 381(6665), 1413–1414. mla: Balazs, Daniel, and Maria Ibáñez. “Widening the Use of 3D Printing.” Science, vol. 381, no. 6665, AAAS, 2023, pp. 1413–14, doi:10.1126/science.adk3070. short: D. Balazs, M. Ibáñez, Science 381 (2023) 1413–1414. date_created: 2023-10-08T22:01:16Z date_published: 2023-09-29T00:00:00Z date_updated: 2023-10-09T07:32:58Z day: '29' department: - _id: MaIb - _id: LifeSc doi: 10.1126/science.adk3070 external_id: pmid: - '37769110' intvolume: ' 381' issue: '6665' language: - iso: eng month: '09' oa_version: None page: 1413-1414 pmid: 1 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Science publication_identifier: eissn: - 1095-9203 publication_status: published publisher: AAAS quality_controlled: '1' scopus_import: '1' status: public title: Widening the use of 3D printing type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 381 year: '2023' ... --- _id: '13216' abstract: - lang: eng text: Physical catalysts often have multiple sites where reactions can take place. One prominent example is single-atom alloys, where the reactive dopant atoms can preferentially locate in the bulk or at different sites on the surface of the nanoparticle. However, ab initio modeling of catalysts usually only considers one site of the catalyst, neglecting the effects of multiple sites. Here, nanoparticles of copper doped with single-atom rhodium or palladium are modeled for the dehydrogenation of propane. Single-atom alloy nanoparticles are simulated at 400–600 K, using machine learning potentials trained on density functional theory calculations, and then the occupation of different single-atom active sites is identified using a similarity kernel. Further, the turnover frequency for all possible sites is calculated for propane dehydrogenation to propene through microkinetic modeling using density functional theory calculations. The total turnover frequencies of the whole nanoparticle are then described from both the population and the individual turnover frequency of each site. Under operating conditions, rhodium as a dopant is found to almost exclusively occupy (111) surface sites while palladium as a dopant occupies a greater variety of facets. Undercoordinated dopant surface sites are found to tend to be more reactive for propane dehydrogenation compared to the (111) surface. It is found that considering the dynamics of the single-atom alloy nanoparticle has a profound effect on the calculated catalytic activity of single-atom alloys by several orders of magnitude. acknowledgement: "B.C. acknowledges resources provided by the Cambridge Tier2 system operated by the University of Cambridge Research\r\nComputing Service funded by EPSRC Tier-2 capital grant EP/\r\nP020259/1." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Rhys full_name: Bunting, Rhys id: 91deeae8-1207-11ec-b130-c194ad5b50c6 last_name: Bunting orcid: 0000-0001-6928-074X - first_name: Felix full_name: Wodaczek, Felix id: 8b4b6a9f-32b0-11ee-9fa8-bbe85e26258e last_name: Wodaczek orcid: 0009-0000-1457-795X - first_name: Tina full_name: Torabi, Tina last_name: Torabi - first_name: Bingqing full_name: Cheng, Bingqing id: cbe3cda4-d82c-11eb-8dc7-8ff94289fcc9 last_name: Cheng orcid: 0000-0002-3584-9632 citation: ama: 'Bunting R, Wodaczek F, Torabi T, Cheng B. Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane. Journal of the American Chemical Society. 2023;145(27):14894-14902. doi:10.1021/jacs.3c04030' apa: 'Bunting, R., Wodaczek, F., Torabi, T., & Cheng, B. (2023). Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane. Journal of the American Chemical Society. American Chemical Society. https://doi.org/10.1021/jacs.3c04030' chicago: 'Bunting, Rhys, Felix Wodaczek, Tina Torabi, and Bingqing Cheng. “Reactivity of Single-Atom Alloy Nanoparticles: Modeling the Dehydrogenation of Propane.” Journal of the American Chemical Society. American Chemical Society, 2023. https://doi.org/10.1021/jacs.3c04030.' ieee: 'R. Bunting, F. Wodaczek, T. Torabi, and B. Cheng, “Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane,” Journal of the American Chemical Society, vol. 145, no. 27. American Chemical Society, pp. 14894–14902, 2023.' ista: 'Bunting R, Wodaczek F, Torabi T, Cheng B. 2023. Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane. Journal of the American Chemical Society. 145(27), 14894–14902.' mla: 'Bunting, Rhys, et al. “Reactivity of Single-Atom Alloy Nanoparticles: Modeling the Dehydrogenation of Propane.” Journal of the American Chemical Society, vol. 145, no. 27, American Chemical Society, 2023, pp. 14894–902, doi:10.1021/jacs.3c04030.' short: R. Bunting, F. Wodaczek, T. Torabi, B. Cheng, Journal of the American Chemical Society 145 (2023) 14894–14902. date_created: 2023-07-12T09:16:40Z date_published: 2023-06-30T00:00:00Z date_updated: 2023-10-11T08:45:10Z day: '30' ddc: - '540' department: - _id: MaIb - _id: BiCh doi: 10.1021/jacs.3c04030 external_id: isi: - '001020623900001' pmid: - '37390457' file: - access_level: open_access checksum: e07d5323f9c0e5cbd1ad6453f29440ab content_type: application/pdf creator: cchlebak date_created: 2023-07-12T10:22:04Z date_updated: 2023-07-12T10:22:04Z file_id: '13219' file_name: 2023_JACS_Bunting.pdf file_size: 3155843 relation: main_file success: 1 file_date_updated: 2023-07-12T10:22:04Z has_accepted_license: '1' intvolume: ' 145' isi: 1 issue: '27' keyword: - Colloid and Surface Chemistry - Biochemistry - General Chemistry - Catalysis language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 14894-14902 pmid: 1 publication: Journal of the American Chemical Society publication_identifier: eissn: - 1520-5126 issn: - 0002-7863 publication_status: published publisher: American Chemical Society quality_controlled: '1' status: public title: 'Reactivity of single-atom alloy nanoparticles: Modeling the dehydrogenation of propane' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 145 year: '2023' ... --- _id: '14663' abstract: - lang: eng text: As a bottleneck in the direct synthesis of hydrogen peroxide, the development of an efficient palladium-based catalyst has garnered great attention. However, elusive active centers and reaction mechanism issues inhibit further optimization of its performance. In this work, advanced microkinetic modeling with the adsorbate–adsorbate interaction and nanoparticle size effect based on first-principles calculations is developed. A full mechanism uncovering the significance of adsorbate–adsorbate interaction is determined on Pd nanoparticles. We demonstrate unambiguously that Pd(100) with main coverage species of O2 and H is beneficial to H2O2 production, being consistent with experimental operando observation, while H2O forms on Pd(111) covered by O species and Pd(211) covered by O and OH species. Kinetic analyses further enable quantitative estimation of the influence of temperature, pressure, and particle size. Large-size Pd nanoparticles are found to achieve a high H2O2 reaction rate when the operating conditions are moderate temperature and higher oxygen partial pressure. We reveal that specific facets of the Pd nanoparticles are crucial factors for their selectivity and activity. Consistent with the experiment, the production of H2O2 is discovered to be more favorable on Pd nanoparticles containing Pd(100) facets. The ratio of H2/O2 induces substantial variations in the coverage of intermediates of O2 and H on Pd(100), resulting in a change in product selectivity. acknowledgement: The authors acknowledge the financial support from the National Natural Science Foundation of China (22008211, 92045303, U21A20298), the National Key Research and Development Project of China (2021YFA1500900, 2022YFE0113800), and Zhejiang Innovation Team (2017R5203). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Jinyan full_name: Zhao, Jinyan last_name: Zhao - first_name: Zihao full_name: Yao, Zihao last_name: Yao - first_name: Rhys full_name: Bunting, Rhys id: 91deeae8-1207-11ec-b130-c194ad5b50c6 last_name: Bunting orcid: 0000-0001-6928-074X - first_name: P. full_name: Hu, P. last_name: Hu - first_name: Jianguo full_name: Wang, Jianguo last_name: Wang citation: ama: Zhao J, Yao Z, Bunting R, Hu P, Wang J. Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. 2023;13(22):15054-15073. doi:10.1021/acscatal.3c03893 apa: Zhao, J., Yao, Z., Bunting, R., Hu, P., & Wang, J. (2023). Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. American Chemical Society. https://doi.org/10.1021/acscatal.3c03893 chicago: Zhao, Jinyan, Zihao Yao, Rhys Bunting, P. Hu, and Jianguo Wang. “Microkinetic Modeling with Size-Dependent and Adsorbate-Adsorbate Interactions for the Direct Synthesis of H₂O₂ over Pd Nanoparticles.” ACS Catalysis. American Chemical Society, 2023. https://doi.org/10.1021/acscatal.3c03893. ieee: J. Zhao, Z. Yao, R. Bunting, P. Hu, and J. Wang, “Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles,” ACS Catalysis, vol. 13, no. 22. American Chemical Society, pp. 15054–15073, 2023. ista: Zhao J, Yao Z, Bunting R, Hu P, Wang J. 2023. Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. 13(22), 15054–15073. mla: Zhao, Jinyan, et al. “Microkinetic Modeling with Size-Dependent and Adsorbate-Adsorbate Interactions for the Direct Synthesis of H₂O₂ over Pd Nanoparticles.” ACS Catalysis, vol. 13, no. 22, American Chemical Society, 2023, pp. 15054–73, doi:10.1021/acscatal.3c03893. short: J. Zhao, Z. Yao, R. Bunting, P. Hu, J. Wang, ACS Catalysis 13 (2023) 15054–15073. date_created: 2023-12-10T23:00:59Z date_published: 2023-11-06T00:00:00Z date_updated: 2023-12-11T11:55:35Z day: '06' ddc: - '540' department: - _id: MaIb doi: 10.1021/acscatal.3c03893 file: - access_level: open_access checksum: a97c771077af71ddfb2249e34530895c content_type: application/pdf creator: dernst date_created: 2023-12-11T11:55:09Z date_updated: 2023-12-11T11:55:09Z file_id: '14676' file_name: 2023_ACSCatalysis_.pdf file_size: 14813812 relation: main_file success: 1 file_date_updated: 2023-12-11T11:55:09Z has_accepted_license: '1' intvolume: ' 13' issue: '22' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 15054-15073 publication: ACS Catalysis publication_identifier: eissn: - 2155-5435 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2023' ... --- _id: '14652' abstract: - lang: eng text: In order to demonstrate the stability of newly proposed iridium-based Ir2Cr(In,Sn) and IrRhCr(In,Sn) heusler alloys, we present ab-initio analysis of these alloys by examining various properties to prove their stability. The stability of these alloys can be inferred from different cohesive and formation energies as well as positive phonon frequencies. Their electronic structure results indicate that they are semi-metals in nature. The magnetic moments are computed using the Slater-Pauling formula and exhibit a high value, with the Cr atom contributing the most in all alloys. Mulliken’s charge analysis results show that our alloys contain a range of linkages, mainly ionic and covalent ones. The ductility and mechanical stability of these alloys are confirmed by elastic constants viz. Poisson’s ratio, Pugh’s ratio, and many different types of elastic moduli. article_number: '415539' article_processing_charge: No article_type: original author: - first_name: Shyam Lal full_name: Gupta, Shyam Lal last_name: Gupta - first_name: Saurabh full_name: Singh, Saurabh id: 12d625da-9cb3-11ed-9667-af09d37d3f0a last_name: Singh orcid: 0000-0003-2209-5269 - first_name: Sumit full_name: Kumar, Sumit last_name: Kumar - first_name: Unknown full_name: Anupam, Unknown last_name: Anupam - first_name: Samjeet Singh full_name: Thakur, Samjeet Singh last_name: Thakur - first_name: Ashish full_name: Kumar, Ashish last_name: Kumar - first_name: Sanjay full_name: Panwar, Sanjay last_name: Panwar - first_name: D. full_name: Diwaker, D. last_name: Diwaker citation: ama: 'Gupta SL, Singh S, Kumar S, et al. Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. 2023;674. doi:10.1016/j.physb.2023.415539' apa: 'Gupta, S. L., Singh, S., Kumar, S., Anupam, U., Thakur, S. S., Kumar, A., … Diwaker, D. (2023). Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. Elsevier. https://doi.org/10.1016/j.physb.2023.415539' chicago: 'Gupta, Shyam Lal, Saurabh Singh, Sumit Kumar, Unknown Anupam, Samjeet Singh Thakur, Ashish Kumar, Sanjay Panwar, and D. Diwaker. “Ab-Initio Stability of Iridium Based Newly Proposed Full and Quaternary Heusler Alloys.” Physica B: Condensed Matter. Elsevier, 2023. https://doi.org/10.1016/j.physb.2023.415539.' ieee: 'S. L. Gupta et al., “Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys,” Physica B: Condensed Matter, vol. 674. Elsevier, 2023.' ista: 'Gupta SL, Singh S, Kumar S, Anupam U, Thakur SS, Kumar A, Panwar S, Diwaker D. 2023. Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. 674, 415539.' mla: 'Gupta, Shyam Lal, et al. “Ab-Initio Stability of Iridium Based Newly Proposed Full and Quaternary Heusler Alloys.” Physica B: Condensed Matter, vol. 674, 415539, Elsevier, 2023, doi:10.1016/j.physb.2023.415539.' short: 'S.L. Gupta, S. Singh, S. Kumar, U. Anupam, S.S. Thakur, A. Kumar, S. Panwar, D. Diwaker, Physica B: Condensed Matter 674 (2023).' date_created: 2023-12-10T23:00:56Z date_published: 2023-11-28T00:00:00Z date_updated: 2023-12-12T08:22:23Z day: '28' department: - _id: MaIb doi: 10.1016/j.physb.2023.415539 intvolume: ' 674' language: - iso: eng month: '11' oa_version: None publication: 'Physica B: Condensed Matter' publication_identifier: issn: - 0921-4526 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 674 year: '2023' ... --- _id: '13968' abstract: - lang: eng text: The use of multimodal readout mechanisms next to label-free real-time monitoring of biomolecular interactions can provide valuable insight into surface-based reaction mechanisms. To this end, the combination of an electrolyte-gated field-effect transistor (EG-FET) with a fiber optic-coupled surface plasmon resonance (FO-SPR) probe serving as gate electrode has been investigated to deconvolute surface mass and charge density variations associated to surface reactions. However, applying an electrochemical potential on such gold-coated FO-SPR gate electrodes can induce gradual morphological changes of the thin gold film, leading to an irreversible blue-shift of the SPR wavelength and a substantial signal drift. We show that mild annealing leads to optical and electronic signal stabilization (20-fold lower signal drift than as-sputtered fiber optic gates) and improved overall analytical performance characteristics. The thermal treatment prevents morphological changes of the thin gold-film occurring during operation, hence providing reliable and stable data immediately upon gate voltage application. Thus, the readout output of both transducing principles, the optical FO-SPR and electronic EG-FET, stays constant throughout the whole sensing time-window and the long-term effect of thermal treatment is also improved, providing stable signals even after 1 year of storage. Annealing should therefore be considered a necessary modification for applying fiber optic gate electrodes in real-time multimodal investigations of surface reactions at the solid-liquid interface. acknowledged_ssus: - _id: EM-Fac acknowledgement: "This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 813863–BORGES. We further thank the office of the Federal Government of Lower Austria, K3-Group–Culture, Science and Education, for their financial support as part of the project “Responsive Wound Dressing”. We gratefully acknowledge the financial support from the Austrian Research Promotion Agency (FFG; 888067).\r\nWe thank the Electron Microscopy Facility at IST Austria for their support with sputter coating the FO tips and Bernhard Pichler from AIT for software development to facilitate data evaluation." article_number: '1202132' article_processing_charge: Yes article_type: original author: - first_name: Roger full_name: Hasler, Roger last_name: Hasler - first_name: Marie Helene full_name: Steger-Polt, Marie Helene last_name: Steger-Polt - first_name: Ciril full_name: Reiner-Rozman, Ciril last_name: Reiner-Rozman - first_name: Stefan full_name: Fossati, Stefan last_name: Fossati - first_name: Seungho full_name: Lee, Seungho id: BB243B88-D767-11E9-B658-BC13E6697425 last_name: Lee orcid: 0000-0002-6962-8598 - first_name: Patrik full_name: Aspermair, Patrik last_name: Aspermair - first_name: Christoph full_name: Kleber, Christoph last_name: Kleber - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Jakub full_name: Dostalek, Jakub last_name: Dostalek - first_name: Wolfgang full_name: Knoll, Wolfgang last_name: Knoll citation: ama: 'Hasler R, Steger-Polt MH, Reiner-Rozman C, et al. Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. 2023;11. doi:10.3389/fphy.2023.1202132' apa: 'Hasler, R., Steger-Polt, M. H., Reiner-Rozman, C., Fossati, S., Lee, S., Aspermair, P., … Knoll, W. (2023). Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. Frontiers. https://doi.org/10.3389/fphy.2023.1202132' chicago: 'Hasler, Roger, Marie Helene Steger-Polt, Ciril Reiner-Rozman, Stefan Fossati, Seungho Lee, Patrik Aspermair, Christoph Kleber, Maria Ibáñez, Jakub Dostalek, and Wolfgang Knoll. “Optical and Electronic Signal Stabilization of Plasmonic Fiber Optic Gate Electrodes: Towards Improved Real-Time Dual-Mode Biosensing.” Frontiers in Physics. Frontiers, 2023. https://doi.org/10.3389/fphy.2023.1202132.' ieee: 'R. Hasler et al., “Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing,” Frontiers in Physics, vol. 11. Frontiers, 2023.' ista: 'Hasler R, Steger-Polt MH, Reiner-Rozman C, Fossati S, Lee S, Aspermair P, Kleber C, Ibáñez M, Dostalek J, Knoll W. 2023. Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. 11, 1202132.' mla: 'Hasler, Roger, et al. “Optical and Electronic Signal Stabilization of Plasmonic Fiber Optic Gate Electrodes: Towards Improved Real-Time Dual-Mode Biosensing.” Frontiers in Physics, vol. 11, 1202132, Frontiers, 2023, doi:10.3389/fphy.2023.1202132.' short: R. Hasler, M.H. Steger-Polt, C. Reiner-Rozman, S. Fossati, S. Lee, P. Aspermair, C. Kleber, M. Ibáñez, J. Dostalek, W. Knoll, Frontiers in Physics 11 (2023). date_created: 2023-08-06T22:01:11Z date_published: 2023-07-14T00:00:00Z date_updated: 2023-12-13T12:04:10Z day: '14' ddc: - '530' department: - _id: MaIb doi: 10.3389/fphy.2023.1202132 external_id: isi: - '001038636400001' file: - access_level: open_access checksum: fb36dda665e57bab006a000bf0faacd5 content_type: application/pdf creator: dernst date_created: 2023-08-07T07:48:11Z date_updated: 2023-08-07T07:48:11Z file_id: '13978' file_name: 2023_FrontiersPhysics_Hasler.pdf file_size: 2421758 relation: main_file success: 1 file_date_updated: 2023-08-07T07:48:11Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Frontiers in Physics publication_identifier: eissn: - 2296-424X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: 'Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2023' ... --- _id: '14434' abstract: - lang: eng text: High entropy alloys (HEAs) are highly suitable candidate catalysts for oxygen evolution and reduction reactions (OER/ORR) as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, FeCoNiMoW HEA nanoparticles are synthesized using a solution‐based low‐temperature approach. Such FeCoNiMoW nanoparticles show high entropy properties, subtle lattice distortions, and modulated electronic structure, leading to superior OER performance with an overpotential of 233 mV at 10 mA cm−2 and 276 mV at 100 mA cm−2. Density functional theory calculations reveal the electronic structures of the FeCoNiMoW active sites with an optimized d‐band center position that enables suitable adsorption of OOH* intermediates and reduces the Gibbs free energy barrier in the OER process. Aqueous zinc–air batteries (ZABs) based on this HEA demonstrate a high open circuit potential of 1.59 V, a peak power density of 116.9 mW cm−2, a specific capacity of 857 mAh gZn−1, and excellent stability for over 660 h of continuous charge–discharge cycles. Flexible and solid ZABs are also assembled and tested, displaying excellent charge–discharge performance at different bending angles. This work shows the significance