TY - JOUR
AB - Boldyreva, Palacio and Warinschi introduced a multiple forking game as an extension of general forking. The notion of (multiple) forking is a useful abstraction from the actual simulation of cryptographic scheme to the adversary in a security reduction, and is achieved through the intermediary of a so-called wrapper algorithm. Multiple forking has turned out to be a useful tool in the security argument of several cryptographic protocols. However, a reduction employing multiple forking incurs a significant degradation of (Formula presented.) , where (Formula presented.) denotes the upper bound on the underlying random oracle calls and (Formula presented.) , the number of forkings. In this work we take a closer look at the reasons for the degradation with a tighter security bound in mind. We nail down the exact set of conditions for success in the multiple forking game. A careful analysis of the cryptographic schemes and corresponding security reduction employing multiple forking leads to the formulation of ‘dependence’ and ‘independence’ conditions pertaining to the output of the wrapper in different rounds. Based on the (in)dependence conditions we propose a general framework of multiple forking and a General Multiple Forking Lemma. Leveraging (in)dependence to the full allows us to improve the degradation factor in the multiple forking game by a factor of (Formula presented.). By implication, the cost of a single forking involving two random oracles (augmented forking) matches that involving a single random oracle (elementary forking). Finally, we study the effect of these observations on the concrete security of existing schemes employing multiple forking. We conclude that by careful design of the protocol (and the wrapper in the security reduction) it is possible to harness our observations to the full extent.
AU - Kamath Hosdurg, Chethan
AU - Chatterjee, Sanjit
ID - 1177
IS - 4
JF - Algorithmica
TI - A closer look at multiple-forking: Leveraging (in)dependence for a tighter bound
VL - 74
ER -
TY - CONF
AB - Computational notions of entropy have recently found many applications, including leakage-resilient cryptography, deterministic encryption or memory delegation. The two main types of results which make computational notions so useful are (1) Chain rules, which quantify by how much the computational entropy of a variable decreases if conditioned on some other variable (2) Transformations, which quantify to which extend one type of entropy implies another.
Such chain rules and transformations typically lose a significant amount in quality of the entropy, and are the reason why applying these results one gets rather weak quantitative security bounds. In this paper we for the first time prove lower bounds in this context, showing that existing results for transformations are, unfortunately, basically optimal for non-adaptive black-box reductions (and it’s hard to imagine how non black-box reductions or adaptivity could be useful here.)
A variable X has k bits of HILL entropy of quality (ϵ,s)
if there exists a variable Y with k bits min-entropy which cannot be distinguished from X with advantage ϵ
by distinguishing circuits of size s. A weaker notion is Metric entropy, where we switch quantifiers, and only require that for every distinguisher of size s, such a Y exists.
We first describe our result concerning transformations. By definition, HILL implies Metric without any loss in quality. Metric entropy often comes up in applications, but must be transformed to HILL for meaningful security guarantees. The best known result states that if a variable X has k bits of Metric entropy of quality (ϵ,s)
, then it has k bits of HILL with quality (2ϵ,s⋅ϵ2). We show that this loss of a factor Ω(ϵ−2)
in circuit size is necessary. In fact, we show the stronger result that this loss is already necessary when transforming so called deterministic real valued Metric entropy to randomised boolean Metric (both these variants of Metric entropy are implied by HILL without loss in quality).
The chain rule for HILL entropy states that if X has k bits of HILL entropy of quality (ϵ,s)
, then for any variable Z of length m, X conditioned on Z has k−m bits of HILL entropy with quality (ϵ,s⋅ϵ2/2m). We show that a loss of Ω(2m/ϵ) in circuit size necessary here. Note that this still leaves a gap of ϵ between the known bound and our lower bound.
