--- _id: '11459' abstract: - lang: eng text: 'We present a novel approach to differential cost analysis that, given a program revision, attempts to statically bound the difference in resource usage, or cost, between the two program versions. Differential cost analysis is particularly interesting because of the many compelling applications for it, such as detecting resource-use regressions at code-review time or proving the absence of certain side-channel vulnerabilities. One prior approach to differential cost analysis is to apply relational reasoning that conceptually constructs a product program on which one can over-approximate the difference in costs between the two program versions. However, a significant challenge in any relational approach is effectively aligning the program versions to get precise results. In this paper, our key insight is that we can avoid the need for and the limitations of program alignment if, instead, we bound the difference of two cost-bound summaries rather than directly bounding the concrete cost difference. In particular, our method computes a threshold value for the maximal difference in cost between two program versions simultaneously using two kinds of cost-bound summaries---a potential function that evaluates to an upper bound for the cost incurred in the first program and an anti-potential function that evaluates to a lower bound for the cost incurred in the second. Our method has a number of desirable properties: it can be fully automated, it allows optimizing the threshold value on relative cost, it is suitable for programs that are not syntactically similar, and it supports non-determinism. We have evaluated an implementation of our approach on a number of program pairs collected from the literature, and we find that our method computes tight threshold values on relative cost in most examples.' acknowledgement: "We thank Shaun Willows, Thomas Lugnet, and the Living Room Application Vending team for suggesting threshold\r\nbounds as a developer-friendly way to interact with a differential cost analyzer, and we thank Jim Christy, Daniel\r\nSchoepe, and the Prime Video Automated Reasoning team for their support and helpful suggestions throughout the\r\nproject. We also thank Michael Emmi for feedback on an earlier version of this paper. And finally, we thank the anonymous reviewers for their useful feedback and Aws Albarghouthi for shepherding the final version of the paper. Ðorđe Žikelić was also partially supported by ERC CoG 863818 (FoRM-SMArt)." article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic - first_name: Bor-Yuh Evan full_name: Chang, Bor-Yuh Evan last_name: Chang - first_name: Pauline full_name: Bolignano, Pauline last_name: Bolignano - first_name: Franco full_name: Raimondi, Franco last_name: Raimondi citation: ama: 'Zikelic D, Chang B-YE, Bolignano P, Raimondi F. Differential cost analysis with simultaneous potentials and anti-potentials. In: Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation. Association for Computing Machinery; 2022:442-457. doi:10.1145/3519939.3523435' apa: 'Zikelic, D., Chang, B.-Y. E., Bolignano, P., & Raimondi, F. (2022). Differential cost analysis with simultaneous potentials and anti-potentials. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (pp. 442–457). San Diego, CA, United States: Association for Computing Machinery. https://doi.org/10.1145/3519939.3523435' chicago: Zikelic, Dorde, Bor-Yuh Evan Chang, Pauline Bolignano, and Franco Raimondi. “Differential Cost Analysis with Simultaneous Potentials and Anti-Potentials.” In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, 442–57. Association for Computing Machinery, 2022. https://doi.org/10.1145/3519939.3523435. ieee: D. Zikelic, B.-Y. E. Chang, P. Bolignano, and F. Raimondi, “Differential cost analysis with simultaneous potentials and anti-potentials,” in Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego, CA, United States, 2022, pp. 442–457. ista: 'Zikelic D, Chang B-YE, Bolignano P, Raimondi F. 2022. Differential cost analysis with simultaneous potentials and anti-potentials. Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation. PLDI: Programming Language Design and Implementation, 442–457.' mla: Zikelic, Dorde, et al. “Differential Cost Analysis with Simultaneous Potentials and Anti-Potentials.” Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2022, pp. 442–57, doi:10.1145/3519939.3523435. short: D. Zikelic, B.-Y.E. Chang, P. Bolignano, F. Raimondi, in:, Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2022, pp. 442–457. conference: end_date: 2022-06-17 location: San Diego, CA, United States name: 'PLDI: Programming Language Design and Implementation' start_date: 2022-06-13 date_created: 2022-06-21T09:26:15Z date_published: 2022-06-09T00:00:00Z date_updated: 2023-08-03T07:22:33Z day: '09' ddc: - '000' department: - _id: GradSch - _id: KrCh doi: 10.1145/3519939.3523435 ec_funded: 1 external_id: arxiv: - '2204.00870' isi: - '000850435600030' file: - access_level: open_access checksum: 7eb915a2ca5b5ce4729321f33b2e16e1 content_type: application/pdf creator: dernst date_created: 2022-06-27T07:38:21Z date_updated: 2022-06-27T07:38:21Z file_id: '11466' file_name: 2022_PLDI_Zikelic.pdf file_size: 318697 relation: main_file success: 1 file_date_updated: 2022-06-27T07:38:21Z has_accepted_license: '1' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '06' oa: 1 oa_version: Published Version page: 442-457 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation publication_identifier: isbn: - '9781450392655' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Differential cost analysis with simultaneous potentials and anti-potentials tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2022' ... --- _id: '12257' abstract: - lang: eng text: Structural balance theory is an established framework for studying social relationships of friendship and enmity. These relationships are modeled by a signed network whose energy potential measures the level of imbalance, while stochastic dynamics drives the network toward a state of minimum energy that captures social balance. It is known that this energy landscape has local minima that can trap socially aware dynamics, preventing it from reaching balance. Here we first study the robustness and attractor properties of these local minima. We show that a stochastic process can reach them from an abundance of initial states and that some local minima cannot be escaped by mild perturbations of the network. Motivated by these anomalies, we introduce best-edge dynamics (BED), a new plausible stochastic process. We prove that BED always reaches balance and that it does so fast in various interesting settings. acknowledgement: "K.C. acknowledges support from ERC Start Grant No. (279307: Graph Games), ERC Consolidator Grant No. (863818: ForM-SMart), and Austrian Science Fund (FWF)\r\nGrants No. P23499-N23 and No. S11407-N23 (RiSE). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie\r\nSkłodowska-Curie Grant Agreement No. 665385." article_number: '034321' article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jakub full_name: Svoboda, Jakub id: 130759D2-D7DD-11E9-87D2-DE0DE6697425 last_name: Svoboda - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 citation: ama: 'Chatterjee K, Svoboda J, Zikelic D, Pavlogiannis A, Tkadlec J. Social balance on networks: Local minima and best-edge dynamics. Physical Review E. 2022;106(3). doi:10.1103/physreve.106.034321' apa: 'Chatterjee, K., Svoboda, J., Zikelic, D., Pavlogiannis, A., & Tkadlec, J. (2022). Social balance on networks: Local minima and best-edge dynamics. Physical Review E. American Physical Society. https://doi.org/10.1103/physreve.106.034321' chicago: 'Chatterjee, Krishnendu, Jakub Svoboda, Dorde Zikelic, Andreas Pavlogiannis, and Josef Tkadlec. “Social Balance on Networks: Local Minima and Best-Edge Dynamics.” Physical Review E. American Physical Society, 2022. https://doi.org/10.1103/physreve.106.034321.' ieee: 'K. Chatterjee, J. Svoboda, D. Zikelic, A. Pavlogiannis, and J. Tkadlec, “Social balance on networks: Local minima and best-edge dynamics,” Physical Review E, vol. 106, no. 3. American Physical Society, 2022.' ista: 'Chatterjee K, Svoboda J, Zikelic D, Pavlogiannis A, Tkadlec J. 2022. Social balance on networks: Local minima and best-edge dynamics. Physical Review E. 106(3), 034321.' mla: 'Chatterjee, Krishnendu, et al. “Social Balance on Networks: Local Minima and Best-Edge Dynamics.” Physical Review E, vol. 106, no. 3, 034321, American Physical Society, 2022, doi:10.1103/physreve.106.034321.' short: K. Chatterjee, J. Svoboda, D. Zikelic, A. Pavlogiannis, J. Tkadlec, Physical Review E 106 (2022). date_created: 2023-01-16T09:57:57Z date_published: 2022-09-29T00:00:00Z date_updated: 2023-08-04T09:50:44Z day: '29' department: - _id: KrCh doi: 10.1103/physreve.106.034321 ec_funded: 1 external_id: arxiv: - '2210.02394' isi: - '000870243100001' intvolume: ' 106' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2210.02394 month: '09' oa: 1 oa_version: Preprint project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Physical Review E publication_identifier: eissn: - 2470-0053 issn: - 2470-0045 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Social balance on networks: Local minima and best-edge dynamics' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 106 year: '2022' ... --- _id: '12280' abstract: - lang: eng text: 'In repeated interactions, players can use strategies that respond to the outcome of previous rounds. Much of the existing literature on direct reciprocity assumes that all competing individuals use the same strategy space. Here, we study both learning and evolutionary dynamics of players that differ in the strategy space they explore. We focus on the infinitely repeated donation game and compare three natural strategy spaces: memory-1 strategies, which consider the last moves of both players, reactive strategies, which respond to the last move of the co-player, and unconditional strategies. These three strategy spaces differ in the memory capacity that is needed. We compute the long term average payoff that is achieved in a pairwise learning process. We find that smaller strategy spaces can dominate larger ones. For weak selection, unconditional players dominate both reactive and memory-1 players. For intermediate selection, reactive players dominate memory-1 players. Only for strong selection and low cost-to-benefit ratio, memory-1 players dominate the others. We observe that the supergame between strategy spaces can be a social dilemma: maximum payoff is achieved if both players explore a larger strategy space, but smaller strategy spaces dominate.' acknowledgement: "This work was supported by the European Research Council (https://erc.europa.eu/)\r\nCoG 863818 (ForM-SMArt) (to K.C.), and the European Research Council Starting Grant 850529: E-DIRECT (to C.H.