TY - CONF
AB - Computational notions of entropy have recently found many applications, including leakage-resilient cryptography, deterministic encryption or memory delegation. The two main types of results which make computational notions so useful are (1) Chain rules, which quantify by how much the computational entropy of a variable decreases if conditioned on some other variable (2) Transformations, which quantify to which extend one type of entropy implies another.
Such chain rules and transformations typically lose a significant amount in quality of the entropy, and are the reason why applying these results one gets rather weak quantitative security bounds. In this paper we for the first time prove lower bounds in this context, showing that existing results for transformations are, unfortunately, basically optimal for non-adaptive black-box reductions (and it’s hard to imagine how non black-box reductions or adaptivity could be useful here.)
A variable X has k bits of HILL entropy of quality (ϵ,s)
if there exists a variable Y with k bits min-entropy which cannot be distinguished from X with advantage ϵ
by distinguishing circuits of size s. A weaker notion is Metric entropy, where we switch quantifiers, and only require that for every distinguisher of size s, such a Y exists.
We first describe our result concerning transformations. By definition, HILL implies Metric without any loss in quality. Metric entropy often comes up in applications, but must be transformed to HILL for meaningful security guarantees. The best known result states that if a variable X has k bits of Metric entropy of quality (ϵ,s)
, then it has k bits of HILL with quality (2ϵ,s⋅ϵ2). We show that this loss of a factor Ω(ϵ−2)
in circuit size is necessary. In fact, we show the stronger result that this loss is already necessary when transforming so called deterministic real valued Metric entropy to randomised boolean Metric (both these variants of Metric entropy are implied by HILL without loss in quality).
The chain rule for HILL entropy states that if X has k bits of HILL entropy of quality (ϵ,s)
, then for any variable Z of length m, X conditioned on Z has k−m bits of HILL entropy with quality (ϵ,s⋅ϵ2/2m). We show that a loss of Ω(2m/ϵ) in circuit size necessary here. Note that this still leaves a gap of ϵ between the known bound and our lower bound.
AU - Pietrzak, Krzysztof Z
AU - Maciej, Skorski
ID - 1179
TI - Pseudoentropy: Lower-bounds for chain rules and transformations
VL - 9985
ER -
TY - CONF
AB - At Crypto 2015 Fuchsbauer, Hanser and Slamanig (FHS) presented the first standard-model construction of efficient roundoptimal blind signatures that does not require complexity leveraging. It is conceptually simple and builds on the primitive of structure-preserving signatures on equivalence classes (SPS-EQ). FHS prove the unforgeability of their scheme assuming EUF-CMA security of the SPS-EQ scheme and hardness of a version of the DH inversion problem. Blindness under adversarially chosen keys is proven under an interactive variant of the DDH assumption. We propose a variant of their scheme whose blindness can be proven under a non-interactive assumption, namely a variant of the bilinear DDH assumption. We moreover prove its unforgeability assuming only unforgeability of the underlying SPS-EQ but no additional assumptions as needed for the FHS scheme.
AU - Fuchsbauer, Georg
AU - Hanser, Christian
AU - Kamath Hosdurg, Chethan
AU - Slamanig, Daniel
ID - 1225
TI - Practical round-optimal blind signatures in the standard model from weaker assumptions
VL - 9841
ER -
TY - CONF
AB - Witness encryption (WE) was introduced by Garg et al. [GGSW13]. A WE scheme is defined for some NP language L and lets a sender encrypt messages relative to instances x. A ciphertext for x can be decrypted using w witnessing x ∈ L, but hides the message if x ∈ L. Garg et al. construct WE from multilinear maps and give another construction [GGH+13b] using indistinguishability obfuscation (iO) for circuits. Due to the reliance on such heavy tools, WE can cur- rently hardly be implemented on powerful hardware and will unlikely be realizable on constrained devices like smart cards any time soon. We construct a WE scheme where encryption is done by simply computing a Naor-Yung ciphertext (two CPA encryptions and a NIZK proof). To achieve this, our scheme has a setup phase, which outputs public parameters containing an obfuscated circuit (only required for decryption), two encryption keys and a common reference string (used for encryption). This setup need only be run once, and the parame- ters can be used for arbitrary many encryptions. Our scheme can also be turned into a functional WE scheme, where a message is encrypted w.r.t. a statement and a function f, and decryption with a witness w yields f (m, w). Our construction is inspired by the functional encryption scheme by Garg et al. and we prove (selective) security assuming iO and statistically simulation-sound NIZK. We give a construction of the latter in bilinear groups and combining it with ElGamal encryption, our ciphertexts are of size 1.3 kB at a 128-bit security level and can be computed on a smart card.