AU - Pietrzak, Krzysztof Z
AU - Maciej, Skorski
ID - 1179
TI - Pseudoentropy: Lower-bounds for chain rules and transformations
VL - 9985
ER -
TY - CONF
AB - We study the time-and memory-complexities of the problem of computing labels of (multiple) randomly selected challenge-nodes in a directed acyclic graph. The w-bit label of a node is the hash of the labels of its parents, and the hash function is modeled as a random oracle. Specific instances of this problem underlie both proofs of space [Dziembowski et al. CRYPTO’15] as well as popular memory-hard functions like scrypt. As our main tool, we introduce the new notion of a probabilistic parallel entangled pebbling game, a new type of combinatorial pebbling game on a graph, which is closely related to the labeling game on the same graph. As a first application of our framework, we prove that for scrypt, when the underlying hash function is invoked n times, the cumulative memory complexity (CMC) (a notion recently introduced by Alwen and Serbinenko (STOC’15) to capture amortized memory-hardness for parallel adversaries) is at least Ω(w · (n/ log(n))2). This bound holds for adversaries that can store many natural functions of the labels (e.g., linear combinations), but still not arbitrary functions thereof. We then introduce and study a combinatorial quantity, and show how a sufficiently small upper bound on it (which we conjecture) extends our CMC bound for scrypt to hold against arbitrary adversaries. We also show that such an upper bound solves the main open problem for proofs-of-space protocols: namely, establishing that the time complexity of computing the label of a random node in a graph on n nodes (given an initial kw-bit state) reduces tightly to the time complexity for black pebbling on the same graph (given an initial k-node pebbling).
AU - Alwen, Joel F
AU - Chen, Binyi
AU - Kamath Hosdurg, Chethan
AU - Kolmogorov, Vladimir
AU - Pietrzak, Krzysztof Z
AU - Tessaro, Stefano
ID - 1231
TI - On the complexity of scrypt and proofs of space in the parallel random oracle model
VL - 9666
ER -
TY - CONF
AB - About three decades ago it was realized that implementing private channels between parties which can be adaptively corrupted requires an encryption scheme that is secure against selective opening attacks. Whether standard (IND-CPA) security implies security against selective opening attacks has been a major open question since. The only known reduction from selective opening to IND-CPA security loses an exponential factor. A polynomial reduction is only known for the very special case where the distribution considered in the selective opening security experiment is a product distribution, i.e., the messages are sampled independently from each other. In this paper we give a reduction whose loss is quantified via the dependence graph (where message dependencies correspond to edges) of the underlying message distribution. In particular, for some concrete distributions including Markov distributions, our reduction is polynomial.
AU - Fuchsbauer, Georg
AU - Heuer, Felix
AU - Kiltz, Eike
AU - Pietrzak, Krzysztof Z
ID - 1233
TI - Standard security does imply security against selective opening for markov distributions
VL - 9562
ER -
TY - CONF
AB - A memory-hard function (MHF) f is equipped with a space cost σ and time cost τ parameter such that repeatedly computing fσ,τ on an application specific integrated circuit (ASIC) is not economically advantageous relative to a general purpose computer. Technically we would like that any (generalized) circuit for evaluating an iMHF fσ,τ has area × time (AT) complexity at Θ(σ2 ∗ τ). A data-independent MHF (iMHF) has the added property that it can be computed with almost optimal memory and time complexity by an algorithm which accesses memory in a pattern independent of the input value. Such functions can be specified by fixing a directed acyclic graph (DAG) G on n = Θ(σ ∗ τ) nodes representing its computation graph. In this work we develop new tools for analyzing iMHFs. First we define and motivate a new complexity measure capturing the amount of energy (i.e. electricity) required to compute a function. We argue that, in practice, this measure is at least as important as the more traditional AT-complexity. Next we describe an algorithm A for repeatedly evaluating an iMHF based on an arbitrary DAG G. We upperbound both its energy and AT complexities per instance evaluated in terms of a certain combinatorial property of G. Next we instantiate our attack for several general classes of DAGs which include those underlying many of the most important iMHF candidates in the literature. In particular, we obtain the following results which hold for all choices of parameters σ and τ (and thread-count) such that n = σ ∗ τ. -The Catena-Dragonfly function of [FLW13] has AT and energy complexities O(n1.67). -The Catena-Butterfly function of [FLW13] has complexities is O(n1.67). -The Double-Buffer and the Linear functions of [CGBS16] both have complexities in O(n1.67). -The Argon2i function of [BDK15] (winner of the Password Hashing Competition [PHC]) has complexities O(n7/4 log(n)). -The Single-Buffer function of [CGBS16] has complexities O(n7/4 log(n)). -Any iMHF can be computed by an algorithm with complexities O(n2/ log1 −ε(n)) for all ε > 0. In particular when τ = 1 this shows that the goal of constructing an iMHF with AT-complexity Θ(σ2 ∗ τ ) is unachievable. Along the way we prove a lemma upper-bounding the depth-robustness of any DAG which may prove to be of independent interest.