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript." article_number: e1010149 article_processing_charge: No article_type: original author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Schmid L, Hilbe C, Chatterjee K, Nowak M. Direct reciprocity between individuals that use different strategy spaces. PLOS Computational Biology. 2022;18(6). doi:10.1371/journal.pcbi.1010149 apa: Schmid, L., Hilbe, C., Chatterjee, K., & Nowak, M. (2022). Direct reciprocity between individuals that use different strategy spaces. PLOS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1010149 chicago: Schmid, Laura, Christian Hilbe, Krishnendu Chatterjee, and Martin Nowak. “Direct Reciprocity between Individuals That Use Different Strategy Spaces.” PLOS Computational Biology. Public Library of Science, 2022. https://doi.org/10.1371/journal.pcbi.1010149. ieee: L. Schmid, C. Hilbe, K. Chatterjee, and M. Nowak, “Direct reciprocity between individuals that use different strategy spaces,” PLOS Computational Biology, vol. 18, no. 6. Public Library of Science, 2022. ista: Schmid L, Hilbe C, Chatterjee K, Nowak M. 2022. Direct reciprocity between individuals that use different strategy spaces. PLOS Computational Biology. 18(6), e1010149. mla: Schmid, Laura, et al. “Direct Reciprocity between Individuals That Use Different Strategy Spaces.” PLOS Computational Biology, vol. 18, no. 6, e1010149, Public Library of Science, 2022, doi:10.1371/journal.pcbi.1010149. short: L. Schmid, C. Hilbe, K. Chatterjee, M. Nowak, PLOS Computational Biology 18 (2022). date_created: 2023-01-16T10:02:51Z date_published: 2022-06-14T00:00:00Z date_updated: 2023-08-04T10:27:08Z day: '14' ddc: - '000' - '570' department: - _id: KrCh doi: 10.1371/journal.pcbi.1010149 ec_funded: 1 external_id: isi: - '000843626800031' pmid: - '35700167' file: - access_level: open_access checksum: 31b6b311b6731f1658277a9dfff6632c content_type: application/pdf creator: dernst date_created: 2023-01-30T11:28:13Z date_updated: 2023-01-30T11:28:13Z file_id: '12460' file_name: 2022_PlosCompBio_Schmid.pdf file_size: 3143222 relation: main_file success: 1 file_date_updated: 2023-01-30T11:28:13Z has_accepted_license: '1' intvolume: ' 18' isi: 1 issue: '6' keyword: - Computational Theory and Mathematics - Cellular and Molecular Neuroscience - Genetics - Molecular Biology - Ecology - Modeling and Simulation - Ecology - Evolution - Behavior and Systematics language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: PLOS Computational Biology publication_identifier: eissn: - 1553-7358 publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: Direct reciprocity between individuals that use different strategy spaces tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 18 year: '2022' ... --- _id: '9311' abstract: - lang: eng text: 'Partially observable Markov decision processes (POMDPs) are standard models for dynamic systems with probabilistic and nondeterministic behaviour in uncertain environments. We prove that in POMDPs with long-run average objective, the decision maker has approximately optimal strategies with finite memory. This implies notably that approximating the long-run value is recursively enumerable, as well as a weak continuity property of the value with respect to the transition function. ' acknowledgement: "Partially supported by Austrian Science Fund (FWF) NFN Grant No RiSE/SHiNE S11407, by CONICYT Chile through grant PII 20150140, and by ECOS-CONICYT through grant C15E03.\r\n" article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Raimundo J full_name: Saona Urmeneta, Raimundo J id: BD1DF4C4-D767-11E9-B658-BC13E6697425 last_name: Saona Urmeneta orcid: 0000-0001-5103-038X - first_name: Bruno full_name: Ziliotto, Bruno last_name: Ziliotto citation: ama: Chatterjee K, Saona Urmeneta RJ, Ziliotto B. Finite-memory strategies in POMDPs with long-run average objectives. Mathematics of Operations Research. 2022;47(1):100-119. doi:10.1287/moor.2020.1116 apa: Chatterjee, K., Saona Urmeneta, R. J., & Ziliotto, B. (2022). Finite-memory strategies in POMDPs with long-run average objectives. Mathematics of Operations Research. Institute for Operations Research and the Management Sciences. https://doi.org/10.1287/moor.2020.1116 chicago: Chatterjee, Krishnendu, Raimundo J Saona Urmeneta, and Bruno Ziliotto. “Finite-Memory Strategies in POMDPs with Long-Run Average Objectives.” Mathematics of Operations Research. Institute for Operations Research and the Management Sciences, 2022. https://doi.org/10.1287/moor.2020.1116. ieee: K. Chatterjee, R. J. Saona Urmeneta, and B. Ziliotto, “Finite-memory strategies in POMDPs with long-run average objectives,” Mathematics of Operations Research, vol. 47, no. 1. Institute for Operations Research and the Management Sciences, pp. 100–119, 2022. ista: Chatterjee K, Saona Urmeneta RJ, Ziliotto B. 2022. Finite-memory strategies in POMDPs with long-run average objectives. Mathematics of Operations Research. 47(1), 100–119. mla: Chatterjee, Krishnendu, et al. “Finite-Memory Strategies in POMDPs with Long-Run Average Objectives.” Mathematics of Operations Research, vol. 47, no. 1, Institute for Operations Research and the Management Sciences, 2022, pp. 100–19, doi:10.1287/moor.2020.1116. short: K. Chatterjee, R.J. Saona Urmeneta, B. Ziliotto, Mathematics of Operations Research 47 (2022) 100–119. date_created: 2021-04-08T09:33:31Z date_published: 2022-02-01T00:00:00Z date_updated: 2023-09-05T13:16:11Z day: '01' department: - _id: GradSch - _id: KrCh doi: 10.1287/moor.2020.1116 external_id: arxiv: - '1904.13360' isi: - '000731918100001' intvolume: ' 47' isi: 1 issue: '1' keyword: - Management Science and Operations Research - General Mathematics - Computer Science Applications language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1904.13360 month: '02' oa: 1 oa_version: Preprint page: 100-119 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: Mathematics of Operations Research publication_identifier: eissn: - 1526-5471 issn: - 0364-765X publication_status: published publisher: Institute for Operations Research and the Management Sciences quality_controlled: '1' scopus_import: '1' status: public title: Finite-memory strategies in POMDPs with long-run average objectives type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 47 year: '2022' ... --- _id: '12170' abstract: - lang: eng text: We present PET, a specialized and highly optimized framework for partial exploration on probabilistic systems. Over the last decade, several significant advances in the analysis of Markov decision processes employed partial exploration. In a nutshell, this idea allows to focus computation on specific parts of the system, guided by heuristics, while maintaining correctness. In particular, only relevant parts of the system are constructed on demand, which in turn potentially allows to omit constructing large parts of the system. Depending on the model, this leads to dramatic speed-ups, in extreme cases even up to an arbitrary factor. PET unifies several previous implementations and provides a flexible framework to easily implement partial exploration for many further problems. Our experimental evaluation shows significant improvements compared to the previous implementations while vastly reducing the overhead required to add support for additional properties. acknowledgement: We thank Pranav Ashok and Maximilian Weininger for their contributions to spiritual predecessors of PET as well as motivating the initial development of this tool. alternative_title: - LNCS article_processing_charge: No author: - first_name: Tobias full_name: Meggendorfer, Tobias id: b21b0c15-30a2-11eb-80dc-f13ca25802e1 last_name: Meggendorfer orcid: 0000-0002-1712-2165 citation: ama: 'Meggendorfer T. PET – A partial exploration tool for probabilistic verification. In: 20th International Symposium on Automated Technology for Verification and Analysis. Vol 13505. Springer Nature; 2022:320-326. doi:10.1007/978-3-031-19992-9_20' apa: 'Meggendorfer, T. (2022). PET – A partial exploration tool for probabilistic verification. In 20th International Symposium on Automated Technology for Verification and Analysis (Vol. 13505, pp. 320–326). Virtual: Springer Nature. https://doi.org/10.1007/978-3-031-19992-9_20' chicago: Meggendorfer, Tobias. “PET – A Partial Exploration Tool for Probabilistic Verification.” In 20th International Symposium on Automated Technology for Verification and Analysis, 13505:320–26. Springer Nature, 2022. https://doi.org/10.1007/978-3-031-19992-9_20. ieee: T. Meggendorfer, “PET – A partial exploration tool for probabilistic verification,” in 20th International Symposium on Automated Technology for Verification and Analysis, Virtual, 2022, vol. 13505, pp. 320–326. ista: 'Meggendorfer T. 2022. PET – A partial exploration tool for probabilistic verification. 20th International Symposium on Automated Technology for Verification and Analysis. ATVA: Automated Technology for Verification and Analysis, LNCS, vol. 13505, 320–326.' mla: Meggendorfer, Tobias. “PET – A Partial Exploration Tool for Probabilistic Verification.” 20th International Symposium on Automated Technology for Verification and Analysis, vol. 13505, Springer Nature, 2022, pp. 320–26, doi:10.1007/978-3-031-19992-9_20. short: T. Meggendorfer, in:, 20th International Symposium on Automated Technology for Verification and Analysis, Springer Nature, 2022, pp. 320–326. conference: end_date: 2022-10-28 location: Virtual name: 'ATVA: Automated Technology for Verification and Analysis' start_date: 2022-10-25 date_created: 2023-01-12T12:11:07Z date_published: 2022-10-21T00:00:00Z date_updated: 2023-09-05T15:11:51Z day: '21' department: - _id: KrCh doi: 10.1007/978-3-031-19992-9_20 intvolume: ' 13505' language: - iso: eng month: '10' oa_version: None page: 320-326 publication: 20th International Symposium on Automated Technology for Verification and Analysis publication_identifier: eisbn: - '9783031199929' eissn: - 1611-3349 isbn: - '9783031199912' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: PET – A partial exploration tool for probabilistic verification type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13505 year: '2022' ... --- _id: '11402' abstract: - lang: eng text: Fixed-horizon planning considers a weighted graph and asks to construct a path that maximizes the sum of weights for a given time horizon T. However, in many scenarios, the time horizon is not fixed, but the stopping time is chosen according to some distribution such that the expected stopping time is T. If the stopping-time distribution is not known, then to ensure robustness, the distribution is chosen by an adversary as the worst-case scenario. A stationary plan for every vertex always chooses the same outgoing edge. For fixed horizon or fixed stopping-time distribution, stationary plans are not sufficient for optimality. Quite surprisingly we show that when an adversary chooses the stopping-time distribution with expected stopping-time T, then stationary plans are sufficient. While computing optimal stationary plans for fixed horizon is NP-complete, we show that computing optimal stationary plans under adversarial stopping-time distribution can be achieved in polynomial time. acknowledgement: This work was partially supported by Austrian Science Fund (FWF) NFN Grant No RiSE/SHiNE S11407 and by the grant ERC CoG 863818 (ForM-SMArt). article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Laurent full_name: Doyen, Laurent last_name: Doyen citation: ama: Chatterjee K, Doyen L. Graph planning with expected finite horizon. Journal of Computer and System Sciences. 