--- _id: '10407' abstract: - lang: eng text: Digital hardware Trojans are integrated circuits whose implementation differ from the specification in an arbitrary and malicious way. For example, the circuit can differ from its specified input/output behavior after some fixed number of queries (known as “time bombs”) or on some particular input (known as “cheat codes”). To detect such Trojans, countermeasures using multiparty computation (MPC) or verifiable computation (VC) have been proposed. On a high level, to realize a circuit with specification F one has more sophisticated circuits F⋄ manufactured (where F⋄ specifies a MPC or VC of F ), and then embeds these F⋄ ’s into a master circuit which must be trusted but is relatively simple compared to F . Those solutions impose a significant overhead as F⋄ is much more complex than F , also the master circuits are not exactly trivial. In this work, we show that in restricted settings, where F has no evolving state and is queried on independent inputs, we can achieve a relaxed security notion using very simple constructions. In particular, we do not change the specification of the circuit at all (i.e., F=F⋄ ). Moreover the master circuit basically just queries a subset of its manufactured circuits and checks if they’re all the same. The security we achieve guarantees that, if the manufactured circuits are initially tested on up to T inputs, the master circuit will catch Trojans that try to deviate on significantly more than a 1/T fraction of the inputs. This bound is optimal for the type of construction considered, and we provably achieve it using a construction where 12 instantiations of F need to be embedded into the master. We also discuss an extremely simple construction with just 2 instantiations for which we conjecture that it already achieves the optimal bound. alternative_title: - LNCS article_processing_charge: No author: - first_name: Suvradip full_name: Chakraborty, Suvradip id: B9CD0494-D033-11E9-B219-A439E6697425 last_name: Chakraborty - first_name: Stefan full_name: Dziembowski, Stefan last_name: Dziembowski - first_name: Małgorzata full_name: Gałązka, Małgorzata last_name: Gałązka - first_name: Tomasz full_name: Lizurej, Tomasz last_name: Lizurej - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 - first_name: Michelle X full_name: Yeo, Michelle X id: 2D82B818-F248-11E8-B48F-1D18A9856A87 last_name: Yeo citation: ama: 'Chakraborty S, Dziembowski S, Gałązka M, Lizurej T, Pietrzak KZ, Yeo MX. Trojan-resilience without cryptography. In: Vol 13043. Springer Nature; 2021:397-428. doi:10.1007/978-3-030-90453-1_14' apa: 'Chakraborty, S., Dziembowski, S., Gałązka, M., Lizurej, T., Pietrzak, K. Z., & Yeo, M. X. (2021). Trojan-resilience without cryptography (Vol. 13043, pp. 397–428). Presented at the TCC: Theory of Cryptography Conference, Raleigh, NC, United States: Springer Nature. https://doi.org/10.1007/978-3-030-90453-1_14' chicago: Chakraborty, Suvradip, Stefan Dziembowski, Małgorzata Gałązka, Tomasz Lizurej, Krzysztof Z Pietrzak, and Michelle X Yeo. “Trojan-Resilience without Cryptography,” 13043:397–428. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-90453-1_14. ieee: 'S. Chakraborty, S. Dziembowski, M. Gałązka, T. Lizurej, K. Z. Pietrzak, and M. X. Yeo, “Trojan-resilience without cryptography,” presented at the TCC: Theory of Cryptography Conference, Raleigh, NC, United States, 2021, vol. 13043, pp. 397–428.' ista: 'Chakraborty S, Dziembowski S, Gałązka M, Lizurej T, Pietrzak KZ, Yeo MX. 2021. Trojan-resilience without cryptography. TCC: Theory of Cryptography Conference, LNCS, vol. 13043, 397–428.' mla: Chakraborty, Suvradip, et al. Trojan-Resilience without Cryptography. Vol. 13043, Springer Nature, 2021, pp. 397–428, doi:10.1007/978-3-030-90453-1_14. short: S. Chakraborty, S. Dziembowski, M. Gałązka, T. Lizurej, K.Z. Pietrzak, M.X. Yeo, in:, Springer Nature, 2021, pp. 397–428. conference: end_date: 2021-11-11 location: Raleigh, NC, United States name: 'TCC: Theory of Cryptography Conference' start_date: 2021-11-08 date_created: 2021-12-05T23:01:42Z date_published: 2021-11-04T00:00:00Z date_updated: 2023-08-14T13:07:46Z day: '04' department: - _id: KrPi doi: 10.1007/978-3-030-90453-1_14 ec_funded: 1 external_id: isi: - '000728364000014' intvolume: ' 13043' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2021/1224 