--- _id: '2039' abstract: - lang: eng text: 'A fundamental question in biology is the following: what is the time scale that is needed for evolutionary innovations? There are many results that characterize single steps in terms of the fixation time of new mutants arising in populations of certain size and structure. But here we ask a different question, which is concerned with the much longer time scale of evolutionary trajectories: how long does it take for a population exploring a fitness landscape to find target sequences that encode new biological functions? Our key variable is the length, (Formula presented.) of the genetic sequence that undergoes adaptation. In computer science there is a crucial distinction between problems that require algorithms which take polynomial or exponential time. The latter are considered to be intractable. Here we develop a theoretical approach that allows us to estimate the time of evolution as function of (Formula presented.) We show that adaptation on many fitness landscapes takes time that is exponential in (Formula presented.) even if there are broad selection gradients and many targets uniformly distributed in sequence space. These negative results lead us to search for specific mechanisms that allow evolution to work on polynomial time scales. We study a regeneration process and show that it enables evolution to work in polynomial time.' article_number: 7p author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Ben full_name: Adlam, Ben last_name: Adlam - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Chatterjee K, Pavlogiannis A, Adlam B, Nowak M. The time scale of evolutionary innovation. PLoS Computational Biology. 2014;10(9). doi:10.1371/journal.pcbi.1003818 apa: Chatterjee, K., Pavlogiannis, A., Adlam, B., & Nowak, M. (2014). The time scale of evolutionary innovation. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1003818 chicago: Chatterjee, Krishnendu, Andreas Pavlogiannis, Ben Adlam, and Martin Nowak. “The Time Scale of Evolutionary Innovation.” PLoS Computational Biology. Public Library of Science, 2014. https://doi.org/10.1371/journal.pcbi.1003818. ieee: K. Chatterjee, A. Pavlogiannis, B. Adlam, and M. Nowak, “The time scale of evolutionary innovation,” PLoS Computational Biology, vol. 10, no. 9. Public Library of Science, 2014. ista: Chatterjee K, Pavlogiannis A, Adlam B, Nowak M. 2014. The time scale of evolutionary innovation. PLoS Computational Biology. 10(9), 7p. mla: Chatterjee, Krishnendu, et al. “The Time Scale of Evolutionary Innovation.” PLoS Computational Biology, vol. 10, no. 9, 7p, Public Library of Science, 2014, doi:10.1371/journal.pcbi.1003818. short: K. Chatterjee, A. Pavlogiannis, B. Adlam, M. Nowak, PLoS Computational Biology 10 (2014). date_created: 2018-12-11T11:55:22Z date_published: 2014-09-11T00:00:00Z date_updated: 2023-02-23T14:06:36Z day: '11' ddc: - '510' department: - _id: KrCh doi: 10.1371/journal.pcbi.1003818 ec_funded: 1 file: - access_level: open_access checksum: 712d4c5787ddf97809cfc962507f0738 content_type: application/pdf creator: system date_created: 2018-12-12T10:11:35Z date_updated: 2020-07-14T12:45:26Z file_id: '4890' file_name: IST-2016-440-v1+1_journal.pcbi.1003818.pdf file_size: 1399093 relation: main_file file_date_updated: 2020-07-14T12:45:26Z has_accepted_license: '1' intvolume: ' 10' issue: '9' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '09' oa: 1 oa_version: Published Version project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: PLoS Computational Biology publication_status: published publisher: Public Library of Science publist_id: '5012' pubrep_id: '440' quality_controlled: '1' related_material: record: - id: '9739' relation: research_data status: public scopus_import: 1 status: public title: The time scale of evolutionary innovation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2014' ... --- _id: '9739' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Ben full_name: Adlam, Ben last_name: Adlam - first_name: Martin full_name: Novak, Martin last_name: Novak citation: ama: Chatterjee K, Pavlogiannis A, Adlam B, Novak M. Detailed proofs for “The time scale of evolutionary innovation.” 2014. doi:10.1371/journal.pcbi.1003818.s001 apa: Chatterjee, K., Pavlogiannis, A., Adlam, B., & Novak, M. (2014). Detailed proofs for “The time scale of evolutionary innovation.” Public Library of Science. https://doi.org/10.1371/journal.pcbi.1003818.s001 chicago: Chatterjee, Krishnendu, Andreas Pavlogiannis, Ben Adlam, and Martin Novak. “Detailed Proofs for ‘The Time Scale of Evolutionary Innovation.’” Public Library of Science, 2014. https://doi.org/10.1371/journal.pcbi.1003818.s001. ieee: K. Chatterjee, A. Pavlogiannis, B. Adlam, and M. Novak, “Detailed proofs for ‘The time scale of evolutionary innovation.’” Public Library of Science, 2014. ista: Chatterjee K, Pavlogiannis A, Adlam B, Novak M. 2014. Detailed proofs for “The time scale of evolutionary innovation”, Public Library of Science, 10.1371/journal.pcbi.1003818.s001. mla: Chatterjee, Krishnendu, et al. Detailed Proofs for “The Time Scale of Evolutionary Innovation.” Public Library of Science, 2014, doi:10.1371/journal.pcbi.1003818.s001. short: K. Chatterjee, A. Pavlogiannis, B. Adlam, M. Novak, (2014). date_created: 2021-07-28T08:13:57Z date_published: 2014-09-11T00:00:00Z date_updated: 2023-02-23T10:25:37Z day: '11' department: - _id: KrCh doi: 10.1371/journal.pcbi.1003818.s001 month: '09' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '2039' relation: used_in_publication status: public status: public title: Detailed proofs for “The time scale of evolutionary innovation” type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2014' ... --- _id: '535' abstract: - lang: eng text: Energy games belong to a class of turn-based two-player infinite-duration games played on a weighted directed graph. It is one of the rare and intriguing combinatorial problems that lie in NP∩co-NP, but are not known to be in P. The existence of polynomial-time algorithms has been a major open problem for decades and apart from pseudopolynomial algorithms there is no algorithm that solves any non-trivial subclass in polynomial time. In this paper, we give several results based on the weight structures of the graph. First, we identify a notion of penalty and present a polynomial-time algorithm when the penalty is large. Our algorithm is the first polynomial-time algorithm on a large class of weighted graphs. It includes several worst-case instances on which previous algorithms, such as value iteration and random facet algorithms, require at least sub-exponential time. Our main technique is developing the first non-trivial approximation algorithm and showing how to convert it to an exact algorithm. Moreover, we show that in a practical case in verification where weights are clustered around a constant number of values, the energy game problem can be solved in polynomial time. We also show that the problem is still as hard as in general when the clique-width is bounded or the graph is strongly ergodic, suggesting that restricting the graph structure does not necessarily help. article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Sebastian full_name: Krinninger, Sebastian last_name: Krinninger - first_name: Danupon full_name: Nanongkai, Danupon last_name: Nanongkai citation: ama: Chatterjee K, Henzinger MH, Krinninger S, Nanongkai D. Polynomial-time algorithms for energy games with special weight structures. Algorithmica. 2014;70(3):457-492. doi:10.1007/s00453-013-9843-7 apa: Chatterjee, K., Henzinger, M. H., Krinninger, S., & Nanongkai, D. (2014). Polynomial-time algorithms for energy games with special weight structures. Algorithmica. Springer. https://doi.org/10.1007/s00453-013-9843-7 chicago: Chatterjee, Krishnendu, Monika H Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Polynomial-Time Algorithms for Energy Games with Special Weight Structures.” Algorithmica. Springer, 2014. https://doi.org/10.1007/s00453-013-9843-7. ieee: K. Chatterjee, M. H. Henzinger, S. Krinninger, and D. Nanongkai, “Polynomial-time algorithms for energy games with special weight structures,” Algorithmica, vol. 70, no. 3. Springer, pp. 457–492, 2014. ista: Chatterjee K, Henzinger MH, Krinninger S, Nanongkai D. 2014. Polynomial-time algorithms for energy games with special weight structures. Algorithmica. 70(3), 457–492. mla: Chatterjee, Krishnendu, et al. “Polynomial-Time Algorithms for Energy Games with Special Weight Structures.” Algorithmica, vol. 70, no. 3, Springer, 2014, pp. 457–92, doi:10.1007/s00453-013-9843-7. short: K. Chatterjee, M.H. Henzinger, S. Krinninger, D. Nanongkai, Algorithmica 70 (2014) 457–492. date_created: 2018-12-11T11:47:01Z date_published: 2014-11-01T00:00:00Z date_updated: 2023-09-05T14:09:29Z day: '01' department: - _id: KrCh doi: 10.1007/s00453-013-9843-7 ec_funded: 1 external_id: arxiv: - '1604.08234' intvolume: ' 70' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1604.08234 month: '11' oa: 1 oa_version: Preprint page: 457 - 492 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Algorithmica publication_status: published publisher: Springer publist_id: '7282' quality_controlled: '1' related_material: record: - id: '10905' relation: earlier_version status: public scopus_import: '1' status: public title: Polynomial-time algorithms for energy games with special weight structures type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 70 year: '2014' ... --- _id: '2063' abstract: - lang: eng text: We consider Markov decision processes (MDPs) which are a standard model for probabilistic systems.We focus on qualitative properties forMDPs that can express that desired behaviors of the system arise almost-surely (with probability 1) or with positive probability. We introduce a new simulation relation to capture the refinement relation ofMDPs with respect to qualitative properties, and present discrete graph theoretic algorithms with quadratic complexity to compute the simulation relation.We present an automated technique for assume-guarantee style reasoning for compositional analysis ofMDPs with qualitative properties by giving a counterexample guided abstraction-refinement approach to compute our new simulation relation. We have implemented our algorithms and show that the compositional analysis leads to significant improvements. alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Przemyslaw full_name: Daca, Przemyslaw id: 49351290-F248-11E8-B48F-1D18A9856A87 last_name: Daca citation: ama: 'Chatterjee K, Chmelik M, Daca P. CEGAR for qualitative analysis of probabilistic systems. In: Vol 8559. Springer; 2014:473-490. doi:10.1007/978-3-319-08867-9_31' apa: 'Chatterjee, K., Chmelik, M., & Daca, P. (2014). CEGAR for qualitative analysis of probabilistic systems (Vol. 8559, pp. 473–490). Presented at the CAV: Computer Aided Verification, Vienna, Austria: Springer. https://doi.org/10.1007/978-3-319-08867-9_31' chicago: Chatterjee, Krishnendu, Martin Chmelik, and Przemyslaw Daca. “CEGAR for Qualitative Analysis of Probabilistic Systems,” 8559:473–90. Springer, 2014. https://doi.org/10.1007/978-3-319-08867-9_31. ieee: 'K. Chatterjee, M. Chmelik, and P. Daca, “CEGAR for qualitative analysis of probabilistic systems,” presented at the CAV: Computer Aided Verification, Vienna, Austria, 2014, vol. 8559, pp. 473–490.' ista: 'Chatterjee K, Chmelik M, Daca P. 2014. CEGAR for qualitative analysis of probabilistic systems. CAV: Computer Aided Verification, LNCS, vol. 8559, 473–490.' mla: Chatterjee, Krishnendu, et al. CEGAR for Qualitative Analysis of Probabilistic Systems. Vol. 8559, Springer, 2014, pp. 473–90, doi:10.1007/978-3-319-08867-9_31. short: K. Chatterjee, M. Chmelik, P. Daca, in:, Springer, 2014, pp. 473–490. conference: end_date: 2014-07-22 location: Vienna, Austria name: 'CAV: Computer Aided Verification' start_date: 2014-07-18 date_created: 2018-12-11T11:55:30Z date_published: 2014-07-01T00:00:00Z date_updated: 2023-09-07T11:58:33Z day: '01' department: - _id: KrCh - _id: ToHe doi: 10.1007/978-3-319-08867-9_31 ec_funded: 1 intvolume: ' 8559' language: - iso: eng month: '07' oa_version: None page: 473 - 490 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 25F5A88A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Moderne Concurrency Paradigms - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling publication_status: published publisher: Springer publist_id: '4978' quality_controlled: '1' related_material: record: - id: '5412' relation: earlier_version status: public - id: '5413' relation: earlier_version status: public - id: '5414' relation: earlier_version status: public - id: '1155' relation: dissertation_contains status: public status: public title: CEGAR for qualitative analysis of probabilistic systems type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8559 year: '2014' ... --- _id: '5428' abstract: - lang: eng text: "Simulation is an attractive alternative for language inclusion for automata as it is an under-approximation of language inclusion, but usually has much lower complexity. For non-deterministic automata, while language inclusion is PSPACE-complete, simulation can be computed in polynomial time. Simulation has also been extended in two orthogonal directions, namely, (1) fair simulation, for simulation over specified set of infinite runs; and (2) quantitative simulation, for simulation between weighted automata. Again, while fair trace inclusion is PSPACE-complete, fair simulation can be computed in polynomial time. For weighted automata, the (quantitative) language inclusion problem is undecidable for mean-payoff automata and the decidability is open for discounted-sum automata, whereas the (quantitative) simulation reduce to mean-payoff games and discounted-sum games, which admit pseudo-polynomial time algorithms.\r\n\r\nIn this work, we study (quantitative) simulation for weighted automata with Büchi acceptance conditions, i.e., we generalize fair simulation from non-weighted automata to weighted automata. We show that imposing Büchi acceptance conditions on weighted automata changes many fundamental properties of the simulation games. For example, whereas for mean-payoff and discounted-sum games, the players do not need memory to play optimally; we show in contrast that for simulation games with Büchi acceptance conditions, (i) for mean-payoff objectives, optimal strategies for both players require infinite memory in general, and (ii) for discounted-sum objectives, optimal strategies need not exist for both players. While the simulation games with Büchi acceptance conditions are more complicated (e.g., due to infinite-memory requirements for mean-payoff objectives) as compared to their counterpart without Büchi acceptance conditions, we still present pseudo-polynomial time algorithms to solve simulation games with Büchi acceptance conditions for both weighted mean-payoff and weighted discounted-sum automata." alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop - first_name: Yaron full_name: Velner, Yaron last_name: Velner citation: ama: Chatterjee K, Henzinger TA, Otop J, Velner Y. Quantitative Fair Simulation Games. IST Austria; 2014. doi:10.15479/AT:IST-2014-315-v1-1 apa: Chatterjee, K., Henzinger, T. A., Otop, J., & Velner, Y. (2014). Quantitative fair simulation games. IST Austria. https://doi.org/10.15479/AT:IST-2014-315-v1-1 chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Jan Otop, and Yaron Velner. Quantitative Fair Simulation Games. IST Austria, 2014. https://doi.org/10.15479/AT:IST-2014-315-v1-1. ieee: K. Chatterjee, T. A. Henzinger, J. Otop, and Y. Velner, Quantitative fair simulation games. IST Austria, 2014. ista: Chatterjee K, Henzinger TA, Otop J, Velner Y. 2014. Quantitative fair simulation games, IST Austria, 26p. mla: Chatterjee, Krishnendu, et al. Quantitative Fair Simulation Games. IST Austria, 2014, doi:10.15479/AT:IST-2014-315-v1-1. short: K. Chatterjee, T.A. Henzinger, J. Otop, Y. Velner, Quantitative Fair Simulation Games, IST Austria, 2014. date_created: 2018-12-12T11:39:16Z date_published: 2014-12-05T00:00:00Z date_updated: 2023-09-20T12:07:48Z day: '05' ddc: - '004' department: - _id: ToHe - _id: KrCh doi: 10.15479/AT:IST-2014-315-v1-1 file: - access_level: open_access checksum: b1d573bc04365625ff9974880c0aa807 content_type: application/pdf creator: system date_created: 2018-12-12T11:53:59Z date_updated: 2020-07-14T12:46:52Z file_id: '5521' file_name: IST-2014-315-v1+1_report.pdf file_size: 531046 relation: main_file file_date_updated: 2020-07-14T12:46:52Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '26' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '315' related_material: record: - id: '1066' relation: later_version status: public status: public title: Quantitative fair simulation games type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2014' ... --- _id: '1374' abstract: - lang: eng text: 'We study two-player zero-sum games over infinite-state graphs equipped with ωB and finitary conditions. Our first contribution is about the strategy complexity, i.e the memory required for winning strategies: we prove that over general infinite-state graphs, memoryless strategies are sufficient for finitary Büchi, and finite-memory suffices for finitary parity games. We then study pushdown games with boundedness conditions, with two contributions. First we prove a collapse result for pushdown games with ωB-conditions, implying the decidability of solving these games. Second we consider pushdown games with finitary parity along with stack boundedness conditions, and show that solving these games is EXPTIME-complete.' alternative_title: - LIPIcs author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Nathanaël full_name: Fijalkow, Nathanaël last_name: Fijalkow citation: ama: 'Chatterjee K, Fijalkow N. Infinite-state games with finitary conditions. In: 22nd EACSL Annual Conference on Computer Science Logic. Vol 23. Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2013:181-196. doi:10.4230/LIPIcs.CSL.2013.181' apa: 'Chatterjee, K., & Fijalkow, N. (2013). Infinite-state games with finitary conditions. In 22nd EACSL Annual Conference on Computer Science Logic (Vol. 23, pp. 181–196). Torino, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2013.181' chicago: Chatterjee, Krishnendu, and Nathanaël Fijalkow. “Infinite-State Games with Finitary Conditions.” In 22nd EACSL Annual Conference on Computer Science Logic, 23:181–96. Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. https://doi.org/10.4230/LIPIcs.CSL.2013.181. ieee: K. Chatterjee and N. Fijalkow, “Infinite-state games with finitary conditions,” in 22nd EACSL Annual Conference on Computer Science Logic, Torino, Italy, 2013, vol. 23, pp. 181–196. ista: 'Chatterjee K, Fijalkow N. 2013. Infinite-state games with finitary conditions. 22nd EACSL Annual Conference on Computer Science Logic. CSL: Computer Science LogicLeibniz International Proceedings in Informatics, LIPIcs, vol. 23, 181–196.' mla: Chatterjee, Krishnendu, and Nathanaël Fijalkow. “Infinite-State Games with Finitary Conditions.” 22nd EACSL Annual Conference on Computer Science Logic, vol. 