--- _id: '9713' abstract: - lang: eng text: Additional analyses of the trajectories article_processing_charge: No author: - first_name: Chitrak full_name: Gupta, Chitrak last_name: Gupta - first_name: Umesh full_name: Khaniya, Umesh last_name: Khaniya - first_name: Chun Kit full_name: Chan, Chun Kit last_name: Chan - first_name: Francois full_name: Dehez, Francois last_name: Dehez - first_name: Mrinal full_name: Shekhar, Mrinal last_name: Shekhar - first_name: M.R. full_name: Gunner, M.R. last_name: Gunner - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 - first_name: Christophe full_name: Chipot, Christophe last_name: Chipot - first_name: Abhishek full_name: Singharoy, Abhishek last_name: Singharoy citation: ama: Gupta C, Khaniya U, Chan CK, et al. Supporting information. 2020. doi:10.1021/jacs.9b13450.s001 apa: Gupta, C., Khaniya, U., Chan, C. K., Dehez, F., Shekhar, M., Gunner, M. R., … Singharoy, A. (2020). Supporting information. American Chemical Society . https://doi.org/10.1021/jacs.9b13450.s001 chicago: Gupta, Chitrak, Umesh Khaniya, Chun Kit Chan, Francois Dehez, Mrinal Shekhar, M.R. Gunner, Leonid A Sazanov, Christophe Chipot, and Abhishek Singharoy. “Supporting Information.” American Chemical Society , 2020. https://doi.org/10.1021/jacs.9b13450.s001. ieee: C. Gupta et al., “Supporting information.” American Chemical Society , 2020. ista: Gupta C, Khaniya U, Chan CK, Dehez F, Shekhar M, Gunner MR, Sazanov LA, Chipot C, Singharoy A. 2020. Supporting information, American Chemical Society , 10.1021/jacs.9b13450.s001. mla: Gupta, Chitrak, et al. Supporting Information. American Chemical Society , 2020, doi:10.1021/jacs.9b13450.s001. short: C. Gupta, U. Khaniya, C.K. Chan, F. Dehez, M. Shekhar, M.R. Gunner, L.A. Sazanov, C. Chipot, A. Singharoy, (2020). date_created: 2021-07-23T12:02:39Z date_published: 2020-05-20T00:00:00Z date_updated: 2023-08-22T07:49:38Z day: '20' department: - _id: LeSa doi: 10.1021/jacs.9b13450.s001 month: '05' oa_version: Published Version publisher: 'American Chemical Society ' related_material: record: - id: '8040' relation: used_in_publication status: public status: public title: Supporting information type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '9878' article_processing_charge: No author: - first_name: Chitrak full_name: Gupta, Chitrak last_name: Gupta - first_name: Umesh full_name: Khaniya, Umesh last_name: Khaniya - first_name: Chun Kit full_name: Chan, Chun Kit last_name: Chan - first_name: Francois full_name: Dehez, Francois last_name: Dehez - first_name: Mrinal full_name: Shekhar, Mrinal last_name: Shekhar - first_name: M.R. full_name: Gunner, M.R. last_name: Gunner - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 - first_name: Christophe full_name: Chipot, Christophe last_name: Chipot - first_name: Abhishek full_name: Singharoy, Abhishek last_name: Singharoy citation: ama: Gupta C, Khaniya U, Chan CK, et al. Movies. 2020. doi:10.1021/jacs.9b13450.s002 apa: Gupta, C., Khaniya, U., Chan, C. K., Dehez, F., Shekhar, M., Gunner, M. R., … Singharoy, A. (2020). Movies. American Chemical Society. https://doi.org/10.1021/jacs.9b13450.s002 chicago: Gupta, Chitrak, Umesh Khaniya, Chun Kit Chan, Francois Dehez, Mrinal Shekhar, M.R. Gunner, Leonid A Sazanov, Christophe Chipot, and Abhishek Singharoy. “Movies.” American Chemical Society, 2020. https://doi.org/10.1021/jacs.9b13450.s002. ieee: C. Gupta et al., “Movies.” American Chemical Society, 2020. ista: Gupta C, Khaniya U, Chan CK, Dehez F, Shekhar M, Gunner MR, Sazanov LA, Chipot C, Singharoy A. 2020. Movies, American Chemical Society, 10.1021/jacs.9b13450.s002. mla: Gupta, Chitrak, et al. Movies. American Chemical Society, 2020, doi:10.1021/jacs.9b13450.s002. short: C. Gupta, U. Khaniya, C.K. Chan, F. Dehez, M. Shekhar, M.R. Gunner, L.A. Sazanov, C. Chipot, A. Singharoy, (2020). date_created: 2021-08-11T09:18:54Z date_published: 2020-05-20T00:00:00Z date_updated: 2023-08-22T07:49:38Z day: '20' department: - _id: LeSa doi: 10.1021/jacs.9b13450.s002 month: '05' oa_version: Published Version publisher: American Chemical Society related_material: record: - id: '8040' relation: used_in_publication status: public status: public title: Movies type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2020' ... --- _id: '8318' abstract: - lang: eng text: Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I. acknowledgement: This work was funded by the Medical Research Council, UK and IST Austria. We thank the European Synchrotron Radiation Facility and the Diamond Light Source for provision of synchrotron radiation facilities. We are grateful to the staff of beamlines ID29, ID23-2 (ESRF, Grenoble, France) and I03 (Diamond Light Source, Didcot, UK) for assistance. Data processing was performed at the IST high-performance computing cluster. article_number: '4135' article_processing_charge: No article_type: original author: - first_name: Javier full_name: Gutierrez-Fernandez, Javier id: 3D9511BA-F248-11E8-B48F-1D18A9856A87 last_name: Gutierrez-Fernandez - first_name: Karol full_name: Kaszuba, Karol id: 3FDF9472-F248-11E8-B48F-1D18A9856A87 last_name: Kaszuba - first_name: Gurdeep S. full_name: Minhas, Gurdeep S. last_name: Minhas - first_name: Rozbeh full_name: Baradaran, Rozbeh last_name: Baradaran - first_name: Margherita full_name: Tambalo, Margherita id: 4187dfe4-ec23-11ea-ae46-f08ab378313a last_name: Tambalo - first_name: David T. full_name: Gallagher, David T. last_name: Gallagher - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Gutierrez-Fernandez J, Kaszuba K, Minhas GS, et al. Key role of quinone in the mechanism of respiratory complex I. Nature Communications. 