AU - Abusalah, Hamza M
AU - Fuchsbauer, Georg
AU - Pietrzak, Krzysztof Z
ID - 1229
TI - Offline witness encryption
VL - 9696
ER -
TY - CONF
AB - We study the time-and memory-complexities of the problem of computing labels of (multiple) randomly selected challenge-nodes in a directed acyclic graph. The w-bit label of a node is the hash of the labels of its parents, and the hash function is modeled as a random oracle. Specific instances of this problem underlie both proofs of space [Dziembowski et al. CRYPTO’15] as well as popular memory-hard functions like scrypt. As our main tool, we introduce the new notion of a probabilistic parallel entangled pebbling game, a new type of combinatorial pebbling game on a graph, which is closely related to the labeling game on the same graph. As a first application of our framework, we prove that for scrypt, when the underlying hash function is invoked n times, the cumulative memory complexity (CMC) (a notion recently introduced by Alwen and Serbinenko (STOC’15) to capture amortized memory-hardness for parallel adversaries) is at least Ω(w · (n/ log(n))2). This bound holds for adversaries that can store many natural functions of the labels (e.g., linear combinations), but still not arbitrary functions thereof. We then introduce and study a combinatorial quantity, and show how a sufficiently small upper bound on it (which we conjecture) extends our CMC bound for scrypt to hold against arbitrary adversaries. We also show that such an upper bound solves the main open problem for proofs-of-space protocols: namely, establishing that the time complexity of computing the label of a random node in a graph on n nodes (given an initial kw-bit state) reduces tightly to the time complexity for black pebbling on the same graph (given an initial k-node pebbling).
AU - Alwen, Joel F
AU - Chen, Binyi
AU - Kamath Hosdurg, Chethan
AU - Kolmogorov, Vladimir
AU - Pietrzak, Krzysztof Z
AU - Tessaro, Stefano
ID - 1231
TI - On the complexity of scrypt and proofs of space in the parallel random oracle model
VL - 9666
ER -
TY - CONF
AB - About three decades ago it was realized that implementing private channels between parties which can be adaptively corrupted requires an encryption scheme that is secure against selective opening attacks. Whether standard (IND-CPA) security implies security against selective opening attacks has been a major open question since. The only known reduction from selective opening to IND-CPA security loses an exponential factor. A polynomial reduction is only known for the very special case where the distribution considered in the selective opening security experiment is a product distribution, i.e., the messages are sampled independently from each other. In this paper we give a reduction whose loss is quantified via the dependence graph (where message dependencies correspond to edges) of the underlying message distribution. In particular, for some concrete distributions including Markov distributions, our reduction is polynomial.
AU - Fuchsbauer, Georg
AU - Heuer, Felix
AU - Kiltz, Eike
AU - Pietrzak, Krzysztof Z
ID - 1233
TI - Standard security does imply security against selective opening for markov distributions
VL - 9562
ER -
TY - CONF
AB - A constrained pseudorandom function (CPRF) F: K×X → Y for a family T of subsets of χ is a function where for any key k ∈ K and set S ∈ T one can efficiently compute a short constrained key kS, which allows to evaluate F(k, ·) on all inputs x ∈ S, while the outputs on all inputs x /∈ S look random even given kS. Abusalah et al. recently constructed the first constrained PRF for inputs of arbitrary length whose sets S are decided by Turing machines. They use their CPRF to build broadcast encryption and the first ID-based non-interactive key exchange for an unbounded number of users. Their constrained keys are obfuscated circuits and are therefore large. In this work we drastically reduce the key size and define a constrained key for a Turing machine M as a short signature on M. For this, we introduce a new signature primitive with constrained signing keys that let one only sign certain messages, while forging a signature on others is hard even when knowing the coins for key generation.
