@article{6488,
abstract = {We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.},
author = {Cipolloni, Giorgio and Erdös, László},
issn = {20103271},
journal = {Random Matrices: Theory and Application},
publisher = {World Scientific Publishing},
title = {{Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices}},
doi = {10.1142/S2010326320500069},
year = {2019},
}
@phdthesis{6179,
abstract = {In the first part of this thesis we consider large random matrices with arbitrary expectation and a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent in the bulk and edge regime. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.
In the second part we consider Wigner-type matrices and show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are uni- versal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner- Dyson-Mehta universality conjecture for the last remaining universality type. Our analysis holds not only for exact cusps, but approximate cusps as well, where an ex- tended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp, and extend the fast relaxation to equilibrium of the Dyson Brow- nian motion to the cusp regime.
In the third and final part we explore the entrywise linear statistics of Wigner ma- trices and identify the fluctuations for a large class of test functions with little regularity. This enables us to study the rectangular Young diagram obtained from the interlacing eigenvalues of the random matrix and its minor, and we find that, despite having the same limit, the fluctuations differ from those of the algebraic Young tableaux equipped with the Plancharel measure.},
author = {Schröder, Dominik J},
pages = {375},
publisher = {IST Austria},
title = {{From Dyson to Pearcey: Universal statistics in random matrix theory}},
doi = {10.15479/AT:ISTA:th6179},
year = {2019},
}
@article{6186,
abstract = {We prove that the local eigenvalue statistics of real symmetric Wigner-type
matrices near the cusp points of the eigenvalue density are universal. Together
with the companion paper [arXiv:1809.03971], which proves the same result for
the complex Hermitian symmetry class, this completes the last remaining case of
the Wigner-Dyson-Mehta universality conjecture after bulk and edge
universalities have been established in the last years. We extend the recent
Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp
regime using the optimal local law from [arXiv:1809.03971] and the accurate
local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752].
We also present a PDE-based method to improve the estimate on eigenvalue
rigidity via the maximum principle of the heat flow related to the Dyson
Brownian motion.},
author = {Cipolloni, Giorgio and Erdös, László and Krüger, Torben H and Schröder, Dominik J},
issn = {2578-5885},
journal = {Pure and Applied Analysis },
number = {4},
pages = {615–707},
publisher = {MSP},
title = {{Cusp universality for random matrices, II: The real symmetric case}},
doi = {10.2140/paa.2019.1.615},
volume = {1},
year = {2019},
}
@article{6511,
abstract = {Let U and V be two independent N by N random matrices that are distributed according to Haar measure on U(N). Let Σ be a nonnegative deterministic N by N matrix. The single ring theorem [Ann. of Math. (2) 174 (2011) 1189–1217] asserts that the empirical eigenvalue distribution of the matrix X:=UΣV∗ converges weakly, in the limit of large N, to a deterministic measure which is supported on a single ring centered at the origin in ℂ. Within the bulk regime, that is, in the interior of the single ring, we establish the convergence of the empirical eigenvalue distribution on the optimal local scale of order N−1/2+ε and establish the optimal convergence rate. The same results hold true when U and V are Haar distributed on O(N).},
author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin},
issn = {00911798},
journal = {Annals of Probability},
number = {3},
pages = {1270--1334},
publisher = {Project Euclid},
title = {{Local single ring theorem on optimal scale}},
doi = {10.1214/18-AOP1284},
volume = {47},
year = {2019},
}
@article{405,
abstract = {We investigate the quantum Jensen divergences from the viewpoint of joint convexity. It turns out that the set of the functions which generate jointly convex quantum Jensen divergences on positive matrices coincides with the Matrix Entropy Class which has been introduced by Chen and Tropp quite recently.},
author = {Virosztek, Daniel},
journal = {Linear Algebra and Its Applications},
pages = {67--78},
publisher = {Elsevier},
title = {{Jointly convex quantum Jensen divergences}},
doi = {10.1016/j.laa.2018.03.002},
volume = {576},
year = {2019},
}
@article{429,
abstract = {We consider real symmetric or complex hermitian random matrices with correlated entries. We prove local laws for the resolvent and universality of the local eigenvalue statistics in the bulk of the spectrum. The correlations have fast decay but are otherwise of general form. The key novelty is the detailed stability analysis of the corresponding matrix valued Dyson equation whose solution is the deterministic limit of the resolvent.},