AU - Alwen, Joel F
AU - Blocki, Jeremiah
ID - 1365
TI - Efficiently computing data-independent memory-hard functions
VL - 9815
ER -
TY - CONF
AB - We study the problem of devising provably secure PRNGs with input based on the sponge paradigm. Such constructions are very appealing, as efficient software/hardware implementations of SHA-3 can easily be translated into a PRNG in a nearly black-box way. The only existing sponge-based construction, proposed by Bertoni et al. (CHES 2010), fails to achieve the security notion of robustness recently considered by Dodis et al. (CCS 2013), for two reasons: (1) The construction is deterministic, and thus there are high-entropy input distributions on which the construction fails to extract random bits, and (2) The construction is not forward secure, and presented solutions aiming at restoring forward security have not been rigorously analyzed. We propose a seeded variant of Bertoni et al.’s PRNG with input which we prove secure in the sense of robustness, delivering in particular concrete security bounds. On the way, we make what we believe to be an important conceptual contribution, developing a variant of the security framework of Dodis et al. tailored at the ideal permutation model that captures PRNG security in settings where the weakly random inputs are provided from a large class of possible adversarial samplers which are also allowed to query the random permutation. As a further application of our techniques, we also present an efficient sponge-based key-derivation function (which can be instantiated from SHA-3 in a black-box fashion), which we also prove secure when fed with samples from permutation-dependent distributions.
AU - Gazi, Peter
AU - Tessaro, Stefano
ID - 1366
TI - Provably robust sponge-based PRNGs and KDFs
VL - 9665
ER -
TY - JOUR
AB - A modular approach to constructing cryptographic protocols leads to simple designs but often inefficient instantiations. On the other hand, ad hoc constructions may yield efficient protocols at the cost of losing conceptual simplicity. We suggest a new design paradigm, structure-preserving cryptography, that provides a way to construct modular protocols with reasonable efficiency while retaining conceptual simplicity. A cryptographic scheme over a bilinear group is called structure-preserving if its public inputs and outputs consist of elements from the bilinear groups and their consistency can be verified by evaluating pairing-product equations. As structure-preserving schemes smoothly interoperate with each other, they are useful as building blocks in modular design of cryptographic applications. This paper introduces structure-preserving commitment and signature schemes over bilinear groups with several desirable properties. The commitment schemes include homomorphic, trapdoor and length-reducing commitments to group elements, and the structure-preserving signature schemes are the first ones that yield constant-size signatures on multiple group elements. A structure-preserving signature scheme is called automorphic if the public keys lie in the message space, which cannot be achieved by compressing inputs via a cryptographic hash function, as this would destroy the mathematical structure we are trying to preserve. Automorphic signatures can be used for building certification chains underlying privacy-preserving protocols. Among a vast number of applications of structure-preserving protocols, we present an efficient round-optimal blind-signature scheme and a group signature scheme with an efficient and concurrently secure protocol for enrolling new members.