month: '11' oa: 1 oa_version: Preprint page: 397-428 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication_identifier: eissn: - 1611-3349 isbn: - 9-783-0309-0452-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Trojan-resilience without cryptography type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13043 year: '2021' ... --- _id: '10408' abstract: - lang: eng text: 'Key trees are often the best solution in terms of transmission cost and storage requirements for managing keys in a setting where a group needs to share a secret key, while being able to efficiently rotate the key material of users (in order to recover from a potential compromise, or to add or remove users). Applications include multicast encryption protocols like LKH (Logical Key Hierarchies) or group messaging like the current IETF proposal TreeKEM. A key tree is a (typically balanced) binary tree, where each node is identified with a key: leaf nodes hold users’ secret keys while the root is the shared group key. For a group of size N, each user just holds log(N) keys (the keys on the path from its leaf to the root) and its entire key material can be rotated by broadcasting 2log(N) ciphertexts (encrypting each fresh key on the path under the keys of its parents). In this work we consider the natural setting where we have many groups with partially overlapping sets of users, and ask if we can find solutions where the cost of rotating a key is better than in the trivial one where we have a separate key tree for each group. We show that in an asymptotic setting (where the number m of groups is fixed while the number N of users grows) there exist more general key graphs whose cost converges to the cost of a single group, thus saving a factor linear in the number of groups over the trivial solution. As our asymptotic “solution” converges very slowly and performs poorly on concrete examples, we propose an algorithm that uses a natural heuristic to compute a key graph for any given group structure. Our algorithm combines two greedy algorithms, and is thus very efficient: it first converts the group structure into a “lattice graph”, which is then turned into a key graph by repeatedly applying the algorithm for constructing a Huffman code. To better understand how far our proposal is from an optimal solution, we prove lower bounds on the update cost of continuous group-key agreement and multicast encryption in a symbolic model admitting (asymmetric) encryption, pseudorandom generators, and secret sharing as building blocks.' acknowledgement: B. Auerbach, M.A. Baig and K. Pietrzak—received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT); Karen Klein was supported in part by ERC CoG grant 724307 and conducted part of this work at IST Austria, funded by the ERC under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT); Guillermo Pascual-Perez was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385; Michael Walter conducted part of this work at IST Austria, funded by the ERC under the European Union’s Horizon 2020 research and innovation programme (682815 - TOCNeT). alternative_title: - LNCS article_processing_charge: No author: - first_name: Joel F full_name: Alwen, Joel F id: 2A8DFA8C-F248-11E8-B48F-1D18A9856A87 last_name: Alwen - first_name: Benedikt full_name: Auerbach, Benedikt id: D33D2B18-E445-11E9-ABB7-15F4E5697425 last_name: Auerbach orcid: 0000-0002-7553-6606 - first_name: Mirza Ahad full_name: Baig, Mirza Ahad id: 3EDE6DE4-AA5A-11E9-986D-341CE6697425 last_name: Baig - first_name: Miguel full_name: Cueto Noval, Miguel id: ffc563a3-f6e0-11ea-865d-e3cce03d17cc last_name: Cueto Noval - first_name: Karen full_name: Klein, Karen id: 3E83A2F8-F248-11E8-B48F-1D18A9856A87 last_name: Klein - first_name: Guillermo full_name: Pascual Perez, Guillermo id: 2D7ABD02-F248-11E8-B48F-1D18A9856A87 last_name: Pascual Perez orcid: 0000-0001-8630-415X - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 - first_name: Michael full_name: Walter, Michael id: 488F98B0-F248-11E8-B48F-1D18A9856A87 last_name: Walter orcid: 0000-0003-3186-2482 citation: ama: 'Alwen JF, Auerbach B, Baig MA, et al. Grafting key trees: Efficient key management for overlapping groups. In: 19th International Conference. Vol 13044. Springer Nature; 2021:222-253. doi:10.1007/978-3-030-90456-2_8' apa: 'Alwen, J. F., Auerbach, B., Baig, M. A., Cueto Noval, M., Klein, K., Pascual Perez, G., … Walter, M. (2021). Grafting key trees: Efficient key management for overlapping groups. In 19th International Conference (Vol. 13044, pp. 222–253). Raleigh, NC, United States: Springer Nature. https://doi.org/10.1007/978-3-030-90456-2_8' chicago: 'Alwen, Joel F, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Karen Klein, Guillermo Pascual Perez, Krzysztof Z Pietrzak, and Michael Walter. “Grafting Key Trees: Efficient Key Management for Overlapping Groups.” In 19th International Conference, 13044:222–53. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-90456-2_8.' ieee: 'J. F. Alwen et al., “Grafting key trees: Efficient key management for overlapping groups,” in 19th International Conference, Raleigh, NC, United States, 2021, vol. 13044, pp. 222–253.' ista: 'Alwen JF, Auerbach B, Baig MA, Cueto Noval M, Klein K, Pascual Perez G, Pietrzak KZ, Walter M. 2021. Grafting key trees: Efficient key management for overlapping groups. 19th International Conference. TCC: Theory of Cryptography, LNCS, vol. 13044, 222–253.' mla: 'Alwen, Joel F., et al. “Grafting Key Trees: Efficient Key Management for Overlapping Groups.” 19th International Conference, vol. 13044, Springer Nature, 2021, pp. 222–53, doi:10.1007/978-3-030-90456-2_8.' short: J.F. Alwen, B. Auerbach, M.A. Baig, M. Cueto Noval, K. Klein, G. Pascual Perez, K.Z. Pietrzak, M. Walter, in:, 19th International Conference, Springer Nature, 2021, pp. 222–253. conference: end_date: 2021-11-11 location: Raleigh, NC, United States name: 'TCC: Theory of Cryptography' start_date: 2021-11-08 date_created: 2021-12-05T23:01:42Z date_published: 2021-11-04T00:00:00Z date_updated: 2023-08-14T13:19:39Z day: '04' department: - _id: KrPi doi: 10.1007/978-3-030-90456-2_8 ec_funded: 1 external_id: isi: - '000728363700008' intvolume: ' 13044' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2021/1158 month: '11' oa: 1 oa_version: Preprint page: 222-253 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 19th International Conference publication_identifier: eisbn: - 978-3-030-90456-2 eissn: - 1611-3349 isbn: - 9-783-0309-0455-5 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Grafting key trees: Efficient key management for overlapping groups' type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13044 year: '2021' ... --- _id: '10409' abstract: - lang: eng text: We show that Yao’s garbling scheme is adaptively indistinguishable for the class of Boolean circuits of size S and treewidth w with only a SO(w) loss in security. For instance, circuits with constant treewidth are as a result adaptively indistinguishable with only a polynomial loss. This (partially) complements a negative result of Applebaum et al. (Crypto 2013), which showed (assuming one-way functions) that Yao’s garbling scheme cannot be adaptively simulatable. As main technical contributions, we introduce a new pebble game that abstracts out our security reduction and then present a pebbling strategy for this game where the number of pebbles used is roughly O(δwlog(S)) , δ being the fan-out of the circuit. The design of the strategy relies on separators, a graph-theoretic notion with connections to circuit complexity. with only a SO(w) loss in security. For instance, circuits with constant treewidth are as a result adaptively indistinguishable with only a polynomial loss. This (partially) complements a negative result of Applebaum et al. (Crypto 2013), which showed (assuming one-way functions) that Yao’s garbling scheme cannot be adaptively simulatable. As main technical contributions, we introduce a new pebble game that abstracts out our security reduction and then present a pebbling strategy for this game where the number of pebbles used is roughly O(δwlog(S)) , δ being the fan-out of the circuit. The design of the strategy relies on separators, a graph-theoretic notion with connections to circuit complexity. acknowledgement: We are grateful to Daniel Wichs for helpful discussions on the landscape of adaptive security of Yao’s garbling. We would also like to thank Crypto 2021 and TCC 2021 reviewers for their detailed review and suggestions, which helped improve presentation considerably. alternative_title: - LNCS article_processing_charge: No author: - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg - first_name: Karen full_name: Klein, Karen id: 3E83A2F8-F248-11E8-B48F-1D18A9856A87 last_name: Klein - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 citation: ama: 'Kamath Hosdurg C, Klein K, Pietrzak KZ. On treewidth, separators and Yao’s garbling. In: 19th International Conference. Vol 13043. Springer Nature; 2021:486-517. doi:10.1007/978-3-030-90453-1_17' apa: 'Kamath Hosdurg, C., Klein, K., & Pietrzak, K. Z. (2021). On treewidth, separators and Yao’s garbling. In 19th International Conference (Vol. 13043, pp. 486–517). Raleigh, NC, United States: Springer Nature. https://doi.org/10.1007/978-3-030-90453-1_17' chicago: Kamath Hosdurg, Chethan, Karen Klein, and Krzysztof Z Pietrzak. “On Treewidth, Separators and Yao’s Garbling.” In 19th International Conference, 13043:486–517. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-90453-1_17. ieee: C. Kamath Hosdurg, K. Klein, and K. Z. Pietrzak, “On treewidth, separators and Yao’s garbling,” in 19th International Conference, Raleigh, NC, United States, 2021, vol. 13043, pp. 486–517. ista: 'Kamath Hosdurg C, Klein K, Pietrzak KZ. 2021. On treewidth, separators and Yao’s garbling. 19th International Conference. TCC: Theory of Cryptography, LNCS, vol. 13043, 486–517.' mla: Kamath Hosdurg, Chethan, et al. “On Treewidth, Separators and Yao’s Garbling.” 19th International Conference, vol. 13043, Springer Nature, 2021, pp. 486–517, doi:10.1007/978-3-030-90453-1_17. short: C. Kamath Hosdurg, K. Klein, K.Z. Pietrzak, in:, 19th International Conference, Springer Nature, 2021, pp. 486–517. conference: end_date: 2021-11-11 location: Raleigh, NC, United States name: 'TCC: Theory of Cryptography' start_date: 2021-11-08 date_created: 2021-12-05T23:01:43Z date_published: 2021-11-04T00:00:00Z date_updated: 2023-08-17T06:21:38Z day: '04' department: - _id: KrPi doi: 10.1007/978-3-030-90453-1_17 ec_funded: 1 external_id: isi: - '000728364000017' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2021/926 month: '11' oa: 1 oa_version: Preprint page: 486-517 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 19th International Conference publication_identifier: eissn: - 1611-3349 isbn: - 9-783-0309-0452-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '10044' relation: earlier_version status: public scopus_import: '1' status: public title: On treewidth, separators and Yao’s garbling type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: '13043 ' year: '2021' ... --- _id: '10609' abstract: - lang: eng text: "We study Multi-party computation (MPC) in the setting of subversion, where the adversary tampers with the machines of honest parties. Our goal is to construct actively secure MPC protocols where parties are corrupted adaptively by an adversary (as in the standard adaptive security setting), and in addition, honest parties’ machines are compromised.\r\nThe idea of reverse firewalls (RF) was introduced at EUROCRYPT’15 by Mironov and Stephens-Davidowitz as an approach to protecting protocols against corruption of honest parties’ devices. Intuitively, an RF for a party P is an external entity that sits between P and the outside world and whose scope is to sanitize P ’s incoming and outgoing messages in the face of subversion of their computer. Mironov and Stephens-Davidowitz constructed a protocol for passively-secure two-party computation. At CRYPTO’20, Chakraborty, Dziembowski and Nielsen constructed a protocol for secure computation with firewalls that improved on this result, both by extending it to multi-party computation protocol, and considering active security in the presence of static corruptions. In this paper, we initiate the study of RF for MPC in the adaptive setting. We put forward a definition for adaptively secure MPC in the reverse firewall setting, explore relationships among the security notions, and then construct reverse firewalls for MPC in this stronger setting of adaptive security. We also resolve the open question of Chakraborty, Dziembowski and Nielsen by removing the need for a trusted setup in constructing RF for MPC. Towards this end, we construct reverse firewalls for adaptively secure augmented coin tossing and adaptively secure zero-knowledge protocols and obtain a constant round adaptively secure MPC protocol in the reverse firewall setting without setup. Along the way, we propose a new multi-party adaptively