author = {Ajanki, Oskari H and Erdös, László and Krüger, Torben H},
issn = {14322064},
journal = {Probability Theory and Related Fields},
number = {1-2},
pages = {293–373},
publisher = {Springer},
title = {{Stability of the matrix Dyson equation and random matrices with correlations}},
doi = {10.1007/s00440-018-0835-z},
volume = {173},
year = {2019},
}
@article{6086,
abstract = {We show that linear analytic cocycles where all Lyapunov exponents are negative infinite are nilpotent. For such one-frequency cocycles we show that they can be analytically conjugated to an upper triangular cocycle or a Jordan normal form. As a consequence, an arbitrarily small analytic perturbation leads to distinct Lyapunov exponents. Moreover, in the one-frequency case where the th Lyapunov exponent is finite and the st negative infinite, we obtain a simple criterion for domination in which case there is a splitting into a nilpotent part and an invertible part.},
author = {Sadel, Christian and Xu, Disheng},
journal = {Ergodic Theory and Dynamical Systems},
number = {4},
pages = {1082--1098},
publisher = {Cambridge University Press},
title = {{Singular analytic linear cocycles with negative infinite Lyapunov exponents}},
doi = {10.1017/etds.2017.52},
volume = {39},
year = {2019},
}
@article{6240,
abstract = {For a general class of large non-Hermitian random block matrices X we prove that there are no eigenvalues away from a deterministic set with very high probability. This set is obtained from the Dyson equation of the Hermitization of X as the self-consistent approximation of the pseudospectrum. We demonstrate that the analysis of the matrix Dyson equation from (Probab. Theory Related Fields (2018)) offers a unified treatment of many structured matrix ensembles.},
author = {Alt, Johannes and Erdös, László and Krüger, Torben H and Nemish, Yuriy},
issn = {02460203},
journal = {Annales de l'institut Henri Poincare},
number = {2},
pages = {661--696},
title = {{Location of the spectrum of Kronecker random matrices}},
doi = {10.1214/18-AIHP894},
volume = {55},
year = {2019},
}
@article{6182,
abstract = {We consider large random matrices with a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent away from the spectral edges, generalizing the recent result of Ajanki et al. [‘Stability of the matrix Dyson equation and random matrices with correlations’, Probab. Theory Related Fields 173(1–2) (2019), 293–373] to allow slow correlation decay and arbitrary expectation. The main novel tool is
a systematic diagrammatic control of a multivariate cumulant expansion.},
author = {Erdös, László and Krüger, Torben H and Schröder, Dominik J},
issn = {20505094},
journal = {Forum of Mathematics, Sigma},
publisher = {Cambridge University Press},
title = {{Random matrices with slow correlation decay}},
doi = {10.1017/fms.2019.2},
volume = {7},
year = {2019},
}
@inproceedings{7035,
abstract = {The aim of this short note is to expound one particular issue that was discussed during the talk [10] given at the symposium ”Researches on isometries as preserver problems and related topics” at Kyoto RIMS. That is, the role of Dirac masses by describing the isometry group of various metric spaces of probability measures. This article is of survey character, and it does not contain any essentially new results.From an isometric point of view, in some cases, metric spaces of measures are similar to C(K)-type function spaces. Similarity means here that their isometries are driven by some nice transformations of the underlying space. Of course, it depends on the particular choice of the metric how nice these transformations should be. Sometimes, as we will see, being a homeomorphism is enough to generate an isometry. But sometimes we need more: the transformation must preserve the underlying distance as well. Statements claiming that isometries in questions are necessarily induced by homeomorphisms are called Banach-Stone-type results, while results asserting that the underlying transformation is necessarily an isometry are termed as isometric rigidity results.As Dirac masses can be considered as building bricks of the set of all Borel measures, a natural question arises:Is it enough to understand how an isometry acts on the set of Dirac masses? Does this action extend uniquely to all measures?In what follows, we will thoroughly investigate this question.},
author = {Geher, Gyorgy Pal and Titkos, Tamas and Virosztek, Daniel},
booktitle = {Kyoto RIMS Kôkyûroku},
location = {Kyoto, Japan},
pages = {34--41},
publisher = {Research Institute for Mathematical Sciences, Kyoto University},
title = {{Dirac masses and isometric rigidity}},
volume = {2125},
year = {2019},
}
@article{6843,
abstract = {The aim of this short paper is to offer a complete characterization of all (not necessarily surjective) isometric embeddings of the Wasserstein space Wp(X), where S is a countable discrete metric space and 0