@article{5887,
abstract = {Cryptographic security is usually defined as a guarantee that holds except when a bad event with negligible probability occurs, and nothing is guaranteed in that bad case. However, in settings where such failure can happen with substantial probability, one needs to provide guarantees even for the bad case. A typical example is where a (possibly weak) password is used instead of a secure cryptographic key to protect a session, the bad event being that the adversary correctly guesses the password. In a situation with multiple such sessions, a per-session guarantee is desired: any session for which the password has not been guessed remains secure, independently of whether other sessions have been compromised. A new formalism for stating such gracefully degrading security guarantees is introduced and applied to analyze the examples of password-based message authentication and password-based encryption. While a natural per-message guarantee is achieved for authentication, the situation of password-based encryption is more delicate: a per-session confidentiality guarantee only holds against attackers for which the distribution of password-guessing effort over the sessions is known in advance. In contrast, for more general attackers without such a restriction, a strong, composable notion of security cannot be achieved.},
author = {Demay, Gregory and Gazi, Peter and Maurer, Ueli and Tackmann, Bjorn},
issn = {0926227X},
journal = {Journal of Computer Security},
number = {1},
pages = {75--111},
publisher = {IOS Press},
title = {{Per-session security: Password-based cryptography revisited}},
doi = {10.3233/JCS-181131},
volume = {27},
year = {2019},
}
@inproceedings{7407,
abstract = {Proofs of space (PoS) [Dziembowski et al., CRYPTO'15] are proof systems where a prover can convince a verifier that he "wastes" disk space. PoS were introduced as a more ecological and economical replacement for proofs of work which are currently used to secure blockchains like Bitcoin. In this work we investigate extensions of PoS which allow the prover to embed useful data into the dedicated space, which later can be recovered. Our first contribution is a security proof for the original PoS from CRYPTO'15 in the random oracle model (the original proof only applied to a restricted class of adversaries which can store a subset of the data an honest prover would store). When this PoS is instantiated with recent constructions of maximally depth robust graphs, our proof implies basically optimal security. As a second contribution we show three different extensions of this PoS where useful data can be embedded into the space required by the prover. Our security proof for the PoS extends (non-trivially) to these constructions. We discuss how some of these variants can be used as proofs of catalytic space (PoCS), a notion we put forward in this work, and which basically is a PoS where most of the space required by the prover can be used to backup useful data. Finally we discuss how one of the extensions is a candidate construction for a proof of replication (PoR), a proof system recently suggested in the Filecoin whitepaper. },
author = {Pietrzak, Krzysztof Z},
booktitle = {10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
isbn = {978-3-95977-095-8},
issn = {1868-8969},
location = {San Diego, CA, United States},
pages = {59:1--59:25},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum für Informatik},
title = {{Proofs of catalytic space}},
doi = {10.4230/LIPICS.ITCS.2019.59},
volume = {124},
year = {2018},
}
@article{5980,
abstract = {The problem of private set-intersection (PSI) has been traditionally treated as an instance of the more general problem of multi-party computation (MPC). Consequently, in order to argue security, or compose these protocols one has to rely on the general theory that was developed for the purpose of MPC. The pursuit of efficient protocols, however, has resulted in designs that exploit properties pertaining to PSI. In almost all practical applications where a PSI protocol is deployed, it is expected to be executed multiple times, possibly on related inputs. In this work we initiate a dedicated study of PSI in the multi-interaction (MI) setting. In this model a server sets up the common system parameters and executes set-intersection multiple times with potentially different clients. We discuss a few attacks that arise when protocols are naïvely composed in this manner and, accordingly, craft security definitions for the MI setting and study their inter-relation. Finally, we suggest a set of protocols that are MI-secure, at the same time almost as efficient as their parent, stand-alone, protocols.},
author = {Chatterjee, Sanjit and Kamath Hosdurg, Chethan and Kumar, Vikas},
journal = {American Institute of Mathematical Sciences},
number = {1},
pages = {17--47},
publisher = {AIMS},
title = {{Private set-intersection with common set-up}},
doi = {10.3934/amc.2018002},
volume = {12},
year = {2018},
}
@inproceedings{298,
abstract = {Memory-hard functions (MHF) are functions whose evaluation cost is dominated by memory cost. MHFs are egalitarian, in the sense that evaluating them on dedicated hardware (like FPGAs or ASICs) is not much cheaper than on off-the-shelf hardware (like x86 CPUs). MHFs have interesting cryptographic applications, most notably to password hashing and securing blockchains.
Alwen and Serbinenko [STOC’15] define the cumulative memory complexity (cmc) of a function as the sum (over all time-steps) of the amount of memory required to compute the function. They advocate that a good MHF must have high cmc. Unlike previous notions, cmc takes into account that dedicated hardware might exploit amortization and parallelism. Still, cmc has been critizised as insufficient, as it fails to capture possible time-memory trade-offs; as memory cost doesn’t scale linearly, functions with the same cmc could still have very different actual hardware cost.