2022;129:1-21. doi:10.1016/j.jcss.2022.04.003 apa: Chatterjee, K., & Doyen, L. (2022). Graph planning with expected finite horizon. Journal of Computer and System Sciences. Elsevier. https://doi.org/10.1016/j.jcss.2022.04.003 chicago: Chatterjee, Krishnendu, and Laurent Doyen. “Graph Planning with Expected Finite Horizon.” Journal of Computer and System Sciences. Elsevier, 2022. https://doi.org/10.1016/j.jcss.2022.04.003. ieee: K. Chatterjee and L. Doyen, “Graph planning with expected finite horizon,” Journal of Computer and System Sciences, vol. 129. Elsevier, pp. 1–21, 2022. ista: Chatterjee K, Doyen L. 2022. Graph planning with expected finite horizon. Journal of Computer and System Sciences. 129, 1–21. mla: Chatterjee, Krishnendu, and Laurent Doyen. “Graph Planning with Expected Finite Horizon.” Journal of Computer and System Sciences, vol. 129, Elsevier, 2022, pp. 1–21, doi:10.1016/j.jcss.2022.04.003. short: K. Chatterjee, L. Doyen, Journal of Computer and System Sciences 129 (2022) 1–21. date_created: 2022-05-22T22:01:40Z date_published: 2022-11-01T00:00:00Z date_updated: 2023-09-07T14:48:11Z day: '01' department: - _id: KrCh doi: 10.1016/j.jcss.2022.04.003 ec_funded: 1 external_id: arxiv: - '1802.03642' isi: - '000805002800001' intvolume: ' 129' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: ' https://doi.org/10.48550/arXiv.1802.03642' month: '11' oa: 1 oa_version: Preprint page: 1-21 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Journal of Computer and System Sciences publication_identifier: eissn: - 1090-2724 issn: - 0022-0000 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '7402' relation: earlier_version status: public scopus_import: '1' status: public title: Graph planning with expected finite horizon type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 129 year: '2022' ... --- _id: '12775' abstract: - lang: eng text: "We consider the problem of approximating the reachability probabilities in Markov decision processes (MDP) with uncountable (continuous) state and action spaces. While there are algorithms that, for special classes of such MDP, provide a sequence of approximations converging to the true value in the limit, our aim is to obtain an algorithm with guarantees on the precision of the approximation.\r\nAs this problem is undecidable in general, assumptions on the MDP are necessary. Our main contribution is to identify sufficient assumptions that are as weak as possible, thus approaching the \"boundary\" of which systems can be correctly and reliably analyzed. To this end, we also argue why each of our assumptions is necessary for algorithms based on processing finitely many observations.\r\nWe present two solution variants. The first one provides converging lower bounds under weaker assumptions than typical ones from previous works concerned with guarantees. The second one then utilizes stronger assumptions to additionally provide converging upper bounds. Altogether, we obtain an anytime algorithm, i.e. yielding a sequence of approximants with known and iteratively improving precision, converging to the true value in the limit. Besides, due to the generality of our assumptions, our algorithms are very general templates, readily allowing for various heuristics from literature in contrast to, e.g., a specific discretization algorithm. Our theoretical contribution thus paves the way for future practical improvements without sacrificing correctness guarantees." acknowledgement: "Kush Grover: The author has been supported by the DFG research training group GRK\r\n2428 ConVeY.\r\nMaximilian Weininger: The author has been partially supported by DFG projects 383882557\r\nStatistical Unbounded Verification (SUV) and 427755713 Group-By Objectives in Probabilistic\r\nVerification (GOPro)" alternative_title: - LIPIcs article_number: '11' article_processing_charge: No author: - first_name: Kush full_name: Grover, Kush last_name: Grover - first_name: Jan full_name: Kretinsky, Jan id: 44CEF464-F248-11E8-B48F-1D18A9856A87 last_name: Kretinsky orcid: 0000-0002-8122-2881 - first_name: Tobias full_name: Meggendorfer, Tobias id: b21b0c15-30a2-11eb-80dc-f13ca25802e1 last_name: Meggendorfer orcid: 0000-0002-1712-2165 - first_name: Maimilian full_name: Weininger, Maimilian last_name: Weininger citation: ama: 'Grover K, Kretinsky J, Meggendorfer T, Weininger M. Anytime guarantees for reachability in uncountable Markov decision processes. In: 33rd International Conference on Concurrency Theory . Vol 243. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2022. doi:10.4230/LIPIcs.CONCUR.2022.11' apa: 'Grover, K., Kretinsky, J., Meggendorfer, T., & Weininger, M. (2022). Anytime guarantees for reachability in uncountable Markov decision processes. In 33rd International Conference on Concurrency Theory (Vol. 243). Warsaw, Poland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2022.11' chicago: Grover, Kush, Jan Kretinsky, Tobias Meggendorfer, and Maimilian Weininger. “Anytime Guarantees for Reachability in Uncountable Markov Decision Processes.” In 33rd International Conference on Concurrency Theory , Vol. 243. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. https://doi.org/10.4230/LIPIcs.CONCUR.2022.11. ieee: K. Grover, J. Kretinsky, T. Meggendorfer, and M. Weininger, “Anytime guarantees for reachability in uncountable Markov decision processes,” in 33rd International Conference on Concurrency Theory , Warsaw, Poland, 2022, vol. 243. ista: 'Grover K, Kretinsky J, Meggendorfer T, Weininger M. 2022. Anytime guarantees for reachability in uncountable Markov decision processes. 33rd International Conference on Concurrency Theory . CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 243, 11.' mla: Grover, Kush, et al. “Anytime Guarantees for Reachability in Uncountable Markov Decision Processes.” 33rd International Conference on Concurrency Theory , vol. 243, 11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, doi:10.4230/LIPIcs.CONCUR.2022.11. short: K. Grover, J. Kretinsky, T. Meggendorfer, M. Weininger, in:, 33rd International Conference on Concurrency Theory , Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. conference: end_date: 2022-09-16 location: Warsaw, Poland name: 'CONCUR: Conference on Concurrency Theory' start_date: 2022-09-13 date_created: 2023-03-28T08:09:32Z date_published: 2022-09-15T00:00:00Z date_updated: 2023-09-26T10:43:30Z day: '15' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.CONCUR.2022.11 external_id: arxiv: - '2008.04824' file: - access_level: open_access checksum: e282e43d3ae0ba6e067b72f4583e13c0 content_type: application/pdf creator: dernst date_created: 2023-09-26T10:43:15Z date_updated: 2023-09-26T10:43:15Z file_id: '14372' file_name: 2022_LIPIcS_Grover.pdf file_size: 960036 relation: main_file success: 1 file_date_updated: 2023-09-26T10:43:15Z has_accepted_license: '1' intvolume: ' 243' language: - iso: eng month: '09' oa: 1 oa_version: Published Version publication: '33rd International Conference on Concurrency Theory ' publication_identifier: issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Anytime guarantees for reachability in uncountable Markov decision processes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 243 year: '2022' ... --- _id: '12000' abstract: - lang: eng text: "We consider the quantitative problem of obtaining lower-bounds on the probability of termination of a given non-deterministic probabilistic program. Specifically, given a non-termination threshold p∈[0,1], we aim for certificates proving that the program terminates with probability at least 1−p. The basic idea of our approach is to find a terminating stochastic invariant, i.e. a subset SI of program states such that (i) the probability of the program ever leaving SI is no more than p, and (ii) almost-surely, the program either leaves SI or terminates.\r\n\r\nWhile stochastic invariants are already well-known, we provide the first proof that the idea above is not only sound, but also complete for quantitative termination analysis. We then introduce a novel sound and complete characterization of stochastic invariants that enables template-based approaches for easy synthesis of quantitative termination certificates, especially in affine or polynomial forms. Finally, by combining this idea with the existing martingale-based methods that are relatively complete for qualitative termination analysis, we obtain the first automated, sound, and relatively complete algorithm for quantitative termination analysis. Notably, our completeness guarantees for quantitative termination analysis are as strong as the best-known methods for the qualitative variant.