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 181–96, doi:10.4230/LIPIcs.CSL.2013.181. short: K. Chatterjee, N. Fijalkow, in:, 22nd EACSL Annual Conference on Computer Science Logic, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 181–196. conference: end_date: 2013-09-05 location: Torino, Italy name: 'CSL: Computer Science Logic' start_date: 203-09-02 date_created: 2018-12-11T11:51:39Z date_published: 2013-09-01T00:00:00Z date_updated: 2021-01-12T06:50:14Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.CSL.2013.181 ec_funded: 1 file: - access_level: open_access checksum: b7091a3866db573c0db5ec486952255e content_type: application/pdf creator: system date_created: 2018-12-12T10:13:38Z date_updated: 2020-07-14T12:44:47Z file_id: '5023' file_name: IST-2016-624-v1+1_ChKr_Infinite-state_games_2013_17.pdf file_size: 547296 relation: main_file file_date_updated: 2020-07-14T12:44:47Z has_accepted_license: '1' intvolume: ' 23' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 181 - 196 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 22nd EACSL Annual Conference on Computer Science Logic publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '5837' pubrep_id: '624' quality_controlled: '1' scopus_import: 1 series_title: Leibniz International Proceedings in Informatics status: public title: Infinite-state games with finitary conditions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '2238' abstract: - lang: eng text: "We study the problem of achieving a given value in Markov decision processes (MDPs) with several independent discounted reward objectives. We consider a generalised version of discounted reward objectives, in which the amount of discounting depends on the states visited and on the objective. This definition extends the usual definition of discounted reward, and allows to capture the systems in which the value of different commodities diminish at different and variable rates.\r\n\r\nWe establish results for two prominent subclasses of the problem, namely state-discount models where the discount factors are only dependent on the state of the MDP (and independent of the objective), and reward-discount models where they are only dependent on the objective (but not on the state of the MDP). For the state-discount models we use a straightforward reduction to expected total reward and show that the problem whether a value is achievable can be solved in polynomial time. For the reward-discount model we show that memory and randomisation of the strategies are required, but nevertheless that the problem is decidable and it is sufficient to consider strategies which after a certain number of steps behave in a memoryless way.\r\n\r\nFor the general case, we show that when restricted to graphs (i.e. MDPs with no randomisation), pure strategies and discount factors of the form 1/n where n is an integer, the problem is in PSPACE and finite memory suffices for achieving a given value. We also show that when the discount factors are not of the form 1/n, the memory required by a strategy can be infinite.\r\n" alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vojtěch full_name: Forejt, Vojtěch last_name: Forejt - first_name: Dominik full_name: Wojtczak, Dominik last_name: Wojtczak citation: ama: Chatterjee K, Forejt V, Wojtczak D. Multi-objective discounted reward verification in graphs and MDPs. 2013;8312:228-242. doi:10.1007/978-3-642-45221-5_17 apa: 'Chatterjee, K., Forejt, V., & Wojtczak, D. (2013). Multi-objective discounted reward verification in graphs and MDPs. Presented at the LPAR: Logic for Programming, Artificial Intelligence, and Reasoning, Stellenbosch, South Africa: Springer. https://doi.org/10.1007/978-3-642-45221-5_17' chicago: Chatterjee, Krishnendu, Vojtěch Forejt, and Dominik Wojtczak. “Multi-Objective Discounted Reward Verification in Graphs and MDPs.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-45221-5_17. ieee: K. Chatterjee, V. Forejt, and D. Wojtczak, “Multi-objective discounted reward verification in graphs and MDPs,” vol. 8312. Springer, pp. 228–242, 2013. ista: Chatterjee K, Forejt V, Wojtczak D. 2013. Multi-objective discounted reward verification in graphs and MDPs. 8312, 228–242. mla: Chatterjee, Krishnendu, et al. Multi-Objective Discounted Reward Verification in Graphs and MDPs. Vol. 8312, Springer, 2013, pp. 228–42, doi:10.1007/978-3-642-45221-5_17. short: K. Chatterjee, V. Forejt, D. Wojtczak, 8312 (2013) 228–242. conference: end_date: 2013-12-19 location: Stellenbosch, South Africa name: 'LPAR: Logic for Programming, Artificial Intelligence, and Reasoning' start_date: 2013-12-14 date_created: 2018-12-11T11:56:30Z date_published: 2013-12-01T00:00:00Z date_updated: 2020-08-11T10:09:42Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-45221-5_17 ec_funded: 1 intvolume: ' 8312' language: - iso: eng month: '12' oa_version: None page: 228 - 242 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication_status: published publisher: Springer publist_id: '4723' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Multi-objective discounted reward verification in graphs and MDPs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8312 year: '2013' ... --- _id: '2292' abstract: - lang: eng text: This book constitutes the thoroughly refereed conference proceedings of the 38th International Symposium on Mathematical Foundations of Computer Science, MFCS 2013, held in Klosterneuburg, Austria, in August 2013. The 67 revised full papers presented together with six invited talks were carefully selected from 191 submissions. Topics covered include algorithmic game theory, algorithmic learning theory, algorithms and data structures, automata, formal languages, bioinformatics, complexity, computational geometry, computer-assisted reasoning, concurrency theory, databases and knowledge-based systems, foundations of computing, logic in computer science, models of computation, semantics and verification of programs, and theoretical issues in artificial intelligence. alternative_title: - LNCS citation: ama: Chatterjee K, Sgall J, eds. Mathematical Foundations of Computer Science 2013. Vol 8087. Springer; 2013:VI-854. doi:10.1007/978-3-642-40313-2 apa: 'Chatterjee, K., & Sgall, J. (Eds.). (2013). Mathematical Foundations of Computer Science 2013 (Vol. 8087, p. VI-854). Presented at the MFCS: Mathematical Foundations of Computer Science, Klosterneuburg, Austria: Springer. https://doi.org/10.1007/978-3-642-40313-2' chicago: Chatterjee, Krishnendu, and Jiri Sgall, eds. Mathematical Foundations of Computer Science 2013. Vol. 8087. Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-40313-2. ieee: K. Chatterjee and J. Sgall, Eds., Mathematical Foundations of Computer Science 2013, vol. 8087. Springer, 2013, p. VI-854. ista: Chatterjee K, Sgall J eds. 2013. Mathematical Foundations of Computer Science 2013, Springer,p. mla: Chatterjee, Krishnendu, and Jiri Sgall, editors. Mathematical Foundations of Computer Science 2013. Vol. 8087, Springer, 2013, p. VI-854, doi:10.1007/978-3-642-40313-2. short: K. Chatterjee, J. Sgall, eds., Mathematical Foundations of Computer Science 2013, Springer, 2013. conference: end_date: 2013-08-30 location: Klosterneuburg, Austria name: 'MFCS: Mathematical Foundations of Computer Science' start_date: 2013-08-26 date_created: 2018-12-11T11:56:48Z date_published: 2013-08-08T00:00:00Z date_updated: 2020-08-11T10:09:45Z day: '08' department: - _id: KrCh doi: 10.1007/978-3-642-40313-2 editor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jiri full_name: Sgall, Jiri last_name: Sgall intvolume: ' 8087' language: - iso: eng month: '08' oa_version: None page: VI - 854 publication_identifier: isbn: - 978-3-642-40312-5 publication_status: published publisher: Springer publist_id: '4636' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Mathematical Foundations of Computer Science 2013 type: conference_editor user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8087 year: '2013' ... --- _id: '2299' abstract: - lang: eng text: 'The standard hardware design flow involves: (a) design of an integrated circuit using a hardware description language, (b) extensive functional and formal verification, and (c) logical synthesis. However, the above-mentioned processes consume significant effort and time. An alternative approach is to use a formal specification language as a high-level hardware description language and synthesize hardware from formal specifications. Our work is a case study of the synthesis of the widely and industrially used AMBA AHB protocol from formal specifications. Bloem et al. presented the first formal specifications for the AMBA AHB Arbiter and synthesized the AHB Arbiter circuit. However, in the first formal specification some important assumptions were missing. Our contributions are as follows: (a) We present detailed formal specifications for the AHB Arbiter incorporating the missing details, and obtain significant improvements in the synthesis results (both with respect to the number of gates in the synthesized circuit and with respect to the time taken to synthesize the circuit), and (b) we present formal specifications to generate compact circuits for the remaining two main components of AMBA AHB, namely, AHB Master and AHB Slave. Thus with systematic description we are able to automatically and completely synthesize an important and widely used industrial protocol.' author: - first_name: Yashdeep full_name: Godhal, Yashdeep id: 5B547124-EB61-11E9-8887-89D9C04DBDF5 last_name: Godhal - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: 'Godhal Y, Chatterjee K, Henzinger TA. Synthesis of AMBA AHB from formal specification: A case study. International Journal on Software Tools for Technology Transfer. 2013;15(5-6):585-601. doi:10.1007/s10009-011-0207-9' apa: 'Godhal, Y., Chatterjee, K., & Henzinger, T. A. (2013). Synthesis of AMBA AHB from formal specification: A case study. International Journal on Software Tools for Technology Transfer. Springer. https://doi.org/10.1007/s10009-011-0207-9' chicago: 'Godhal, Yashdeep, Krishnendu Chatterjee, and Thomas A Henzinger. “Synthesis of AMBA AHB from Formal Specification: A Case Study.” International Journal on Software Tools for Technology Transfer. Springer, 2013. https://doi.org/10.1007/s10009-011-0207-9.' ieee: 'Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of AMBA AHB from formal specification: A case study,” International Journal on Software Tools for Technology Transfer, vol. 15, no. 5–6. Springer, pp. 585–601, 2013.' ista: 'Godhal Y, Chatterjee K, Henzinger TA. 2013. Synthesis of AMBA AHB from formal specification: A case study. International Journal on Software Tools for Technology Transfer. 15(5–6), 585–601.' mla: 'Godhal, Yashdeep, et al. “Synthesis of AMBA AHB from Formal Specification: A Case Study.” International Journal on Software Tools for Technology Transfer, vol. 15, no. 5–6, Springer, 2013, pp. 585–601, doi:10.1007/s10009-011-0207-9.' short: Y. Godhal, K. Chatterjee, T.A. Henzinger, International Journal on Software Tools for Technology Transfer 15 (2013) 585–601. date_created: 2018-12-11T11:56:51Z date_published: 2013-10-01T00:00:00Z date_updated: 2021-01-12T06:56:37Z day: '01' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1007/s10009-011-0207-9 file: - access_level: open_access checksum: 57b06a732dd8d6349190dba6b5b0d33b content_type: application/pdf creator: system date_created: 2018-12-12T10:11:53Z date_updated: 2020-07-14T12:45:37Z file_id: '4910' file_name: IST-2012-87-v1+1_Synthesis_of_AMBA_AHB_from_formal_specifications-_A_case_study.pdf file_size: 277372 relation: main_file file_date_updated: 2020-07-14T12:45:37Z has_accepted_license: '1' intvolume: ' 15' issue: 5-6 language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 585 - 601 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: International Journal on Software Tools for Technology Transfer publication_status: published publisher: Springer publist_id: '4629' pubrep_id: '87' quality_controlled: '1' scopus_import: 1 status: public title: 'Synthesis of AMBA AHB from formal specification: A case study' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2013' ... --- _id: '2446' abstract: - lang: eng text: The model-checking problem for probabilistic systems crucially relies on the translation of LTL to deterministic Rabin automata (DRW). Our recent Safraless translation [KE12, GKE12] for the LTL(F,G) fragment produces smaller automata as compared to the traditional approach. In this work, instead of DRW we consider deterministic automata with acceptance condition given as disjunction of generalized Rabin pairs (DGRW). The Safraless translation of LTL(F,G) formulas to DGRW results in smaller automata as compared to DRW. We present algorithms for probabilistic model-checking as well as game solving for DGRW conditions. Our new algorithms lead to improvement both in terms of theoretical bounds as well as practical evaluation. We compare PRISM with and without our new translation, and show that the new translation leads to significant improvements. alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Andreas full_name: Gaiser, Andreas last_name: Gaiser - first_name: Jan full_name: Kretinsky, Jan id: 44CEF464-F248-11E8-B48F-1D18A9856A87 last_name: Kretinsky orcid: 0000-0002-8122-2881 citation: ama: Chatterjee K, Gaiser A, Kretinsky J. Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. 2013;8044:559-575. doi:10.1007/978-3-642-39799-8_37 apa: 'Chatterjee, K., Gaiser, A., & Kretinsky, J. (2013). Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. Presented at the CAV: Computer Aided Verification, St. Petersburg, Russia: Springer. https://doi.org/10.1007/978-3-642-39799-8_37' chicago: Chatterjee, Krishnendu, Andreas Gaiser, and Jan Kretinsky. “Automata with Generalized Rabin Pairs for Probabilistic Model Checking and LTL Synthesis.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-39799-8_37. ieee: K. Chatterjee, A. Gaiser, and J. Kretinsky, “Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis,” vol. 8044. Springer, pp. 559–575, 2013. ista: Chatterjee K, Gaiser A, Kretinsky J. 2013. Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. 8044, 559–575. mla: Chatterjee, Krishnendu, et al. Automata with Generalized Rabin Pairs for Probabilistic Model Checking and LTL Synthesis. Vol. 8044, Springer, 2013, pp. 559–75, doi:10.1007/978-3-642-39799-8_37. short: K. Chatterjee, A. Gaiser, J. Kretinsky, 8044 (2013) 559–575. conference: end_date: 2013-07-19 location: St. Petersburg, Russia name: 'CAV: Computer Aided Verification' start_date: 2013-07-13 date_created: 2018-12-11T11:57:42Z date_published: 2013-07-01T00:00:00Z date_updated: 2020-08-11T10:09:47Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-39799-8_37 ec_funded: 1 external_id: arxiv: - '1304.5281' intvolume: ' 8044' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1304.5281 month: '07' oa: 1 oa_version: Preprint page: 559 - 575 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '4457' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8044 year: '2013' ... --- _id: '2444' abstract: - lang: eng text: 'We consider two core algorithmic problems for probabilistic verification: the maximal end-component decomposition and the almost-sure reachability set computation for Markov decision processes (MDPs). For MDPs with treewidth k, we present two improved static algorithms for both the problems that run in time O(n·k 2.38·2k ) and O(m·logn· k), respectively, where n is the number of states and m is the number of edges, significantly improving the previous known O(n·k·√n· k) bound for low treewidth. We also present decremental algorithms for both problems for MDPs with constant treewidth that run in amortized logarithmic time, which is a huge improvement over the previously known algorithms that require amortized linear time.' alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jakub full_name: Ła̧Cki, Jakub last_name: Ła̧Cki citation: ama: Chatterjee K, Ła̧Cki J. Faster algorithms for Markov decision processes with low treewidth. 2013;8044:543-558. doi:10.1007/978-3-642-39799-8_36 apa: 'Chatterjee, K., & Ła̧Cki, J. (2013). Faster algorithms for Markov decision processes with low treewidth. Presented at the CAV: Computer Aided Verification, St. Petersburg, Russia: Springer. https://doi.org/10.1007/978-3-642-39799-8_36' chicago: Chatterjee, Krishnendu, and Jakub Ła̧Cki. “Faster Algorithms for Markov Decision Processes with Low Treewidth.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-39799-8_36. ieee: K. Chatterjee and J. Ła̧Cki, “Faster algorithms for Markov decision processes with low treewidth,” vol. 8044. Springer, pp. 543–558, 2013. ista: Chatterjee K, Ła̧Cki J. 2013. Faster algorithms for Markov decision processes with low treewidth. 8044, 543–558. mla: Chatterjee, Krishnendu, and Jakub Ła̧Cki. Faster Algorithms for Markov Decision Processes with Low Treewidth. Vol. 8044, Springer, 2013, pp. 543–58, doi:10.1007/978-3-642-39799-8_36. short: K. Chatterjee, J. Ła̧Cki, 8044 (2013) 543–558. conference: end_date: 2013-07-19 location: St. Petersburg, Russia name: 'CAV: Computer Aided Verification' start_date: 2013-07-13 date_created: 2018-12-11T11:57:42Z date_published: 2013-07-01T00:00:00Z date_updated: 2020-08-11T10:09:47Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-39799-8_36 ec_funded: 1 external_id: arxiv: - '1304.0084' intvolume: ' 8044' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1304.0084 month: '07' oa: 1 oa_version: Preprint page: 543 - 558 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '4459' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Faster algorithms for Markov decision processes with low treewidth type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8044 year: '2013' ... --- _id: '2814' abstract: - lang: eng text: We study the problem of generating a test sequence that achieves maximal coverage for a reactive system under test. We formulate the problem as a repeated game between the tester and the system, where the system state space is partitioned according to some coverage criterion and the objective of the tester is to maximize the set of partitions (or coverage goals) visited during the game. We show the complexity of the maximal coverage problem for non-deterministic systems is PSPACE-complete, but is NP-complete for deterministic systems. For the special case of non-deterministic systems with a re-initializing "reset" action, which represent running a new test input on a re-initialized system, we show that the complexity is coNP-complete. Our proof technique for reset games uses randomized testing strategies that circumvent the exponentially large memory requirement of deterministic testing strategies. We also discuss the memory requirement for deterministic strategies and extensions of our results to other models, such as pushdown systems and timed systems. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Luca full_name: Alfaro, Luca last_name: Alfaro - first_name: Ritankar full_name: Majumdar, Ritankar last_name: Majumdar citation: ama: Chatterjee K, Alfaro L, Majumdar R. The complexity of coverage. International Journal of Foundations of Computer Science. 2013;24(2):165-185. doi:10.1142/S0129054113400066 apa: Chatterjee, K., Alfaro, L., & Majumdar, R. (2013). The complexity of coverage. International Journal of Foundations of Computer Science. World Scientific Publishing. https://doi.org/10.1142/S0129054113400066 chicago: Chatterjee, Krishnendu, Luca Alfaro, and Ritankar Majumdar. “The Complexity of Coverage.” International Journal of Foundations of Computer Science. World Scientific Publishing, 2013. https://doi.org/10.1142/S0129054113400066. ieee: K. Chatterjee, L. Alfaro, and R. Majumdar, “The complexity of coverage,” International Journal of Foundations of Computer Science, vol. 24, no. 2. World Scientific Publishing, pp. 165–185, 2013. ista: Chatterjee K, Alfaro L, Majumdar R. 2013. The complexity of coverage. International Journal of Foundations of Computer Science. 