@inproceedings{1653,
abstract = {A somewhere statistically binding (SSB) hash, introduced by Hubáček and Wichs (ITCS ’15), can be used to hash a long string x to a short digest y = H hk (x) using a public hashing-key hk. Furthermore, there is a way to set up the hash key hk to make it statistically binding on some arbitrary hidden position i, meaning that: (1) the digest y completely determines the i’th bit (or symbol) of x so that all pre-images of y have the same value in the i’th position, (2) it is computationally infeasible to distinguish the position i on which hk is statistically binding from any other position i’. Lastly, the hash should have a local opening property analogous to Merkle-Tree hashing, meaning that given x and y = H hk (x) it should be possible to create a short proof π that certifies the value of the i’th bit (or symbol) of x without having to provide the entire input x. A similar primitive called a positional accumulator, introduced by Koppula, Lewko and Waters (STOC ’15) further supports dynamic updates of the hashed value. These tools, which are interesting in their own right, also serve as one of the main technical components in several recent works building advanced applications from indistinguishability obfuscation (iO).
The prior constructions of SSB hashing and positional accumulators required fully homomorphic encryption (FHE) and iO respectively. In this work, we give new constructions of these tools based on well studied number-theoretic assumptions such as DDH, Phi-Hiding and DCR, as well as a general construction from lossy/injective functions.},
author = {Okamoto, Tatsuaki and Pietrzak, Krzysztof Z and Waters, Brent and Wichs, Daniel},
location = {Auckland, New Zealand},
pages = {121 -- 145},
publisher = {Springer},
title = {{New realizations of somewhere statistically binding hashing and positional accumulators}},
doi = {10.1007/978-3-662-48797-6_6},
volume = {9452},
year = {2016},
}
@inproceedings{1225,
abstract = {At Crypto 2015 Fuchsbauer, Hanser and Slamanig (FHS) presented the first standard-model construction of efficient roundoptimal blind signatures that does not require complexity leveraging. It is conceptually simple and builds on the primitive of structure-preserving signatures on equivalence classes (SPS-EQ). FHS prove the unforgeability of their scheme assuming EUF-CMA security of the SPS-EQ scheme and hardness of a version of the DH inversion problem. Blindness under adversarially chosen keys is proven under an interactive variant of the DDH assumption. We propose a variant of their scheme whose blindness can be proven under a non-interactive assumption, namely a variant of the bilinear DDH assumption. We moreover prove its unforgeability assuming only unforgeability of the underlying SPS-EQ but no additional assumptions as needed for the FHS scheme.},
author = {Fuchsbauer, Georg and Hanser, Christian and Kamath Hosdurg, Chethan and Slamanig, Daniel},
location = {Amalfi, Italy},
pages = {391 -- 408},
publisher = {Springer},
title = {{Practical round-optimal blind signatures in the standard model from weaker assumptions}},
doi = {10.1007/978-3-319-44618-9_21},
volume = {9841},
year = {2016},
}
@inproceedings{1229,
abstract = {Witness encryption (WE) was introduced by Garg et al. [GGSW13]. A WE scheme is defined for some NP language L and lets a sender encrypt messages relative to instances x. A ciphertext for x can be decrypted using w witnessing x ∈ L, but hides the message if x ∈ L. Garg et al. construct WE from multilinear maps and give another construction [GGH+13b] using indistinguishability obfuscation (iO) for circuits. Due to the reliance on such heavy tools, WE can cur- rently hardly be implemented on powerful hardware and will unlikely be realizable on constrained devices like smart cards any time soon. We construct a WE scheme where encryption is done by simply computing a Naor-Yung ciphertext (two CPA encryptions and a NIZK proof). To achieve this, our scheme has a setup phase, which outputs public parameters containing an obfuscated circuit (only required for decryption), two encryption keys and a common reference string (used for encryption). This setup need only be run once, and the parame- ters can be used for arbitrary many encryptions. Our scheme can also be turned into a functional WE scheme, where a message is encrypted w.r.t. a statement and a function f, and decryption with a witness w yields f (m, w). Our construction is inspired by the functional encryption scheme by Garg et al. and we prove (selective) security assuming iO and statistically simulation-sound NIZK. We give a construction of the latter in bilinear groups and combining it with ElGamal encryption, our ciphertexts are of size 1.3 kB at a 128-bit security level and can be computed on a smart card.},