\r\n\r\nOur prototype implementation demonstrates the effectiveness of our approach on various probabilistic programs. We also demonstrate that our algorithm certifies lower bounds on termination probability for probabilistic programs that are beyond the reach of previous methods." acknowledgement: This research was partially supported by the ERC CoG 863818 (ForM-SMArt), the HKUST-Kaisa Joint Research Institute Project Grant HKJRI3A-055, the HKUST Startup Grant R9272 and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - LNCS article_processing_charge: Yes (in subscription journal) author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 - first_name: Tobias full_name: Meggendorfer, Tobias id: b21b0c15-30a2-11eb-80dc-f13ca25802e1 last_name: Meggendorfer orcid: 0000-0002-1712-2165 - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Chatterjee K, Goharshady AK, Meggendorfer T, Zikelic D. Sound and complete certificates for auantitative termination analysis of probabilistic programs. In: Proceedings of the 34th International Conference on Computer Aided Verification. Vol 13371. Springer; 2022:55-78. doi:10.1007/978-3-031-13185-1_4' apa: 'Chatterjee, K., Goharshady, A. K., Meggendorfer, T., & Zikelic, D. (2022). Sound and complete certificates for auantitative termination analysis of probabilistic programs. In Proceedings of the 34th International Conference on Computer Aided Verification (Vol. 13371, pp. 55–78). Haifa, Israel: Springer. https://doi.org/10.1007/978-3-031-13185-1_4' chicago: Chatterjee, Krishnendu, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Dorde Zikelic. “Sound and Complete Certificates for Auantitative Termination Analysis of Probabilistic Programs.” In Proceedings of the 34th International Conference on Computer Aided Verification, 13371:55–78. Springer, 2022. https://doi.org/10.1007/978-3-031-13185-1_4. ieee: K. Chatterjee, A. K. Goharshady, T. Meggendorfer, and D. Zikelic, “Sound and complete certificates for auantitative termination analysis of probabilistic programs,” in Proceedings of the 34th International Conference on Computer Aided Verification, Haifa, Israel, 2022, vol. 13371, pp. 55–78. ista: 'Chatterjee K, Goharshady AK, Meggendorfer T, Zikelic D. 2022. Sound and complete certificates for auantitative termination analysis of probabilistic programs. Proceedings of the 34th International Conference on Computer Aided Verification. CAV: Computer Aided Verification, LNCS, vol. 13371, 55–78.' mla: Chatterjee, Krishnendu, et al. “Sound and Complete Certificates for Auantitative Termination Analysis of Probabilistic Programs.” Proceedings of the 34th International Conference on Computer Aided Verification, vol. 13371, Springer, 2022, pp. 55–78, doi:10.1007/978-3-031-13185-1_4. short: K. Chatterjee, A.K. Goharshady, T. Meggendorfer, D. Zikelic, in:, Proceedings of the 34th International Conference on Computer Aided Verification, Springer, 2022, pp. 55–78. conference: end_date: 2022-08-10 location: Haifa, Israel name: 'CAV: Computer Aided Verification' start_date: 2022-08-07 date_created: 2022-08-28T22:02:02Z date_published: 2022-08-07T00:00:00Z date_updated: 2023-11-30T10:55:37Z day: '07' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-031-13185-1_4 ec_funded: 1 external_id: isi: - '000870304500004' file: - access_level: open_access checksum: 24e0f810ec52735a90ade95198bc641d content_type: application/pdf creator: alisjak date_created: 2022-08-29T09:17:01Z date_updated: 2022-08-29T09:17:01Z file_id: '12003' file_name: 2022_LNCS_Chatterjee.pdf file_size: 505094 relation: main_file success: 1 file_date_updated: 2022-08-29T09:17:01Z has_accepted_license: '1' intvolume: ' 13371' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 55-78 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the 34th International Conference on Computer Aided Verification publication_identifier: eissn: - 1611-3349 isbn: - '9783031131844' issn: - 0302-9743 publication_status: published publisher: Springer quality_controlled: '1' related_material: record: - id: '14539' relation: dissertation_contains status: public scopus_import: '1' status: public title: Sound and complete certificates for auantitative termination analysis of probabilistic programs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13371 year: '2022' ... --- _id: '12511' abstract: - lang: eng text: "We consider the problem of formally verifying almost-sure (a.s.) asymptotic stability in discrete-time nonlinear stochastic control systems. While verifying stability in deterministic control systems is extensively studied in the literature, verifying stability in stochastic control systems is an open problem. The few existing works on this topic either consider only specialized forms of stochasticity or make restrictive assumptions on the system, rendering them inapplicable to learning algorithms with neural network policies. \r\n In this work, we present an approach for general nonlinear stochastic control problems with two novel aspects: (a) instead of classical stochastic extensions of Lyapunov functions, we use ranking supermartingales (RSMs) to certify a.s. asymptotic stability, and (b) we present a method for learning neural network RSMs. \r\n We prove that our approach guarantees a.s. asymptotic stability of the system and\r\n provides the first method to obtain bounds on the stabilization time, which stochastic Lyapunov functions do not.\r\n Finally, we validate our approach experimentally on a set of nonlinear stochastic reinforcement learning environments with neural network policies." acknowledgement: "This work was supported in part by the ERC-2020-AdG 101020093, ERC CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020 research and innovation programme\r\nunder the Marie Skłodowska-Curie Grant Agreement No. 665385." article_processing_charge: No article_type: original author: - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Lechner M, Zikelic D, Chatterjee K, Henzinger TA. Stability verification in stochastic control systems via neural network supermartingales. Proceedings of the AAAI Conference on Artificial Intelligence. 2022;36(7):7326-7336. doi:10.1609/aaai.v36i7.20695 apa: Lechner, M., Zikelic, D., Chatterjee, K., & Henzinger, T. A. (2022). Stability verification in stochastic control systems via neural network supermartingales. Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v36i7.20695 chicago: Lechner, Mathias, Dorde Zikelic, Krishnendu Chatterjee, and Thomas A Henzinger. “Stability Verification in Stochastic Control Systems via Neural Network Supermartingales.” Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, 2022. https://doi.org/10.1609/aaai.v36i7.20695. ieee: M. Lechner, D. Zikelic, K. Chatterjee, and T. A. Henzinger, “Stability verification in stochastic control systems via neural network supermartingales,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 7. Association for the Advancement of Artificial Intelligence, pp. 7326–7336, 2022. ista: Lechner M, Zikelic D, Chatterjee K, Henzinger TA. 2022. Stability verification in stochastic control systems via neural network supermartingales. Proceedings of the AAAI Conference on Artificial Intelligence. 36(7), 7326–7336. mla: Lechner, Mathias, et al. “Stability Verification in Stochastic Control Systems via Neural Network Supermartingales.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 7, Association for the Advancement of Artificial Intelligence, 2022, pp. 7326–36, doi:10.1609/aaai.v36i7.20695. short: M. Lechner, D. Zikelic, K. Chatterjee, T.A. Henzinger, Proceedings of the AAAI Conference on Artificial Intelligence 36 (2022) 7326–7336. date_created: 2023-02-05T17:29:50Z date_published: 2022-06-28T00:00:00Z date_updated: 2023-11-30T10:55:37Z day: '28' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v36i7.20695 ec_funded: 1 external_id: arxiv: - '2112.09495' intvolume: ' 36' issue: '7' keyword: - General Medicine language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2112.09495 month: '06' oa: 1 oa_version: Preprint page: 7326-7336 project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - '9781577358350' issn: - 2159-5399 publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' related_material: record: - id: '14539' relation: dissertation_contains status: public scopus_import: '1' status: public title: Stability verification in stochastic control systems via neural network supermartingales type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 36 year: '2022' ... --- _id: '14601' abstract: - lang: eng text: "In this work, we address the problem of learning provably stable neural\r\nnetwork policies for stochastic control systems. While recent work has\r\ndemonstrated the feasibility of certifying given policies using martingale\r\ntheory, the problem of how to learn such policies is little explored. Here, we\r\nstudy the effectiveness of jointly learning a policy together with a martingale\r\ncertificate that proves its stability using a single learning algorithm. We\r\nobserve that the joint optimization problem becomes easily stuck in local\r\nminima when starting from a randomly initialized policy. Our results suggest\r\nthat some form of pre-training of the policy is required for the joint\r\noptimization to repair and verify the policy successfully." article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 citation: ama: Zikelic D, Lechner M, Chatterjee K, Henzinger TA. Learning stabilizing policies in stochastic control systems. arXiv. doi:10.48550/arXiv.2205.11991 apa: Zikelic, D., Lechner, M., Chatterjee, K., & Henzinger, T. A. (n.d.). Learning stabilizing policies in stochastic control systems. arXiv. https://doi.org/10.48550/arXiv.2205.11991 chicago: Zikelic, Dorde, Mathias Lechner, Krishnendu Chatterjee, and Thomas A Henzinger. “Learning Stabilizing Policies in Stochastic Control Systems.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2205.11991. ieee: D. Zikelic, M. Lechner, K. Chatterjee, and T. A. Henzinger, “Learning stabilizing policies in stochastic control systems,” arXiv. . ista: Zikelic D, Lechner M, Chatterjee K, Henzinger TA. Learning stabilizing policies in stochastic control systems. arXiv, 10.48550/arXiv.2205.11991. mla: Zikelic, Dorde, et al. “Learning Stabilizing Policies in Stochastic Control Systems.” ArXiv, doi:10.48550/arXiv.2205.11991. short: D. Zikelic, M. Lechner, K. Chatterjee, T.A. Henzinger, ArXiv (n.d.). date_created: 2023-11-24T13:22:30Z date_published: 2022-05-24T00:00:00Z date_updated: 2023-11-30T10:55:37Z day: '24' department: - _id: KrCh - _id: ToHe doi: 10.48550/arXiv.2205.11991 ec_funded: 1 external_id: arxiv: - '2205.11991' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2205.11991 month: '05' oa: 1 oa_version: Preprint project: - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: arXiv publication_status: submitted related_material: record: - id: '14539' relation: dissertation_contains status: public status: public title: Learning stabilizing policies in stochastic control systems type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '14600' abstract: - lang: eng text: We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold $p\in[0,1]$ over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on $3$ stochastic non-linear reinforcement learning tasks. article_processing_charge: No author: - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 - first_name: Mathias full_name: Lechner, Mathias id: 3DC22916-F248-11E8-B48F-1D18A9856A87 last_name: Lechner - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Zikelic D, Lechner M, Henzinger TA, Chatterjee K. Learning control policies for stochastic systems with reach-avoid guarantees. arXiv. doi:10.48550/ARXIV.2210.05308 apa: Zikelic, D., Lechner, M., Henzinger, T. A., & Chatterjee, K. (n.d.). Learning control policies for stochastic systems with reach-avoid guarantees. arXiv. https://doi.org/10.48550/ARXIV.2210.05308 chicago: Zikelic, Dorde, Mathias Lechner, Thomas A Henzinger, and Krishnendu Chatterjee. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” ArXiv, n.d. https://doi.org/10.48550/ARXIV.2210.05308. ieee: D. Zikelic, M. Lechner, T. A. Henzinger, and K. Chatterjee, “Learning control policies for stochastic systems with reach-avoid guarantees,” arXiv. . ista: Zikelic D, Lechner M, Henzinger TA, Chatterjee K. Learning control policies for stochastic systems with reach-avoid guarantees. arXiv, 10.48550/ARXIV.2210.05308. mla: Zikelic, Dorde, et al. “Learning Control Policies for Stochastic Systems with Reach-Avoid Guarantees.” ArXiv, doi:10.48550/ARXIV.2210.05308. short: D. Zikelic, M. Lechner, T.A. Henzinger, K. Chatterjee, ArXiv (n.d.). date_created: 2023-11-24T13:10:09Z date_published: 2022-11-29T00:00:00Z date_updated: 2024-01-22T14:08:29Z day: '29' department: - _id: KrCh - _id: ToHe doi: 10.48550/ARXIV.2210.05308 ec_funded: 1 external_id: arxiv: - '2210.05308' language: - iso: eng license: https://creativecommons.org/licenses/by-sa/4.0/ main_file_link: - open_access: '1' url: https://arxiv.org/abs/2210.05308 month: '11' oa: 1 oa_version: Preprint project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 62781420-2b32-11ec-9570-8d9b63373d4d call_identifier: H2020 grant_number: '101020093' name: Vigilant Algorithmic Monitoring of Software - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: arXiv publication_status: submitted related_material: record: - id: '14539' relation: dissertation_contains status: public - id: '14830' relation: later_version status: public status: public title: Learning control policies for stochastic systems with reach-avoid guarantees tmp: image: /images/cc_by_sa.png legal_code_url: https://creativecommons.org/licenses/by-sa/4.0/legalcode name: Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) short: CC BY-SA (4.0) type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10052' abstract: - lang: eng text: "A deterministic finite automaton (DFA) \U0001D49C is composite if its language L(\U0001D49C) can be decomposed into an intersection ⋂_{i = 1}^k L(\U0001D49C_i) of languages of smaller DFAs. Otherwise, \U0001D49C is prime. This notion of primality was introduced by Kupferman and Mosheiff in 2013, and while they proved that we can decide whether a DFA is composite, the precise complexity of this problem is still open, with a doubly-exponential gap between the upper and lower bounds. In this work, we focus on permutation DFAs, i.e., those for which the transition monoid is a group. We provide an NP algorithm to decide whether a permutation DFA is composite, and show that the difficulty of this problem comes from the number of non-accepting states of the instance: we give a fixed-parameter tractable algorithm with the number of rejecting states as the parameter. Moreover, we investigate the class of commutative permutation DFAs. Their structural properties allow us to decide compositionality in NL, and even in LOGSPACE if the alphabet size is fixed. Despite this low complexity, we show that complex behaviors still arise in this class: we provide a family of composite DFAs each requiring polynomially many factors with respect to its size. We also consider the variant of the problem that asks whether a DFA is k-factor composite, that is, decomposable into k smaller DFAs, for some given integer k ∈ ℕ. We show that, for commutative permutation DFAs, restricting the number of factors makes the decision computationally harder, and yields a problem with tight bounds: it is NP-complete. Finally, we show that in general, this problem is in PSPACE, and it is in LOGSPACE for DFAs with a singleton alphabet." acknowledgement: "Ismaël Jecker: Marie Skłodowska-Curie Grant Agreement No. 754411. Nicolas Mazzocchi: BOSCO project PGC2018-102210-B-I00 (MCIU/AEI/FEDER, UE), BLOQUESCM project S2018/TCS-4339, and MINECO grant RYC-2016-20281.\r\nPetra Wolf : DFG project FE 560/9-1.\r\n" alternative_title: - LIPIcs article_number: '18' article_processing_charge: No author: - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Nicolas full_name: Mazzocchi, Nicolas last_name: Mazzocchi - first_name: Petra full_name: Wolf, Petra last_name: Wolf citation: ama: 'Jecker IR, Mazzocchi N, Wolf P. Decomposing permutation automata. In: 32nd International Conference on Concurrency Theory. Vol 203. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.CONCUR.2021.18' apa: 'Jecker, I. R., Mazzocchi, N., & Wolf, P. (2021). Decomposing permutation automata. In 32nd International Conference on Concurrency Theory (Vol. 203). Paris, France: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2021.18' chicago: Jecker, Ismael R, Nicolas Mazzocchi, and Petra Wolf. “Decomposing Permutation Automata.” In 32nd International Conference on Concurrency Theory, Vol. 203. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.CONCUR.2021.18. ieee: I. R. Jecker, N. Mazzocchi, and P. Wolf, “Decomposing permutation automata,” in 32nd International Conference on Concurrency Theory, Paris, France, 2021, vol. 203. ista: 'Jecker IR, Mazzocchi N, Wolf P. 2021. Decomposing permutation automata. 32nd International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 203, 18.' mla: Jecker, Ismael R., et al. “Decomposing Permutation Automata.” 32nd International Conference on Concurrency Theory, vol. 203, 18, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.CONCUR.2021.18. short: I.R. Jecker, N. Mazzocchi, P. Wolf, in:, 32nd International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. conference: end_date: 2021-08-27 location: Paris, France name: 'CONCUR: Conference on Concurrency Theory' start_date: 2021-08-23 date_created: 2021-09-27T14:33:14Z date_published: 2021-08-13T00:00:00Z date_updated: 2022-05-13T08:12:52Z day: '13' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.CONCUR.2021.18 ec_funded: 1 external_id: arxiv: - '2107.04683' file: - access_level: open_access checksum: 4722c81be82265cf45e78adf9db91250 content_type: application/pdf creator: cchlebak date_created: 2021-10-01T11:10:53Z date_updated: 2021-10-01T11:10:53Z file_id: '10064' file_name: 2021_CONCUR_Jecker.pdf file_size: 1003552 relation: main_file success: 1 file_date_updated: 2021-10-01T11:10:53Z has_accepted_license: '1' intvolume: ' 203' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 32nd International Conference on Concurrency Theory publication_identifier: isbn: - 978-3-9597-7203-7 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Decomposing permutation automata tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 203 year: '2021' ... --- _id: '10054' abstract: - lang: eng text: 'Graphs and games on graphs are fundamental models for the analysis of reactive systems, in particular, for model-checking and the synthesis of reactive systems. The class of ω-regular languages provides a robust specification formalism for the desired properties of reactive systems. In the classical infinitary formulation of the liveness part of an ω-regular specification, a "good" event must happen eventually without any bound between the good events. A stronger notion of liveness is bounded liveness, which requires that good events happen within d transitions. Given a graph or a game graph with n vertices, m edges, and a bounded liveness objective, the previous best-known algorithmic bounds are as follows: (i) O(dm) for graphs, which in the worst-case is O(n³); and (ii) O(n² d²) for games on graphs. Our main contributions improve these long-standing algorithmic bounds. For graphs we present: (i) a randomized algorithm with one-sided error with running time O(n^{2.5} log n) for the bounded liveness objectives; and (ii) a deterministic linear-time algorithm for the complement of bounded liveness objectives. For games on graphs, we present an O(n² d) time algorithm for the bounded liveness objectives.' acknowledgement: 'Krishnendu Chatterjee: Supported by the ERC CoG 863818 (ForM-SMArt). Monika Henzinger: Supported by the Austrian Science Fund (FWF) and netIDEE SCIENCE project P 33775-N. Sagar Sudhir Kale: Partially supported by the Vienna Science and Technology Fund (WWTF) through project ICT15-003. Alexander Svozil: Fully supported by the Vienna Science and Technology Fund (WWTF) through project ICT15-003.' alternative_title: - LIPIcs article_number: '124' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Sagar Sudhir full_name: Kale, Sagar Sudhir last_name: Kale - first_name: Alexander full_name: Svozil, Alexander last_name: Svozil citation: ama: 'Chatterjee K, Henzinger MH, Kale SS, Svozil A. Faster algorithms for bounded liveness in graphs and game graphs. In: 48th International Colloquium on Automata, Languages, and Programming. Vol 198. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.ICALP.2021.124' apa: 'Chatterjee, K., Henzinger, M. H., Kale, S. S., & Svozil, A. (2021). Faster algorithms for bounded liveness in graphs and game graphs. In 48th International Colloquium on Automata, Languages, and Programming (Vol. 198). Glasgow, Scotland: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ICALP.2021.124' chicago: Chatterjee, Krishnendu, Monika H Henzinger, Sagar Sudhir Kale, and Alexander Svozil. “Faster Algorithms for Bounded Liveness in Graphs and Game Graphs.” In 48th International Colloquium on Automata, Languages, and Programming, Vol. 198. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.ICALP.2021.124. ieee: K. Chatterjee, M. H. Henzinger, S. S. Kale, and A. Svozil, “Faster algorithms for bounded liveness in graphs and game graphs,” in 48th International Colloquium on Automata, Languages, and Programming, Glasgow, Scotland, 2021, vol. 198. ista: 'Chatterjee K, Henzinger MH, Kale SS, Svozil A. 2021. Faster algorithms for bounded liveness in graphs and game graphs. 48th International Colloquium on Automata, Languages, and Programming. ICALP: International Colloquium on Automata, Languages, and Programming, LIPIcs, vol. 198, 124.' mla: Chatterjee, Krishnendu, et al. “Faster Algorithms for Bounded Liveness in Graphs and Game Graphs.” 