24(2), 165–185. mla: Chatterjee, Krishnendu, et al. “The Complexity of Coverage.” International Journal of Foundations of Computer Science, vol. 24, no. 2, World Scientific Publishing, 2013, pp. 165–85, doi:10.1142/S0129054113400066. short: K. Chatterjee, L. Alfaro, R. Majumdar, International Journal of Foundations of Computer Science 24 (2013) 165–185. date_created: 2018-12-11T11:59:44Z date_published: 2013-02-01T00:00:00Z date_updated: 2021-01-12T06:59:54Z day: '01' department: - _id: KrCh doi: 10.1142/S0129054113400066 ec_funded: 1 external_id: arxiv: - '0804.4525' intvolume: ' 24' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/0804.4525 month: '02' oa: 1 oa_version: Preprint page: 165 - 185 project: - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: International Journal of Foundations of Computer Science publication_status: published publisher: World Scientific Publishing publist_id: '4070' quality_controlled: '1' scopus_import: 1 status: public title: The complexity of coverage type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2013' ... --- _id: '2817' abstract: - lang: eng text: The basic idea of evolutionary game theory is that payoff determines reproductive rate. Successful individuals have a higher payoff and produce more offspring. But in evolutionary and ecological situations there is not only reproductive rate but also carrying capacity. Individuals may differ in their exposure to density limiting effects. Here we explore an alternative approach to evolutionary game theory by assuming that the payoff from the game determines the carrying capacity of individual phenotypes. Successful strategies are less affected by density limitation (crowding) and reach higher equilibrium abundance. We demonstrate similarities and differences between our framework and the standard replicator equation. Our equation is defined on the positive orthant, instead of the simplex, but has the same equilibrium points as the replicator equation. Linear stability analysis produces the classical conditions for asymptotic stability of pure strategies, but the stability properties of internal equilibria can differ in the two frameworks. For example, in a two-strategy game with an internal equilibrium that is always stable under the replicator equation, the corresponding equilibrium can be unstable in the new framework resulting in a limit cycle. author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Novak S, Chatterjee K, Nowak M. Density games. Journal of Theoretical Biology. 2013;334:26-34. doi:10.1016/j.jtbi.2013.05.029 apa: Novak, S., Chatterjee, K., & Nowak, M. (2013). Density games. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2013.05.029 chicago: Novak, Sebastian, Krishnendu Chatterjee, and Martin Nowak. “Density Games.” Journal of Theoretical Biology. Elsevier, 2013. https://doi.org/10.1016/j.jtbi.2013.05.029. ieee: S. Novak, K. Chatterjee, and M. Nowak, “Density games,” Journal of Theoretical Biology, vol. 334. Elsevier, pp. 26–34, 2013. ista: Novak S, Chatterjee K, Nowak M. 2013. Density games. Journal of Theoretical Biology. 334, 26–34. mla: Novak, Sebastian, et al. “Density Games.” Journal of Theoretical Biology, vol. 334, Elsevier, 2013, pp. 26–34, doi:10.1016/j.jtbi.2013.05.029. short: S. Novak, K. Chatterjee, M. Nowak, Journal of Theoretical Biology 334 (2013) 26–34. date_created: 2018-12-11T11:59:45Z date_published: 2013-10-07T00:00:00Z date_updated: 2021-01-12T06:59:55Z day: '07' ddc: - '000' department: - _id: NiBa - _id: KrCh doi: 10.1016/j.jtbi.2013.05.029 ec_funded: 1 file: - access_level: open_access checksum: 3c29059ab03a4b8f97a07646b817ddbb content_type: application/pdf creator: system date_created: 2018-12-12T10:14:54Z date_updated: 2020-07-14T12:45:49Z file_id: '5110' file_name: IST-2016-400-v1+1_1-s2.0-S0022519313002609-main.pdf file_size: 834604 relation: main_file file_date_updated: 2020-07-14T12:45:49Z has_accepted_license: '1' intvolume: ' 334' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 26 - 34 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '3984' pubrep_id: '400' quality_controlled: '1' scopus_import: 1 status: public title: Density games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 334 year: '2013' ... --- _id: '2819' abstract: - lang: eng text: 'We introduce quantatitive timed refinement metrics and quantitative timed simulation functions, incorporating zenoness checks, for timed systems. These functions assign positive real numbers between zero and infinity which quantify the timing mismatches between two timed systems, amongst non-zeno runs. We quantify timing mismatches in three ways: (1) the maximum timing mismatch that can arise, (2) the "steady-state" maximum timing mismatches, where initial transient timing mismatches are ignored; and (3) the (long-run) average timing mismatches amongst two systems. These three kinds of mismatches constitute three important types of timing differences. Our event times are the global times, measured from the start of the system execution, not just the time durations of individual steps. We present algorithms over timed automata for computing the three quantitative simulation functions to within any desired degree of accuracy. In order to compute the values of the quantitative simulation functions, we use a game theoretic formulation. We introduce two new kinds of objectives for two player games on finite state game graphs: (1) eventual debit-sum level objectives, and (2) average debit-sum level objectives. We present algorithms for computing the optimal values for these objectives for player 1, and then use these algorithms to compute the values of the quantitative timed simulation functions. ' acknowledgement: 'This work has been financially supported in part by the European Commission FP7-ICT Cognitive Systems, Interaction, and Robotics under the contract # 270180 (NOP-TILUS); by Fundacao para Ciencia e Tecnologia under project PTDC/EEA-CRO/104901/2008 (Modeling and control of Networked vehicle systems in persistent autonomous operations); by Austrian Science Fund (FWF) Grant No P 23499-N23 on Modern Graph Algorithmic Techniques in Formal Verification; FWF NFN Grant No S11407-N23 (RiSE); ERC Start grant (279307: Graph Games); and the Microsoft faculty fellows award' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: 'Chatterjee K, Prabhu V. Quantitative timed simulation functions and refinement metrics for real-time systems. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. Vol 1. Springer; 2013:273-282. doi:10.1145/2461328.2461370' apa: 'Chatterjee, K., & Prabhu, V. (2013). Quantitative timed simulation functions and refinement metrics for real-time systems. In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (Vol. 1, pp. 273–282). Philadelphia, PA USA: Springer. https://doi.org/10.1145/2461328.2461370' chicago: 'Chatterjee, Krishnendu, and Vinayak Prabhu. “Quantitative Timed Simulation Functions and Refinement Metrics for Real-Time Systems.” In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, 1:273–82. Springer, 2013. https://doi.org/10.1145/2461328.2461370.' ieee: 'K. Chatterjee and V. Prabhu, “Quantitative timed simulation functions and refinement metrics for real-time systems,” in Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, Philadelphia, PA USA, 2013, vol. 1, pp. 273–282.' ista: 'Chatterjee K, Prabhu V. 2013. Quantitative timed simulation functions and refinement metrics for real-time systems. Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. HSCC: Hybrid Systems - Computation and Control vol. 1, 273–282.' mla: 'Chatterjee, Krishnendu, and Vinayak Prabhu. “Quantitative Timed Simulation Functions and Refinement Metrics for Real-Time Systems.” Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, vol. 1, Springer, 2013, pp. 273–82, doi:10.1145/2461328.2461370.' short: 'K. Chatterjee, V. Prabhu, in:, Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, Springer, 2013, pp. 273–282.' conference: end_date: 2013-04-11 location: Philadelphia, PA USA name: 'HSCC: Hybrid Systems - Computation and Control' start_date: 2013-04-08 date_created: 2018-12-11T11:59:46Z date_published: 2013-04-01T00:00:00Z date_updated: 2021-01-12T06:59:56Z day: '01' department: - _id: KrCh doi: 10.1145/2461328.2461370 ec_funded: 1 intvolume: ' 1' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1212.6556 month: '04' oa: 1 oa_version: Preprint page: 273 - 282 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 'Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control' publication_status: published publisher: Springer publist_id: '3982' quality_controlled: '1' scopus_import: 1 status: public title: Quantitative timed simulation functions and refinement metrics for real-time systems type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2013' ... --- _id: '2824' abstract: - lang: eng text: We study synthesis of controllers for real-time systems, where the objective is to stay in a given safe set. The problem is solved by obtaining winning strategies in the setting of concurrent two player timed automaton games with safety objectives. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a Zeno run. We construct winning strategies for the controller which require access only to (1) the system clocks (thus, controllers which require their own internal infinitely precise clocks are not necessary), and (2) a logarithmic (in the number of clocks) number of memory bits (i.e. a linear number of memory states). Precisely, we show that for safety objectives, a memory of size (3 + lg (| C | + 1)) bits suffices for winning controller strategies, where C is the set of clocks of the timed automaton game, significantly improving the previous known exponential memory states bound. We also settle the open question of whether winning region-based strategies require memory for safety objectives by showing with an example the necessity of memory for such strategies to win for safety objectives. Finally, we show that the decision problem of determining if there exists a receptive player-1 winning strategy for safety objectives is EXPTIME-complete over timed automaton games. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: Chatterjee K, Prabhu V. Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. 2013;228-229:83-119. doi:10.1016/j.ic.2013.04.003 apa: Chatterjee, K., & Prabhu, V. (2013). Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. Elsevier. https://doi.org/10.1016/j.ic.2013.04.003 chicago: Chatterjee, Krishnendu, and Vinayak Prabhu. “Synthesis of Memory-Efficient, Clock-Memory Free, and Non-Zeno Safety Controllers for Timed Systems.” Information and Computation. Elsevier, 2013. https://doi.org/10.1016/j.ic.2013.04.003. ieee: K. Chatterjee and V. Prabhu, “Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems,” Information and Computation, vol. 228–229. Elsevier, pp. 83–119, 2013. ista: Chatterjee K, Prabhu V. 2013. Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems. Information and Computation. 228–229, 83–119. mla: Chatterjee, Krishnendu, and Vinayak Prabhu. “Synthesis of Memory-Efficient, Clock-Memory Free, and Non-Zeno Safety Controllers for Timed Systems.” Information and Computation, vol. 228–229, Elsevier, 2013, pp. 83–119, doi:10.1016/j.ic.2013.04.003. short: K. Chatterjee, V. Prabhu, Information and Computation 228–229 (2013) 83–119. date_created: 2018-12-11T11:59:47Z date_published: 2013-04-24T00:00:00Z date_updated: 2021-01-12T06:59:58Z day: '24' department: - _id: KrCh doi: 10.1016/j.ic.2013.04.003 ec_funded: 1 language: - iso: eng month: '04' oa_version: None page: 83-119 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Information and Computation publication_status: published publisher: Elsevier publist_id: '3977' quality_controlled: '1' scopus_import: 1 status: public title: Synthesis of memory-efficient, clock-memory free, and non-Zeno safety controllers for timed systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 228-229 year: '2013' ... --- _id: '2836' abstract: - lang: eng text: 'We study the automatic synthesis of fair non-repudiation protocols, a class of fair exchange protocols, used for digital contract signing. First, we show how to specify the objectives of the participating agents and the trusted third party as path formulas in linear temporal logic and prove that the satisfaction of these objectives imply fairness; a property required of fair exchange protocols. We then show that weak (co-operative) co-synthesis and classical (strictly competitive) co-synthesis fail, whereas assume-guarantee synthesis (AGS) succeeds. We demonstrate the success of AGS as follows: (a) any solution of AGS is attack-free; no subset of participants can violate the objectives of the other participants; (b) the Asokan-Shoup-Waidner certified mail protocol that has known vulnerabilities is not a solution of AGS; (c) the Kremer-Markowitch non-repudiation protocol is a solution of AGS; and (d) AGS presents a new and symmetric fair non-repudiation protocol that is attack-free. To our knowledge this is the first application of synthesis to fair non-repudiation protocols, and our results show how synthesis can both automatically discover vulnerabilities in protocols and generate correct protocols. The solution to AGS can be computed efficiently as the secure equilibrium solution of three-player graph games. ' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vishwanath full_name: Raman, Vishwanath last_name: Raman citation: ama: Chatterjee K, Raman V. Assume-guarantee synthesis for digital contract signing. Formal Aspects of Computing. 2013;26(4):825-859. doi:10.1007/s00165-013-0283-6 apa: Chatterjee, K., & Raman, V. (2013). Assume-guarantee synthesis for digital contract signing. Formal Aspects of Computing. Springer. https://doi.org/10.1007/s00165-013-0283-6 chicago: Chatterjee, Krishnendu, and Vishwanath Raman. “Assume-Guarantee Synthesis for Digital Contract Signing.” Formal Aspects of Computing. Springer, 2013. https://doi.org/10.1007/s00165-013-0283-6. ieee: K. Chatterjee and V. Raman, “Assume-guarantee synthesis for digital contract signing,” Formal Aspects of Computing, vol. 26, no. 4. Springer, pp. 825–859, 2013. ista: Chatterjee K, Raman V. 2013. Assume-guarantee synthesis for digital contract signing. Formal Aspects of Computing. 26(4), 825–859. mla: Chatterjee, Krishnendu, and Vishwanath Raman. “Assume-Guarantee Synthesis for Digital Contract Signing.” Formal Aspects of Computing, vol. 26, no. 4, Springer, 2013, pp. 825–59, doi:10.1007/s00165-013-0283-6. short: K. Chatterjee, V. Raman, Formal Aspects of Computing 26 (2013) 825–859. date_created: 2018-12-11T11:59:51Z date_published: 2013-07-04T00:00:00Z date_updated: 2021-01-12T07:00:06Z day: '04' department: - _id: KrCh doi: 10.1007/s00165-013-0283-6 ec_funded: 1 external_id: arxiv: - '1004.2697' intvolume: ' 26' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1004.2697 month: '07' oa: 1 oa_version: Preprint page: 825 - 859 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Formal Aspects of Computing publication_status: published publisher: Springer publist_id: '3963' quality_controlled: '1' scopus_import: 1 status: public title: Assume-guarantee synthesis for digital contract signing type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2013' ... --- _id: '2854' abstract: - lang: eng text: We consider concurrent games played on graphs. At every round of a game, each player simultaneously and independently selects a move; the moves jointly determine the transition to a successor state. Two basic objectives are the safety objective to stay forever in a given set of states, and its dual, the reachability objective to reach a given set of states. First, we present a simple proof of the fact that in concurrent reachability games, for all ε>0, memoryless ε-optimal strategies exist. A memoryless strategy is independent of the history of plays, and an ε-optimal strategy achieves the objective with probability within ε of the value of the game. In contrast to previous proofs of this fact, our proof is more elementary and more combinatorial. Second, we present a strategy-improvement (a.k.a. policy-iteration) algorithm for concurrent games with reachability objectives. Finally, we present a strategy-improvement algorithm for turn-based stochastic games (where each player selects moves in turns) with safety objectives. Our algorithms yield sequences of player-1 strategies which ensure probabilities of winning that converge monotonically (from below) to the value of the game. © 2012 Elsevier Inc. acknowledgement: This work was partially supported in part by the NSF grants CCR-0132780, CNS-0720884, CCR-0225610, by the Swiss National Science Foundation, ERC Start Grant Graph Games (Project No. 279307), FWF NFN Grant S11407-N23 (RiSE), and a Microsoft faculty fellows article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Luca full_name: De Alfaro, Luca last_name: De Alfaro - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 citation: ama: Chatterjee K, De Alfaro L, Henzinger TA. Strategy improvement for concurrent reachability and turn based stochastic safety games. Journal of Computer and System Sciences. 2013;79(5):640-657. doi:10.1016/j.jcss.2012.12.001 apa: Chatterjee, K., De Alfaro, L., & Henzinger, T. A. (2013). Strategy improvement for concurrent reachability and turn based stochastic safety games. Journal of Computer and System Sciences. Elsevier. https://doi.org/10.1016/j.jcss.2012.12.001 chicago: Chatterjee, Krishnendu, Luca De Alfaro, and Thomas A Henzinger. “Strategy Improvement for Concurrent Reachability and Turn Based Stochastic Safety Games.” Journal of Computer and System Sciences. Elsevier, 2013. https://doi.org/10.1016/j.jcss.2012.12.001. ieee: K. Chatterjee, L. De Alfaro, and T. A. Henzinger, “Strategy improvement for concurrent reachability and turn based stochastic safety games,” Journal of Computer and System Sciences, vol. 79, no. 5. Elsevier, pp. 640–657, 2013. ista: Chatterjee K, De Alfaro L, Henzinger TA. 2013. Strategy improvement for concurrent reachability and turn based stochastic safety games. Journal of Computer and System Sciences. 