secure coin tossing protocol in the plain model, that is of independent interest." alternative_title: - LNCS article_processing_charge: No author: - first_name: Suvradip full_name: Chakraborty, Suvradip id: B9CD0494-D033-11E9-B219-A439E6697425 last_name: Chakraborty - first_name: Chaya full_name: Ganesh, Chaya last_name: Ganesh - first_name: Mahak full_name: Pancholi, Mahak last_name: Pancholi - first_name: Pratik full_name: Sarkar, Pratik last_name: Sarkar citation: ama: 'Chakraborty S, Ganesh C, Pancholi M, Sarkar P. Reverse firewalls for adaptively secure MPC without setup. In: 27th International Conference on the Theory and Application of Cryptology and Information Security. Vol 13091. Springer Nature; 2021:335-364. doi:10.1007/978-3-030-92075-3_12' apa: 'Chakraborty, S., Ganesh, C., Pancholi, M., & Sarkar, P. (2021). Reverse firewalls for adaptively secure MPC without setup. In 27th International Conference on the Theory and Application of Cryptology and Information Security (Vol. 13091, pp. 335–364). Virtual, Singapore: Springer Nature. https://doi.org/10.1007/978-3-030-92075-3_12' chicago: Chakraborty, Suvradip, Chaya Ganesh, Mahak Pancholi, and Pratik Sarkar. “Reverse Firewalls for Adaptively Secure MPC without Setup.” In 27th International Conference on the Theory and Application of Cryptology and Information Security, 13091:335–64. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-92075-3_12. ieee: S. Chakraborty, C. Ganesh, M. Pancholi, and P. Sarkar, “Reverse firewalls for adaptively secure MPC without setup,” in 27th International Conference on the Theory and Application of Cryptology and Information Security, Virtual, Singapore, 2021, vol. 13091, pp. 335–364. ista: 'Chakraborty S, Ganesh C, Pancholi M, Sarkar P. 2021. Reverse firewalls for adaptively secure MPC without setup. 27th International Conference on the Theory and Application of Cryptology and Information Security. ASIACRYPT: International Conference on Cryptology in Asia, LNCS, vol. 13091, 335–364.' mla: Chakraborty, Suvradip, et al. “Reverse Firewalls for Adaptively Secure MPC without Setup.” 27th International Conference on the Theory and Application of Cryptology and Information Security, vol. 13091, Springer Nature, 2021, pp. 335–64, doi:10.1007/978-3-030-92075-3_12. short: S. Chakraborty, C. Ganesh, M. Pancholi, P. Sarkar, in:, 27th International Conference on the Theory and Application of Cryptology and Information Security, Springer Nature, 2021, pp. 335–364. conference: end_date: 2021-12-10 location: Virtual, Singapore name: 'ASIACRYPT: International Conference on Cryptology in Asia' start_date: 2021-12-06 date_created: 2022-01-09T23:01:27Z date_published: 2021-12-01T00:00:00Z date_updated: 2023-08-17T06:34:41Z day: '01' department: - _id: KrPi doi: 10.1007/978-3-030-92075-3_12 ec_funded: 1 external_id: isi: - '000927876200012' intvolume: ' 13091' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2021/1262 month: '12' oa: 1 oa_version: Preprint page: 335-364 project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: 27th International Conference on the Theory and Application of Cryptology and Information Security publication_identifier: eisbn: - 978-3-030-92075-3 eissn: - 1611-3349 isbn: - 978-3-030-92074-6 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Reverse firewalls for adaptively secure MPC without setup type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13091 year: '2021' ... --- _id: '10041' abstract: - lang: eng text: Yao’s garbling scheme is one of the most fundamental cryptographic constructions. Lindell and Pinkas (Journal of Cryptograhy 2009) gave a formal proof of security in the selective setting where the adversary chooses the challenge inputs before seeing the garbled circuit assuming secure symmetric-key encryption (and hence one-way functions). This was followed by results, both positive and negative, concerning its security in the, stronger, adaptive setting. Applebaum et al. (Crypto 2013) showed that it cannot satisfy adaptive security as is, due to a simple incompressibility argument. Jafargholi and Wichs (TCC 2017) considered a natural adaptation of Yao’s scheme (where the output mapping is sent in the online phase, together with the garbled input) that circumvents this negative result, and proved that it is adaptively secure, at least for shallow circuits. In