48th International Colloquium on Automata, Languages, and Programming, vol. 198, 124, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.ICALP.2021.124. short: K. Chatterjee, M.H. Henzinger, S.S. Kale, A. Svozil, in:, 48th International Colloquium on Automata, Languages, and Programming, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. conference: end_date: 2021-07-16 location: Glasgow, Scotland name: 'ICALP: International Colloquium on Automata, Languages, and Programming' start_date: 2021-07-12 date_created: 2021-09-27T14:33:15Z date_published: 2021-07-02T00:00:00Z date_updated: 2022-08-12T10:55:02Z day: '02' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.ICALP.2021.124 ec_funded: 1 file: - access_level: open_access checksum: 5a3fed8dbba8c088cbeac1e24cc10bc5 content_type: application/pdf creator: cchlebak date_created: 2021-10-01T08:49:26Z date_updated: 2021-10-01T08:49:26Z file_id: '10062' file_name: 2021_LIPIcs_Chatterjee.pdf file_size: 854576 relation: main_file success: 1 file_date_updated: 2021-10-01T08:49:26Z has_accepted_license: '1' intvolume: ' 198' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: 48th International Colloquium on Automata, Languages, and Programming publication_identifier: isbn: - 978-3-95977-195-5 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Faster algorithms for bounded liveness in graphs and game graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf volume: 198 year: '2021' ... --- _id: '10075' abstract: - lang: eng text: We study the expressiveness and succinctness of good-for-games pushdown automata (GFG-PDA) over finite words, that is, pushdown automata whose nondeterminism can be resolved based on the run constructed so far, but independently of the remainder of the input word. We prove that GFG-PDA recognise more languages than deterministic PDA (DPDA) but not all context-free languages (CFL). This class is orthogonal to unambiguous CFL. We further show that GFG-PDA can be exponentially more succinct than DPDA, while PDA can be double-exponentially more succinct than GFG-PDA. We also study GFGness in visibly pushdown automata (VPA), which enjoy better closure properties than PDA, and for which we show GFGness to be ExpTime-complete. GFG-VPA can be exponentially more succinct than deterministic VPA, while VPA can be exponentially more succinct than GFG-VPA. Both of these lower bounds are tight. Finally, we study the complexity of resolving nondeterminism in GFG-PDA. Every GFG-PDA has a positional resolver, a function that resolves nondeterminism and that is only dependant on the current configuration. Pushdown transducers are sufficient to implement the resolvers of GFG-VPA, but not those of GFG-PDA. GFG-PDA with finite-state resolvers are determinisable. acknowledgement: 'Ismaël Jecker: Funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754411. Karoliina Lehtinen: Funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 892704.' alternative_title: - LIPIcs article_number: '53' article_processing_charge: No author: - first_name: Shibashis full_name: Guha, Shibashis last_name: Guha - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Karoliina full_name: Lehtinen, Karoliina last_name: Lehtinen - first_name: Martin full_name: Zimmermann, Martin last_name: Zimmermann citation: ama: 'Guha S, Jecker IR, Lehtinen K, Zimmermann M. A bit of nondeterminism makes pushdown automata expressive and succinct. In: 46th International Symposium on Mathematical Foundations of Computer Science. Vol 202. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.MFCS.2021.53' apa: 'Guha, S., Jecker, I. R., Lehtinen, K., & Zimmermann, M. (2021). A bit of nondeterminism makes pushdown automata expressive and succinct. In 46th International Symposium on Mathematical Foundations of Computer Science (Vol. 202). Tallinn, Estonia: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2021.53' chicago: Guha, Shibashis, Ismael R Jecker, Karoliina Lehtinen, and Martin Zimmermann. “A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct.” In 46th International Symposium on Mathematical Foundations of Computer Science, Vol. 202. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.MFCS.2021.53. ieee: S. Guha, I. R. Jecker, K. Lehtinen, and M. Zimmermann, “A bit of nondeterminism makes pushdown automata expressive and succinct,” in 46th International Symposium on Mathematical Foundations of Computer Science, Tallinn, Estonia, 2021, vol. 202. ista: 'Guha S, Jecker IR, Lehtinen K, Zimmermann M. 2021. A bit of nondeterminism makes pushdown automata expressive and succinct. 46th International Symposium on Mathematical Foundations of Computer Science. MFCS: Mathematical Foundations of Computer Science, LIPIcs, vol. 202, 53.' mla: Guha, Shibashis, et al. “A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct.” 46th International Symposium on Mathematical Foundations of Computer Science, vol. 202, 53, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.MFCS.2021.53. short: S. Guha, I.R. Jecker, K. Lehtinen, M. Zimmermann, in:, 46th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. conference: end_date: 2021-08-27 location: Tallinn, Estonia name: 'MFCS: Mathematical Foundations of Computer Science' start_date: 2021-08-23 date_created: 2021-10-03T22:01:23Z date_published: 2021-08-18T00:00:00Z date_updated: 2022-05-13T08:21:56Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2021.53 ec_funded: 1 external_id: arxiv: - '2105.02611' file: - access_level: open_access checksum: f4d407d43a97330c3fb11e6a7a6fbfb2 content_type: application/pdf creator: cchlebak date_created: 2021-10-06T12:44:05Z date_updated: 2021-10-06T12:44:05Z file_id: '10097' file_name: 2021_LIPIcs_Guha.pdf file_size: 825567 relation: main_file success: 1 file_date_updated: 2021-10-06T12:44:05Z has_accepted_license: '1' intvolume: ' 202' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 46th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - 978-3-9597-7201-3 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: A bit of nondeterminism makes pushdown automata expressive and succinct tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 202 year: '2021' ... --- _id: '10630' abstract: - lang: eng text: In the Intersection Non-emptiness problem, we are given a list of finite automata A_1, A_2,… , A_m over a common alphabet Σ as input, and the goal is to determine whether some string w ∈ Σ^* lies in the intersection of the languages accepted by the automata in the list. We analyze the complexity of the Intersection Non-emptiness problem under the promise that all input automata accept a language in some level of the dot-depth hierarchy, or some level of the Straubing-Thérien hierarchy. Automata accepting languages from the lowest levels of these hierarchies arise naturally in the context of model checking. We identify a dichotomy in the dot-depth hierarchy by showing that the problem is already NP-complete when all input automata accept languages of the levels B_0 or B_{1/2} and already PSPACE-hard when all automata accept a language from the level B_1. Conversely, we identify a tetrachotomy in the Straubing-Thérien hierarchy. More precisely, we show that the problem is in AC^0 when restricted to level L_0; complete for L or NL, depending on the input representation, when restricted to languages in the level L_{1/2}; NP-complete when the input is given as DFAs accepting a language in L_1 or L_{3/2}; and finally, PSPACE-complete when the input automata accept languages in level L_2 or higher. Moreover, we show that the proof technique used to show containment in NP for DFAs accepting languages in L_1 or L_{3/2} does not generalize to the context of NFAs. To prove this, we identify a family of languages that provide an exponential separation between the state complexity of general NFAs and that of partially ordered NFAs. To the best of our knowledge, this is the first superpolynomial separation between these two models of computation. acknowledgement: "We like to thank Lukas Fleischer and Michael Wehar for our discussions. This work started at the Schloss Dagstuhl Event 20483 Moderne Aspekte der Komplexitätstheorie in der Automatentheorie https://www.dagstuhl.de/20483.\r\n" alternative_title: - LIPIcs article_number: '34' article_processing_charge: No author: - first_name: Emmanuel full_name: Arrighi, Emmanuel last_name: Arrighi - first_name: Henning full_name: Fernau, Henning last_name: Fernau - first_name: Stefan full_name: Hoffmann, Stefan last_name: Hoffmann - first_name: Markus full_name: Holzer, Markus last_name: Holzer - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Mateus full_name: De Oliveira Oliveira, Mateus last_name: De Oliveira Oliveira - first_name: Petra full_name: Wolf, Petra last_name: Wolf citation: ama: 'Arrighi E, Fernau H, Hoffmann S, et al. On the complexity of intersection non-emptiness for star-free language classes. In: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Vol 213. Schloss Dagstuhl - Leibniz Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.FSTTCS.2021.34' apa: 'Arrighi, E., Fernau, H., Hoffmann, S., Holzer, M., Jecker, I. R., De Oliveira Oliveira, M., & Wolf, P. (2021). On the complexity of intersection non-emptiness for star-free language classes. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (Vol. 213). Virtual: Schloss Dagstuhl - Leibniz Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34' chicago: Arrighi, Emmanuel, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismael R Jecker, Mateus De Oliveira Oliveira, and Petra Wolf. “On the Complexity of Intersection Non-Emptiness for Star-Free Language Classes.” In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Vol. 213. Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34. ieee: E. Arrighi et al., “On the complexity of intersection non-emptiness for star-free language classes,” in 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Virtual, 2021, vol. 213. ista: 'Arrighi E, Fernau H, Hoffmann S, Holzer M, Jecker IR, De Oliveira Oliveira M, Wolf P. 2021. On the complexity of intersection non-emptiness for star-free language classes. 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 213, 34.' mla: Arrighi, Emmanuel, et al. “On the Complexity of Intersection Non-Emptiness for Star-Free Language Classes.” 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, vol. 213, 34, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.FSTTCS.2021.34. short: E. Arrighi, H. Fernau, S. Hoffmann, M. Holzer, I.R. Jecker, M. De Oliveira Oliveira, P. Wolf, in:, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Schloss Dagstuhl - Leibniz Zentrum für Informatik, 2021. conference: end_date: 2021-12-17 location: Virtual name: 'FSTTCS: Foundations of Software Technology and Theoretical Computer Science' start_date: 2021-12-15 date_created: 2022-01-16T23:01:29Z date_published: 2021-11-29T00:00:00Z date_updated: 2022-01-17T10:56:19Z day: '29' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.FSTTCS.2021.34 ec_funded: 1 external_id: arxiv: - '2110.01279' file: - access_level: open_access checksum: d5a82ba893c3bc5da5914edbb3efb92b content_type: application/pdf creator: cchlebak date_created: 2022-01-17T10:49:03Z date_updated: 2022-01-17T10:49:03Z file_id: '10634' file_name: 2021_LIPIcs_Arrighi.pdf file_size: 844224 relation: main_file success: 1 file_date_updated: 2022-01-17T10:49:03Z has_accepted_license: '1' intvolume: ' 213' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science publication_identifier: isbn: - 978-3-9597-7215-0 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: On the complexity of intersection non-emptiness for star-free language classes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 213 year: '2021' ... --- _id: '10629' abstract: - lang: eng text: "Product graphs arise naturally in formal verification and program analysis. For example, the analysis of two concurrent threads requires the product of two component control-flow graphs, and for language inclusion of deterministic automata the product of two automata is constructed. In many cases, the component graphs have constant treewidth, e.g., when the input contains control-flow graphs of programs. We consider the algorithmic analysis of products of two constant-treewidth graphs with respect to three classic specification languages, namely, (a) algebraic properties, (b) mean-payoff properties, and (c) initial credit for energy properties.