79(5), 640–657. mla: Chatterjee, Krishnendu, et al. “Strategy Improvement for Concurrent Reachability and Turn Based Stochastic Safety Games.” Journal of Computer and System Sciences, vol. 79, no. 5, Elsevier, 2013, pp. 640–57, doi:10.1016/j.jcss.2012.12.001. short: K. Chatterjee, L. De Alfaro, T.A. Henzinger, Journal of Computer and System Sciences 79 (2013) 640–657. date_created: 2018-12-11T11:59:57Z date_published: 2013-08-01T00:00:00Z date_updated: 2021-01-12T07:00:16Z day: '01' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.1016/j.jcss.2012.12.001 ec_funded: 1 file: - access_level: open_access checksum: 6d3ee12cceb946a0abe69594b6a22409 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:48Z date_updated: 2020-07-14T12:45:51Z file_id: '5370' file_name: IST-2015-388-v1+1_1-s2.0-S0022000012001778-main.pdf file_size: 425488 relation: main_file file_date_updated: 2020-07-14T12:45:51Z has_accepted_license: '1' intvolume: ' 79' issue: '5' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '08' oa: 1 oa_version: Published Version page: 640 - 657 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Journal of Computer and System Sciences publication_status: published publisher: Elsevier publist_id: '3938' pubrep_id: '388' quality_controlled: '1' scopus_import: 1 status: public title: Strategy improvement for concurrent reachability and turn based stochastic safety games tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 79 year: '2013' ... --- _id: '2886' abstract: - lang: eng text: We focus on the realizability problem of Message Sequence Graphs (MSG), i.e. the problem whether a given MSG specification is correctly distributable among parallel components communicating via messages. This fundamental problem of MSG is known to be undecidable. We introduce a well motivated restricted class of MSG, so called controllable-choice MSG, and show that all its models are realizable and moreover it is decidable whether a given MSG model is a member of this class. In more detail, this class of MSG specifications admits a deadlock-free realization by overloading existing messages with additional bounded control data. We also show that the presented class is the largest known subclass of MSG that allows for deadlock-free realization. alternative_title: - LNCS author: - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Vojtěch full_name: Řehák, Vojtěch last_name: Řehák citation: ama: Chmelik M, Řehák V. Controllable-choice message sequence graphs. 2013;7721:118-130. doi:10.1007/978-3-642-36046-6_12 apa: 'Chmelik, M., & Řehák, V. (2013). Controllable-choice message sequence graphs. Presented at the MEMICS: Mathematical and Engineering Methods in Computer Science, Znojmo, Czech Republic: Springer. https://doi.org/10.1007/978-3-642-36046-6_12' chicago: Chmelik, Martin, and Vojtěch Řehák. “Controllable-Choice Message Sequence Graphs.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-36046-6_12. ieee: M. Chmelik and V. Řehák, “Controllable-choice message sequence graphs,” vol. 7721. Springer, pp. 118–130, 2013. ista: Chmelik M, Řehák V. 2013. Controllable-choice message sequence graphs. 7721, 118–130. mla: Chmelik, Martin, and Vojtěch Řehák. Controllable-Choice Message Sequence Graphs. Vol. 7721, Springer, 2013, pp. 118–30, doi:10.1007/978-3-642-36046-6_12. short: M. Chmelik, V. Řehák, 7721 (2013) 118–130. conference: end_date: 2012-10-28 location: Znojmo, Czech Republic name: 'MEMICS: Mathematical and Engineering Methods in Computer Science' start_date: 2012-10-25 date_created: 2018-12-11T12:00:09Z date_published: 2013-01-09T00:00:00Z date_updated: 2020-08-11T10:09:52Z day: '09' department: - _id: KrCh doi: 10.1007/978-3-642-36046-6_12 ec_funded: 1 intvolume: ' 7721' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1209.4499 month: '01' oa: 1 oa_version: Submitted Version page: 118 - 130 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '3873' quality_controlled: '1' scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Controllable-choice message sequence graphs type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7721 year: '2013' ... --- _id: '3116' abstract: - lang: eng text: Multithreaded programs coordinate their interaction through synchronization primitives like mutexes and semaphores, which are managed by an OS-provided resource manager. We propose algorithms for the automatic construction of code-aware resource managers for multithreaded embedded applications. Such managers use knowledge about the structure and resource usage (mutex and semaphore usage) of the threads to guarantee deadlock freedom and progress while managing resources in an efficient way. Our algorithms compute managers as winning strategies in certain infinite games, and produce a compact code description of these strategies. We have implemented the algorithms in the tool Cynthesis. Given a multithreaded program in C, the tool produces C code implementing a code-aware resource manager. We show in experiments that Cynthesis produces compact resource managers within a few minutes on a set of embedded benchmarks with up to 6 threads. © 2012 Springer Science+Business Media, LLC. acknowledgement: This research was supported in part by the National Science Foundation CAREER award CCR-0132780, by the ONR grant N00014-02-1-0671, by the National Science Foundation grants CCR-0427202 and CCR-0234690, and by the ARP award TO.030.MM.D. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Luca full_name: De Alfaro, Luca last_name: De Alfaro - first_name: Marco full_name: Faella, Marco last_name: Faella - first_name: Ritankar full_name: Majumdar, Ritankar last_name: Majumdar - first_name: Vishwanath full_name: Raman, Vishwanath last_name: Raman citation: ama: Chatterjee K, De Alfaro L, Faella M, Majumdar R, Raman V. Code aware resource management. Formal Methods in System Design. 2013;42(2):142-174. doi:10.1007/s10703-012-0170-4 apa: Chatterjee, K., De Alfaro, L., Faella, M., Majumdar, R., & Raman, V. (2013). Code aware resource management. Formal Methods in System Design. Springer. https://doi.org/10.1007/s10703-012-0170-4 chicago: Chatterjee, Krishnendu, Luca De Alfaro, Marco Faella, Ritankar Majumdar, and Vishwanath Raman. “Code Aware Resource Management.” Formal Methods in System Design. Springer, 2013. https://doi.org/10.1007/s10703-012-0170-4. ieee: K. Chatterjee, L. De Alfaro, M. Faella, R. Majumdar, and V. Raman, “Code aware resource management,” Formal Methods in System Design, vol. 42, no. 2. Springer, pp. 142–174, 2013. ista: Chatterjee K, De Alfaro L, Faella M, Majumdar R, Raman V. 2013. Code aware resource management. Formal Methods in System Design. 42(2), 142–174. mla: Chatterjee, Krishnendu, et al. “Code Aware Resource Management.” Formal Methods in System Design, vol. 42, no. 2, Springer, 2013, pp. 142–74, doi:10.1007/s10703-012-0170-4. short: K. Chatterjee, L. De Alfaro, M. Faella, R. Majumdar, V. Raman, Formal Methods in System Design 42 (2013) 142–174. date_created: 2018-12-11T12:01:29Z date_published: 2013-04-01T00:00:00Z date_updated: 2021-01-12T07:41:10Z day: '01' department: - _id: KrCh doi: 10.1007/s10703-012-0170-4 intvolume: ' 42' issue: '2' language: - iso: eng month: '04' oa_version: None page: 142 - 174 publication: Formal Methods in System Design publication_status: published publisher: Springer publist_id: '3583' quality_controlled: '1' scopus_import: 1 status: public title: Code aware resource management type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2013' ... --- _id: '2831' abstract: - lang: eng text: 'We consider Markov decision processes (MDPs) with Büchi (liveness) objectives. We consider the problem of computing the set of almost-sure winning states from where the objective can be ensured with probability 1. Our contributions are as follows: First, we present the first subquadratic symbolic algorithm to compute the almost-sure winning set for MDPs with Büchi objectives; our algorithm takes O(n · √ m) symbolic steps as compared to the previous known algorithm that takes O(n 2) symbolic steps, where n is the number of states and m is the number of edges of the MDP. In practice MDPs have constant out-degree, and then our symbolic algorithm takes O(n · √ n) symbolic steps, as compared to the previous known O(n 2) symbolic steps algorithm. Second, we present a new algorithm, namely win-lose algorithm, with the following two properties: (a) the algorithm iteratively computes subsets of the almost-sure winning set and its complement, as compared to all previous algorithms that discover the almost-sure winning set upon termination; and (b) requires O(n · √ K) symbolic steps, where K is the maximal number of edges of strongly connected components (scc''s) of the MDP. The win-lose algorithm requires symbolic computation of scc''s. Third, we improve the algorithm for symbolic scc computation; the previous known algorithm takes linear symbolic steps, and our new algorithm improves the constants associated with the linear number of steps. In the worst case the previous known algorithm takes 5×n symbolic steps, whereas our new algorithm takes 4×n symbolic steps.' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Manas full_name: Joglekar, Manas last_name: Joglekar - first_name: Nisarg full_name: Shah, Nisarg last_name: Shah citation: ama: Chatterjee K, Henzinger MH, Joglekar M, Shah N. Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives. Formal Methods in System Design. 2013;42(3):301-327. doi:10.1007/s10703-012-0180-2 apa: Chatterjee, K., Henzinger, M. H., Joglekar, M., & Shah, N. (2013). Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives. Formal Methods in System Design. Springer. https://doi.org/10.1007/s10703-012-0180-2 chicago: Chatterjee, Krishnendu, Monika H Henzinger, Manas Joglekar, and Nisarg Shah. “Symbolic Algorithms for Qualitative Analysis of Markov Decision Processes with Büchi Objectives.” Formal Methods in System Design. Springer, 2013. https://doi.org/10.1007/s10703-012-0180-2. ieee: K. Chatterjee, M. H. Henzinger, M. Joglekar, and N. Shah, “Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives,” Formal Methods in System Design, vol. 42, no. 3. Springer, pp. 301–327, 2013. ista: Chatterjee K, Henzinger MH, Joglekar M, Shah N. 2013. Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives. Formal Methods in System Design. 42(3), 301–327. mla: Chatterjee, Krishnendu, et al. “Symbolic Algorithms for Qualitative Analysis of Markov Decision Processes with Büchi Objectives.” Formal Methods in System Design, vol. 42, no. 3, Springer, 2013, pp. 301–27, doi:10.1007/s10703-012-0180-2. short: K. Chatterjee, M.H. Henzinger, M. Joglekar, N. Shah, Formal Methods in System Design 42 (2013) 301–327. date_created: 2018-12-11T11:59:49Z date_published: 2013-06-01T00:00:00Z date_updated: 2023-02-23T11:23:04Z day: '01' department: - _id: KrCh doi: 10.1007/s10703-012-0180-2 ec_funded: 1 external_id: arxiv: - '1104.3348' intvolume: ' 42' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1104.3348 month: '06' oa: 1 oa_version: Preprint page: 301 - 327 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Formal Methods in System Design publication_status: published publisher: Springer publist_id: '3968' quality_controlled: '1' related_material: record: - id: '3342' relation: earlier_version status: public scopus_import: '1' status: public title: Symbolic algorithms for qualitative analysis of Markov decision processes with Büchi objectives type: journal_article user_id: 72615eeb-f1f3-11ec-aa25-d4573ddc34fd volume: 42 year: '2013' ... --- _id: '2279' abstract: - lang: eng text: We consider two-player games played on weighted directed graphs with mean-payoff and total-payoff objectives, two classical quantitative objectives. While for single-dimensional games the complexity and memory bounds for both objectives coincide, we show that in contrast to multi-dimensional mean-payoff games that are known to be coNP-complete, multi-dimensional total-payoff games are undecidable. We introduce conservative approximations of these objectives, where the payoff is considered over a local finite window sliding along a play, instead of the whole play. For single dimension, we show that (i) if the window size is polynomial, deciding the winner takes polynomial time, and (ii) the existence of a bounded window can be decided in NP ∩ coNP, and is at least as hard as solving mean-payoff games. For multiple dimensions, we show that (i) the problem with fixed window size is EXPTIME-complete, and (ii) there is no primitive-recursive algorithm to decide the existence of a bounded window. acknowledgement: 279307; ERC; Fonds National de la Reserche Luxembourg; 279499; ERC; Fonds National de la Reserche Luxembourg alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Laurent full_name: Doyen, Laurent last_name: Doyen - first_name: Mickael full_name: Randour, Mickael last_name: Randour - first_name: Jean full_name: Raskin, Jean last_name: Raskin citation: ama: Chatterjee K, Doyen L, Randour M, Raskin J. Looking at mean-payoff and total-payoff through windows. 2013;8172:118-132. doi:10.1007/978-3-319-02444-8_10 apa: 'Chatterjee, K., Doyen, L., Randour, M., & Raskin, J. (2013). Looking at mean-payoff and total-payoff through windows. Presented at the ATVA: Automated Technology for Verification and Analysis, Hanoi, Vietnam: Springer. https://doi.org/10.1007/978-3-319-02444-8_10' chicago: Chatterjee, Krishnendu, Laurent Doyen, Mickael Randour, and Jean Raskin. “Looking at Mean-Payoff and Total-Payoff through Windows.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-319-02444-8_10. ieee: K. Chatterjee, L. Doyen, M. Randour, and J. Raskin, “Looking at mean-payoff and total-payoff through windows,” vol. 8172. Springer, pp. 118–132, 2013. ista: Chatterjee K, Doyen L, Randour M, Raskin J. 2013. Looking at mean-payoff and total-payoff through windows. 8172, 118–132. mla: Chatterjee, Krishnendu, et al. Looking at Mean-Payoff and Total-Payoff through Windows. Vol. 8172, Springer, 2013, pp. 118–32, doi:10.1007/978-3-319-02444-8_10. short: K. Chatterjee, L. Doyen, M. Randour, J. Raskin, 8172 (2013) 118–132. conference: end_date: 2013-10-18 location: Hanoi, Vietnam name: 'ATVA: Automated Technology for Verification and Analysis' start_date: 2013-10-15 date_created: 2018-12-11T11:56:44Z date_published: 2013-01-01T00:00:00Z date_updated: 2023-02-23T12:22:51Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-319-02444-8_10 ec_funded: 1 intvolume: ' 8172' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1302.4248 month: '01' oa: 1 oa_version: Preprint page: 118 - 132 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication_status: published publisher: Springer publist_id: '4656' quality_controlled: '1' related_material: record: - id: '523' relation: later_version status: public scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Looking at mean-payoff and total-payoff through windows type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8172 year: '2013' ... --- _id: '5399' abstract: - lang: eng text: In this work we present a flexible tool for tumor progression, which simulates the evolutionary dynamics of cancer. Tumor progression implements a multi-type branching process where the key parameters are the fitness landscape, the mutation rate, and the average time of cell division. The fitness of a cancer cell depends on the mutations it has accumulated. The input to our tool could be any fitness landscape, mutation rate, and cell division time, and the tool produces the growth dynamics and all relevant statistics. alternative_title: - IST Austria Technical Report author: - first_name: Johannes full_name: Reiter, Johannes id: 4A918E98-F248-11E8-B48F-1D18A9856A87 last_name: Reiter orcid: 0000-0002-0170-7353 - first_name: Ivana full_name: Bozic, Ivana last_name: Bozic - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: 'Reiter J, Bozic I, Chatterjee K, Nowak M. TTP: Tool for Tumor Progression. IST Austria; 2013. doi:10.15479/AT:IST-2013-104-v1-1' apa: 'Reiter, J., Bozic, I., Chatterjee, K., & Nowak, M. (2013). TTP: Tool for Tumor Progression. IST Austria. https://doi.org/10.15479/AT:IST-2013-104-v1-1' chicago: 'Reiter, Johannes, Ivana Bozic, Krishnendu Chatterjee, and Martin Nowak. TTP: Tool for Tumor Progression. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-104-v1-1.' ieee: 'J. Reiter, I. Bozic, K. Chatterjee, and M. Nowak, TTP: Tool for Tumor Progression. IST Austria, 2013.' ista: 'Reiter J, Bozic I, Chatterjee K, Nowak M. 2013. TTP: Tool for Tumor Progression, IST Austria, 17p.' mla: 'Reiter, Johannes, et al. TTP: Tool for Tumor Progression. IST Austria, 2013, doi:10.15479/AT:IST-2013-104-v1-1.' short: 'J. Reiter, I. Bozic, K. Chatterjee, M. Nowak, TTP: Tool for Tumor Progression, IST Austria, 2013.' date_created: 2018-12-12T11:39:07Z date_published: 2013-01-11T00:00:00Z date_updated: 2023-02-23T10:23:57Z day: '11' ddc: - '000' department: - _id: KrCh doi: 10.15479/AT:IST-2013-104-v1-1 file: - access_level: open_access checksum: 2cc8c6e157eca1271128db80bb3dec80 content_type: application/pdf creator: system date_created: 2018-12-12T11:54:20Z date_updated: 2020-07-14T12:46:44Z file_id: '5542' file_name: IST-2013-104-v1+1_tumortool.pdf file_size: 1471954 relation: main_file file_date_updated: 2020-07-14T12:46:44Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '17' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '104' related_material: record: - id: '2000' relation: later_version status: public status: public title: 'TTP: Tool for Tumor Progression' type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '2295' abstract: - lang: eng text: We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions specified as parity objectives. The qualitative analysis problem given a POMDP and a parity objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1 (resp. positive probability). While the qualitative analysis problems are known to be undecidable even for very special cases of parity objectives, we establish decidability (with optimal EXPTIME-complete complexity) of the qualitative analysis problems for POMDPs with all parity objectives under finite-memory strategies. We also establish asymptotically optimal (exponential) memory bounds. alternative_title: - LIPIcs author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Mathieu full_name: Tracol, Mathieu id: 3F54FA38-F248-11E8-B48F-1D18A9856A87 last_name: Tracol citation: ama: Chatterjee K, Chmelik M, Tracol M. What is decidable about partially observable Markov decision processes with omega-regular objectives. 2013;23:165-180. doi:10.4230/LIPIcs.CSL.2013.165 apa: 'Chatterjee, K., Chmelik, M., & Tracol, M. (2013). What is decidable about partially observable Markov decision processes with omega-regular objectives. Presented at the CSL: Computer Science Logic, Torino, Italy: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2013.165' chicago: Chatterjee, Krishnendu, Martin Chmelik, and Mathieu Tracol. “What Is Decidable about Partially Observable Markov Decision Processes with Omega-Regular Objectives.” Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013. https://doi.org/10.4230/LIPIcs.CSL.2013.165. ieee: K. Chatterjee, M. Chmelik, and M. Tracol, “What is decidable about partially observable Markov decision processes with omega-regular objectives,” vol. 23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 165–180, 2013. ista: Chatterjee K, Chmelik M, Tracol M. 2013. What is decidable about partially observable Markov decision processes with omega-regular objectives. 23, 165–180. mla: Chatterjee, Krishnendu, et al. What Is Decidable about Partially Observable Markov Decision Processes with Omega-Regular Objectives. Vol. 