2020;11(1). doi:10.1038/s41467-020-17957-0 apa: Gutierrez-Fernandez, J., Kaszuba, K., Minhas, G. S., Baradaran, R., Tambalo, M., Gallagher, D. T., & Sazanov, L. A. (2020). Key role of quinone in the mechanism of respiratory complex I. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-17957-0 chicago: Gutierrez-Fernandez, Javier, Karol Kaszuba, Gurdeep S. Minhas, Rozbeh Baradaran, Margherita Tambalo, David T. Gallagher, and Leonid A Sazanov. “Key Role of Quinone in the Mechanism of Respiratory Complex I.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-17957-0. ieee: J. Gutierrez-Fernandez et al., “Key role of quinone in the mechanism of respiratory complex I,” Nature Communications, vol. 11, no. 1. Springer Nature, 2020. ista: Gutierrez-Fernandez J, Kaszuba K, Minhas GS, Baradaran R, Tambalo M, Gallagher DT, Sazanov LA. 2020. Key role of quinone in the mechanism of respiratory complex I. Nature Communications. 11(1), 4135. mla: Gutierrez-Fernandez, Javier, et al. “Key Role of Quinone in the Mechanism of Respiratory Complex I.” Nature Communications, vol. 11, no. 1, 4135, Springer Nature, 2020, doi:10.1038/s41467-020-17957-0. short: J. Gutierrez-Fernandez, K. Kaszuba, G.S. Minhas, R. Baradaran, M. Tambalo, D.T. Gallagher, L.A. Sazanov, Nature Communications 11 (2020). date_created: 2020-08-30T22:01:10Z date_published: 2020-08-18T00:00:00Z date_updated: 2023-08-22T09:03:00Z day: '18' ddc: - '570' department: - _id: LeSa doi: 10.1038/s41467-020-17957-0 external_id: isi: - '000607072900001' pmid: - '32811817' file: - access_level: open_access checksum: 52b96f41d7d0db9728064c08da00d030 content_type: application/pdf creator: cziletti date_created: 2020-08-31T13:40:00Z date_updated: 2020-08-31T13:40:00Z file_id: '8326' file_name: 2020_NatComm_Gutierrez-Fernandez.pdf file_size: 7527373 relation: main_file success: 1 file_date_updated: 2020-08-31T13:40:00Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '1' language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/mystery-of-giant-proton-pump-solved/ scopus_import: '1' status: public title: Key role of quinone in the mechanism of respiratory complex I tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8579' abstract: - lang: eng text: Copper (Cu) is an essential trace element for all living organisms and used as cofactor in key enzymes of important biological processes, such as aerobic respiration or superoxide dismutation. However, due to its toxicity, cells have developed elaborate mechanisms for Cu homeostasis, which balance Cu supply for cuproprotein biogenesis with the need to remove excess Cu. This review summarizes our current knowledge on bacterial Cu homeostasis with a focus on Gram-negative bacteria and describes the multiple strategies that bacteria use for uptake, storage and export of Cu. We furthermore describe general mechanistic principles that aid the bacterial response to toxic Cu concentrations and illustrate dedicated Cu relay systems that facilitate Cu delivery for cuproenzyme biogenesis. Progress in understanding how bacteria avoid Cu poisoning while maintaining a certain Cu quota for cell proliferation is of particular importance for microbial pathogens because Cu is utilized by the host immune system for attenuating pathogen survival in host cells. article_number: '242' article_processing_charge: No article_type: original author: - first_name: Andreea full_name: Andrei, Andreea last_name: Andrei - first_name: Yavuz full_name: Öztürk, Yavuz last_name: Öztürk - first_name: Bahia full_name: Khalfaoui-Hassani, Bahia last_name: Khalfaoui-Hassani - first_name: Juna full_name: Rauch, Juna last_name: Rauch - first_name: Dorian full_name: Marckmann, Dorian last_name: Marckmann - first_name: Petru Iulian full_name: Trasnea, Petru Iulian id: D560034C-10C4-11EA-ABF4-A4B43DDC885E last_name: Trasnea - first_name: Fevzi full_name: Daldal, Fevzi last_name: Daldal - first_name: Hans-Georg full_name: Koch, Hans-Georg last_name: Koch citation: ama: 'Andrei A, Öztürk Y, Khalfaoui-Hassani B, et al. Cu homeostasis in bacteria: The ins and outs. Membranes. 2020;10(9). doi:10.3390/membranes10090242' apa: 'Andrei, A., Öztürk, Y., Khalfaoui-Hassani, B., Rauch, J., Marckmann, D., Trasnea, P. I., … Koch, H.-G. (2020). Cu homeostasis in bacteria: The ins and outs. Membranes. MDPI. https://doi.org/10.3390/membranes10090242' chicago: 'Andrei, Andreea, Yavuz Öztürk, Bahia Khalfaoui-Hassani, Juna Rauch, Dorian Marckmann, Petru Iulian Trasnea, Fevzi Daldal, and Hans-Georg Koch. “Cu Homeostasis in Bacteria: The Ins and Outs.” Membranes. MDPI, 2020. https://doi.org/10.3390/membranes10090242.' ieee: 'A. Andrei et al., “Cu homeostasis in bacteria: The ins and outs,” Membranes, vol. 10, no. 9. MDPI, 2020.' ista: 'Andrei A, Öztürk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch H-G. 2020. Cu homeostasis in bacteria: The ins and outs. Membranes. 10(9), 242.' mla: 'Andrei, Andreea, et al. “Cu Homeostasis in Bacteria: The Ins and Outs.” Membranes, vol. 10, no. 9, 242, MDPI, 2020, doi:10.3390/membranes10090242.' short: A. Andrei, Y. Öztürk, B. Khalfaoui-Hassani, J. Rauch, D. Marckmann, P.I. Trasnea, F. Daldal, H.-G. Koch, Membranes 10 (2020). date_created: 2020-09-28T08:59:26Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-08-22T09:34:06Z day: '01' ddc: - '570' department: - _id: LeSa doi: 10.3390/membranes10090242 external_id: isi: - '000581446000001' file: - access_level: open_access checksum: ceb43d7554e712dea6f36f9287271737 content_type: application/pdf creator: dernst date_created: 2020-09-28T11:36:50Z date_updated: 2020-09-28T11:36:50Z file_id: '8583' file_name: 2020_Membranes_Andrei.pdf file_size: 4612258 relation: main_file success: 1 file_date_updated: 2020-09-28T11:36:50Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: Membranes publication_identifier: eissn: - '20770375' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: 'Cu homeostasis in bacteria: The ins and outs' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2020' ... --- _id: '8581' abstract: - lang: eng text: The majority of adenosine triphosphate (ATP) powering cellular processes in eukaryotes is produced by the mitochondrial F1Fo ATP synthase. Here, we present the atomic models of the membrane Fo domain and the entire mammalian (ovine) F1Fo, determined by cryo-electron microscopy. Subunits in the membrane domain are arranged in the ‘proton translocation cluster’ attached to the c-ring and a more distant ‘hook apparatus’ holding subunit e. Unexpectedly, this subunit is anchored to a lipid ‘plug’ capping the c-ring. We present a detailed proton translocation pathway in mammalian Fo and key inter-monomer contacts in F1Fo multimers. Cryo-EM maps of F1Fo exposed to calcium reveal a retracted subunit e and a disassembled c-ring, suggesting permeability transition pore opening. We propose a model for the permeability transition pore opening, whereby subunit e pulls the lipid plug out of the c-ring. Our structure will allow the design of drugs for many emerging applications in medicine. acknowledged_ssus: - _id: EM-Fac - _id: ScienComp acknowledgement: We thank J. Novacek from CEITEC (Brno, Czech Republic) for assistance with collecting the FEI Krios dataset and iNEXT for providing access to CEITEC. We thank the IST Austria EM facility for access and assistance with collecting the FEI Glacios dataset. Data processing was performed at the IST high-performance computing cluster. This work has been supported by iNEXT EM HEDC (proposal 4506), funded by the Horizon 2020 Programme of the European Commission. article_processing_charge: No article_type: original author: - first_name: Gergely full_name: Pinke, Gergely id: 4D5303E6-F248-11E8-B48F-1D18A9856A87 last_name: Pinke - first_name: Long full_name: Zhou, Long id: 3E751364-F248-11E8-B48F-1D18A9856A87 last_name: Zhou orcid: 0000-0002-1864-8951 - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Pinke G, Zhou L, Sazanov LA. Cryo-EM structure of the entire mammalian F-type ATP synthase. Nature Structural and Molecular Biology. 2020;27(11):1077-1085. doi:10.1038/s41594-020-0503-8 apa: Pinke, G., Zhou, L., & Sazanov, L. A. (2020). Cryo-EM structure of the entire mammalian F-type ATP synthase. Nature Structural and Molecular Biology. Springer Nature. https://doi.org/10.1038/s41594-020-0503-8 chicago: Pinke, Gergely, Long Zhou, and Leonid A Sazanov. “Cryo-EM Structure of the Entire Mammalian F-Type ATP Synthase.” Nature Structural and Molecular Biology. Springer Nature, 2020. https://doi.org/10.1038/s41594-020-0503-8. ieee: G. Pinke, L. Zhou, and L. A. Sazanov, “Cryo-EM structure of the entire mammalian F-type ATP synthase,” Nature Structural and Molecular Biology, vol. 27, no. 11. Springer Nature, pp. 1077–1085, 2020. ista: Pinke G, Zhou L, Sazanov LA. 2020. Cryo-EM structure of the entire mammalian F-type ATP synthase. Nature Structural and Molecular Biology. 27(11), 1077–1085. mla: Pinke, Gergely, et al. “Cryo-EM Structure of the Entire Mammalian F-Type ATP Synthase.” Nature Structural and Molecular Biology, vol. 27, no. 11, Springer Nature, 2020, pp. 1077–85, doi:10.1038/s41594-020-0503-8. short: G. Pinke, L. Zhou, L.A. Sazanov, Nature Structural and Molecular Biology 27 (2020) 1077–1085. date_created: 2020-09-28T08:59:27Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-22T09:33:09Z day: '01' department: - _id: LeSa doi: 10.1038/s41594-020-0503-8 external_id: isi: - '000569299400004' pmid: - '32929284' intvolume: ' 27' isi: 1 issue: '11' language: - iso: eng month: '11' oa_version: None page: 1077-1085 pmid: 1 publication: Nature Structural and Molecular Biology publication_identifier: eissn: - '15459985' issn: - '15459993' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/structure-of-atpase-solved/ scopus_import: '1' status: public title: Cryo-EM structure of the entire mammalian F-type ATP synthase type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 27 year: '2020' ... --- _id: '8737' abstract: - lang: eng text: Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an unknown mechanism. Here, we present cryo-electron microscopy structures of ovine complex I in five different conditions, including turnover, at resolutions up to 2.3 to 2.5 angstroms. Resolved water molecules allowed us to experimentally define the proton translocation pathways. Quinone binds at three positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction to proton translocation during open-to-closed state transitions of the enzyme. In the induced deactive state, the open conformation is arrested by the ND6 subunit. We propose a detailed molecular coupling mechanism of complex I, which is an unexpected combination of conformational changes and electrostatic interactions. acknowledged_ssus: - _id: LifeSc - _id: EM-Fac acknowledgement: We thank J. Novacek (CEITEC Brno) and V.-V. Hodirnau (IST Austria) for their help with collecting cryo-EM datasets. We thank the IST Life Science and Electron Microscopy Facilities for providing equipment. This work has been supported by iNEXT,project number 653706, funded by the Horizon 2020 program of the European Union. This article reflects only the authors’view,and the European Commission is not responsible for any use that may be made of the information it contains. CIISB research infrastructure project LM2015043 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements at the CF Cryo-electron Microscopy and Tomography CEITEC MU.This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement no. 665385 article_number: eabc4209 article_processing_charge: No article_type: original author: - first_name: Domen full_name: Kampjut, Domen id: 37233050-F248-11E8-B48F-1D18A9856A87 last_name: Kampjut - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Kampjut D, Sazanov LA. The coupling mechanism of mammalian respiratory complex I. Science. 2020;370(6516). doi:10.1126/science.abc4209 apa: Kampjut, D., & Sazanov, L. A. (2020). The coupling mechanism of mammalian respiratory complex I. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.abc4209 chicago: Kampjut, Domen, and Leonid A Sazanov. “The Coupling Mechanism of Mammalian Respiratory Complex I.” Science. American Association for the Advancement of Science, 2020. https://doi.org/10.1126/science.abc4209. ieee: D. Kampjut and L. A. Sazanov, “The coupling mechanism of mammalian respiratory complex I,” Science, vol. 370, no. 6516. American Association for the Advancement of Science, 2020. ista: Kampjut D, Sazanov LA. 2020. The coupling mechanism of mammalian respiratory complex I. Science. 370(6516), eabc4209. mla: Kampjut, Domen, and Leonid A. Sazanov. “The Coupling Mechanism of Mammalian Respiratory Complex I.” Science, vol. 370, no. 6516, eabc4209, American Association for the Advancement of Science, 2020, doi:10.1126/science.abc4209. short: D. Kampjut, L.A. Sazanov, Science 370 (2020). date_created: 2020-11-08T23:01:23Z date_published: 2020-10-30T00:00:00Z date_updated: 2023-08-22T12:35:38Z day: '30' ddc: - '572' department: - _id: LeSa doi: 10.1126/science.abc4209 ec_funded: 1 external_id: isi: - '000583031800004' pmid: - '32972993' file: - access_level: open_access checksum: 658ba90979ca9528a2efdfac8547047a content_type: application/pdf creator: lsazanov date_created: 2020-11-26T18:47:58Z date_updated: 2020-11-26T18:47:58Z file_id: '8820' file_name: Full_manuscript_with_SI_opt_red.pdf file_size: 7618987 relation: main_file success: 1 file_date_updated: 2020-11-26T18:47:58Z has_accepted_license: '1' intvolume: ' 370' isi: 1 issue: '6516' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Science publication_identifier: eissn: - '10959203' publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' scopus_import: '1' status: public title: The coupling mechanism of mammalian respiratory complex I type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 370 year: '2020' ... --- _id: '8353' abstract: - lang: eng text: "Mrp (Multi resistance and pH adaptation) are broadly distributed secondary active antiporters that catalyze the transport of monovalent ions such as sodium and potassium outside of the cell coupled to the inward translocation of protons. Mrp antiporters are unique in a way that they are composed of seven subunits (MrpABCDEFG) encoded in a single operon, whereas other antiporters catalyzing the same reaction are mostly encoded by a single gene. Mrp exchangers are crucial for intracellular pH homeostasis and