\r\nOur main contributions are as follows. Consider a graph G that is the product of two constant-treewidth graphs of size n each. First, given an idempotent semiring, we present an algorithm that computes the semiring transitive closure of G in time Õ(n⁴). Since the output has size Θ(n⁴), our algorithm is optimal (up to polylog factors). Second, given a mean-payoff objective, we present an O(n³)-time algorithm for deciding whether the value of a starting state is non-negative, improving the previously known O(n⁴) bound. Third, given an initial credit for energy objective, we present an O(n⁵)-time algorithm for computing the minimum initial credit for all nodes of G, improving the previously known O(n⁸) bound. At the heart of our approach lies an algorithm for the efficient construction of strongly-balanced tree decompositions of constant-treewidth graphs. Given a constant-treewidth graph G' of n nodes and a positive integer λ, our algorithm constructs a binary tree decomposition of G' of width O(λ) with the property that the size of each subtree decreases geometrically with rate (1/2 + 2^{-λ})." alternative_title: - LIPIcs article_number: '42' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: 'Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. Quantitative verification on product graphs of small treewidth. In: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Vol 213. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021. doi:10.4230/LIPIcs.FSTTCS.2021.42' apa: 'Chatterjee, K., Ibsen-Jensen, R., & Pavlogiannis, A. (2021). Quantitative verification on product graphs of small treewidth. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (Vol. 213). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.42' chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. “Quantitative Verification on Product Graphs of Small Treewidth.” In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Vol. 213. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.42. ieee: K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis, “Quantitative verification on product graphs of small treewidth,” in 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Virtual, 2021, vol. 213. ista: 'Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. 2021. Quantitative verification on product graphs of small treewidth. 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 213, 42.' mla: Chatterjee, Krishnendu, et al. “Quantitative Verification on Product Graphs of Small Treewidth.” 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, vol. 213, 42, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, doi:10.4230/LIPIcs.FSTTCS.2021.42. short: K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, in:, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. conference: end_date: 2021-12-17 location: Virtual name: 'FSTTCS: Foundations of Software Technology and Theoretical Computer Science' start_date: 2021-12-15 date_created: 2022-01-16T23:01:28Z date_published: 2021-11-29T00:00:00Z date_updated: 2022-01-17T10:39:40Z day: '29' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.FSTTCS.2021.42 file: - access_level: open_access checksum: 71141acdeffa9056f24d6dbef952d254 content_type: application/pdf creator: cchlebak date_created: 2022-01-17T10:36:08Z date_updated: 2022-01-17T10:36:08Z file_id: '10633' file_name: 2021_LIPIcs_Chatterjee.pdf file_size: 891566 relation: main_file success: 1 file_date_updated: 2022-01-17T10:36:08Z has_accepted_license: '1' intvolume: ' 213' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science publication_identifier: isbn: - 978-3-9597-7215-0 issn: - 1868-8969 publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Quantitative verification on product graphs of small treewidth tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 213 year: '2021' ... --- _id: '10694' abstract: - lang: eng text: 'In a two-player zero-sum graph game the players move a token throughout a graph to produce an infinite path, which determines the winner or payoff of the game. Traditionally, the players alternate turns in moving the token. In bidding games, however, the players have budgets, and in each turn, we hold an “auction” (bidding) to determine which player moves the token: both players simultaneously submit bids and the higher bidder moves the token. The bidding mechanisms differ in their payment schemes. Bidding games were largely studied with variants of first-price bidding in which only the higher bidder pays his bid. We focus on all-pay bidding, where both players pay their bids. Finite-duration all-pay bidding games were studied and shown to be technically more challenging than their first-price counterparts. We study for the first time, infinite-duration all-pay bidding games. Our most interesting results are for mean-payoff objectives: we portray a complete picture for games played on strongly-connected graphs. We study both pure (deterministic) and mixed (probabilistic) strategies and completely characterize the optimal and almost-sure (with probability 1) payoffs the players can respectively guarantee. We show that mean-payoff games under all-pay bidding exhibit the intriguing mathematical properties of their first-price counterparts; namely, an equivalence with random-turn games in which in each turn, the player who moves is selected according to a (biased) coin toss. The equivalences for all-pay bidding are more intricate and unexpected than for first-price bidding.' acknowledgement: This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award), ERC CoG 863818 (FoRM-SMArt), and by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. article_processing_charge: No author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic citation: ama: 'Avni G, Jecker IR, Zikelic D. Infinite-duration all-pay bidding games. In: Marx D, ed. Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics; 2021:617-636. doi:10.1137/1.9781611976465.38' apa: 'Avni, G., Jecker, I. R., & Zikelic, D. (2021). Infinite-duration all-pay bidding games. In D. Marx (Ed.), Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (pp. 617–636). Virtual: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611976465.38' chicago: Avni, Guy, Ismael R Jecker, and Dorde Zikelic. “Infinite-Duration All-Pay Bidding Games.” In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, edited by Dániel Marx, 617–36. Society for Industrial and Applied Mathematics, 2021. https://doi.org/10.1137/1.9781611976465.38. ieee: G. Avni, I. R. Jecker, and D. Zikelic, “Infinite-duration all-pay bidding games,” in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, Virtual, 2021, pp. 617–636. ista: 'Avni G, Jecker IR, Zikelic D. 2021. Infinite-duration all-pay bidding games. Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms, 617–636.' mla: Avni, Guy, et al. “Infinite-Duration All-Pay Bidding Games.” Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, edited by Dániel Marx, Society for Industrial and Applied Mathematics, 2021, pp. 617–36, doi:10.1137/1.9781611976465.38. short: G. Avni, I.R. Jecker, D. Zikelic, in:, D. Marx (Ed.), Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2021, pp. 617–636. conference: end_date: 2021-01-13 location: Virtual name: 'SODA: Symposium on Discrete Algorithms' start_date: 2021-01-10 date_created: 2022-01-27T12:11:23Z date_published: 2021-01-01T00:00:00Z date_updated: 2022-01-27T12:58:43Z day: '01' department: - _id: GradSch - _id: KrCh doi: 10.1137/1.9781611976465.38 ec_funded: 1 editor: - first_name: Dániel full_name: Marx, Dániel last_name: Marx external_id: arxiv: - '2005.06636' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2005.06636 month: '01' oa: 1 oa_version: Preprint page: 617-636 project: - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms publication_identifier: isbn: - 978-1-61197-646-5 publication_status: published publisher: Society for Industrial and Applied Mathematics quality_controlled: '1' scopus_import: '1' status: public title: Infinite-duration all-pay bidding games type: conference user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2021' ... --- _id: '10847' abstract: - lang: eng text: 'We study the two-player zero-sum extension of the partially observable stochastic shortest-path problem where one agent has only partial information about the environment. We formulate this problem as a partially observable stochastic game (POSG): given a set of target states and negative rewards for each transition, the player with imperfect information maximizes the expected undiscounted total reward until a target state is reached. The second player with the perfect information aims for the opposite. We base our formalism on POSGs with one-sided observability (OS-POSGs) and give the following contributions: (1) we introduce a novel heuristic search value iteration algorithm that iteratively solves depth-limited variants of the game, (2) we derive the bound on the depth guaranteeing an arbitrary precision, (3) we propose a novel upper-bound estimation that allows early terminations, and (4) we experimentally evaluate the algorithm on a pursuit-evasion game.' acknowledgement: "This research was supported by the Czech Science Foundation (no. 19-24384Y), by the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”, by the ERC CoG 863818 (ForM-SMArt), and by the Combat Capabilities Development Command Army Research Laboratory and was accomplished under Cooperative\r\nAgreement Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions contained in this document are those of the authors and should not be interpreted as\r\nrepresenting the official policies, either expressed or implied, of the Combat Capabilities Development Command Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes not withstanding any copyright notation here on. " article_processing_charge: No author: - first_name: Petr full_name: Tomášek, Petr last_name: Tomášek - first_name: Karel full_name: Horák, Karel last_name: Horák - first_name: Aditya full_name: Aradhye, Aditya last_name: Aradhye - first_name: Branislav full_name: Bošanský, Branislav last_name: Bošanský - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: 'Tomášek P, Horák K, Aradhye A, Bošanský B, Chatterjee K. Solving partially observable stochastic shortest-path games. In: 30th International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence; 2021:4182-4189. doi:10.24963/ijcai.2021/575' apa: 'Tomášek, P., Horák, K., Aradhye, A., Bošanský, B., & Chatterjee, K. (2021). Solving partially observable stochastic shortest-path games. In 30th International Joint Conference on Artificial Intelligence (pp. 4182–4189). Virtual, Online: International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2021/575' chicago: Tomášek, Petr, Karel Horák, Aditya Aradhye, Branislav Bošanský, and Krishnendu Chatterjee. “Solving Partially Observable Stochastic Shortest-Path Games.” In 30th International Joint Conference on Artificial Intelligence, 4182–89. International Joint Conferences on Artificial Intelligence, 2021. https://doi.org/10.24963/ijcai.2021/575. ieee: P. Tomášek, K. Horák, A. Aradhye, B. Bošanský, and K. Chatterjee, “Solving partially observable stochastic shortest-path games,” in 30th International Joint Conference on Artificial Intelligence, Virtual, Online, 2021, pp. 4182–4189. ista: 'Tomášek P, Horák K, Aradhye A, Bošanský B, Chatterjee K. 2021. Solving partially observable stochastic shortest-path games. 