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 165–80, doi:10.4230/LIPIcs.CSL.2013.165. short: K. Chatterjee, M. Chmelik, M. Tracol, 23 (2013) 165–180. conference: end_date: 2013-09-05 location: Torino, Italy name: 'CSL: Computer Science Logic' start_date: 2013-09-02 date_created: 2018-12-11T11:56:50Z date_published: 2013-08-27T00:00:00Z date_updated: 2023-02-23T12:24:38Z day: '27' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.CSL.2013.165 ec_funded: 1 file: - access_level: open_access checksum: ba2828322955574d9283bea0e17a37a6 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:42Z date_updated: 2020-07-14T12:45:37Z file_id: '4766' file_name: IST-2017-756-v1+1_2.pdf file_size: 345171 relation: main_file file_date_updated: 2020-07-14T12:45:37Z has_accepted_license: '1' intvolume: ' 23' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 165 - 180 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '4633' pubrep_id: '756' quality_controlled: '1' related_material: record: - id: '1477' relation: later_version status: public - id: '5400' relation: earlier_version status: public scopus_import: 1 series_title: Leibniz International Proceedings in Informatics status: public title: What is decidable about partially observable Markov decision processes with omega-regular objectives tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2013' ... --- _id: '5403' abstract: - lang: eng text: 'We consider concurrent games played by two-players on a finite state graph, where in every round the players simultaneously choose a move, and the current state along with the joint moves determine the successor state. We study the most fundamental objective for concurrent games, namely, mean-payoff or limit-average objective, where a reward is associated to every transition, and the goal of player 1 is to maximize the long-run average of the rewards, and the objective of player 2 is strictly the opposite (i.e., the games are zero-sum). The path constraint for player 1 could be qualitative, i.e., the mean-payoff is the maximal reward, or arbitrarily close to it; or quantitative, i.e., a given threshold between the minimal and maximal reward. We consider the computation of the almost-sure (resp. positive) winning sets, where player 1 can ensure that the path constraint is satisfied with probability 1 (resp. positive probability). Almost-sure winning with qualitative constraint exactly corresponds to the question whether there exists a strategy to ensure that the payoff is the maximal reward of the game. Our main results for qualitative path constraints are as follows: (1) we establish qualitative determinacy results that show for every state either player 1 has a strategy to ensure almost-sure (resp. positive) winning against all player-2 strategies or player 2 has a spoiling strategy to falsify almost-sure (resp. positive) winning against all player-1 strategies; (2) we present optimal strategy complexity results that precisely characterize the classes of strategies required for almost-sure and positive winning for both players; and (3) we present quadratic time algorithms to compute the almost-sure and the positive winning sets, matching the best known bound of the algorithms for much simpler problems (such as reachability objectives). For quantitative constraints we show that a polynomial time solution for the almost-sure or the positive winning set would imply a solution to a long-standing open problem (of solving the value problem of mean-payoff games) that is not known to be in polynomial time.' alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 citation: ama: Chatterjee K, Ibsen-Jensen R. Qualitative Analysis of Concurrent Mean-Payoff Games. IST Austria; 2013. doi:10.15479/AT:IST-2013-126-v1-1 apa: Chatterjee, K., & Ibsen-Jensen, R. (2013). Qualitative analysis of concurrent mean-payoff games. IST Austria. https://doi.org/10.15479/AT:IST-2013-126-v1-1 chicago: Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen. Qualitative Analysis of Concurrent Mean-Payoff Games. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-126-v1-1. ieee: K. Chatterjee and R. Ibsen-Jensen, Qualitative analysis of concurrent mean-payoff games. IST Austria, 2013. ista: Chatterjee K, Ibsen-Jensen R. 2013. Qualitative analysis of concurrent mean-payoff games, IST Austria, 33p. mla: Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen. Qualitative Analysis of Concurrent Mean-Payoff Games. IST Austria, 2013, doi:10.15479/AT:IST-2013-126-v1-1. short: K. Chatterjee, R. Ibsen-Jensen, Qualitative Analysis of Concurrent Mean-Payoff Games, IST Austria, 2013. date_created: 2018-12-12T11:39:08Z date_published: 2013-07-03T00:00:00Z date_updated: 2023-02-23T12:22:53Z day: '03' ddc: - '000' - '005' department: - _id: KrCh doi: 10.15479/AT:IST-2013-126-v1-1 file: - access_level: open_access checksum: 063868c665beec37bf28160e2a695746 content_type: application/pdf creator: system date_created: 2018-12-12T11:53:49Z date_updated: 2020-07-14T12:46:45Z file_id: '5510' file_name: IST-2013-126-v1+1_soda_full.pdf file_size: 434523 relation: main_file file_date_updated: 2020-07-14T12:46:45Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '33' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '126' related_material: record: - id: '524' relation: later_version status: public status: public title: Qualitative analysis of concurrent mean-payoff games type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '5400' abstract: - lang: eng text: We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions specified as parity objectives. The class of ω-regular languages extends regular languages to infinite strings and provides a robust specification language to express all properties used in verification, and parity objectives are canonical forms to express ω-regular conditions. The qualitative analysis problem given a POMDP and a parity objective asks whether there is a strategy to ensure that the objective is satis- fied with probability 1 (resp. positive probability). While the qualitative analysis problems are known to be undecidable even for very special cases of parity objectives, we establish decidability (with optimal complexity) of the qualitative analysis problems for POMDPs with all parity objectives under finite- memory strategies. We establish asymptotically optimal (exponential) memory bounds and EXPTIME- completeness of the qualitative analysis problems under finite-memory strategies for POMDPs with parity objectives. alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Mathieu full_name: Tracol, Mathieu id: 3F54FA38-F248-11E8-B48F-1D18A9856A87 last_name: Tracol citation: ama: Chatterjee K, Chmelik M, Tracol M. What Is Decidable about Partially Observable Markov Decision Processes with ω-Regular Objectives. IST Austria; 2013. doi:10.15479/AT:IST-2013-109-v1-1 apa: Chatterjee, K., Chmelik, M., & Tracol, M. (2013). What is decidable about partially observable Markov decision processes with ω-regular objectives. IST Austria. https://doi.org/10.15479/AT:IST-2013-109-v1-1 chicago: Chatterjee, Krishnendu, Martin Chmelik, and Mathieu Tracol. What Is Decidable about Partially Observable Markov Decision Processes with ω-Regular Objectives. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-109-v1-1. ieee: K. Chatterjee, M. Chmelik, and M. Tracol, What is decidable about partially observable Markov decision processes with ω-regular objectives. IST Austria, 2013. ista: Chatterjee K, Chmelik M, Tracol M. 2013. What is decidable about partially observable Markov decision processes with ω-regular objectives, IST Austria, 41p. mla: Chatterjee, Krishnendu, et al. What Is Decidable about Partially Observable Markov Decision Processes with ω-Regular Objectives. IST Austria, 2013, doi:10.15479/AT:IST-2013-109-v1-1. short: K. Chatterjee, M. Chmelik, M. Tracol, What Is Decidable about Partially Observable Markov Decision Processes with ω-Regular Objectives, IST Austria, 2013. date_created: 2018-12-12T11:39:07Z date_published: 2013-02-20T00:00:00Z date_updated: 2023-02-23T10:36:45Z day: '20' ddc: - '000' - '005' department: - _id: KrCh doi: 10.15479/AT:IST-2013-109-v1-1 file: - access_level: open_access checksum: cbba40210788a1b22c6cf06433b5ed6f content_type: application/pdf creator: system date_created: 2018-12-12T11:53:06Z date_updated: 2020-07-14T12:46:44Z file_id: '5467' file_name: IST-2013-109-v1+1_What_is_Decidable_about_Partially_Observable_Markov_Decision_Processes_with_ω-Regular_Objectives.pdf file_size: 483407 relation: main_file file_date_updated: 2020-07-14T12:46:44Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '41' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '109' related_material: record: - id: '1477' relation: later_version status: public - id: '2295' relation: later_version status: public status: public title: What is decidable about partially observable Markov decision processes with ω-regular objectives type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '5404' abstract: - lang: eng text: 'We study finite-state two-player (zero-sum) concurrent mean-payoff games played on a graph. We focus on the important sub-class of ergodic games where all states are visited infinitely often with probability 1. The algorithmic study of ergodic games was initiated in a seminal work of Hoffman and Karp in 1966, but all basic complexity questions have remained unresolved. Our main results for ergodic games are as follows: We establish (1) an optimal exponential bound on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy); (2) the approximation problem lie in FNP; (3) the approximation problem is at least as hard as the decision problem for simple stochastic games (for which NP and coNP is the long-standing best known bound). We show that the exact value can be expressed in the existential theory of the reals, and also establish square-root sum hardness for a related class of games.' alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 citation: ama: Chatterjee K, Ibsen-Jensen R. The Complexity of Ergodic Games. IST Austria; 2013. doi:10.15479/AT:IST-2013-127-v1-1 apa: Chatterjee, K., & Ibsen-Jensen, R. (2013). The complexity of ergodic games. IST Austria. https://doi.org/10.15479/AT:IST-2013-127-v1-1 chicago: Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen. The Complexity of Ergodic Games. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-127-v1-1. ieee: K. Chatterjee and R. Ibsen-Jensen, The complexity of ergodic games. IST Austria, 2013. ista: Chatterjee K, Ibsen-Jensen R. 2013. The complexity of ergodic games, IST Austria, 29p. mla: Chatterjee, Krishnendu, and Rasmus Ibsen-Jensen. The Complexity of Ergodic Games. IST Austria, 2013, doi:10.15479/AT:IST-2013-127-v1-1. short: K. Chatterjee, R. Ibsen-Jensen, The Complexity of Ergodic Games, IST Austria, 2013. date_created: 2018-12-12T11:39:08Z date_published: 2013-07-03T00:00:00Z date_updated: 2023-02-23T10:30:55Z day: '03' ddc: - '000' - '005' department: - _id: KrCh doi: 10.15479/AT:IST-2013-127-v1-1 file: - access_level: open_access checksum: 79ee5e677a82611ce06e0360c69d494a content_type: application/pdf creator: system date_created: 2018-12-12T11:53:35Z date_updated: 2020-07-14T12:46:45Z file_id: '5496' file_name: IST-2013-127-v1+1_ergodic.pdf file_size: 517275 relation: main_file file_date_updated: 2020-07-14T12:46:45Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '29' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '127' related_material: record: - id: '2162' relation: later_version status: public status: public title: The complexity of ergodic games type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '5405' abstract: - lang: eng text: "The theory of graph games is the foundation for modeling and synthesizing reactive processes. In the synthesis of stochastic processes, we use 2-1/2-player games where some transitions of the game graph are controlled by two adversarial players, the System and the Environment, and the other transitions are determined probabilistically. We consider 2-1/2-player games where the objective of the System is the conjunction of a qualitative objective (specified as a parity condition) and a quantitative objective (specified as a mean-payoff condition). We establish that the problem of deciding whether the System can ensure that the probability to satisfy the mean-payoff parity objective is at least a given threshold is in NP ∩ coNP, matching the best known bound in the special case of 2-player games (where all transitions are deterministic) with only parity objectives, or with only mean-payoff objectives. We present an algorithm running\r\nin time O(d · n^{2d}·MeanGame) to compute the set of almost-sure winning states from which the objective\r\ncan be ensured with probability 1, where n is the number of states of the game, d the number of priorities\r\nof the parity objective, and MeanGame is the complexity to compute the set of almost-sure winning states\r\nin 2-1/2-player mean-payoff games. Our results are useful in the synthesis of stochastic reactive systems\r\nwith both functional requirement (given as a qualitative objective) and performance requirement (given\r\nas a quantitative objective)." alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Laurent full_name: Doyen, Laurent last_name: Doyen - first_name: Hugo full_name: Gimbert, Hugo last_name: Gimbert - first_name: Youssouf full_name: Oualhadj, Youssouf last_name: Oualhadj citation: ama: Chatterjee K, Doyen L, Gimbert H, Oualhadj Y. Perfect-Information Stochastic Mean-Payoff Parity Games. IST Austria; 2013. doi:10.15479/AT:IST-2013-128-v1-1 apa: Chatterjee, K., Doyen, L., Gimbert, H., & Oualhadj, Y. (2013). Perfect-information stochastic mean-payoff parity games. IST Austria. https://doi.org/10.15479/AT:IST-2013-128-v1-1 chicago: Chatterjee, Krishnendu, Laurent Doyen, Hugo Gimbert, and Youssouf Oualhadj. Perfect-Information Stochastic Mean-Payoff Parity Games. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-128-v1-1. ieee: K. Chatterjee, L. Doyen, H. Gimbert, and Y. Oualhadj, Perfect-information stochastic mean-payoff parity games. IST Austria, 2013. ista: Chatterjee K, Doyen L, Gimbert H, Oualhadj Y. 2013. Perfect-information stochastic mean-payoff parity games, IST Austria, 22p. mla: Chatterjee, Krishnendu, et al. Perfect-Information Stochastic Mean-Payoff Parity Games. IST Austria, 2013, doi:10.15479/AT:IST-2013-128-v1-1. short: K. Chatterjee, L. Doyen, H. Gimbert, Y. Oualhadj, Perfect-Information Stochastic Mean-Payoff Parity Games, IST Austria, 2013. date_created: 2018-12-12T11:39:09Z date_published: 2013-07-08T00:00:00Z date_updated: 2023-02-23T10:33:08Z day: '08' ddc: - '000' - '005' - '510' department: - _id: KrCh doi: 10.15479/AT:IST-2013-128-v1-1 file: - access_level: open_access checksum: ede787a10e74e4f7db302fab8f12f3ca content_type: application/pdf creator: system date_created: 2018-12-12T11:53:54Z date_updated: 2020-07-14T12:46:45Z file_id: '5516' file_name: IST-2013-128-v1+1_full_stoch_mpp.pdf file_size: 387467 relation: main_file file_date_updated: 2020-07-14T12:46:45Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '22' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '128' related_material: record: - id: '2212' relation: later_version status: public status: public title: Perfect-information stochastic mean-payoff parity games type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '5409' abstract: - lang: eng text: "The edit distance between two (untimed) traces is the minimum cost of a sequence of edit operations (insertion, deletion, or substitution) needed to transform one trace to the other. Edit distances have been extensively studied in the untimed setting, and form the basis for approximate matching of sequences in different domains such as coding theory, parsing, and speech recognition. \r\nIn this paper, we lift the study of edit distances from untimed languages to the timed setting. We define an edit distance between timed words which incorporates both the edit distance between the untimed words and the absolute difference in timestamps. Our edit distance between two timed words is computable in polynomial time. Further, we show that the edit distance between a timed word and a timed language generated by a timed automaton, defined as the edit distance between the word and the closest word in the language, is PSPACE-complete. While computing the edit distance between two timed automata is undecidable, we show that the approximate version, where we decide if the edit distance between two timed automata is either less than a given parameter or more than delta away from the parameter, for delta>0, can be solved in exponential space and is EXPSPACE-hard. Our definitions and techniques can be generalized to the setting of hybrid systems, and we show analogous decidability results for rectangular automata." alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Rupak full_name: Majumdar, Rupak last_name: Majumdar citation: ama: Chatterjee K, Ibsen-Jensen R, Majumdar R. Edit Distance for Timed Automata. IST Austria; 2013. doi:10.15479/AT:IST-2013-144-v1-1 apa: Chatterjee, K., Ibsen-Jensen, R., & Majumdar, R. (2013). Edit distance for timed automata. IST Austria. https://doi.org/10.15479/AT:IST-2013-144-v1-1 chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Rupak Majumdar. Edit Distance for Timed Automata. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-144-v1-1. ieee: K. Chatterjee, R. Ibsen-Jensen, and R. Majumdar, Edit distance for timed automata. IST Austria, 2013. ista: Chatterjee K, Ibsen-Jensen R, Majumdar R. 2013. Edit distance for timed automata, IST Austria, 12p. mla: Chatterjee, Krishnendu, et al. Edit Distance for Timed Automata. IST Austria, 2013, doi:10.15479/AT:IST-2013-144-v1-1. short: K. Chatterjee, R. Ibsen-Jensen, R. Majumdar, Edit Distance for Timed Automata, IST Austria, 2013. date_created: 2018-12-12T11:39:10Z date_published: 2013-10-30T00:00:00Z date_updated: 2023-02-23T10:33:18Z day: '30' ddc: - '000' department: - _id: KrCh doi: 10.15479/AT:IST-2013-144-v1-1 file: - access_level: open_access checksum: 0f7633081ba8299c543322f0ad08571f content_type: application/pdf creator: system date_created: 2018-12-12T11:53:08Z date_updated: 2020-07-14T12:46:46Z file_id: '5469' file_name: IST-2013-144-v1+1_main.pdf file_size: 336377 relation: main_file file_date_updated: 2020-07-14T12:46:46Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '12' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '144' related_material: record: - id: '2216' relation: later_version status: public status: public title: Edit distance for timed automata type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '1376' abstract: - lang: eng text: 'We consider the distributed synthesis problem for temporal logic specifications. Traditionally, the problem has been studied for LTL, and the previous results show that the problem is decidable iff there is no information fork in the architecture. We consider the problem for fragments of LTL and our main results are as follows: (1) We show that the problem is undecidable for architectures with information forks even for the fragment of LTL with temporal operators restricted to next and eventually. (2) For specifications restricted to globally along with non-nested next operators, we establish decidability (in EXPSPACE) for star architectures where the processes receive disjoint inputs, whereas we establish undecidability for architectures containing an information fork-meet structure. (3) Finally, we consider LTL without the next operator, and establish decidability (NEXPTIME-complete) for all architectures for a fragment that consists of a set of safety assumptions, and a set of guarantees where each guarantee is a safety, reachability, or liveness condition.' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: 'Chatterjee K, Henzinger TA, Otop J, Pavlogiannis A. Distributed synthesis for LTL fragments. In: 13th International Conference on Formal Methods in Computer-Aided Design. IEEE; 2013:18-25. doi:10.1109/FMCAD.2013.6679386' apa: 'Chatterjee, K., Henzinger, T. A., Otop, J., & Pavlogiannis, A. (2013). Distributed synthesis for LTL fragments. In 13th International Conference on Formal Methods in Computer-Aided Design (pp. 18–25). Portland, OR, United States: IEEE. https://doi.org/10.1109/FMCAD.2013.6679386' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Jan Otop, and Andreas Pavlogiannis. “Distributed Synthesis for LTL Fragments.” In 13th International Conference on Formal Methods in Computer-Aided Design, 18–25. IEEE, 2013. https://doi.org/10.1109/FMCAD.2013.6679386. ieee: K. Chatterjee, T. A. Henzinger, J. Otop, and A. Pavlogiannis, “Distributed synthesis for LTL fragments,” in 13th International Conference on Formal Methods in Computer-Aided Design, Portland, OR, United States, 2013, pp. 18–25. ista: 'Chatterjee K, Henzinger TA, Otop J, Pavlogiannis A. 2013. Distributed synthesis for LTL fragments. 