In this work we address this problem, and introduce the notion of sustained-memory complexity, which requires that any algorithm evaluating the function must use a large amount of memory for many steps. We construct functions (in the parallel random oracle model) whose sustained-memory complexity is almost optimal: our function can be evaluated using n steps and O(n/log(n)) memory, in each step making one query to the (fixed-input length) random oracle, while any algorithm that can make arbitrary many parallel queries to the random oracle, still needs Ω(n/log(n)) memory for Ω(n) steps.
As has been done for various notions (including cmc) before, we reduce the task of constructing an MHFs with high sustained-memory complexity to proving pebbling lower bounds on DAGs. Our main technical contribution is the construction is a family of DAGs on n nodes with constant indegree with high “sustained-space complexity”, meaning that any parallel black-pebbling strategy requires Ω(n/log(n)) pebbles for at least Ω(n) steps.
Along the way we construct a family of maximally “depth-robust” DAGs with maximum indegree O(logn) , improving upon the construction of Mahmoody et al. [ITCS’13] which had maximum indegree O(log2n⋅},
author = {Alwen, Joel F and Blocki, Jeremiah and Pietrzak, Krzysztof Z},
location = {Tel Aviv, Israel},
pages = {99 -- 130},
publisher = {Springer},
title = {{Sustained space complexity}},
doi = {10.1007/978-3-319-78375-8_4},
volume = {10821},
year = {2018},
}
@inproceedings{300,
abstract = {We introduce a formal quantitative notion of “bit security” for a general type of cryptographic games (capturing both decision and search problems), aimed at capturing the intuition that a cryptographic primitive with k-bit security is as hard to break as an ideal cryptographic function requiring a brute force attack on a k-bit key space. Our new definition matches the notion of bit security commonly used by cryptographers and cryptanalysts when studying search (e.g., key recovery) problems, where the use of the traditional definition is well established. However, it produces a quantitatively different metric in the case of decision (indistinguishability) problems, where the use of (a straightforward generalization of) the traditional definition is more problematic and leads to a number of paradoxical situations or mismatches between theoretical/provable security and practical/common sense intuition. Key to our new definition is to consider adversaries that may explicitly declare failure of the attack. We support and justify the new definition by proving a number of technical results, including tight reductions between several standard cryptographic problems, a new hybrid theorem that preserves bit security, and an application to the security analysis of indistinguishability primitives making use of (approximate) floating point numbers. This is the first result showing that (standard precision) 53-bit floating point numbers can be used to achieve 100-bit security in the context of cryptographic primitives with general indistinguishability-based security definitions. Previous results of this type applied only to search problems, or special types of decision problems.},
author = {Micciancio, Daniele and Walter, Michael},
editor = {Walter, Michael},
location = {Tel Aviv, Israel},
pages = {3 -- 28},
publisher = {Springer},
title = {{On the bit security of cryptographic primitives}},
doi = {10.1007/978-3-319-78381-9_1},
volume = {10820},
year = {2018},
}
@inproceedings{302,
abstract = {At ITCS 2013, Mahmoody, Moran and Vadhan [MMV13] introduce and construct publicly verifiable proofs of sequential work, which is a protocol for proving that one spent sequential computational work related to some statement. The original motivation for such proofs included non-interactive time-stamping and universally verifiable CPU benchmarks. A more recent application, and our main motivation, are blockchain designs, where proofs of sequential work can be used – in combination with proofs of space – as a more ecological and economical substitute for proofs of work which are currently used to secure Bitcoin and other cryptocurrencies. The construction proposed by [MMV13] is based on a hash function and can be proven secure in the random oracle model, or assuming inherently sequential hash-functions, which is a new standard model assumption introduced in their work. In a proof of sequential work, a prover gets a “statement” χ, a time parameter N and access to a hash-function H, which for the security proof is modelled as a random oracle. Correctness requires that an honest prover can make a verifier accept making only N queries to H, while soundness requires that any prover who makes the verifier accept must have made (almost) N sequential queries to H. Thus a solution constitutes a proof that N time passed since χ was received. Solutions must be publicly verifiable in time at most polylogarithmic in N. The construction of [MMV13] is based on “depth-robust” graphs, and as a consequence has rather poor concrete parameters. But the major drawback is that the prover needs not just N time, but also N space to compute a proof. In this work we propose a proof of sequential work which is much simpler, more efficient and achieves much better concrete bounds. Most importantly, the space required can be as small as log (N) (but we get better soundness using slightly more memory than that). An open problem stated by [MMV13] that our construction does not solve either is achieving a “unique” proof, where even a cheating prover can only generate a single accepting proof. This property would be extremely useful for applications to blockchains.},
author = {Cohen, Bram and Pietrzak, Krzysztof Z},
location = {Tel Aviv, Israel},
pages = {451 -- 467},
publisher = {Springer},
title = {{Simple proofs of sequential work}},
doi = {10.1007/978-3-319-78375-8_15},
volume = {10821},
year = {2018},
}
@inproceedings{6941,
abstract = {Bitcoin has become the most successful cryptocurrency ever deployed, and its most distinctive feature is that it is decentralized. Its underlying protocol (Nakamoto consensus) achieves this by using proof of work, which has the drawback that it causes the consumption of vast amounts of energy to maintain the ledger. Moreover, Bitcoin mining dynamics have become less distributed over time.
