@article{11167, abstract = {Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I.}, author = {Kampjut, Domen and Sazanov, Leonid A}, issn = {0959-440X}, journal = {Current Opinion in Structural Biology}, keywords = {Molecular Biology, Structural Biology}, publisher = {Elsevier}, title = {{Structure of respiratory complex I – An emerging blueprint for the mechanism}}, doi = {10.1016/j.sbi.2022.102350}, volume = {74}, year = {2022}, } @article{11551, abstract = {Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance.}, author = {Molina-Granada, David and González-Vioque, Emiliano and Dibley, Marris G. and Cabrera-Pérez, Raquel and Vallbona-Garcia, Antoni and Torres-Torronteras, Javier and Sazanov, Leonid A and Ryan, Michael T. and Cámara, Yolanda and Martí, Ramon}, issn = {23993642}, journal = {Communications Biology}, number = {1}, publisher = {Springer Nature}, title = {{Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit}}, doi = {10.1038/s42003-022-03568-6}, volume = {5}, year = {2022}, } @article{11648, abstract = {Progress in structural membrane biology has been significantly accelerated by the ongoing 'Resolution Revolution' in cryo electron microscopy (cryo-EM). In particular, structure determination by single particle analysis has evolved into the most powerful method for atomic model building of multisubunit membrane protein complexes. This has created an ever increasing demand in cryo-EM machine time, which to satisfy is in need of new and affordable cryo electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure determination by single particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor LP-ring from Salmonella enterica.}, author = {Gerle, Christoph and Kishikawa, Jun-ichi and Yamaguchi, Tomoko and Nakanishi, Atsuko and Çoruh, Mehmet Orkun and Makino, Fumiaki and Miyata, Tomoko and Kawamoto, Akihiro and Yokoyama, Ken and Namba, Keiichi and Kurisu, Genji and Kato, Takayuki}, issn = {2050-5701}, journal = {Microscopy}, keywords = {Radiology, Nuclear Medicine and imaging, Instrumentation, Structural Biology}, number = {5}, pages = {249--261}, publisher = {Oxford University Press}, title = {{Structures of multisubunit membrane complexes with the CRYO ARM 200}}, doi = {10.1093/jmicro/dfac037}, volume = {71}, year = {2022}, } @article{12138, abstract = {Complex I is the first enzyme in the respiratory chain, which is responsible for energy production in mitochondria and bacteria1. Complex I couples the transfer of two electrons from NADH to quinone and the translocation of four protons across the membrane2, but the coupling mechanism remains contentious. Here we present cryo-electron microscopy structures of Escherichia coli complex I (EcCI) in different redox states, including catalytic turnover. EcCI exists mostly in the open state, in which the quinone cavity is exposed to the cytosol, allowing access for water molecules, which enable quinone movements. Unlike the mammalian paralogues3, EcCI can convert to the closed state only during turnover, showing that closed and open states are genuine turnover intermediates. The open-to-closed transition results in the tightly engulfed quinone cavity being connected to the central axis of the membrane arm, a source of substrate protons. Consistently, the proportion of the closed state increases with increasing pH. We propose a detailed but straightforward and robust mechanism comprising a ‘domino effect’ series of proton transfers and electrostatic interactions: the forward wave (‘dominoes stacking’) primes the pump, and the reverse wave (‘dominoes falling’) results in the ejection of all pumped protons from the distal subunit NuoL. This mechanism explains why protons exit exclusively from the NuoL subunit and is supported by our mutagenesis data. We contend that this is a universal coupling mechanism of complex I and related enzymes.}, author = {Kravchuk, Vladyslav and Petrova, Olga and Kampjut, Domen and Wojciechowska-Bason, Anna and Breese, Zara and Sazanov, Leonid A}, issn = {1476-4687}, journal = {Nature}, keywords = {Multidisciplinary}, number = {7928}, pages = {808--814}, publisher = {Springer Nature}, title = {{A universal coupling mechanism of respiratory complex I}}, doi = {10.1038/s41586-022-05199-7}, volume = {609}, year = {2022}, } @article{12252, abstract = {The COVID−19 pandemic not only resulted in a global crisis, but also accelerated vaccine development and antibody discovery. Herein we report a synthetic humanized VHH library development pipeline for nanomolar-range affinity VHH binders to SARS-CoV-2 variants of concern (VoC) receptor binding domains (RBD) isolation. Trinucleotide-based randomization of CDRs by Kunkel mutagenesis with the subsequent rolling-cycle amplification resulted in more than 1011 diverse phage display library in a manageable for a single person number of electroporation reactions. We identified a number of nanomolar-range affinity VHH binders to SARS-CoV-2 variants of concern (VoC) receptor binding domains (RBD) by screening a novel synthetic humanized antibody library. In order to explore the most robust and fast method for affinity improvement, we performed affinity maturation by CDR1 and CDR2 shuffling and avidity engineering by multivalent trimeric VHH fusion protein construction. As a result, H7-Fc and G12x3-Fc binders were developed with the affinities in nM and pM range respectively. Importantly, these affinities are weakly influenced by most of SARS-CoV-2 VoC mutations and they retain moderate binding to BA.4\5. The plaque reduction neutralization test (PRNT) resulted in IC50 = 100 ng\ml and 9.6 ng\ml for H7-Fc and G12x3-Fc antibodies, respectively, for the emerging Omicron BA.1 variant. Therefore, these VHH could expand the present landscape of SARS-CoV-2 neutralization binders with the therapeutic potential for present and future SARS-CoV-2 variants.}, author = {Dormeshkin, Dmitri and Shapira, Michail and Dubovik, Simon and Kavaleuski, Anton and Katsin, Mikalai and Migas, Alexandr and Meleshko, Alexander and Semyonov, Sergei}, issn = {1664-3224}, journal = {Frontiers in Immunology}, keywords = {Immunology, Immunology and Allergy, COVID-19, SARS-CoV-2, synthetic library, RBD, neutralization nanobody, VHH}, publisher = {Frontiers Media}, title = {{Isolation of an escape-resistant SARS-CoV-2 neutralizing nanobody from a novel synthetic nanobody library}}, doi = {10.3389/fimmu.2022.965446}, volume = {13}, year = {2022}, }