13th International Conference on Formal Methods in Computer-Aided Design. FMCAD: Formal Methods in Computer-Aided Design, 18–25.' mla: Chatterjee, Krishnendu, et al. “Distributed Synthesis for LTL Fragments.” 13th International Conference on Formal Methods in Computer-Aided Design, IEEE, 2013, pp. 18–25, doi:10.1109/FMCAD.2013.6679386. short: K. Chatterjee, T.A. Henzinger, J. Otop, A. Pavlogiannis, in:, 13th International Conference on Formal Methods in Computer-Aided Design, IEEE, 2013, pp. 18–25. conference: end_date: 2013-10-23 location: Portland, OR, United States name: 'FMCAD: Formal Methods in Computer-Aided Design' start_date: 2013-10-20 date_created: 2018-12-11T11:51:40Z date_published: 2013-12-11T00:00:00Z date_updated: 2023-02-23T12:24:53Z day: '11' department: - _id: KrCh - _id: ToHe doi: 10.1109/FMCAD.2013.6679386 ec_funded: 1 language: - iso: eng month: '12' oa_version: None page: 18 - 25 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 13th International Conference on Formal Methods in Computer-Aided Design publication_status: published publisher: IEEE publist_id: '5835' quality_controlled: '1' related_material: record: - id: '5406' relation: earlier_version status: public status: public title: Distributed synthesis for LTL fragments type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '5406' abstract: - lang: eng text: 'We consider the distributed synthesis problem fortemporal logic specifications. Traditionally, the problem has been studied for LTL, and the previous results show that the problem is decidable iff there is no information fork in the architecture. We consider the problem for fragments of LTLand our main results are as follows: (1) We show that the problem is undecidable for architectures with information forks even for the fragment of LTL with temporal operators restricted to next and eventually. (2) For specifications restricted to globally along with non-nested next operators, we establish decidability (in EXPSPACE) for star architectures where the processes receive disjoint inputs, whereas we establish undecidability for architectures containing an information fork-meet structure. (3)Finally, we consider LTL without the next operator, and establish decidability (NEXPTIME-complete) for all architectures for a fragment that consists of a set of safety assumptions, and a set of guarantees where each guarantee is a safety, reachability, or liveness condition.' alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: Chatterjee K, Henzinger TA, Otop J, Pavlogiannis A. Distributed Synthesis for LTL Fragments. IST Austria; 2013. doi:10.15479/AT:IST-2013-130-v1-1 apa: Chatterjee, K., Henzinger, T. A., Otop, J., & Pavlogiannis, A. (2013). Distributed synthesis for LTL Fragments. IST Austria. https://doi.org/10.15479/AT:IST-2013-130-v1-1 chicago: Chatterjee, Krishnendu, Thomas A Henzinger, Jan Otop, and Andreas Pavlogiannis. Distributed Synthesis for LTL Fragments. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-130-v1-1. ieee: K. Chatterjee, T. A. Henzinger, J. Otop, and A. Pavlogiannis, Distributed synthesis for LTL Fragments. IST Austria, 2013. ista: Chatterjee K, Henzinger TA, Otop J, Pavlogiannis A. 2013. Distributed synthesis for LTL Fragments, IST Austria, 11p. mla: Chatterjee, Krishnendu, et al. Distributed Synthesis for LTL Fragments. IST Austria, 2013, doi:10.15479/AT:IST-2013-130-v1-1. short: K. Chatterjee, T.A. Henzinger, J. Otop, A. Pavlogiannis, Distributed Synthesis for LTL Fragments, IST Austria, 2013. date_created: 2018-12-12T11:39:09Z date_published: 2013-07-08T00:00:00Z date_updated: 2023-02-21T17:01:26Z day: '08' ddc: - '005' department: - _id: KrCh - _id: ToHe doi: 10.15479/AT:IST-2013-130-v1-1 file: - access_level: open_access checksum: 855513ebaf6f72228800c5fdb522f93c content_type: application/pdf creator: system date_created: 2018-12-12T11:54:18Z date_updated: 2020-07-14T12:46:45Z file_id: '5540' file_name: IST-2013-130-v1+1_Distributed_Synthesis.pdf file_size: 467895 relation: main_file file_date_updated: 2020-07-14T12:46:45Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '11' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '130' related_material: record: - id: '1376' relation: later_version status: public status: public title: Distributed synthesis for LTL Fragments type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '5408' abstract: - lang: eng text: "We consider two-player partial-observation stochastic games where player 1 has partial observation and player 2 has perfect observation. The winning condition we study are omega-regular conditions specified as parity objectives. The qualitative analysis problem given a partial-observation stochastic game and a parity objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1 (resp. positive probability). While the qualitative analysis problems are known to be undecidable even for very special cases of parity objectives, they were shown to be decidable in 2EXPTIME under finite-memory strategies. We improve the complexity and show that the qualitative analysis problems for partial-observation stochastic parity games under finite-memory strategies are \r\nEXPTIME-complete; and also establish optimal (exponential) memory bounds for finite-memory strategies required for qualitative analysis. " alternative_title: - IST Austria Technical Report author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Laurent full_name: Doyen, Laurent last_name: Doyen - first_name: Sumit full_name: Nain, Sumit last_name: Nain - first_name: Moshe full_name: Vardi, Moshe last_name: Vardi citation: ama: Chatterjee K, Doyen L, Nain S, Vardi M. The Complexity of Partial-Observation Stochastic Parity Games with Finite-Memory Strategies. IST Austria; 2013. doi:10.15479/AT:IST-2013-141-v1-1 apa: Chatterjee, K., Doyen, L., Nain, S., & Vardi, M. (2013). The complexity of partial-observation stochastic parity games with finite-memory strategies. IST Austria. https://doi.org/10.15479/AT:IST-2013-141-v1-1 chicago: Chatterjee, Krishnendu, Laurent Doyen, Sumit Nain, and Moshe Vardi. The Complexity of Partial-Observation Stochastic Parity Games with Finite-Memory Strategies. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-141-v1-1. ieee: K. Chatterjee, L. Doyen, S. Nain, and M. Vardi, The complexity of partial-observation stochastic parity games with finite-memory strategies. IST Austria, 2013. ista: Chatterjee K, Doyen L, Nain S, Vardi M. 2013. The complexity of partial-observation stochastic parity games with finite-memory strategies, IST Austria, 17p. mla: Chatterjee, Krishnendu, et al. The Complexity of Partial-Observation Stochastic Parity Games with Finite-Memory Strategies. IST Austria, 2013, doi:10.15479/AT:IST-2013-141-v1-1. short: K. Chatterjee, L. Doyen, S. Nain, M. Vardi, The Complexity of Partial-Observation Stochastic Parity Games with Finite-Memory Strategies, IST Austria, 2013. date_created: 2018-12-12T11:39:10Z date_published: 2013-09-12T00:00:00Z date_updated: 2023-02-23T10:33:11Z day: '12' ddc: - '000' - '005' department: - _id: KrCh doi: 10.15479/AT:IST-2013-141-v1-1 file: - access_level: open_access checksum: 226bc791124f8d3138379778ce834e86 content_type: application/pdf creator: system date_created: 2018-12-12T11:53:16Z date_updated: 2020-07-14T12:46:46Z file_id: '5477' file_name: IST-2013-141-v1+1_main-tech-rpt.pdf file_size: 300481 relation: main_file file_date_updated: 2020-07-14T12:46:46Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '17' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '141' related_material: record: - id: '2213' relation: later_version status: public status: public title: The complexity of partial-observation stochastic parity games with finite-memory strategies type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '5410' abstract: - lang: eng text: "Board games, like Tic-Tac-Toe and CONNECT-4, play an important role not only in development of mathematical and logical skills, but also in emotional and social development. In this paper, we address the problem of generating targeted starting positions for such games. This can facilitate new approaches for bringing novice players to mastery, and also leads to discovery of interesting game variants. \r\nOur approach generates starting states of varying hardness levels for player 1 in a two-player board game, given rules of the board game, the desired number of steps required for player 1 to win, and the expertise levels of the two players. Our approach leverages symbolic methods and iterative simulation to efficiently search the extremely large state space. We present experimental results that include discovery of states of varying hardness levels for several simple grid-based board games. Also, the presence of such states for standard game variants like Tic-Tac-Toe on board size 4x4 opens up new games to be played that have not been played for ages since the default start state is heavily biased. " alternative_title: - IST Austria Technical Report author: - first_name: Umair full_name: Ahmed, Umair last_name: Ahmed - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Sumit full_name: Gulwani, Sumit last_name: Gulwani citation: ama: Ahmed U, Chatterjee K, Gulwani S. Automatic Generation of Alternative Starting Positions for Traditional Board Games. IST Austria; 2013. doi:10.15479/AT:IST-2013-146-v1-1 apa: Ahmed, U., Chatterjee, K., & Gulwani, S. (2013). Automatic generation of alternative starting positions for traditional board games. IST Austria. https://doi.org/10.15479/AT:IST-2013-146-v1-1 chicago: Ahmed, Umair, Krishnendu Chatterjee, and Sumit Gulwani. Automatic Generation of Alternative Starting Positions for Traditional Board Games. IST Austria, 2013. https://doi.org/10.15479/AT:IST-2013-146-v1-1. ieee: U. Ahmed, K. Chatterjee, and S. Gulwani, Automatic generation of alternative starting positions for traditional board games. IST Austria, 2013. ista: Ahmed U, Chatterjee K, Gulwani S. 2013. Automatic generation of alternative starting positions for traditional board games, IST Austria, 13p. mla: Ahmed, Umair, et al. Automatic Generation of Alternative Starting Positions for Traditional Board Games. IST Austria, 2013, doi:10.15479/AT:IST-2013-146-v1-1. short: U. Ahmed, K. Chatterjee, S. Gulwani, Automatic Generation of Alternative Starting Positions for Traditional Board Games, IST Austria, 2013. date_created: 2018-12-12T11:39:10Z date_published: 2013-12-03T00:00:00Z date_updated: 2023-02-23T10:00:50Z day: '03' ddc: - '000' - '005' department: - _id: KrCh doi: 10.15479/AT:IST-2013-146-v1-1 file: - access_level: open_access checksum: 409f3aaaf1184e4057b89cbb449dac80 content_type: application/pdf creator: system date_created: 2018-12-12T11:54:06Z date_updated: 2020-07-14T12:46:46Z file_id: '5528' file_name: IST-2013-146-v1+1_main.pdf file_size: 818189 relation: main_file file_date_updated: 2020-07-14T12:46:46Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '13' publication_identifier: issn: - 2664-1690 publication_status: published publisher: IST Austria pubrep_id: '146' related_material: record: - id: '1481' relation: later_version status: public status: public title: Automatic generation of alternative starting positions for traditional board games type: technical_report user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '2329' abstract: - lang: eng text: 'Two-player games on graphs are central in many problems in formal verification and program analysis such as synthesis and verification of open systems. In this work, we consider both finite-state game graphs, and recursive game graphs (or pushdown game graphs) that model the control flow of sequential programs with recursion. The objectives we study are multidimensional mean-payoff objectives, where the goal of player 1 is to ensure that the mean-payoff is non-negative in all dimensions. In pushdown games two types of strategies are relevant: (1) global strategies, that depend on the entire global history; and (2) modular strategies, that have only local memory and thus do not depend on the context of invocation. Our main contributions are as follows: (1) We show that finite-state multidimensional mean-payoff games can be solved in polynomial time if the number of dimensions and the maximal absolute value of the weights are fixed; whereas if the number of dimensions is arbitrary, then the problem is known to be coNP-complete. (2) We show that pushdown graphs with multidimensional mean-payoff objectives can be solved in polynomial time. For both (1) and (2) our algorithms are based on hyperplane separation technique. (3) For pushdown games under global strategies both one and multidimensional mean-payoff objectives problems are known to be undecidable, and we show that under modular strategies the multidimensional problem is also undecidable; under modular strategies the one-dimensional problem is NP-complete. We show that if the number of modules, the number of exits, and the maximal absolute value of the weights are fixed, then pushdown games under modular strategies with one-dimensional mean-payoff objectives can be solved in polynomial time, and if either the number of exits or the number of modules is unbounded, then the problem is NP-hard. (4) Finally we show that a fixed parameter tractable algorithm for finite-state multidimensional mean-payoff games or pushdown games under modular strategies with one-dimensional mean-payoff objectives would imply the fixed parameter tractability of parity games.' alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Yaron full_name: Velner, Yaron last_name: Velner citation: ama: Chatterjee K, Velner Y. Hyperplane separation technique for multidimensional mean-payoff games. 2013;8052:500-515. doi:10.1007/978-3-642-40184-8_35 apa: 'Chatterjee, K., & Velner, Y. (2013). Hyperplane separation technique for multidimensional mean-payoff games. Presented at the CONCUR: Concurrency Theory, Buenos Aires, Argentinia: Springer. https://doi.org/10.1007/978-3-642-40184-8_35' chicago: Chatterjee, Krishnendu, and Yaron Velner. “Hyperplane Separation Technique for Multidimensional Mean-Payoff Games.” Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-40184-8_35. ieee: K. Chatterjee and Y. Velner, “Hyperplane separation technique for multidimensional mean-payoff games,” vol. 8052. Springer, pp. 500–515, 2013. ista: Chatterjee K, Velner Y. 2013. Hyperplane separation technique for multidimensional mean-payoff games. 8052, 500–515. mla: Chatterjee, Krishnendu, and Yaron Velner. Hyperplane Separation Technique for Multidimensional Mean-Payoff Games. Vol. 8052, Springer, 2013, pp. 500–15, doi:10.1007/978-3-642-40184-8_35. short: K. Chatterjee, Y. Velner, 8052 (2013) 500–515. conference: end_date: 2013-08-30 location: Buenos Aires, Argentinia name: 'CONCUR: Concurrency Theory' start_date: 2013-08-27 date_created: 2018-12-11T11:57:01Z date_published: 2013-08-01T00:00:00Z date_updated: 2023-02-23T13:00:42Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-40184-8_35 ec_funded: 1 external_id: arxiv: - '1210.3141' intvolume: ' 8052' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1210.3141 month: '08' oa: 1 oa_version: Preprint page: 500 - 515 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '4597' quality_controlled: '1' related_material: record: - id: '717' relation: later_version status: public scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: Hyperplane separation technique for multidimensional mean-payoff games type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8052 year: '2013' ... --- _id: '9749' abstract: - lang: eng text: Cooperative behavior, where one individual incurs a cost to help another, is a wide spread phenomenon. Here we study direct reciprocity in the context of the alternating Prisoner's Dilemma. We consider all strategies that can be implemented by one and two-state automata. We calculate the payoff matrix of all pairwise encounters in the presence of noise. We explore deterministic selection dynamics with and without mutation. Using different error rates and payoff values, we observe convergence to a small number of distinct equilibria. Two of them are uncooperative strict Nash equilibria representing always-defect (ALLD) and Grim. The third equilibrium is mixed and represents a cooperative alliance of several strategies, dominated by a strategy which we call Forgiver. Forgiver cooperates whenever the opponent has cooperated; it defects once when the opponent has defected, but subsequently Forgiver attempts to re-establish cooperation even if the opponent has defected again. Forgiver is not an evolutionarily stable strategy, but the alliance, which it rules, is asymptotically stable. For a wide range of parameter values the most commonly observed outcome is convergence to the mixed equilibrium, dominated by Forgiver. Our results show that although forgiving might incur a short-term loss it can lead to a long-term gain. Forgiveness facilitates stable cooperation in the presence of exploitation and noise. article_processing_charge: No author: - first_name: Benjamin full_name: Zagorsky, Benjamin last_name: Zagorsky - first_name: Johannes full_name: Reiter, Johannes id: 4A918E98-F248-11E8-B48F-1D18A9856A87 last_name: Reiter orcid: 0000-0002-0170-7353 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Zagorsky B, Reiter J, Chatterjee K, Nowak M. Forgiver triumphs in alternating prisoner’s dilemma . 2013. doi:10.1371/journal.pone.0080814.s001 apa: Zagorsky, B., Reiter, J., Chatterjee, K., & Nowak, M. (2013). Forgiver triumphs in alternating prisoner’s dilemma . Public Library of Science. https://doi.org/10.1371/journal.pone.0080814.s001 chicago: Zagorsky, Benjamin, Johannes Reiter, Krishnendu Chatterjee, and Martin Nowak. “Forgiver Triumphs in Alternating Prisoner’s Dilemma .” Public Library of Science, 2013. https://doi.org/10.1371/journal.pone.0080814.s001. ieee: B. Zagorsky, J. Reiter, K. Chatterjee, and M. Nowak, “Forgiver triumphs in alternating prisoner’s dilemma .” Public Library of Science, 2013. ista: Zagorsky B, Reiter J, Chatterjee K, Nowak M. 2013. Forgiver triumphs in alternating prisoner’s dilemma , Public Library of Science, 10.1371/journal.pone.0080814.s001. mla: Zagorsky, Benjamin, et al. Forgiver Triumphs in Alternating Prisoner’s Dilemma . Public Library of Science, 2013, doi:10.1371/journal.pone.0080814.s001. short: B. Zagorsky, J. Reiter, K. Chatterjee, M. Nowak, (2013). date_created: 2021-07-28T15:45:07Z date_published: 2013-12-12T00:00:00Z date_updated: 2023-02-23T10:34:39Z day: '12' department: - _id: KrCh doi: 10.1371/journal.pone.0080814.s001 month: '12' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '2247' relation: used_in_publication status: public status: public title: 'Forgiver triumphs in alternating prisoner''s dilemma ' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2013' ... --- _id: '10902' abstract: - lang: eng text: We consider how to edit strings from a source language so that the edited strings belong to a target language, where the languages are given as deterministic finite automata. Non-streaming (or offline) transducers perform edits given the whole source string. We show that the class of deterministic one-pass transducers with registers along with increment and min operation suffices for computing optimal edit distance, whereas the same class of transducers without the min operation is not sufficient. Streaming (or online) transducers perform edits as the letters of the source string are received. We present a polynomial time algorithm for the partial-repair problem that given a bound α asks for the construction of a deterministic streaming transducer (if one exists) that ensures that the ‘maximum fraction’ η of the strings of the source language are edited, within cost α, to the target language. acknowledgement: 'The research was supported by Austrian Science Fund (FWF) Grant No P 23499-N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows award. Thanks to Gabriele Puppis for suggesting the problem of identifying a deterministic transducer to compute the optimal cost, and to Martin Chmelik for his comments on the introduction.