Towards addressing these issues, we propose SpaceMint, a cryptocurrency based on proofs of space instead of proofs of work. Miners in SpaceMint dedicate disk space rather than computation. We argue that SpaceMint’s design solves or alleviates several of Bitcoin’s issues: most notably, its large energy consumption. SpaceMint also rewards smaller miners fairly according to their contribution to the network, thus incentivizing more distributed participation.
This paper adapts proof of space to enable its use in cryptocurrency, studies the attacks that can arise against a Bitcoin-like blockchain that uses proof of space, and proposes a new blockchain format and transaction types to address these attacks. Our prototype shows that initializing 1 TB for mining takes about a day (a one-off setup cost), and miners spend on average just a fraction of a second per block mined. Finally, we provide a game-theoretic analysis modeling SpaceMint as an extensive game (the canonical game-theoretic notion for games that take place over time) and show that this stylized game satisfies a strong equilibrium notion, thereby arguing for SpaceMint ’s stability and consensus.},
author = {Park, Sunoo and Kwon, Albert and Fuchsbauer, Georg and Gazi, Peter and Alwen, Joel F and Pietrzak, Krzysztof Z},
booktitle = {22nd International Conference on Financial Cryptography and Data Security},
isbn = {9783662583869},
issn = {0302-9743},
location = {Nieuwpoort, Curacao},
pages = {480--499},
publisher = {Springer Nature},
title = {{SpaceMint: A cryptocurrency based on proofs of space}},
doi = {10.1007/978-3-662-58387-6_26},
volume = {10957},
year = {2018},
}
@inproceedings{193,
abstract = {We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.},
author = {Alwen, Joel F and Gazi, Peter and Kamath Hosdurg, Chethan and Klein, Karen and Osang, Georg F and Pietrzak, Krzysztof Z and Reyzin, Lenoid and Rolinek, Michal and Rybar, Michal},
booktitle = {Proceedings of the 2018 on Asia Conference on Computer and Communication Security},
location = {Incheon, Republic of Korea},
pages = {51 -- 65},
publisher = {ACM},
title = {{On the memory hardness of data independent password hashing functions}},
doi = {10.1145/3196494.3196534},
year = {2018},
}
@phdthesis{83,
abstract = {A proof system is a protocol between a prover and a verifier over a common input in which an honest prover convinces the verifier of the validity of true statements. Motivated by the success of decentralized cryptocurrencies, exemplified by Bitcoin, the focus of this thesis will be on proof systems which found applications in some sustainable alternatives to Bitcoin, such as the Spacemint and Chia cryptocurrencies. In particular, we focus on proofs of space and proofs of sequential work.
Proofs of space (PoSpace) were suggested as more ecological, economical, and egalitarian alternative to the energy-wasteful proof-of-work mining of Bitcoin. However, the state-of-the-art constructions of PoSpace are based on sophisticated graph pebbling lower bounds, and are therefore complex. Moreover, when these PoSpace are used in cryptocurrencies like Spacemint, miners can only start mining after ensuring that a commitment to their space is already added in a special transaction to the blockchain. Proofs of sequential work (PoSW) are proof systems in which a prover, upon receiving a statement x and a time parameter T, computes a proof which convinces the verifier that T time units had passed since x was received. Whereas Spacemint assumes synchrony to retain some interesting Bitcoin dynamics, Chia requires PoSW with unique proofs, i.e., PoSW in which it is hard to come up with more than one accepting proof for any true statement. In this thesis we construct simple and practically-efficient PoSpace and PoSW. When using our PoSpace in cryptocurrencies, miners can start mining on the fly, like in Bitcoin, and unlike current constructions of PoSW, which either achieve efficient verification of sequential work, or faster-than-recomputing verification of correctness of proofs, but not both at the same time, ours achieve the best of these two worlds.},
author = {Abusalah, Hamza M},
pages = {59},
publisher = {IST Austria},
title = {{Proof systems for sustainable decentralized cryptocurrencies}},
doi = {10.15479/AT:ISTA:TH_1046},
year = {2018},
}
@inproceedings{108,
abstract = {Universal hashing found a lot of applications in computer science. In cryptography the most important fact about universal families is the so called Leftover Hash Lemma, proved by Impagliazzo, Levin and Luby. In the language of modern cryptography it states that almost universal families are good extractors. In this work we provide a somewhat surprising characterization in the opposite direction. Namely, every extractor with sufficiently good parameters yields a universal family on a noticeable fraction of its inputs. Our proof technique is based on tools from extremal graph theory applied to the \'collision graph\' induced by the extractor, and may be of independent interest. We discuss possible applications to the theory of randomness extractors and non-malleable codes.},
author = {Obremski, Marciej and Skorski, Maciej},
location = {Vail, CO, USA},
publisher = {IEEE},
title = {{Inverted leftover hash lemma}},
doi = {10.1109/ISIT.2018.8437654},
volume = {2018},
year = {2018},
}