of 4d/5d metal‐modulated electronic structure and optimized adsorption ability to improve the performance of OER/ORR, ZABs, and beyond. acknowledged_ssus: - _id: EM-Fac acknowledgement: The authors acknowledge funding from Generalitat de Catalunya 2021 SGR 01581; the project COMBENERGY, PID2019-105490RB-C32, from the Spanish Ministerio de Ciencia e Innovación; the National Natural Science Foundation of China (22102002); the Anhui Provincial Natural Science Foundation (2108085QE192); Zhejiang Province key research and development project (2023C01191); the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (GrantNo.2022-K31); and The Key Research and Development Program of Hebei Province (20314305D). IREC is funded by the CERCA Programme from the Generalitat de Catalunya. L.L.Y. thanks the China Scholarship Council (CSC) for the scholarship support (202008130132). This research was supported by the Scientific Service Units (SSU) of ISTA (Institute of Science and Technology Austria) through resources provided by the Electron Microscopy Facility (EMF). S.L., S.H., and M.I. acknowledge funding by ISTA and the Werner Siemens. article_number: '2303719' article_processing_charge: No article_type: original author: - first_name: Ren full_name: He, Ren last_name: He - first_name: Linlin full_name: Yang, Linlin last_name: Yang - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Daochuan full_name: Jiang, Daochuan last_name: Jiang - first_name: Seungho full_name: Lee, Seungho id: BB243B88-D767-11E9-B658-BC13E6697425 last_name: Lee orcid: 0000-0002-6962-8598 - first_name: Sharona full_name: Horta, Sharona id: 03a7e858-01b1-11ec-8b71-99ae6c4a05bc last_name: Horta - first_name: Zhifu full_name: Liang, Zhifu last_name: Liang - first_name: Xuan full_name: Lu, Xuan last_name: Lu - first_name: Ahmad full_name: Ostovari Moghaddam, Ahmad last_name: Ostovari Moghaddam - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Ying full_name: Xu, Ying last_name: Xu - first_name: Yingtang full_name: Zhou, Yingtang last_name: Zhou - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: He R, Yang L, Zhang Y, et al. A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries. Advanced Materials. 2023. doi:10.1002/adma.202303719 apa: He, R., Yang, L., Zhang, Y., Jiang, D., Lee, S., Horta, S., … Cabot, A. (2023). A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries. Advanced Materials. Wiley. https://doi.org/10.1002/adma.202303719 chicago: He, Ren, Linlin Yang, Yu Zhang, Daochuan Jiang, Seungho Lee, Sharona Horta, Zhifu Liang, et al. “A 3d‐4d‐5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc–Air Batteries.” Advanced Materials. Wiley, 2023. https://doi.org/10.1002/adma.202303719. ieee: R. He et al., “A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries,” Advanced Materials. Wiley, 2023. ista: He R, Yang L, Zhang Y, Jiang D, Lee S, Horta S, Liang Z, Lu X, Ostovari Moghaddam A, Li J, Ibáñez M, Xu Y, Zhou Y, Cabot A. 2023. A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries. Advanced Materials., 2303719. mla: He, Ren, et al. “A 3d‐4d‐5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc–Air Batteries.” Advanced Materials, 2303719, Wiley, 2023, doi:10.1002/adma.202303719. short: R. He, L. Yang, Y. Zhang, D. Jiang, S. Lee, S. Horta, Z. Liang, X. Lu, A. Ostovari Moghaddam, J. Li, M. Ibáñez, Y. Xu, Y. Zhou, A. Cabot, Advanced Materials (2023). date_created: 2023-10-17T10:52:23Z date_published: 2023-07-24T00:00:00Z date_updated: 2023-12-13T13:03:23Z day: '24' department: - _id: MaIb doi: 10.1002/adma.202303719 external_id: isi: - '001083876900001' pmid: - '37487245' isi: 1 keyword: - Mechanical Engineering - Mechanics of Materials - General Materials Science language: - iso: eng month: '07' oa_version: None pmid: 1 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Advanced Materials publication_identifier: issn: - 0935-9648 - 1521-4095 publication_status: epub_ahead publisher: Wiley quality_controlled: '1' status: public title: A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14435' abstract: - lang: eng text: Low‐cost, safe, and environmental‐friendly rechargeable aqueous zinc‐ion batteries (ZIBs) are promising as next‐generation energy storage devices for wearable electronics among other applications. However, sluggish ionic transport kinetics and the unstable electrode structure during ionic insertion/extraction hampers their deployment. Herein,  we propose a new cathode material based on a layered metal chalcogenide (LMC), bismuth telluride (Bi2Te3), coated with polypyrrole (PPy). Taking advantage of the PPy coating, the Bi2Te3@PPy composite presents strong ionic absorption affinity, high oxidation resistance, and high structural stability. The ZIBs based on Bi2Te3@PPy cathodes exhibit high capacities and ultra‐long lifespans of over 5000 cycles. They also present outstanding stability even under bending. In addition,  we analyze here the reaction mechanism using in situ X‐ray diffraction, X‐ray photoelectron spectroscopy, and computational tools and demonstrate that, in the aqueous system, Zn2+ is not inserted into the cathode as previously assumed. In contrast, proton charge storage dominates the process. Overall, this work not only shows the great potential of LMCs as ZIBs cathode materials and the advantages of PPy coating, but also clarifies the charge/discharge mechanism in rechargeable ZIBs based on LMCs. article_number: '2305128' article_processing_charge: No article_type: original author: - first_name: Guifang full_name: Zeng, Guifang last_name: Zeng - first_name: Qing full_name: Sun, Qing last_name: Sun - first_name: Sharona full_name: Horta, Sharona id: 03a7e858-01b1-11ec-8b71-99ae6c4a05bc last_name: Horta - first_name: Shang full_name: Wang, Shang last_name: Wang - first_name: Xuan full_name: Lu, Xuan last_name: Lu - first_name: Chaoyue full_name: Zhang, Chaoyue last_name: Zhang - first_name: Jing full_name: Li, Jing last_name: Li - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Lijie full_name: Ci, Lijie last_name: Ci - first_name: Yanhong full_name: Tian, Yanhong last_name: Tian - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: 'Zeng G, Sun Q, Horta S, et al. A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries. Advanced Materials. doi:10.1002/adma.202305128' apa: 'Zeng, G., Sun, Q., Horta, S., Wang, S., Lu, X., Zhang, C., … Cabot, A. (n.d.). A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries. Advanced Materials. Wiley. https://doi.org/10.1002/adma.202305128' chicago: 'Zeng, Guifang, Qing Sun, Sharona Horta, Shang Wang, Xuan Lu, Chaoyue Zhang, Jing Li, et al. “A Layered Bi2Te3@PPy Cathode for Aqueous Zinc Ion Batteries: Mechanism and Application in Printed Flexible Batteries.” Advanced Materials. Wiley, n.d. https://doi.org/10.1002/adma.202305128.' ieee: 'G. Zeng et al., “A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries,” Advanced Materials. Wiley.' ista: 'Zeng G, Sun Q, Horta S, Wang S, Lu X, Zhang C, Li J, Li J, Ci L, Tian Y, Ibáñez M, Cabot A. A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries. Advanced Materials., 2305128.' mla: 'Zeng, Guifang, et al. “A Layered Bi2Te3@PPy Cathode for Aqueous Zinc Ion Batteries: Mechanism and Application in Printed Flexible Batteries.” Advanced Materials, 2305128, Wiley, doi:10.1002/adma.202305128.' short: G. Zeng, Q. Sun, S. Horta, S. Wang, X. Lu, C. Zhang, J. Li, J. Li, L. Ci, Y. Tian, M. Ibáñez, A. Cabot, Advanced Materials (n.d.). date_created: 2023-10-17T10:53:56Z date_published: 2023-08-09T00:00:00Z date_updated: 2023-12-13T13:03:53Z day: '09' department: - _id: MaIb doi: 10.1002/adma.202305128 external_id: isi: - '001085681000001' pmid: - '37555532' isi: 1 keyword: - Mechanical Engineering - Mechanics of Materials - General Materials Science language: - iso: eng month: '08' oa_version: None pmid: 1 publication: Advanced Materials publication_identifier: eissn: - 1521-4095 issn: - 0935-9648 publication_status: accepted publisher: Wiley quality_controlled: '1' status: public title: 'A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ...