TY - JOUR AB - My group and myself have studied respiratory complex I for almost 30 years, starting in 1994 when it was known as a L-shaped giant ‘black box' of bioenergetics. First breakthrough was the X-ray structure of the peripheral arm, followed by structures of the membrane arm and finally the entire complex from Thermus thermophilus. The developments in cryo-EM technology allowed us to solve the first complete structure of the twice larger, ∼1 MDa mammalian enzyme in 2016. However, the mechanism coupling, over large distances, the transfer of two electrons to pumping of four protons across the membrane remained an enigma. Recently we have solved high-resolution structures of mammalian and bacterial complex I under a range of redox conditions, including catalytic turnover. This allowed us to propose a robust and universal mechanism for complex I and related protein families. Redox reactions initially drive conformational changes around the quinone cavity and a long-distance transfer of substrate protons. These set up a stage for a series of electrostatically driven proton transfers along the membrane arm (‘domino effect'), eventually resulting in proton expulsion from the distal antiporter-like subunit. The mechanism radically differs from previous suggestions, however, it naturally explains all the unusual structural features of complex I. In this review I discuss the state of knowledge on complex I, including the current most controversial issues. AU - Sazanov, Leonid A ID - 12757 IS - 5 JF - The Biochemical Journal SN - 0264-6021 TI - From the 'black box' to 'domino effect' mechanism: What have we learned from the structures of respiratory complex I VL - 480 ER - TY - JOUR AB - The potential of immune-evasive mutation accumulation in the SARS-CoV-2 virus has led to its rapid spread, causing over 600 million confirmed cases and more than 6.5 million confirmed deaths. The huge demand for the rapid development and deployment of low-cost and effective vaccines against emerging variants has renewed interest in DNA vaccine technology. Here, we report the rapid generation and immunological evaluation of novel DNA vaccine candidates against the Wuhan-Hu-1 and Omicron variants based on the RBD protein fused with the Potato virus X coat protein (PVXCP). The delivery of DNA vaccines using electroporation in a two-dose regimen induced high-antibody titers and profound cellular responses in mice. The antibody titers induced against the Omicron variant of the vaccine were sufficient for effective protection against both Omicron and Wuhan-Hu-1 virus infections. The PVXCP protein in the vaccine construct shifted the immune response to the favorable Th1-like type and provided the oligomerization of RBD-PVXCP protein. Naked DNA delivery by needle-free injection allowed us to achieve antibody titers comparable with mRNA-LNP delivery in rabbits. These data identify the RBD-PVXCP DNA vaccine platform as a promising solution for robust and effective SARS-CoV-2 protection, supporting further translational study. AU - Dormeshkin, Dmitri AU - Katsin, Mikalai AU - Stegantseva, Maria AU - Golenchenko, Sergey AU - Shapira, Michail AU - Dubovik, Simon AU - Lutskovich, Dzmitry AU - Kavaleuski, Anton AU - Meleshko, Alexander ID - 13232 IS - 6 JF - Vaccines TI - Design and immunogenicity of SARS-CoV-2 DNA vaccine encoding RBD-PVXCP fusion protein VL - 11 ER - TY - THES AB - Most energy in humans is produced in form of ATP by the mitochondrial respiratory chain consisting of several protein assemblies embedded into lipid membrane (complexes I-V). Complex I is the first and the largest enzyme of the respiratory chain which is essential for energy production. It couples the transfer of two electrons from NADH to ubiquinone with proton translocation across bacterial or inner mitochondrial membrane. The coupling mechanism between electron transfer and proton translocation is one of the biggest enigma in bioenergetics and structural biology. Even though the enzyme has been studied for decades, only recent technological advances in cryo-EM allowed its extensive structural investigation. Complex I from E.coli appears to be of special importance because it is a perfect model system with a rich mutant library, however the structure of the entire complex was unknown. In this thesis I have resolved structures of the minimal complex I version from E. coli in different states including reduced, inhibited, under reaction turnover and several others. Extensive structural analyses of these structures and comparison to structures from other species allowed to derive general features of conformational dynamics and propose a universal coupling mechanism. The mechanism is straightforward, robust and consistent with decades of experimental data available for complex I from different species. Cyanobacterial NDH (cyanobacterial complex