AU - Abusalah, Hamza M
AU - Fuchsbauer, Georg
ID - 1235
TI - Constrained PRFs for unbounded inputs with short keys
VL - 9696
ER -
TY - CONF
AB - A constrained pseudorandom function F: K × X → Y for a family T ⊆ 2X of subsets of X is a function where for any key k ∈ K and set S ∈ T one can efficiently compute a constrained key kS which allows to evaluate F (k, ·) on all inputs x ∈ S, while even given this key, the outputs on all inputs x ∉ S look random. At Asiacrypt’13 Boneh and Waters gave a construction which supports the most general set family so far. Its keys kc are defined for sets decided by boolean circuits C and enable evaluation of the PRF on any x ∈ X where C(x) = 1. In their construction the PRF input length and the size of the circuits C for which constrained keys can be computed must be fixed beforehand during key generation. We construct a constrained PRF that has an unbounded input length and whose constrained keys can be defined for any set recognized by a Turing machine. The only a priori bound we make is on the description size of the machines. We prove our construction secure assuming publiccoin differing-input obfuscation. As applications of our constrained PRF we build a broadcast encryption scheme where the number of potential receivers need not be fixed at setup (in particular, the length of the keys is independent of the number of parties) and the first identity-based non-interactive key exchange protocol with no bound on the number of parties that can agree on a shared key.
AU - Abusalah, Hamza M
AU - Fuchsbauer, Georg
AU - Pietrzak, Krzysztof Z
ID - 1236
TI - Constrained PRFs for unbounded inputs
VL - 9610
ER -
TY - CONF
AB - Cryptographic access control offers selective access to encrypted data via a combination of key management and functionality-rich cryptographic schemes, such as attribute-based encryption. Using this approach, publicly available meta-data may inadvertently leak information on the access policy that is enforced by cryptography, which renders cryptographic access control unusable in settings where this information is highly sensitive. We begin to address this problem by presenting rigorous definitions for policy privacy in cryptographic access control. For concreteness we set our results in the model of Role-Based Access Control (RBAC), where we identify and formalize several different flavors of privacy, however, our framework should serve as inspiration for other models of access control. Based on our insights we propose a new system which significantly improves on the privacy properties of state-of-the-art constructions. Our design is based on a novel type of privacy-preserving attribute-based encryption, which we introduce and show how to instantiate. We present our results in the context of a cryptographic RBAC system by Ferrara et al. (CSF'13), which uses cryptography to control read access to files, while write access is still delegated to trusted monitors. We give an extension of the construction that permits cryptographic control over write access. Our construction assumes that key management uses out-of-band channels between the policy enforcer and the users but eliminates completely the need for monitoring read/write access to the data.
AU - Ferrara, Anna
AU - Fuchsbauer, Georg
AU - Liu, Bin
AU - Warinschi, Bogdan
ID - 1474
TI - Policy privacy in cryptographic access control
ER -
TY - CONF
AB - Increasing the computational complexity of evaluating a hash function, both for the honest users as well as for an adversary, is a useful technique employed for example in password-based cryptographic schemes to impede brute-force attacks, and also in so-called proofs of work (used in protocols like Bitcoin) to show that a certain amount of computation was performed by a legitimate user. A natural approach to adjust the complexity of a hash function is to iterate it c times, for some parameter c, in the hope that any query to the scheme requires c evaluations of the underlying hash function. However, results by Dodis et al. (Crypto 2012) imply that plain iteration falls short of achieving this goal, and designing schemes which provably have such a desirable property remained an open problem. This paper formalizes explicitly what it means for a given scheme to amplify the query complexity of a hash function. In the random oracle model, the goal of a secure query-complexity amplifier (QCA) scheme is captured as transforming, in the sense of indifferentiability, a random oracle allowing R queries (for the adversary) into one provably allowing only r < R queries. Turned around, this means that making r queries to the scheme requires at least R queries to the actual random oracle. Second, a new scheme, called collision-free iteration, is proposed and proven to achieve c-fold QCA for both the honest parties and the adversary, for any fixed parameter c.
AU - Demay, Grégory
AU - Gazi, Peter
AU - Maurer, Ueli
AU - Tackmann, Björn
ID - 1644
TI - Query-complexity amplification for random oracles
VL - 9063
ER -
TY - CONF
AB - Secret-key constructions are often proved secure in a model where one or more underlying components are replaced by an idealized oracle accessible to the attacker. This model gives rise to information-theoretic security analyses, and several advances have been made in this area over the last few years. This paper provides a systematic overview of what is achievable in this model, and how existing works fit into this view.
AU - Gazi, Peter
AU - Tessaro, Stefano
ID - 1645
T2 - 2015 IEEE Information Theory Workshop
TI - Secret-key cryptography from ideal primitives: A systematic verview
ER -