Na+ efflux, essential mechanisms for H+ uptake under alkaline environments and for reduction of the intracellular concentration of toxic cations. Mrp displays no homology to any other monovalent Na+(K+)/H+ antiporters but Mrp subunits have primary sequence similarity to essential redox-driven proton pumps, such as respiratory complex I and membrane-bound hydrogenases. This similarity reinforces the hypothesis that these present day redox-driven proton pumps are descended from the Mrp antiporter. The Mrp structure serves as a model to understand the yet obscure coupling mechanism between ion or electron transfer and proton translocation in this large group of proteins. In the thesis, I am presenting the purification, biochemical analysis, cryo-EM analysis and molecular structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. Numerous conditions were screened to purify Mrp to high homogeneity and to obtain an appropriate distribution of single particles on cryo-EM grids covered with a continuous layer of ultrathin carbon. A preferred particle orientation problem was solved by performing a tilted data collection. The activity assays showed the specific pH-dependent\r\nprofile of secondary active antiporters. The molecular structure shows that Mrp is a dimer of seven-subunit protomers with 50 trans-membrane helices each. The dimer interface is built by many short and tilted transmembrane helices, probably causing a thinning of the bacterial membrane. The surface charge distribution shows an extraordinary asymmetry within each monomer, revealing presumable proton and sodium translocation pathways. The two largest\r\nand homologous Mrp subunits MrpA and MrpD probably translocate one proton each into the cell. The sodium ion is likely being translocated in the opposite direction within the small subunits along a ladder of charged and conserved residues. Based on the structure, we propose a mechanism were the antiport activity is accomplished via electrostatic interactions between the charged cations and key charged residues. The flexible key TM helices coordinate these\r\nelectrostatic interactions, while the membrane thinning between the monomers enables the translocation of sodium across the charged membrane. The entire family of redox-driven proton pumps is likely to perform their mechanism in a likewise manner." acknowledged_ssus: - _id: LifeSc - _id: EM-Fac - _id: ScienComp acknowledgement: "I acknowledge the scientific service units of the IST Austria for providing resources by the Life Science Facility, the Electron Microscopy Facility and the high-performance computer cluster. Special thanks to the cryo-EM specialists Valentin Hodirnau and Daniel Johann Gütl for spending many hours with me in front of the microscope and for supporting me to collect the data presented here. I also want to thank Professor Masahiro Ito for providing plasmid DNA\r\nencoding Mrp from Anoxybacillus flavithermus WK1. I am a recipient of a DOC Fellowship of the Austrian Academy of Sciences." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Julia full_name: Steiner, Julia id: 3BB67EB0-F248-11E8-B48F-1D18A9856A87 last_name: Steiner orcid: 0000-0003-0493-3775 citation: ama: Steiner J. Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. 2020. doi:10.15479/AT:ISTA:8353 apa: Steiner, J. (2020). Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8353 chicago: Steiner, Julia. “Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8353. ieee: J. Steiner, “Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I,” Institute of Science and Technology Austria, 2020. ista: Steiner J. 2020. Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I. Institute of Science and Technology Austria. mla: Steiner, Julia. Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8353. short: J. Steiner, Biochemical and Structural Investigation of the Mrp Antiporter, an Ancestor of Complex I, Institute of Science and Technology Austria, 2020. date_created: 2020-09-09T14:27:01Z date_published: 2020-09-09T00:00:00Z date_updated: 2023-09-07T13:14:09Z day: '09' ddc: - '572' degree_awarded: PhD department: - _id: LeSa doi: 10.15479/AT:ISTA:8353 file: - access_level: open_access checksum: 2388d7e6e7a4d364c096fa89f305c3de content_type: application/pdf creator: jsteiner date_created: 2020-09-09T14:22:35Z date_updated: 2021-09-16T12:40:56Z file_id: '8354' file_name: Thesis_Julia_Steiner_pdfA.pdf file_size: 117547589 relation: main_file - access_level: closed checksum: ba112f957b7145462d0ab79044873ee9 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jsteiner date_created: 2020-09-09T14:23:25Z date_updated: 2020-09-15T08:48:37Z file_id: '8355' file_name: Thesis_Julia_Steiner.docx file_size: 223328668 relation: source_file file_date_updated: 2021-09-16T12:40:56Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: None page: '191' project: - _id: 26169496-B435-11E9-9278-68D0E5697425 grant_number: '24741' name: Revealing the functional mechanism of Mrp antiporter, an ancestor of complex I publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8284' relation: part_of_dissertation status: public status: public supervisor: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 title: Biochemical and structural investigation of the Mrp antiporter, an ancestor of complex I type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8284' abstract: - lang: eng text: Multiple resistance and pH adaptation (Mrp) antiporters are multi-subunit Na+ (or K+)/H+ exchangers representing an ancestor of many essential redox-driven proton pumps, such as respiratory complex I. The mechanism of coupling between ion or electron transfer and proton translocation in this large protein family is unknown. Here, we present the structure of the Mrp complex from Anoxybacillus flavithermus solved by cryo-EM at 3.0 Å resolution. It is a dimer of seven-subunit protomers with 50 trans-membrane helices each. Surface charge distribution within each monomer is remarkably asymmetric, revealing probable proton and sodium translocation pathways. On the basis of the structure we propose a mechanism where the coupling between sodium and proton translocation is facilitated by a series of electrostatic interactions between a cation and key charged residues. This mechanism is likely to be applicable to the entire family of redox proton pumps, where electron transfer to substrates replaces cation movements. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc acknowledgement: This research was supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Electron Microscopy Facility (EMF), the Life Science Facility (LSF) and the IST high-performance computing cluster. We thank Dr Victor-Valentin Hodirnau and Daniel Johann Gütl from IST Austria for assistance with collecting cryo-EM data. We thank Prof. Masahiro Ito (Graduate School of Life Sciences, Toyo University, Japan) for a kind provision of plasmid DNA encoding Mrp from A. flavithermus WK1. JS is a recipient of a DOC Fellowship of the Austrian Academy of Sciences at the Institute of Science and Technology, Austria. article_number: e59407 article_processing_charge: No article_type: original author: - first_name: Julia full_name: Steiner, Julia id: 3BB67EB0-F248-11E8-B48F-1D18A9856A87 last_name: Steiner orcid: 0000-0003-0493-3775 - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 citation: ama: Steiner J, Sazanov LA. Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. eLife. 2020;9. doi:10.7554/eLife.59407 apa: Steiner, J., & Sazanov, L. A. (2020). Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.59407 chicago: Steiner, Julia, and Leonid A Sazanov. “Structure and Mechanism of the Mrp Complex, an Ancient Cation/Proton Antiporter.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.59407. ieee: J. Steiner and L. A. Sazanov, “Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Steiner J, Sazanov LA. 2020. Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter. eLife. 9, e59407. mla: Steiner, Julia, and Leonid A. Sazanov. “Structure and Mechanism of the Mrp Complex, an Ancient Cation/Proton Antiporter.” ELife, vol. 9, e59407, eLife Sciences Publications, 2020, doi:10.7554/eLife.59407. short: J. Steiner, L.A. Sazanov, ELife 9 (2020). date_created: 2020-08-24T06:24:04Z date_published: 2020-07-31T00:00:00Z date_updated: 2023-09-07T13:14:08Z day: '31' ddc: - '570' department: - _id: LeSa doi: 10.7554/eLife.59407 external_id: isi: - '000562123600001' pmid: - '32735215' file: - access_level: open_access checksum: b3656d14d5ddbb9d26e3074eea2d0c15 content_type: application/pdf creator: cziletti date_created: 2020-08-24T13:31:53Z date_updated: 2020-08-24T13:31:53Z file_id: '8289' file_name: 2020_eLife_Steiner.pdf file_size: 7320493 relation: main_file success: 1 file_date_updated: 2020-08-24T13:31:53Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26169496-B435-11E9-9278-68D0E5697425 grant_number: '24741' name: Revealing the functional mechanism of Mrp antiporter, an ancestor of complex I publication: eLife publication_identifier: eissn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/mystery-of-giant-proton-pump-solved/ record: - id: '8353' relation: dissertation_contains status: public scopus_import: '1' status: public title: Structure and mechanism of the Mrp complex, an ancient cation/proton antiporter tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '8340' abstract: - lang: eng text: Mitochondria are sites of oxidative phosphorylation in eukaryotic cells. Oxidative phosphorylation operates by a chemiosmotic mechanism made possible by redox-driven proton pumping machines which establish a proton motive force across the inner mitochondrial membrane. This electrochemical proton gradient is used to drive ATP synthesis, which powers the majority of cellular processes such as protein synthesis, locomotion and signalling. In this thesis I investigate the structures and molecular mechanisms of two inner mitochondrial proton pumping enzymes, respiratory complex I and transhydrogenase. I present the first high-resolution