I) is a part of broad complex I superfamily and was studied as well in this thesis. It plays an important role in cyclic electron transfer (CET), during which electrons are cycled within PSI through ferredoxin and plastoquinone to generate proton gradient without NADPH production. Here, I solved structure of NDH and revealed additional state, which was not observed before. The novel “resting” state allowed to propose the mechanism of CET regulation. Moreover, conformational dynamics of NDH resembles one in complex I which suggest more broad universality of the proposed coupling mechanism. In summary, results presented here helped to interpret decades of experimental data for complex I and contributed to fundamental mechanistic understanding of protein function. AU - Kravchuk, Vladyslav ID - 12781 SN - 2663-337X TI - Structural and mechanistic study of bacterial complex I and its cyanobacterial ortholog ER - TY - JOUR AB - Robust oxygenic photosynthesis requires a suite of accessory factors to ensure efficient assembly and repair of the oxygen-evolving photosystem two (PSII) complex. The highly conserved Ycf48 assembly factor binds to the newly synthesized D1 reaction center polypeptide and promotes the initial steps of PSII assembly, but its binding site is unclear. Here we use cryo-electron microscopy to determine the structure of a cyanobacterial PSII D1/D2 reaction center assembly complex with Ycf48 attached. Ycf48, a 7-bladed beta propeller, binds to the amino-acid residues of D1 that ultimately ligate the water-oxidising Mn4CaO5 cluster, thereby preventing the premature binding of Mn2+ and Ca2+ ions and protecting the site from damage. Interactions with D2 help explain how Ycf48 promotes assembly of the D1/D2 complex. Overall, our work provides valuable insights into the early stages of PSII assembly and the structural changes that create the binding site for the Mn4CaO5 cluster. AU - Zhao, Ziyu AU - Vercellino, Irene AU - Knoppová, Jana AU - Sobotka, Roman AU - Murray, James W. AU - Nixon, Peter J. AU - Sazanov, Leonid A AU - Komenda, Josef ID - 14040 JF - Nature Communications TI - The Ycf48 accessory factor occupies the site of the oxygen-evolving manganese cluster during photosystem II biogenesis VL - 14 ER - TY - JOUR AB - The mitochondrial oxidative phosphorylation system is central to cellular metabolism. It comprises five enzymatic complexes and two mobile electron carriers that work in a mitochondrial respiratory chain. By coupling the oxidation of reducing equivalents coming into mitochondria to the generation and subsequent dissipation of a proton gradient across the inner mitochondrial membrane, this electron transport chain drives the production of ATP, which is then used as a primary energy carrier in virtually all cellular processes. Minimal perturbations of the respiratory chain activity are linked to diseases; therefore, it is necessary to understand how these complexes are assembled and regulated and how they function. In this Review, we outline the latest assembly models for each individual complex, and we also highlight the recent discoveries indicating that the formation of larger assemblies, known as respiratory supercomplexes, originates from the association of the intermediates of individual complexes. We then discuss how recent cryo-electron microscopy structures have been key to answering open questions on the function of the electron transport chain in mitochondrial respiration and how supercomplexes and other factors, including metabolites, can regulate the activity of the single complexes. When relevant, we discuss how these mechanisms contribute to physiology and outline their deregulation in human diseases. AU - Vercellino, Irene AU - Sazanov, Leonid A ID - 10182 JF - Nature Reviews Molecular Cell Biology SN - 1471-0072 TI - The assembly, regulation and function of the mitochondrial respiratory chain VL - 23 ER - TY - JOUR AB - Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I. AU - Kampjut, Domen AU - Sazanov, Leonid A ID - 11167 JF - Current Opinion in Structural Biology KW - Molecular Biology KW - Structural Biology SN - 0959-440X TI - Structure of respiratory complex I – An emerging blueprint for the mechanism VL - 74 ER - TY - JOUR AB - Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance. AU - Molina-Granada, David AU - González-Vioque, Emiliano AU - Dibley, Marris G. AU - Cabrera-Pérez, Raquel AU - Vallbona-Garcia, Antoni AU - Torres-Torronteras, Javier AU - Sazanov, Leonid A AU - Ryan, Michael T. AU - Cámara, Yolanda AU - Martí, Ramon ID - 11551 IS - 1 JF - Communications Biology TI - Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit VL - 5 ER - TY - JOUR AB - Progress in structural membrane biology has been significantly accelerated by the ongoing 'Resolution Revolution' in cryo electron microscopy (cryo-EM). In particular, structure