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Siddhesh full_name: Chaubal, Siddhesh last_name: Chaubal - first_name: Sasha full_name: Rubin, Sasha id: 2EC51194-F248-11E8-B48F-1D18A9856A87 last_name: Rubin citation: ama: 'Chatterjee K, Chaubal S, Rubin S. How to travel between languages. In: 7th International Conference on Language and Automata Theory and Applications. Vol 7810. LNCS. Berlin, Heidelberg: Springer Nature; 2013:214-225. doi:10.1007/978-3-642-37064-9_20' apa: 'Chatterjee, K., Chaubal, S., & Rubin, S. (2013). How to travel between languages. In 7th International Conference on Language and Automata Theory and Applications (Vol. 7810, pp. 214–225). Berlin, Heidelberg: Springer Nature. https://doi.org/10.1007/978-3-642-37064-9_20' chicago: 'Chatterjee, Krishnendu, Siddhesh Chaubal, and Sasha Rubin. “How to Travel between Languages.” In 7th International Conference on Language and Automata Theory and Applications, 7810:214–25. LNCS. Berlin, Heidelberg: Springer Nature, 2013. https://doi.org/10.1007/978-3-642-37064-9_20.' ieee: K. Chatterjee, S. Chaubal, and S. Rubin, “How to travel between languages,” in 7th International Conference on Language and Automata Theory and Applications, Bilbao, Spain, 2013, vol. 7810, pp. 214–225. ista: 'Chatterjee K, Chaubal S, Rubin S. 2013. How to travel between languages. 7th International Conference on Language and Automata Theory and Applications. LATA: Conference on Language and Automata Theory and ApplicationsLNCS, LNCS, vol. 7810, 214–225.' mla: Chatterjee, Krishnendu, et al. “How to Travel between Languages.” 7th International Conference on Language and Automata Theory and Applications, vol. 7810, Springer Nature, 2013, pp. 214–25, doi:10.1007/978-3-642-37064-9_20. short: K. Chatterjee, S. Chaubal, S. Rubin, in:, 7th International Conference on Language and Automata Theory and Applications, Springer Nature, Berlin, Heidelberg, 2013, pp. 214–225. conference: end_date: 2013-04-05 location: Bilbao, Spain name: 'LATA: Conference on Language and Automata Theory and Applications' start_date: 2013-04-02 date_created: 2022-03-21T07:56:21Z date_published: 2013-04-15T00:00:00Z date_updated: 2023-09-05T15:10:38Z day: '15' department: - _id: KrCh doi: 10.1007/978-3-642-37064-9_20 ec_funded: 1 intvolume: ' 7810' language: - iso: eng month: '04' oa_version: None page: 214-225 place: Berlin, Heidelberg project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 7th International Conference on Language and Automata Theory and Applications publication_identifier: eisbn: - '9783642370649' eissn: - 1611-3349 isbn: - '9783642370632' issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: LNCS status: public title: How to travel between languages type: conference user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7810 year: '2013' ... --- _id: '2247' abstract: - lang: eng text: Cooperative behavior, where one individual incurs a cost to help another, is a wide spread phenomenon. Here we study direct reciprocity in the context of the alternating Prisoner's Dilemma. We consider all strategies that can be implemented by one and two-state automata. We calculate the payoff matrix of all pairwise encounters in the presence of noise. We explore deterministic selection dynamics with and without mutation. Using different error rates and payoff values, we observe convergence to a small number of distinct equilibria. Two of them are uncooperative strict Nash equilibria representing always-defect (ALLD) and Grim. The third equilibrium is mixed and represents a cooperative alliance of several strategies, dominated by a strategy which we call Forgiver. Forgiver cooperates whenever the opponent has cooperated; it defects once when the opponent has defected, but subsequently Forgiver attempts to re-establish cooperation even if the opponent has defected again. Forgiver is not an evolutionarily stable strategy, but the alliance, which it rules, is asymptotically stable. For a wide range of parameter values the most commonly observed outcome is convergence to the mixed equilibrium, dominated by Forgiver. Our results show that although forgiving might incur a short-term loss it can lead to a long-term gain. Forgiveness facilitates stable cooperation in the presence of exploitation and noise. article_number: e80814 author: - first_name: Benjamin full_name: Zagorsky, Benjamin last_name: Zagorsky - first_name: Johannes full_name: Reiter, Johannes id: 4A918E98-F248-11E8-B48F-1D18A9856A87 last_name: Reiter orcid: 0000-0002-0170-7353 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Zagorsky B, Reiter J, Chatterjee K, Nowak M. Forgiver triumphs in alternating prisoner’s dilemma . PLoS One. 2013;8(12). doi:10.1371/journal.pone.0080814 apa: Zagorsky, B., Reiter, J., Chatterjee, K., & Nowak, M. (2013). Forgiver triumphs in alternating prisoner’s dilemma . PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0080814 chicago: Zagorsky, Benjamin, Johannes Reiter, Krishnendu Chatterjee, and Martin Nowak. “Forgiver Triumphs in Alternating Prisoner’s Dilemma .” PLoS One. Public Library of Science, 2013. https://doi.org/10.1371/journal.pone.0080814. ieee: B. Zagorsky, J. Reiter, K. Chatterjee, and M. Nowak, “Forgiver triumphs in alternating prisoner’s dilemma ,” PLoS One, vol. 8, no. 12. Public Library of Science, 2013. ista: Zagorsky B, Reiter J, Chatterjee K, Nowak M. 2013. Forgiver triumphs in alternating prisoner’s dilemma . PLoS One. 8(12), e80814. mla: Zagorsky, Benjamin, et al. “Forgiver Triumphs in Alternating Prisoner’s Dilemma .” PLoS One, vol. 8, no. 12, e80814, Public Library of Science, 2013, doi:10.1371/journal.pone.0080814. short: B. Zagorsky, J. Reiter, K. Chatterjee, M. Nowak, PLoS One 8 (2013). date_created: 2018-12-11T11:56:33Z date_published: 2013-12-12T00:00:00Z date_updated: 2023-09-07T11:40:43Z day: '12' ddc: - '000' department: - _id: KrCh doi: 10.1371/journal.pone.0080814 ec_funded: 1 file: - access_level: open_access checksum: 808e8b9e6e89658bee4ffbbfac1bd19d content_type: application/pdf creator: system date_created: 2018-12-12T10:11:15Z date_updated: 2020-07-14T12:45:34Z file_id: '4868' file_name: IST-2016-409-v1+1_journal.pone.0080814.pdf file_size: 1050042 relation: main_file file_date_updated: 2020-07-14T12:45:34Z has_accepted_license: '1' intvolume: ' 8' issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '4702' pubrep_id: '409' quality_controlled: '1' related_material: record: - id: '9749' relation: research_data status: public - id: '1400' relation: dissertation_contains status: public scopus_import: 1 status: public title: 'Forgiver triumphs in alternating prisoner''s dilemma ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2013' ... --- _id: '2858' abstract: - lang: eng text: Tumor growth is caused by the acquisition of driver mutations, which enhance the net reproductive rate of cells. Driver mutations may increase cell division, reduce cell death, or allow cells to overcome density-limiting effects. We study the dynamics of tumor growth as one additional driver mutation is acquired. Our models are based on two-type branching processes that terminate in either tumor disappearance or tumor detection. In our first model, both cell types grow exponentially, with a faster rate for cells carrying the additional driver. We find that the additional driver mutation does not affect the survival probability of the lesion, but can substantially reduce the time to reach the detectable size if the lesion is slow growing. In our second model, cells lacking the additional driver cannot exceed a fixed carrying capacity, due to density limitations. In this case, the time to detection depends strongly on this carrying capacity. Our model provides a quantitative framework for studying tumor dynamics during different stages of progression. We observe that early, small lesions need additional drivers, while late stage metastases are only marginally affected by them. These results help to explain why additional driver mutations are typically not detected in fast-growing metastases. author: - first_name: Johannes full_name: Reiter, Johannes id: 4A918E98-F248-11E8-B48F-1D18A9856A87 last_name: Reiter orcid: 0000-0002-0170-7353 - first_name: Ivana full_name: Božić, Ivana last_name: Božić - first_name: Benjamin full_name: Allen, Benjamin id: 135B5B70-E9D2-11E9-BD74-BB415DA2B523 last_name: Allen - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Reiter J, Božić I, Allen B, Chatterjee K, Nowak M. The effect of one additional driver mutation on tumor progression. Evolutionary Applications. 2013;6(1):34-45. doi:10.1111/eva.12020 apa: Reiter, J., Božić, I., Allen, B., Chatterjee, K., & Nowak, M. (2013). The effect of one additional driver mutation on tumor progression. Evolutionary Applications. Wiley-Blackwell. https://doi.org/10.1111/eva.12020 chicago: Reiter, Johannes, Ivana Božić, Benjamin Allen, Krishnendu Chatterjee, and Martin Nowak. “The Effect of One Additional Driver Mutation on Tumor Progression.” Evolutionary Applications. Wiley-Blackwell, 2013. https://doi.org/10.1111/eva.12020. ieee: J. Reiter, I. Božić, B. Allen, K. Chatterjee, and M. Nowak, “The effect of one additional driver mutation on tumor progression,” Evolutionary Applications, vol. 6, no. 1. Wiley-Blackwell, pp. 34–45, 2013. ista: Reiter J, Božić I, Allen B, Chatterjee K, Nowak M. 2013. The effect of one additional driver mutation on tumor progression. Evolutionary Applications. 6(1), 34–45. mla: Reiter, Johannes, et al. “The Effect of One Additional Driver Mutation on Tumor Progression.” Evolutionary Applications, vol. 6, no. 1, Wiley-Blackwell, 2013, pp. 34–45, doi:10.1111/eva.12020. short: J. Reiter, I. Božić, B. Allen, K. Chatterjee, M. Nowak, Evolutionary Applications 6 (2013) 34–45. date_created: 2018-12-11T11:59:58Z date_published: 2013-01-01T00:00:00Z date_updated: 2023-09-07T11:40:43Z day: '01' ddc: - '570' department: - _id: KrCh doi: 10.1111/eva.12020 ec_funded: 1 file: - access_level: open_access checksum: e2955b3889f8a823c3d5a72cb16f8957 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:50Z date_updated: 2020-07-14T12:45:51Z file_id: '5173' file_name: IST-2016-415-v1+1_Reiter_et_al-2013-Evolutionary_Applications.pdf file_size: 1172037 relation: main_file file_date_updated: 2020-07-14T12:45:51Z has_accepted_license: '1' intvolume: ' 6' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 34 - 45 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: Evolutionary Applications publication_status: published publisher: Wiley-Blackwell publist_id: '3931' pubrep_id: '415' quality_controlled: '1' related_material: record: - id: '1400' relation: dissertation_contains status: public scopus_import: 1 status: public title: The effect of one additional driver mutation on tumor progression tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2013' ... --- _id: '2816' abstract: - lang: eng text: In solid tumors, targeted treatments can lead to dramatic regressions, but responses are often short-lived because resistant cancer cells arise. The major strategy proposed for overcoming resistance is combination therapy. We present a mathematical model describing the evolutionary dynamics of lesions in response to treatment. We first studied 20 melanoma patients receiving vemurafenib. We then applied our model to an independent set of pancreatic, colorectal, and melanoma cancer patients with metastatic disease. We find that dual therapy results in long-term disease control for most patients, if there are no single mutations that cause cross-resistance to both drugs; in patients with large disease burden, triple therapy is needed. We also find that simultaneous therapy with two drugs is much more effective than sequential therapy. Our results provide realistic expectations for the efficacy of new drug combinations and inform the design of trials for new cancer therapeutics. article_number: e00747 author: - first_name: Ivana full_name: Božić, Ivana last_name: Božić - first_name: Johannes full_name: Reiter, Johannes id: 4A918E98-F248-11E8-B48F-1D18A9856A87 last_name: Reiter orcid: 0000-0002-0170-7353 - first_name: Benjamin full_name: Allen, Benjamin last_name: Allen - first_name: Tibor full_name: Antal, Tibor last_name: Antal - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Preya full_name: Shah, Preya last_name: Shah - first_name: Yo full_name: Moon, Yo last_name: Moon - first_name: Amin full_name: Yaqubie, Amin last_name: Yaqubie - first_name: Nicole full_name: Kelly, Nicole last_name: Kelly - first_name: Dung full_name: Le, Dung last_name: Le - first_name: Evan full_name: Lipson, Evan last_name: Lipson - first_name: Paul full_name: Chapman, Paul last_name: Chapman - first_name: Luis full_name: Diaz, Luis last_name: Diaz - first_name: Bert full_name: Vogelstein, Bert last_name: Vogelstein - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Božić I, Reiter J, Allen B, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife. 2013;2. doi:10.7554/eLife.00747 apa: Božić, I., Reiter, J., Allen, B., Antal, T., Chatterjee, K., Shah, P., … Nowak, M. (2013). Evolutionary dynamics of cancer in response to targeted combination therapy. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.00747 chicago: Božić, Ivana, Johannes Reiter, Benjamin Allen, Tibor Antal, Krishnendu Chatterjee, Preya Shah, Yo Moon, et al. “Evolutionary Dynamics of Cancer in Response to Targeted Combination Therapy.” ELife. eLife Sciences Publications, 2013. https://doi.org/10.7554/eLife.00747. ieee: I. Božić et al., “Evolutionary dynamics of cancer in response to targeted combination therapy,” eLife, vol. 2. eLife Sciences Publications, 2013. ista: Božić I, Reiter J, Allen B, Antal T, Chatterjee K, Shah P, Moon Y, Yaqubie A, Kelly N, Le D, Lipson E, Chapman P, Diaz L, Vogelstein B, Nowak M. 2013. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife. 2, e00747. mla: Božić, Ivana, et al. “Evolutionary Dynamics of Cancer in Response to Targeted Combination Therapy.” ELife, vol. 2, e00747, eLife Sciences Publications, 2013, doi:10.7554/eLife.00747. short: I. Božić, J. Reiter, B. Allen, T. Antal, K. Chatterjee, P. Shah, Y. Moon, A. Yaqubie, N. Kelly, D. Le, E. Lipson, P. Chapman, L. Diaz, B. Vogelstein, M. Nowak, ELife 2 (2013). date_created: 2018-12-11T11:59:45Z date_published: 2013-06-25T00:00:00Z date_updated: 2023-09-07T11:40:43Z day: '25' ddc: - '570' - '610' department: - _id: KrCh doi: 10.7554/eLife.00747 file: - access_level: open_access checksum: 2c38c47815eacd8fa66cb8b404cf7c61 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:48Z date_updated: 2020-07-14T12:45:49Z file_id: '4967' file_name: IST-2013-134-v1+1_e00747.full.pdf file_size: 3358321 relation: main_file file_date_updated: 2020-07-14T12:45:49Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '3985' pubrep_id: '134' quality_controlled: '1' related_material: record: - id: '1400' relation: dissertation_contains status: public scopus_import: 1 status: public title: Evolutionary dynamics of cancer in response to targeted combination therapy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2013' ... --- _id: '2000' abstract: - lang: eng text: In this work we present a flexible tool for tumor progression, which simulates the evolutionary dynamics of cancer. Tumor progression implements a multi-type branching process where the key parameters are the fitness landscape, the mutation rate, and the average time of cell division. The fitness of a cancer cell depends on the mutations it has accumulated. The input to our tool could be any fitness landscape, mutation rate, and cell division time, and the tool produces the growth dynamics and all relevant statistics. alternative_title: - LNCS author: - first_name: Johannes full_name: Reiter, Johannes id: 4A918E98-F248-11E8-B48F-1D18A9856A87 last_name: Reiter orcid: 0000-0002-0170-7353 - first_name: Ivana full_name: Božić, Ivana last_name: Božić - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: 'Reiter J, Božić I, Chatterjee K, Nowak M. TTP: Tool for tumor progression. In: Proceedings of 25th Int. Conf. on Computer Aided Verification. Vol 8044. Lecture Notes in Computer Science. Springer; 2013:101-106. doi:10.1007/978-3-642-39799-8_6' apa: 'Reiter, J., Božić, I., Chatterjee, K., & Nowak, M. (2013). TTP: Tool for tumor progression. In Proceedings of 25th Int. Conf. on Computer Aided Verification (Vol. 8044, pp. 101–106). St. Petersburg, Russia: Springer. https://doi.org/10.1007/978-3-642-39799-8_6' chicago: 'Reiter, Johannes, Ivana Božić, Krishnendu Chatterjee, and Martin Nowak. “TTP: Tool for Tumor Progression.” In Proceedings of 25th Int. Conf. on Computer Aided Verification, 8044:101–6. Lecture Notes in Computer Science. Springer, 2013. https://doi.org/10.1007/978-3-642-39799-8_6.' ieee: 'J. Reiter, I. Božić, K. Chatterjee, and M. Nowak, “TTP: Tool for tumor progression,” in Proceedings of 25th Int. Conf. on Computer Aided Verification, St. Petersburg, Russia, 2013, vol. 8044, pp. 101–106.' ista: 'Reiter J, Božić I, Chatterjee K, Nowak M. 2013. TTP: Tool for tumor progression. Proceedings of 25th Int. Conf. on Computer Aided Verification. CAV: Computer Aided VerificationLecture Notes in Computer Science, LNCS, vol. 8044, 101–106.' mla: 'Reiter, Johannes, et al. “TTP: Tool for Tumor Progression.” Proceedings of 25th Int. Conf. on Computer Aided Verification, vol. 8044, Springer, 2013, pp. 101–06, doi:10.1007/978-3-642-39799-8_6.' short: J. Reiter, I. Božić, K. Chatterjee, M. Nowak, in:, Proceedings of 25th Int. Conf. on Computer Aided Verification, Springer, 2013, pp. 101–106. conference: end_date: 2013-07-19 location: St. Petersburg, Russia name: 'CAV: Computer Aided Verification' start_date: 2013-07-13 date_created: 2018-12-11T11:55:08Z date_published: 2013-01-01T00:00:00Z date_updated: 2023-09-07T11:40:43Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-39799-8_6 ec_funded: 1 external_id: arxiv: - '1303.5251' intvolume: ' 8044' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1303.5251 month: '01' oa: 1 oa_version: Preprint page: 101 - 106 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Proceedings of 25th Int. Conf. on Computer Aided Verification publication_status: published publisher: Springer publist_id: '5077' quality_controlled: '1' related_material: record: - id: '5399' relation: earlier_version status: public - id: '1400' relation: dissertation_contains status: public scopus_import: 1 series_title: Lecture Notes in