author = {Abusalah, Hamza M and Fuchsbauer, Georg and Pietrzak, Krzysztof Z},
location = {Guildford, UK},
pages = {285 -- 303},
publisher = {Springer},
title = {{Offline witness encryption}},
doi = {10.1007/978-3-319-39555-5_16},
volume = {9696},
year = {2016},
}
@inproceedings{1231,
abstract = {We study the time-and memory-complexities of the problem of computing labels of (multiple) randomly selected challenge-nodes in a directed acyclic graph. The w-bit label of a node is the hash of the labels of its parents, and the hash function is modeled as a random oracle. Specific instances of this problem underlie both proofs of space [Dziembowski et al. CRYPTO’15] as well as popular memory-hard functions like scrypt. As our main tool, we introduce the new notion of a probabilistic parallel entangled pebbling game, a new type of combinatorial pebbling game on a graph, which is closely related to the labeling game on the same graph. As a first application of our framework, we prove that for scrypt, when the underlying hash function is invoked n times, the cumulative memory complexity (CMC) (a notion recently introduced by Alwen and Serbinenko (STOC’15) to capture amortized memory-hardness for parallel adversaries) is at least Ω(w · (n/ log(n))2). This bound holds for adversaries that can store many natural functions of the labels (e.g., linear combinations), but still not arbitrary functions thereof. We then introduce and study a combinatorial quantity, and show how a sufficiently small upper bound on it (which we conjecture) extends our CMC bound for scrypt to hold against arbitrary adversaries. We also show that such an upper bound solves the main open problem for proofs-of-space protocols: namely, establishing that the time complexity of computing the label of a random node in a graph on n nodes (given an initial kw-bit state) reduces tightly to the time complexity for black pebbling on the same graph (given an initial k-node pebbling).},
author = {Alwen, Joel F and Chen, Binyi and Kamath Hosdurg, Chethan and Kolmogorov, Vladimir and Pietrzak, Krzysztof Z and Tessaro, Stefano},
location = {Vienna, Austria},
pages = {358 -- 387},
publisher = {Springer},
title = {{On the complexity of scrypt and proofs of space in the parallel random oracle model}},
doi = {10.1007/978-3-662-49896-5_13},
volume = {9666},
year = {2016},
}
@inproceedings{1233,
abstract = {About three decades ago it was realized that implementing private channels between parties which can be adaptively corrupted requires an encryption scheme that is secure against selective opening attacks. Whether standard (IND-CPA) security implies security against selective opening attacks has been a major open question since. The only known reduction from selective opening to IND-CPA security loses an exponential factor. A polynomial reduction is only known for the very special case where the distribution considered in the selective opening security experiment is a product distribution, i.e., the messages are sampled independently from each other. In this paper we give a reduction whose loss is quantified via the dependence graph (where message dependencies correspond to edges) of the underlying message distribution. In particular, for some concrete distributions including Markov distributions, our reduction is polynomial.},
author = {Fuchsbauer, Georg and Heuer, Felix and Kiltz, Eike and Pietrzak, Krzysztof Z},
location = {Tel Aviv, Israel},
pages = {282 -- 305},
publisher = {Springer},
title = {{Standard security does imply security against selective opening for markov distributions}},
doi = {10.1007/978-3-662-49096-9_12},
volume = {9562},
year = {2016},
}
@inproceedings{1235,