determination by single particle analysis has evolved into the most powerful method for atomic model building of multisubunit membrane protein complexes. This has created an ever increasing demand in cryo-EM machine time, which to satisfy is in need of new and affordable cryo electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure determination by single particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor LP-ring from Salmonella enterica. AU - Gerle, Christoph AU - Kishikawa, Jun-ichi AU - Yamaguchi, Tomoko AU - Nakanishi, Atsuko AU - Çoruh, Mehmet Orkun AU - Makino, Fumiaki AU - Miyata, Tomoko AU - Kawamoto, Akihiro AU - Yokoyama, Ken AU - Namba, Keiichi AU - Kurisu, Genji AU - Kato, Takayuki ID - 11648 IS - 5 JF - Microscopy KW - Radiology KW - Nuclear Medicine and imaging KW - Instrumentation KW - Structural Biology SN - 2050-5698 TI - Structures of multisubunit membrane complexes with the CRYO ARM 200 VL - 71 ER - TY - JOUR AB - Complex I is the first enzyme in the respiratory chain, which is responsible for energy production in mitochondria and bacteria1. Complex I couples the transfer of two electrons from NADH to quinone and the translocation of four protons across the membrane2, but the coupling mechanism remains contentious. Here we present cryo-electron microscopy structures of Escherichia coli complex I (EcCI) in different redox states, including catalytic turnover. EcCI exists mostly in the open state, in which the quinone cavity is exposed to the cytosol, allowing access for water molecules, which enable quinone movements. Unlike the mammalian paralogues3, EcCI can convert to the closed state only during turnover, showing that closed and open states are genuine turnover intermediates. The open-to-closed transition results in the tightly engulfed quinone cavity being connected to the central axis of the membrane arm, a source of substrate protons. Consistently, the proportion of the closed state increases with increasing pH. We propose a detailed but straightforward and robust mechanism comprising a ‘domino effect’ series of proton transfers and electrostatic interactions: the forward wave (‘dominoes stacking’) primes the pump, and the reverse wave (‘dominoes falling’) results in the ejection of all pumped protons from the distal subunit NuoL. This mechanism explains why protons exit exclusively from the NuoL subunit and is supported by our mutagenesis data. We contend that this is a universal coupling mechanism of complex I and related enzymes. AU - Kravchuk, Vladyslav AU - Petrova, Olga AU - Kampjut, Domen AU - Wojciechowska-Bason, Anna AU - Breese, Zara AU - Sazanov, Leonid A ID - 12138 IS - 7928 JF - Nature KW - Multidisciplinary SN - 0028-0836 TI - A universal coupling mechanism of respiratory complex I VL - 609 ER - TY - JOUR AB - The COVID−19 pandemic not only resulted in a global crisis, but also accelerated vaccine development and antibody discovery. Herein we report a synthetic humanized VHH library development pipeline for nanomolar-range affinity VHH binders to SARS-CoV-2 variants of concern (VoC) receptor binding domains (RBD) isolation. Trinucleotide-based randomization of CDRs by Kunkel mutagenesis with the subsequent rolling-cycle amplification resulted in more than 1011 diverse phage display library in a manageable for a single person number of electroporation reactions. We identified a number of nanomolar-range affinity VHH binders to SARS-CoV-2 variants of concern (VoC) receptor binding domains (RBD) by screening a novel synthetic humanized antibody library. In order to explore the most robust and fast method for affinity improvement, we performed affinity maturation by CDR1 and CDR2 shuffling and avidity engineering by multivalent trimeric VHH fusion protein construction. As a result, H7-Fc and G12x3-Fc binders were developed with the affinities in nM and pM range respectively. Importantly, these affinities are weakly influenced by most of SARS-CoV-2 VoC mutations and they retain moderate binding to BA.4\5. The plaque reduction neutralization test (PRNT) resulted in IC50 = 100 ng\ml and 9.6 ng\ml for H7-Fc and G12x3-Fc antibodies, respectively, for the emerging Omicron BA.1 variant. Therefore, these VHH could expand the present landscape of SARS-CoV-2 neutralization binders with the therapeutic potential for present and future SARS-CoV-2 variants. AU - Dormeshkin, Dmitri AU - Shapira, Michail AU - Dubovik, Simon AU - Kavaleuski, Anton AU - Katsin, Mikalai AU - Migas, Alexandr AU - Meleshko, Alexander AU - Semyonov, Sergei ID - 12252 JF - Frontiers in Immunology KW - Immunology KW - Immunology and Allergy KW - COVID-19 KW - SARS-CoV-2 KW - synthetic library KW - RBD KW - neutralization nanobody KW - VHH SN - 1664-3224 TI - Isolation of an escape-resistant SARS-CoV-2 neutralizing nanobody from a novel synthetic nanobody library VL - 13 ER -