particular, they showed that for the class of circuits of depth δ , the loss in security is at most exponential in δ . The above results all concern the simulation-based notion of security. In this work, we show that the upper bound of Jafargholi and Wichs is basically optimal in a strong sense. As our main result, we show that there exists a family of Boolean circuits, one for each depth δ∈N , such that any black-box reduction proving the adaptive indistinguishability of the natural adaptation of Yao’s scheme from any symmetric-key encryption has to lose a factor that is exponential in δ√ . Since indistinguishability is a weaker notion than simulation, our bound also applies to adaptive simulation. To establish our results, we build on the recent approach of Kamath et al. (Eprint 2021), which uses pebbling lower bounds in conjunction with oracle separations to prove fine-grained lower bounds on loss in cryptographic security. acknowledgement: We would like to thank the anonymous reviewers of Crypto’21 whose detailed comments helped us considerably improve the presentation of the paper. alternative_title: - LCNS article_processing_charge: No author: - first_name: Chethan full_name: Kamath Hosdurg, Chethan id: 4BD3F30E-F248-11E8-B48F-1D18A9856A87 last_name: Kamath Hosdurg - first_name: Karen full_name: Klein, Karen id: 3E83A2F8-F248-11E8-B48F-1D18A9856A87 last_name: Klein - first_name: Krzysztof Z full_name: Pietrzak, Krzysztof Z id: 3E04A7AA-F248-11E8-B48F-1D18A9856A87 last_name: Pietrzak orcid: 0000-0002-9139-1654 - first_name: Daniel full_name: Wichs, Daniel last_name: Wichs citation: ama: 'Kamath Hosdurg C, Klein K, Pietrzak KZ, Wichs D. Limits on the Adaptive Security of Yao’s Garbling. In: 41st Annual International Cryptology Conference, Part II . Vol 12826. Cham: Springer Nature; 2021:486-515. doi:10.1007/978-3-030-84245-1_17' apa: 'Kamath Hosdurg, C., Klein, K., Pietrzak, K. Z., & Wichs, D. (2021). Limits on the Adaptive Security of Yao’s Garbling. In 41st Annual International Cryptology Conference, Part II (Vol. 12826, pp. 486–515). Cham: Springer Nature. https://doi.org/10.1007/978-3-030-84245-1_17' chicago: 'Kamath Hosdurg, Chethan, Karen Klein, Krzysztof Z Pietrzak, and Daniel Wichs. “Limits on the Adaptive Security of Yao’s Garbling.” In 41st Annual International Cryptology Conference, Part II , 12826:486–515. Cham: Springer Nature, 2021. https://doi.org/10.1007/978-3-030-84245-1_17.' ieee: C. Kamath Hosdurg, K. Klein, K. Z. Pietrzak, and D. Wichs, “Limits on the Adaptive Security of Yao’s Garbling,” in 41st Annual International Cryptology Conference, Part II , Virtual, 2021, vol. 12826, pp. 486–515. ista: 'Kamath Hosdurg C, Klein K, Pietrzak KZ, Wichs D. 2021. Limits on the Adaptive Security of Yao’s Garbling. 41st Annual International Cryptology Conference, Part II . CRYPTO: Annual International Cryptology Conference, LCNS, vol. 12826, 486–515.' mla: Kamath Hosdurg, Chethan, et al. “Limits on the Adaptive Security of Yao’s Garbling.” 41st Annual International Cryptology Conference, Part II , vol. 12826, Springer Nature, 2021, pp. 486–515, doi:10.1007/978-3-030-84245-1_17. short: C. Kamath Hosdurg, K. Klein, K.Z. Pietrzak, D. Wichs, in:, 41st Annual International Cryptology Conference, Part II , Springer Nature, Cham, 2021, pp. 486–515. conference: end_date: 2021-08-20 location: Virtual name: 'CRYPTO: Annual International Cryptology Conference' start_date: 2021-08-16 date_created: 2021-09-23T14:06:15Z date_published: 2021-08-11T00:00:00Z date_updated: 2023-09-07T13:32:11Z day: '11' department: - _id: KrPi doi: 10.1007/978-3-030-84245-1_17 ec_funded: 1 intvolume: ' 12826' language: - iso: eng main_file_link: - open_access: '1' url: https://eprint.iacr.org/2021/945 month: '08' oa: 1 oa_version: Preprint page: 486-515 place: Cham project: - _id: 258AA5B2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '682815' name: Teaching Old Crypto New Tricks publication: '41st Annual International Cryptology Conference, Part II ' publication_identifier: eisbn: - 978-3-030-84245-1 eissn: - 1611-3349 isbn: - 978-3-030-84244-4 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '10035' relation: dissertation_contains status: public status: public title: Limits on the Adaptive Security of Yao’s Garbling type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 12826 year: '2021' ...