abstract = {A constrained pseudorandom function (CPRF) F: K×X → Y for a family T of subsets of χ is a function where for any key k ∈ K and set S ∈ T one can efficiently compute a short constrained key kS, which allows to evaluate F(k, ·) on all inputs x ∈ S, while the outputs on all inputs x /∈ S look random even given kS. Abusalah et al. recently constructed the first constrained PRF for inputs of arbitrary length whose sets S are decided by Turing machines. They use their CPRF to build broadcast encryption and the first ID-based non-interactive key exchange for an unbounded number of users. Their constrained keys are obfuscated circuits and are therefore large. In this work we drastically reduce the key size and define a constrained key for a Turing machine M as a short signature on M. For this, we introduce a new signature primitive with constrained signing keys that let one only sign certain messages, while forging a signature on others is hard even when knowing the coins for key generation.},
author = {Abusalah, Hamza M and Fuchsbauer, Georg},
location = {Guildford, UK},
pages = {445 -- 463},
publisher = {Springer},
title = {{Constrained PRFs for unbounded inputs with short keys}},
doi = {10.1007/978-3-319-39555-5_24},
volume = {9696},
year = {2016},
}
@inproceedings{1236,
abstract = {A constrained pseudorandom function F: K × X → Y for a family T ⊆ 2X of subsets of X is a function where for any key k ∈ K and set S ∈ T one can efficiently compute a constrained key kS which allows to evaluate F (k, ·) on all inputs x ∈ S, while even given this key, the outputs on all inputs x ∉ S look random. At Asiacrypt’13 Boneh and Waters gave a construction which supports the most general set family so far. Its keys kc are defined for sets decided by boolean circuits C and enable evaluation of the PRF on any x ∈ X where C(x) = 1. In their construction the PRF input length and the size of the circuits C for which constrained keys can be computed must be fixed beforehand during key generation. We construct a constrained PRF that has an unbounded input length and whose constrained keys can be defined for any set recognized by a Turing machine. The only a priori bound we make is on the description size of the machines. We prove our construction secure assuming publiccoin differing-input obfuscation. As applications of our constrained PRF we build a broadcast encryption scheme where the number of potential receivers need not be fixed at setup (in particular, the length of the keys is independent of the number of parties) and the first identity-based non-interactive key exchange protocol with no bound on the number of parties that can agree on a shared key.},
author = {Abusalah, Hamza M and Fuchsbauer, Georg and Pietrzak, Krzysztof Z},
location = {San Francisco, CA, USA},
pages = {413 -- 428},
publisher = {Springer},
title = {{Constrained PRFs for unbounded inputs}},
doi = {10.1007/978-3-319-29485-8_24},
volume = {9610},
year = {2016},
}
@inproceedings{1365,
abstract = {A memory-hard function (MHF) f is equipped with a space cost σ and time cost τ parameter such that repeatedly computing fσ,τ on an application specific integrated circuit (ASIC) is not economically advantageous relative to a general purpose computer. Technically we would like that any (generalized) circuit for evaluating an iMHF fσ,τ has area × time (AT) complexity at Θ(σ2 ∗ τ). A data-independent MHF (iMHF) has the added property that it can be computed with almost optimal memory and time complexity by an algorithm which accesses memory in a pattern independent of the input value. Such functions can be specified by fixing a directed acyclic graph (DAG) G on n = Θ(σ ∗ τ) nodes representing its computation graph. In this work we develop new tools for analyzing iMHFs. First we define and motivate a new complexity measure capturing the amount of energy (i.e. electricity) required to compute a function. We argue that, in practice, this measure is at least as important as the more traditional AT-complexity. Next we describe an algorithm A for repeatedly evaluating an iMHF based on an arbitrary DAG G. We upperbound both its energy and AT complexities per instance evaluated in terms of a certain combinatorial property of G. Next we instantiate our attack for several general classes of DAGs which include those underlying many of the most important iMHF candidates in the literature. In particular, we obtain the following results which hold for all choices of parameters σ and τ (and thread-count) such that n = σ ∗ τ. -The Catena-Dragonfly function of [FLW13] has AT and energy complexities O(n1.67). -The Catena-Butterfly function of [FLW13] has complexities is O(n1.67). -The Double-Buffer and the Linear functions of [CGBS16] both have complexities in O(n1.67). -The Argon2i function of [BDK15] (winner of the Password Hashing Competition [PHC]) has complexities O(n7/4 log(n)). -The Single-Buffer function of [CGBS16] has complexities O(n7/4 log(n)). -Any iMHF can be computed by an algorithm with complexities O(n2/ log1 −ε(n)) for all ε > 0. In particular when τ = 1 this shows that the goal of constructing an iMHF with AT-complexity Θ(σ2 ∗ τ ) is unachievable. Along the way we prove a lemma upper-bounding the depth-robustness of any DAG which may prove to be of independent interest.},