AU - Abe, Masayuki
AU - Fuchsbauer, Georg
AU - Groth, Jens
AU - Haralambiev, Kristiyan
AU - Ohkubo, Miyako
ID - 1592
IS - 2
JF - Journal of Cryptology
TI - Structure preserving signatures and commitments to group elements
VL - 29
ER -
TY - CONF
AB - A somewhere statistically binding (SSB) hash, introduced by Hubáček and Wichs (ITCS ’15), can be used to hash a long string x to a short digest y = H hk (x) using a public hashing-key hk. Furthermore, there is a way to set up the hash key hk to make it statistically binding on some arbitrary hidden position i, meaning that: (1) the digest y completely determines the i’th bit (or symbol) of x so that all pre-images of y have the same value in the i’th position, (2) it is computationally infeasible to distinguish the position i on which hk is statistically binding from any other position i’. Lastly, the hash should have a local opening property analogous to Merkle-Tree hashing, meaning that given x and y = H hk (x) it should be possible to create a short proof π that certifies the value of the i’th bit (or symbol) of x without having to provide the entire input x. A similar primitive called a positional accumulator, introduced by Koppula, Lewko and Waters (STOC ’15) further supports dynamic updates of the hashed value. These tools, which are interesting in their own right, also serve as one of the main technical components in several recent works building advanced applications from indistinguishability obfuscation (iO).
The prior constructions of SSB hashing and positional accumulators required fully homomorphic encryption (FHE) and iO respectively. In this work, we give new constructions of these tools based on well studied number-theoretic assumptions such as DDH, Phi-Hiding and DCR, as well as a general construction from lossy/injective functions.
AU - Okamoto, Tatsuaki
AU - Pietrzak, Krzysztof Z
AU - Waters, Brent
AU - Wichs, Daniel
ID - 1653
TI - New realizations of somewhere statistically binding hashing and positional accumulators
VL - 9452
ER -
TY - CONF
AB - At Crypto 2015 Fuchsbauer, Hanser and Slamanig (FHS) presented the first standard-model construction of efficient roundoptimal blind signatures that does not require complexity leveraging. It is conceptually simple and builds on the primitive of structure-preserving signatures on equivalence classes (SPS-EQ). FHS prove the unforgeability of their scheme assuming EUF-CMA security of the SPS-EQ scheme and hardness of a version of the DH inversion problem. Blindness under adversarially chosen keys is proven under an interactive variant of the DDH assumption. We propose a variant of their scheme whose blindness can be proven under a non-interactive assumption, namely a variant of the bilinear DDH assumption. We moreover prove its unforgeability assuming only unforgeability of the underlying SPS-EQ but no additional assumptions as needed for the FHS scheme.
AU - Fuchsbauer, Georg
AU - Hanser, Christian
AU - Kamath Hosdurg, Chethan
AU - Slamanig, Daniel
ID - 1225
TI - Practical round-optimal blind signatures in the standard model from weaker assumptions
VL - 9841
ER -
TY - JOUR
AB - Most entropy notions H(.) like Shannon or min-entropy satisfy a chain rule stating that for random variables X,Z, and A we have H(X|Z,A)≥H(X|Z)−|A|. That is, by conditioning on A the entropy of X can decrease by at most the bitlength |A| of A. Such chain rules are known to hold for some computational entropy notions like Yao’s and unpredictability-entropy. For HILL entropy, the computational analogue of min-entropy, the chain rule is of special interest and has found many applications, including leakage-resilient cryptography, deterministic encryption, and memory delegation. These applications rely on restricted special cases of the chain rule. Whether the chain rule for conditional HILL entropy holds in general was an open problem for which we give a strong negative answer: we construct joint distributions (X,Z,A), where A is a distribution over a single bit, such that the HILL entropy H HILL (X|Z) is large but H HILL (X|Z,A) is basically zero.
Our counterexample just makes the minimal assumption that NP⊈P/poly. Under the stronger assumption that injective one-way function exist, we can make all the distributions efficiently samplable.
Finally, we show that some more sophisticated cryptographic objects like lossy functions can be used to sample a distribution constituting a counterexample to the chain rule making only a single invocation to the underlying object.
AU - Krenn, Stephan
AU - Pietrzak, Krzysztof Z
AU - Wadia, Akshay
AU - Wichs, Daniel
ID - 1479
IS - 3
JF - Computational Complexity
TI - A counterexample to the chain rule for conditional HILL entropy
VL - 25
ER -