30th International Joint Conference on Artificial Intelligence. IJCAI: International Joint Conferences on Artificial Intelligence Organization, 4182–4189.' mla: Tomášek, Petr, et al. “Solving Partially Observable Stochastic Shortest-Path Games.” 30th International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence, 2021, pp. 4182–89, doi:10.24963/ijcai.2021/575. short: P. Tomášek, K. Horák, A. Aradhye, B. Bošanský, K. Chatterjee, in:, 30th International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence, 2021, pp. 4182–4189. conference: end_date: 2021-08-27 location: Virtual, Online name: 'IJCAI: International Joint Conferences on Artificial Intelligence Organization' start_date: 2021-08-19 date_created: 2022-03-13T23:01:47Z date_published: 2021-09-01T00:00:00Z date_updated: 2022-08-05T09:05:06Z day: '01' department: - _id: KrCh doi: 10.24963/ijcai.2021/575 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.24963/ijcai.2021/575 month: '09' oa: 1 oa_version: Published Version page: 4182-4189 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: 30th International Joint Conference on Artificial Intelligence publication_identifier: isbn: - '9780999241196' issn: - 1045-0823 publication_status: published publisher: International Joint Conferences on Artificial Intelligence quality_controlled: '1' scopus_import: '1' status: public title: Solving partially observable stochastic shortest-path games type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9296' abstract: - lang: eng text: ' matching is compatible to two or more labeled point sets of size n with labels {1,…,n} if its straight-line drawing on each of these point sets is crossing-free. We study the maximum number of edges in a matching compatible to two or more labeled point sets in general position in the plane. We show that for any two labeled convex sets of n points there exists a compatible matching with ⌊2n−−√⌋ edges. More generally, for any ℓ labeled point sets we construct compatible matchings of size Ω(n1/ℓ) . As a corresponding upper bound, we use probabilistic arguments to show that for any ℓ given sets of n points there exists a labeling of each set such that the largest compatible matching has O(n2/(ℓ+1)) edges. Finally, we show that Θ(logn) copies of any set of n points are necessary and sufficient for the existence of a labeling such that any compatible matching consists only of a single edge.' acknowledgement: 'A.A. funded by the Marie Skłodowska-Curie grant agreement No. 754411. Z.M. partially funded by Wittgenstein Prize, Austrian Science Fund (FWF), grant no. Z 342-N31. I.P., D.P., and B.V. partially supported by FWF within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35. A.P. supported by a Schrödinger fellowship of the FWF: J-3847-N35. J.T. partially supported by ERC Start grant no. (279307: Graph Games), FWF grant no. P23499-N23 and S11407-N23 (RiSE).' alternative_title: - LNCS article_processing_charge: No author: - first_name: Oswin full_name: Aichholzer, Oswin last_name: Aichholzer - first_name: Alan M full_name: Arroyo Guevara, Alan M id: 3207FDC6-F248-11E8-B48F-1D18A9856A87 last_name: Arroyo Guevara orcid: 0000-0003-2401-8670 - first_name: Zuzana full_name: Masárová, Zuzana id: 45CFE238-F248-11E8-B48F-1D18A9856A87 last_name: Masárová orcid: 0000-0002-6660-1322 - first_name: Irene full_name: Parada, Irene last_name: Parada - first_name: Daniel full_name: Perz, Daniel last_name: Perz - first_name: Alexander full_name: Pilz, Alexander last_name: Pilz - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 - first_name: Birgit full_name: Vogtenhuber, Birgit last_name: Vogtenhuber citation: ama: 'Aichholzer O, Arroyo Guevara AM, Masárová Z, et al. On compatible matchings. In: 15th International Conference on Algorithms and Computation. Vol 12635. Springer Nature; 2021:221-233. doi:10.1007/978-3-030-68211-8_18' apa: 'Aichholzer, O., Arroyo Guevara, A. M., Masárová, Z., Parada, I., Perz, D., Pilz, A., … Vogtenhuber, B. (2021). On compatible matchings. In 15th International Conference on Algorithms and Computation (Vol. 12635, pp. 221–233). Yangon, Myanmar: Springer Nature. https://doi.org/10.1007/978-3-030-68211-8_18' chicago: Aichholzer, Oswin, Alan M Arroyo Guevara, Zuzana Masárová, Irene Parada, Daniel Perz, Alexander Pilz, Josef Tkadlec, and Birgit Vogtenhuber. “On Compatible Matchings.” In 15th International Conference on Algorithms and Computation, 12635:221–33. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-68211-8_18. ieee: O. Aichholzer et al., “On compatible matchings,” in 15th International Conference on Algorithms and Computation, Yangon, Myanmar, 2021, vol. 12635, pp. 221–233. ista: 'Aichholzer O, Arroyo Guevara AM, Masárová Z, Parada I, Perz D, Pilz A, Tkadlec J, Vogtenhuber B. 2021. On compatible matchings. 15th International Conference on Algorithms and Computation. WALCOM: Algorithms and Computation, LNCS, vol. 12635, 221–233.' mla: Aichholzer, Oswin, et al. “On Compatible Matchings.” 15th International Conference on Algorithms and Computation, vol. 12635, Springer Nature, 2021, pp. 221–33, doi:10.1007/978-3-030-68211-8_18. short: O. Aichholzer, A.M. Arroyo Guevara, Z. Masárová, I. Parada, D. Perz, A. Pilz, J. Tkadlec, B. Vogtenhuber, in:, 15th International Conference on Algorithms and Computation, Springer Nature, 2021, pp. 221–233. conference: end_date: 2021-03-02 location: Yangon, Myanmar name: 'WALCOM: Algorithms and Computation' start_date: 2021-02-28 date_created: 2021-03-28T22:01:41Z date_published: 2021-02-16T00:00:00Z date_updated: 2023-02-21T16:33:44Z day: '16' department: - _id: UlWa - _id: HeEd - _id: KrCh doi: 10.1007/978-3-030-68211-8_18 ec_funded: 1 external_id: arxiv: - '2101.03928' intvolume: ' 12635' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2101.03928 month: '02' oa: 1 oa_version: Preprint page: 221-233 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 268116B8-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z00342 name: The Wittgenstein Prize - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: 15th International Conference on Algorithms and Computation publication_identifier: eissn: - '16113349' isbn: - '9783030682101' issn: - '03029743' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '11938' relation: later_version status: public scopus_import: '1' status: public title: On compatible matchings type: conference user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425 volume: 12635 year: '2021' ... --- _id: '9403' abstract: - lang: eng text: Optimal decision making requires individuals to know their available options and to anticipate correctly what consequences these options have. In many social interactions, however, we refrain from gathering all relevant information, even if this information would help us make better decisions and is costless to obtain. This chapter examines several examples of “deliberate ignorance.” Two simple models are proposed to illustrate how ignorance can evolve among self-interested and payoff - maximizing individuals, and open problems are highlighted that lie ahead for future research to explore. article_processing_charge: No author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Christian full_name: Hilbe, Christian last_name: Hilbe citation: ama: 'Schmid L, Hilbe C. The evolution of strategic ignorance in strategic interaction. In: Hertwig R, Engel C, eds. Deliberate Ignorance: Choosing Not To Know. Vol 29. Strüngmann Forum Reports. MIT Press; 2021:139-152.' apa: 'Schmid, L., & Hilbe, C. (2021). The evolution of strategic ignorance in strategic interaction. In R. Hertwig & C. Engel (Eds.), Deliberate Ignorance: Choosing Not To Know (Vol. 29, pp. 139–152). MIT Press.' chicago: 'Schmid, Laura, and Christian Hilbe. “The Evolution of Strategic Ignorance in Strategic Interaction.” In Deliberate Ignorance: Choosing Not To Know, edited by Ralph Hertwig and Christoph Engel, 29:139–52. Strüngmann Forum Reports. MIT Press, 2021.' ieee: 'L. Schmid and C. Hilbe, “The evolution of strategic ignorance in strategic interaction,” in Deliberate Ignorance: Choosing Not To Know, vol. 29, R. Hertwig and C. Engel, Eds. MIT Press, 2021, pp. 139–152.' ista: 'Schmid L, Hilbe C. 2021.The evolution of strategic ignorance in strategic interaction. In: Deliberate Ignorance: Choosing Not To Know. vol. 29, 139–152.' mla: 'Schmid, Laura, and Christian Hilbe. “The Evolution of Strategic Ignorance in Strategic Interaction.” Deliberate Ignorance: Choosing Not To Know, edited by Ralph Hertwig and Christoph Engel, vol. 29, MIT Press, 2021, pp. 139–52.' short: 'L. Schmid, C. Hilbe, in:, R. Hertwig, C. Engel (Eds.), Deliberate Ignorance: Choosing Not To Know, MIT Press, 2021, pp. 139–152.' date_created: 2021-05-19T12:25:42Z date_published: 2021-03-01T00:00:00Z date_updated: 2023-02-23T13:57:04Z day: '01' department: - _id: GradSch - _id: KrCh editor: - first_name: Ralph full_name: Hertwig, Ralph last_name: Hertwig - first_name: Christoph full_name: Engel, Christoph last_name: Engel intvolume: ' 29' language: - iso: eng main_file_link: - open_access: '1' url: https://esforum.de/publications/PDFs/sfr29/SFR29_09_Hilbe%20and%20Schmid.pdf month: '03' oa: 1 oa_version: Published Version page: 139-152 publication: 'Deliberate Ignorance: Choosing Not To Know' publication_identifier: isbn: - 978-0-262-04559-9 publisher: MIT Press quality_controlled: '1' series_title: Strüngmann Forum Reports status: public title: The evolution of strategic ignorance in strategic interaction type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 29 year: '2021' ...