author = {Alwen, Joel F and Blocki, Jeremiah},
location = {Santa Barbara, CA, USA},
pages = {241 -- 271},
publisher = {Springer},
title = {{Efficiently computing data-independent memory-hard functions}},
doi = {10.1007/978-3-662-53008-5_9},
volume = {9815},
year = {2016},
}
@inproceedings{1366,
abstract = {We study the problem of devising provably secure PRNGs with input based on the sponge paradigm. Such constructions are very appealing, as efficient software/hardware implementations of SHA-3 can easily be translated into a PRNG in a nearly black-box way. The only existing sponge-based construction, proposed by Bertoni et al. (CHES 2010), fails to achieve the security notion of robustness recently considered by Dodis et al. (CCS 2013), for two reasons: (1) The construction is deterministic, and thus there are high-entropy input distributions on which the construction fails to extract random bits, and (2) The construction is not forward secure, and presented solutions aiming at restoring forward security have not been rigorously analyzed. We propose a seeded variant of Bertoni et al.’s PRNG with input which we prove secure in the sense of robustness, delivering in particular concrete security bounds. On the way, we make what we believe to be an important conceptual contribution, developing a variant of the security framework of Dodis et al. tailored at the ideal permutation model that captures PRNG security in settings where the weakly random inputs are provided from a large class of possible adversarial samplers which are also allowed to query the random permutation. As a further application of our techniques, we also present an efficient sponge-based key-derivation function (which can be instantiated from SHA-3 in a black-box fashion), which we also prove secure when fed with samples from permutation-dependent distributions.},
author = {Gazi, Peter and Tessaro, Stefano},
location = {Vienna, Austria},
pages = {87 -- 116},
publisher = {Springer},
title = {{Provably robust sponge-based PRNGs and KDFs}},
doi = {10.1007/978-3-662-49890-3_4},
volume = {9665},
year = {2016},
}
@article{1479,
abstract = {Most entropy notions H(.) like Shannon or min-entropy satisfy a chain rule stating that for random variables X,Z, and A we have H(X|Z,A)≥H(X|Z)−|A|. That is, by conditioning on A the entropy of X can decrease by at most the bitlength |A| of A. Such chain rules are known to hold for some computational entropy notions like Yao’s and unpredictability-entropy. For HILL entropy, the computational analogue of min-entropy, the chain rule is of special interest and has found many applications, including leakage-resilient cryptography, deterministic encryption, and memory delegation. These applications rely on restricted special cases of the chain rule. Whether the chain rule for conditional HILL entropy holds in general was an open problem for which we give a strong negative answer: we construct joint distributions (X,Z,A), where A is a distribution over a single bit, such that the HILL entropy H HILL (X|Z) is large but H HILL (X|Z,A) is basically zero.
Our counterexample just makes the minimal assumption that NP⊈P/poly. Under the stronger assumption that injective one-way function exist, we can make all the distributions efficiently samplable.
Finally, we show that some more sophisticated cryptographic objects like lossy functions can be used to sample a distribution constituting a counterexample to the chain rule making only a single invocation to the underlying object.},
author = {Krenn, Stephan and Pietrzak, Krzysztof Z and Wadia, Akshay and Wichs, Daniel},
journal = {Computational Complexity},
number = {3},
pages = {567 -- 605},
publisher = {Springer},
title = {{A counterexample to the chain rule for conditional HILL entropy}},
doi = {10.1007/s00037-015-0120-9},
volume = {25},
year = {2016},
}