structure of the full transhydrogenase from any species, and a significantly improved structure of complex I. Improving the resolution from 3.3 Å available previously to up to 2.3 Å in this thesis allowed us to model bound water molecules, crucial in the proton pumping mechanism. For both enzymes, up to five cryo-EM datasets with different substrates and inhibitors bound were solved to delineate the catalytic cycle and understand the proton pumping mechanism. In transhydrogenase, the proton channel is gated by reversible detachment of the NADP(H)-binding domain which opens the proton channel to the opposite sites of the membrane. In complex I, the proton channels are gated by reversible protonation of key glutamate and lysine residues and breaking of the water wire connecting the proton pumps with the quinone reduction site. The tight coupling between the redox and the proton pumping reactions in transhydrogenase is achieved by controlling the NADP(H) exchange which can only happen when the NADP(H)-binding domain interacts with the membrane domain. In complex I, coupling is achieved by cycling of the whole complex between the closed state, in which quinone can get reduced, and the open state, in which NADH can induce quinol ejection from the binding pocket. On the basis of these results I propose detailed mechanisms for catalytic cycles of transhydrogenase and complex I that are consistent with a large amount of previous work. In both enzymes, conformational and electrostatic mechanisms contribute to the overall catalytic process. Results presented here could be used for better understanding of the human pathologies arising from deficiencies of complex I or transhydrogenase and could be used to develop novel therapies. acknowledged_ssus: - _id: EM-Fac acknowledgement: 'I acknowledge the support of IST facilities, especially the Electron Miscroscopy facility for providing training and resources. Special thanks also go to cryo-EM specialists who helped me to collect the data present here: Dr Valentin Hodirnau (IST Austria), Dr Tom Heuser (IMBA, Vienna), Dr Rebecca Thompson (Uni. of Leeds) and Dr Jirka Nováček (CEITEC). This work has been supported by iNEXT, project number 653706, funded by the Horizon 2020 programme of the European Union. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385.' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Domen full_name: Kampjut, Domen id: 37233050-F248-11E8-B48F-1D18A9856A87 last_name: Kampjut citation: ama: Kampjut D. Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes. 2020. doi:10.15479/AT:ISTA:8340 apa: Kampjut, D. (2020). Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8340 chicago: Kampjut, Domen. “Molecular Mechanisms of Mitochondrial Redox-Coupled Proton Pumping Enzymes.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8340. ieee: D. Kampjut, “Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes,” Institute of Science and Technology Austria, 2020. ista: Kampjut D. 2020. Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes. Institute of Science and Technology Austria. mla: Kampjut, Domen. Molecular Mechanisms of Mitochondrial Redox-Coupled Proton Pumping Enzymes. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8340. short: D. Kampjut, Molecular Mechanisms of Mitochondrial Redox-Coupled Proton Pumping Enzymes, Institute of Science and Technology Austria, 2020. date_created: 2020-09-07T18:42:23Z date_published: 2020-09-09T00:00:00Z date_updated: 2023-09-07T13:26:17Z day: '09' ddc: - '572' degree_awarded: PhD department: - _id: LeSa doi: 10.15479/AT:ISTA:8340 ec_funded: 1 file: - access_level: closed checksum: dd270baf82121eb4472ad19d77bf227c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dkampjut date_created: 2020-09-08T13:32:06Z date_updated: 2021-09-11T22:30:04Z embargo_to: open_access file_id: '8345' file_name: ThesisFull20200908.docx file_size: 166146359 relation: source_file - access_level: open_access checksum: 82fce6f95ffa47ecc4ebca67ea2cc38c content_type: application/pdf creator: dernst date_created: 2020-09-14T15:02:20Z date_updated: 2021-09-11T22:30:04Z embargo: 2021-09-10 file_id: '8393' file_name: 2020_Thesis_Kampjut.pdf file_size: 13873769 relation: main_file file_date_updated: 2021-09-11T22:30:04Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: None page: '242' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-008-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6848' relation: part_of_dissertation status: public status: public supervisor: - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 title: Molecular mechanisms of mitochondrial redox-coupled proton pumping enzymes type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '6352' abstract: - lang: eng text: Chronic overuse of common pharmaceuticals, e.g. acetaminophen (paracetamol), often leads to the development of acute liver failure (ALF). This study aimed to elucidate the effect of cultured mesenchymal stem cells (MSCs) proteome on the onset of liver damage and regeneration dynamics in animals with ALF induced by acetaminophen, to test the liver protective efficacy of MSCs proteome depending on the oxygen tension in cell culture, and to blueprint protein components responsible for the effect. Protein compositions prepared from MSCs cultured in mild hypoxic (5% and 10% O2) and normal (21% O2) conditions were used to treat ALF induced in mice by injection of acetaminophen. To test the effect of reduced oxygen tension in cell culture on resulting MSCs proteome content we applied a combination of high performance liquid chromatography and mass-spectrometry (LC–MS/MS) for the identification of proteins in lysates of MSCs cultured at different O2 levels. The treatment of acetaminophen-administered animals with proteins released from cultured MSCs resulted in the inhibition of inflammatory reactions in damaged liver; the area of hepatocyte necrosis being reduced in the first 24 h. Compositions obtained from MSCs cultured at lower O2 level were shown to be more potent than a composition prepared from normoxic cells. A comparative characterization of protein pattern and identification of individual components done by a cytokine assay and proteomics analysis of protein compositions revealed that even moderate hypoxia produces discrete changes in the expression of various subsets of proteins responsible for intracellular respiration and cell signaling. The application of proteins prepared from MSCs grown in vitro at reduced oxygen tension significantly accelerates healing process in damaged liver tissue. The proteomics data obtained for different preparations offer new information about the potential candidates in the MSCs protein repertoire sensitive to oxygen tension in culture medium, which can be involved in the generalized mechanisms the cells use to respond to acute liver failure. acknowledgement: The studies were supported by the Austrian Federal Ministry of Economy, Family and Youth through the initiative “Laura Bassi Centres of Expertise” funding the Center of Optimized Structural Stud-ies, grant No. 253275 article_processing_charge: Yes (via OA deal) author: - first_name: Andrey Alexandrovich full_name: Temnov, Andrey Alexandrovich last_name: Temnov - first_name: Konstantin Arkadevich full_name: Rogov, Konstantin Arkadevich last_name: Rogov - first_name: Alla Nikolaevna full_name: Sklifas, Alla Nikolaevna last_name: Sklifas - first_name: Elena Valerievna full_name: Klychnikova, Elena Valerievna last_name: Klychnikova - first_name: Markus full_name: Hartl, Markus last_name: Hartl - first_name: Kristina full_name: Djinovic-Carugo, Kristina last_name: Djinovic-Carugo - first_name: Alexej full_name: Charnagalov, Alexej id: 49F06DBA-F248-11E8-B48F-1D18A9856A87 last_name: Charnagalov citation: ama: Temnov AA, Rogov KA, Sklifas AN, et al. Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure. Molecular Biology Reports. 2019. doi:10.1007/s11033-019-04765-z apa: Temnov, A. A., Rogov, K. A., Sklifas, A. N., Klychnikova, E. V., Hartl, M., Djinovic-Carugo, K., & Charnagalov, A. (2019). Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure. Molecular Biology Reports. Springer. https://doi.org/10.1007/s11033-019-04765-z chicago: Temnov, Andrey Alexandrovich, Konstantin Arkadevich Rogov, Alla Nikolaevna Sklifas, Elena Valerievna Klychnikova, Markus Hartl, Kristina Djinovic-Carugo, and Alexej Charnagalov. “Protective Properties of the Cultured Stem Cell Proteome Studied in an Animal Model of Acetaminophen-Induced Acute Liver Failure.” Molecular Biology Reports. Springer, 2019. https://doi.org/10.1007/s11033-019-04765-z. ieee: A. A. Temnov et al., “Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure,” Molecular Biology Reports. Springer, 2019. ista: Temnov AA, Rogov KA, Sklifas AN, Klychnikova EV, Hartl M, Djinovic-Carugo K, Charnagalov A. 2019. Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure. Molecular Biology Reports. mla: Temnov, Andrey Alexandrovich, et al. “Protective Properties of the Cultured Stem Cell Proteome Studied in an Animal Model of Acetaminophen-Induced Acute Liver Failure.” Molecular Biology Reports, Springer, 2019, doi:10.1007/s11033-019-04765-z. short: A.A. Temnov, K.A. Rogov, A.N. Sklifas, E.V. Klychnikova, M. Hartl, K. Djinovic-Carugo, A. Charnagalov, Molecular Biology Reports (2019). date_created: 2019-04-28T21:59:14Z date_published: 2019-04-12T00:00:00Z date_updated: 2023-08-25T10:14:26Z day: '12' ddc: - '570' department: - _id: LeSa doi: 10.1007/s11033-019-04765-z external_id: isi: - '000470332600049' file: - access_level: open_access checksum: 45bf040bbce1cea274f6013fa18ba21b content_type: application/pdf creator: dernst date_created: 2019-04-30T09:52:36Z date_updated: 2020-07-14T12:47:28Z file_id: '6362' file_name: 2019_MolecularBioReport_Temnov.pdf file_size: 1948014 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: Molecular Biology Reports publication_identifier: eissn: - '15734978' issn: - '03014851' publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2019' ...