@unpublished{7389,
abstract = {Recently Kloeckner described the structure of the isometry group of the quadratic Wasserstein space W_2(R^n). It turned out that the case of the real line is exceptional in the sense that there exists an exotic isometry flow. Following this line of investigation, we compute Isom(W_p(R)), the isometry group of the Wasserstein space
W_p(R) for all p \in [1,\infty) \setminus {2}. We show that W_2(R) is also exceptional regarding the
parameter p: W_p(R) is isometrically rigid if and only if p is not equal to 2. Regarding the underlying
space, we prove that the exceptionality of p = 2 disappears if we replace R by the compact
interval [0,1]. Surprisingly, in that case, W_p([0,1]) is isometrically rigid if and only if
p is not equal to 1. Moreover, W_1([0,1]) admits isometries that split mass, and Isom(W_1([0,1]))
cannot be embedded into Isom(W_1(R)).},
author = {Geher, Gyorgy Pal and Titkos, Tamas and Virosztek, Daniel},
keyword = {Wasserstein space, isometric embeddings, isometric rigidity, exotic isometry flow},
pages = {32},
title = {{Isometric study of Wasserstein spaces - the real line}},
year = {2020},
}
@article{6488,
abstract = {We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.},
author = {Cipolloni, Giorgio and Erdös, László},
issn = {20103271},
journal = {Random Matrices: Theory and Application},
publisher = {World Scientific Publishing},
title = {{Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices}},
doi = {10.1142/S2010326320500069},
year = {2019},
}
@phdthesis{6179,
abstract = {In the first part of this thesis we consider large random matrices with arbitrary expectation and a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent in the bulk and edge regime. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.
In the second part we consider Wigner-type matrices and show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are uni- versal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner- Dyson-Mehta universality conjecture for the last remaining universality type. Our analysis holds not only for exact cusps, but approximate cusps as well, where an ex- tended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp, and extend the fast relaxation to equilibrium of the Dyson Brow- nian motion to the cusp regime.
In the third and final part we explore the entrywise linear statistics of Wigner ma- trices and identify the fluctuations for a large class of test functions with little regularity. This enables us to study the rectangular Young diagram obtained from the interlacing eigenvalues of the random matrix and its minor, and we find that, despite having the same limit, the fluctuations differ from those of the algebraic Young tableaux equipped with the Plancharel measure.},
author = {Schröder, Dominik J},
pages = {375},
publisher = {IST Austria},
title = {{From Dyson to Pearcey: Universal statistics in random matrix theory}},
doi = {10.15479/AT:ISTA:th6179},
year = {2019},
}
@article{6186,
abstract = {We prove that the local eigenvalue statistics of real symmetric Wigner-type
matrices near the cusp points of the eigenvalue density are universal. Together
with the companion paper [arXiv:1809.03971], which proves the same result for
the complex Hermitian symmetry class, this completes the last remaining case of
the Wigner-Dyson-Mehta universality conjecture after bulk and edge
universalities have been established in the last years. We extend the recent
Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp
regime using the optimal local law from [arXiv:1809.03971] and the accurate
local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752].
We also present a PDE-based method to improve the estimate on eigenvalue
rigidity via the maximum principle of the heat flow related to the Dyson
Brownian motion.},
author = {Cipolloni, Giorgio and Erdös, László and Krüger, Torben H and Schröder, Dominik J},
issn = {2578-5885},
journal = {Pure and Applied Analysis },
number = {4},
pages = {615–707},
publisher = {MSP},
title = {{Cusp universality for random matrices, II: The real symmetric case}},
doi = {10.2140/paa.2019.1.615},
volume = {1},
year = {2019},
}
@article{6511,
abstract = {Let U and V be two independent N by N random matrices that are distributed according to Haar measure on U(N). Let Σ be a nonnegative deterministic N by N matrix. The single ring theorem [Ann. of Math. (2) 174 (2011) 1189–1217] asserts that the empirical eigenvalue distribution of the matrix X:=UΣV∗ converges weakly, in the limit of large N, to a deterministic measure which is supported on a single ring centered at the origin in ℂ. Within the bulk regime, that is, in the interior of the single ring, we establish the convergence of the empirical eigenvalue distribution on the optimal local scale of order N−1/2+ε and establish the optimal convergence rate. The same results hold true when U and V are Haar distributed on O(N).},
author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin},
issn = {00911798},
journal = {Annals of Probability},
number = {3},
pages = {1270--1334},
publisher = {Institute of Mathematical Statistics},
title = {{Local single ring theorem on optimal scale}},
doi = {10.1214/18-AOP1284},
volume = {47},
year = {2019},
}