Computer Science status: public title: 'TTP: Tool for tumor progression' type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8044 year: '2013' ... --- _id: '2305' abstract: - lang: eng text: We study the complexity of central controller synthesis problems for finite-state Markov decision processes, where the objective is to optimize both the expected mean-payoff performance of the system and its stability. e argue that the basic theoretical notion of expressing the stability in terms of the variance of the mean-payoff (called global variance in our paper) is not always sufficient, since it ignores possible instabilities on respective runs. For this reason we propose alernative definitions of stability, which we call local and hybrid variance, and which express how rewards on each run deviate from the run's own mean-payoff and from the expected mean-payoff, respectively. We show that a strategy ensuring both the expected mean-payoff and the variance below given bounds requires randomization and memory, under all the above semantics of variance. We then look at the problem of determining whether there is a such a strategy. For the global variance, we show that the problem is in PSPACE, and that the answer can be approximated in pseudo-polynomial time. For the hybrid variance, the analogous decision problem is in NP, and a polynomial-time approximating algorithm also exists. For local variance, we show that the decision problem is in NP. Since the overall performance can be traded for stability (and vice versa), we also present algorithms for approximating the associated Pareto curve in all the three cases. Finally, we study a special case of the decision problems, where we require a given expected mean-payoff together with zero variance. Here we show that the problems can be all solved in polynomial time. author: - first_name: Tomáš full_name: Brázdil, Tomáš last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vojtěch full_name: Forejt, Vojtěch last_name: Forejt - first_name: Antonín full_name: Kučera, Antonín last_name: Kučera citation: ama: 'Brázdil T, Chatterjee K, Forejt V, Kučera A. Trading performance for stability in Markov decision processes. In: 28th Annual ACM/IEEE Symposium. IEEE; 2013:331-340. doi:10.1109/LICS.2013.39' apa: 'Brázdil, T., Chatterjee, K., Forejt, V., & Kučera, A. (2013). Trading performance for stability in Markov decision processes. In 28th Annual ACM/IEEE Symposium (pp. 331–340). New Orleans, LA, United States: IEEE. https://doi.org/10.1109/LICS.2013.39' chicago: Brázdil, Tomáš, Krishnendu Chatterjee, Vojtěch Forejt, and Antonín Kučera. “Trading Performance for Stability in Markov Decision Processes.” In 28th Annual ACM/IEEE Symposium, 331–40. IEEE, 2013. https://doi.org/10.1109/LICS.2013.39. ieee: T. Brázdil, K. Chatterjee, V. Forejt, and A. Kučera, “Trading performance for stability in Markov decision processes,” in 28th Annual ACM/IEEE Symposium, New Orleans, LA, United States, 2013, pp. 331–340. ista: 'Brázdil T, Chatterjee K, Forejt V, Kučera A. 2013. Trading performance for stability in Markov decision processes. 28th Annual ACM/IEEE Symposium. LICS: Logic in Computer Science, 331–340.' mla: Brázdil, Tomáš, et al. “Trading Performance for Stability in Markov Decision Processes.” 28th Annual ACM/IEEE Symposium, IEEE, 2013, pp. 331–40, doi:10.1109/LICS.2013.39. short: T. Brázdil, K. Chatterjee, V. Forejt, A. Kučera, in:, 28th Annual ACM/IEEE Symposium, IEEE, 2013, pp. 331–340. conference: end_date: 2013-06-28 location: New Orleans, LA, United States name: 'LICS: Logic in Computer Science' start_date: 2013-06-25 date_created: 2018-12-11T11:56:53Z date_published: 2013-08-01T00:00:00Z date_updated: 2023-09-20T11:15:30Z day: '01' department: - _id: KrCh doi: 10.1109/LICS.2013.39 ec_funded: 1 external_id: arxiv: - '1305.4103' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1305.4103 month: '08' oa: 1 oa_version: Preprint page: 331 - 340 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 28th Annual ACM/IEEE Symposium publication_status: published publisher: IEEE publist_id: '4622' quality_controlled: '1' related_material: record: - id: '1294' relation: later_version status: public scopus_import: 1 status: public title: Trading performance for stability in Markov decision processes type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '2820' abstract: - lang: eng text: 'In this paper, we introduce the powerful framework of graph games for the analysis of real-time scheduling with firm deadlines. We introduce a novel instance of a partial-observation game that is suitable for this purpose, and prove decidability of all the involved decision problems. We derive a graph game that allows the automated computation of the competitive ratio (along with an optimal witness algorithm for the competitive ratio) and establish an NP-completeness proof for the graph game problem. For a given on-line algorithm, we present polynomial time solution for computing (i) the worst-case utility; (ii) the worst-case utility ratio w.r.t. a clairvoyant off-line algorithm; and (iii) the competitive ratio. A major strength of the proposed approach lies in its flexibility w.r.t. incorporating additional constraints on the adversary and/or the algorithm, including limited maximum or average load, finiteness of periods of overload, etc., which are easily added by means of additional instances of standard objective functions for graph games. ' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Alexander full_name: Kößler, Alexander last_name: Kößler - first_name: Ulrich full_name: Schmid, Ulrich last_name: Schmid citation: ama: 'Chatterjee K, Kößler A, Schmid U. Automated analysis of real-time scheduling using graph games. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control. ACM; 2013:163-172. doi:10.1145/2461328.2461356' apa: 'Chatterjee, K., Kößler, A., & Schmid, U. (2013). Automated analysis of real-time scheduling using graph games. In Proceedings of the 16th International conference on Hybrid systems: Computation and control (pp. 163–172). Philadelphia, PA, United States: ACM. https://doi.org/10.1145/2461328.2461356' chicago: 'Chatterjee, Krishnendu, Alexander Kößler, and Ulrich Schmid. “Automated Analysis of Real-Time Scheduling Using Graph Games.” In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, 163–72. ACM, 2013. https://doi.org/10.1145/2461328.2461356.' ieee: 'K. Chatterjee, A. Kößler, and U. Schmid, “Automated analysis of real-time scheduling using graph games,” in Proceedings of the 16th International conference on Hybrid systems: Computation and control, Philadelphia, PA, United States, 2013, pp. 163–172.' ista: 'Chatterjee K, Kößler A, Schmid U. 2013. Automated analysis of real-time scheduling using graph games. Proceedings of the 16th International conference on Hybrid systems: Computation and control. HSCC: Hybrid Systems - Computation and Control, 163–172.' mla: 'Chatterjee, Krishnendu, et al. “Automated Analysis of Real-Time Scheduling Using Graph Games.” Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, ACM, 2013, pp. 163–72, doi:10.1145/2461328.2461356.' short: 'K. Chatterjee, A. Kößler, U. Schmid, in:, Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, ACM, 2013, pp. 163–172.' conference: end_date: 2013-04-11 location: Philadelphia, PA, United States name: 'HSCC: Hybrid Systems - Computation and Control' start_date: 2013-04-08 date_created: 2018-12-11T11:59:46Z date_published: 2013-04-01T00:00:00Z date_updated: 2023-09-27T12:52:38Z day: '01' department: - _id: KrCh doi: 10.1145/2461328.2461356 ec_funded: 1 language: - iso: eng month: '04' oa_version: None page: 163 - 172 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: 'Proceedings of the 16th International conference on Hybrid systems: Computation and control' publication_identifier: isbn: - '978-1-4503-1567-8 ' publication_status: published publisher: ACM publist_id: '3981' quality_controlled: '1' related_material: record: - id: '738' relation: later_version status: public scopus_import: 1 status: public title: Automated analysis of real-time scheduling using graph games type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2013' ... --- _id: '2715' abstract: - lang: eng text: 'We consider Markov decision processes (MDPs) with specifications given as Büchi (liveness) objectives. We consider the problem of computing the set of almost-sure winning vertices from where the objective can be ensured with probability 1. We study for the first time the average case complexity of the classical algorithm for computing the set of almost-sure winning vertices for MDPs with Büchi objectives. Our contributions are as follows: First, we show that for MDPs with constant out-degree the expected number of iterations is at most logarithmic and the average case running time is linear (as compared to the worst case linear number of iterations and quadratic time complexity). Second, for the average case analysis over all MDPs we show that the expected number of iterations is constant and the average case running time is linear (again as compared to the worst case linear number of iterations and quadratic time complexity). Finally we also show that given that all MDPs are equally likely, the probability that the classical algorithm requires more than constant number of iterations is exponentially small.' alternative_title: - LIPIcs author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Manas full_name: Joglekar, Manas last_name: Joglekar - first_name: Nisarg full_name: Shah, Nisarg last_name: Shah citation: ama: 'Chatterjee K, Joglekar M, Shah N. Average case analysis of the classical algorithm for Markov decision processes with Büchi objectives. In: Vol 18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2012:461-473. doi:10.4230/LIPIcs.FSTTCS.2012.461' apa: 'Chatterjee, K., Joglekar, M., & Shah, N. (2012). Average case analysis of the classical algorithm for Markov decision processes with Büchi objectives (Vol. 18, pp. 461–473). Presented at the FSTTCS: Foundations of Software Technology and Theoretical Computer Science, Hyderabad, India: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2012.461' chicago: Chatterjee, Krishnendu, Manas Joglekar, and Nisarg Shah. “Average Case Analysis of the Classical Algorithm for Markov Decision Processes with Büchi Objectives,” 18:461–73. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. https://doi.org/10.4230/LIPIcs.FSTTCS.2012.461. ieee: 'K. Chatterjee, M. Joglekar, and N. Shah, “Average case analysis of the classical algorithm for Markov decision processes with Büchi objectives,” presented at the FSTTCS: Foundations of Software Technology and Theoretical Computer Science, Hyderabad, India, 2012, vol. 18, pp. 461–473.' ista: 'Chatterjee K, Joglekar M, Shah N. 2012. Average case analysis of the classical algorithm for Markov decision processes with Büchi objectives. FSTTCS: Foundations of Software Technology and Theoretical Computer Science, LIPIcs, vol. 18, 461–473.' mla: Chatterjee, Krishnendu, et al. Average Case Analysis of the Classical Algorithm for Markov Decision Processes with Büchi Objectives. Vol. 18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 461–73, doi:10.4230/LIPIcs.FSTTCS.2012.461. short: K. Chatterjee, M. Joglekar, N. Shah, in:, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 461–473. conference: end_date: 2012-12-17 location: Hyderabad, India name: 'FSTTCS: Foundations of Software Technology and Theoretical Computer Science' start_date: 2012-12-15 date_created: 2018-12-11T11:59:13Z date_published: 2012-12-10T00:00:00Z date_updated: 2023-02-23T10:06:04Z day: '10' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.FSTTCS.2012.461 ec_funded: 1 file: - access_level: open_access checksum: d4d644ed1a885dbfc4fa1ef4c5724dab content_type: application/pdf creator: system date_created: 2018-12-12T10:13:53Z date_updated: 2020-07-14T12:45:45Z file_id: '5040' file_name: IST-2016-525-v1+1_42_1_.pdf file_size: 519040 relation: main_file file_date_updated: 2020-07-14T12:45:45Z has_accepted_license: '1' intvolume: ' 18' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 461 - 473 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik publist_id: '4180' pubrep_id: '525' quality_controlled: '1' related_material: record: - id: '1598' relation: later_version status: public scopus_import: 1 status: public title: Average case analysis of the classical algorithm for Markov decision processes with Büchi objectives tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 18 year: '2012' ... --- _id: '10904' abstract: - lang: eng text: Multi-dimensional mean-payoff and energy games provide the mathematical foundation for the quantitative study of reactive systems, and play a central role in the emerging quantitative theory of verification and synthesis. In this work, we study the strategy synthesis problem for games with such multi-dimensional objectives along with a parity condition, a canonical way to express ω-regular conditions. While in general, the winning strategies in such games may require infinite memory, for synthesis the most relevant problem is the construction of a finite-memory winning strategy (if one exists). Our main contributions are as follows. First, we show a tight exponential bound (matching upper and lower bounds) on the memory required for finite-memory winning strategies in both multi-dimensional mean-payoff and energy games along with parity objectives. This significantly improves the triple exponential upper bound for multi energy games (without parity) that could be derived from results in literature for games on VASS (vector addition systems with states). Second, we present an optimal symbolic and incremental algorithm to compute a finite-memory winning strategy (if one exists) in such games. Finally, we give a complete characterization of when finite memory of strategies can be traded off for randomness. In particular, we show that for one-dimension mean-payoff parity games, randomized memoryless strategies are as powerful as their pure finite-memory counterparts. acknowledgement: 'Author supported by Austrian Science Fund (FWF) Grant No P 23499-N23, FWF NFN Grant No S11407 (RiSE), ERC Start Grant (279307: Graph Games), Microsoft faculty fellowship.' alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Mickael full_name: Randour, Mickael last_name: Randour - first_name: Jean-François full_name: Raskin, Jean-François last_name: Raskin citation: ama: 'Chatterjee K, Randour M, Raskin J-F. Strategy synthesis for multi-dimensional quantitative objectives. In: Koutny M, Ulidowski I, eds. CONCUR 2012 - Concurrency Theory. Vol 7454. Berlin, Heidelberg: Springer; 2012:115-131. doi:10.1007/978-3-642-32940-1_10' apa: 'Chatterjee, K., Randour, M., & Raskin, J.-F. (2012). Strategy synthesis for multi-dimensional quantitative objectives. In M. Koutny & I. Ulidowski (Eds.), CONCUR 2012 - Concurrency Theory (Vol. 7454, pp. 115–131). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-32940-1_10' chicago: 'Chatterjee, Krishnendu, Mickael Randour, and Jean-François Raskin. “Strategy Synthesis for Multi-Dimensional Quantitative Objectives.” In CONCUR 2012 - Concurrency Theory, edited by Maciej Koutny and Irek Ulidowski, 7454:115–31. Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-32940-1_10.' ieee: K. Chatterjee, M. Randour, and J.-F. Raskin, “Strategy synthesis for multi-dimensional quantitative objectives,” in CONCUR 2012 - Concurrency Theory, Newcastle upon Tyne, United Kingdom, 2012, vol. 7454, pp. 115–131. ista: 'Chatterjee K, Randour M, Raskin J-F. 2012. Strategy synthesis for multi-dimensional quantitative objectives. CONCUR 2012 - Concurrency Theory. CONCUR: Conference on Concurrency Theory, LNCS, vol. 7454, 115–131.' mla: Chatterjee, Krishnendu, et al. “Strategy Synthesis for Multi-Dimensional Quantitative Objectives.” CONCUR 2012 - Concurrency Theory, edited by Maciej Koutny and Irek Ulidowski, vol. 7454, Springer, 2012, pp. 115–31, doi:10.1007/978-3-642-32940-1_10. short: K. Chatterjee, M. Randour, J.-F. Raskin, in:, M. Koutny, I. Ulidowski (Eds.), CONCUR 2012 - Concurrency Theory, Springer, Berlin, Heidelberg, 2012, pp. 115–131. conference: end_date: 2012-09-07 location: Newcastle upon Tyne, United Kingdom name: 'CONCUR: Conference on Concurrency Theory' start_date: 2012-09-04 date_created: 2022-03-21T08:00:21Z date_published: 2012-09-15T00:00:00Z date_updated: 2023-02-23T10:55:06Z day: '15' department: - _id: KrCh doi: 10.1007/978-3-642-32940-1_10 ec_funded: 1 editor: - first_name: Maciej full_name: Koutny, Maciej last_name: Koutny - first_name: Irek full_name: Ulidowski, Irek last_name: Ulidowski external_id: arxiv: - '1201.5073' intvolume: ' 7454' language: - iso: eng month: '09' oa_version: Preprint page: 115-131 place: Berlin, Heidelberg project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: CONCUR 2012 - Concurrency Theory publication_identifier: eisbn: - '9783642329401' isbn: - '9783642329395' issn: - 0302-9743 - 1611-3349 publication_status: published publisher: Springer quality_controlled: '1' related_material: record: - id: '2716' relation: later_version status: public scopus_import: '1' status: public title: Strategy synthesis for multi-dimensional quantitative objectives type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7454 year: '2012' ... --- _id: '2848' abstract: - lang: eng text: We study evolutionary game theory in a setting where individuals learn from each other. We extend the traditional approach by assuming that a population contains individuals with different learning abilities. In particular, we explore the situation where individuals have different search spaces, when attempting to learn the strategies of others. The search space of an individual specifies the set of strategies learnable by that individual. The search space is genetically given and does not change under social evolutionary dynamics. We introduce a general framework and study a specific example in the context of direct reciprocity. For this example, we obtain the counter intuitive result that cooperation can only evolve for intermediate benefit-to-cost ratios, while small and large benefit-to-cost ratios favor defection. Our paper is a step toward making a connection between computational learning theory and evolutionary game dynamics. author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Damien full_name: Zufferey, Damien id: 4397AC76-F248-11E8-B48F-1D18A9856A87 last_name: Zufferey orcid: 0000-0002-3197-8736 - first_name: Martin full_name: Nowak, Martin last_name: Nowak citation: ama: Chatterjee K, Zufferey D, Nowak M. Evolutionary game dynamics in populations with different learners. Journal of Theoretical Biology. 2012;301:161-173. doi:10.1016/j.jtbi.2012.02.021 apa: Chatterjee, K., Zufferey, D., & Nowak, M. (2012). Evolutionary game dynamics in populations with different learners. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2012.02.021 chicago: Chatterjee, Krishnendu, Damien Zufferey, and Martin Nowak. “Evolutionary Game Dynamics in Populations with Different Learners.” Journal of Theoretical Biology. Elsevier, 2012. https://doi.org/10.1016/j.jtbi.2012.02.021. ieee: K. Chatterjee, D. Zufferey, and M. Nowak, “Evolutionary game dynamics in populations with different learners,” Journal of Theoretical Biology, vol. 301. Elsevier, pp. 161–173, 2012. ista: Chatterjee K, Zufferey D, Nowak M. 2012. Evolutionary game dynamics in populations with different learners. Journal of Theoretical Biology. 301, 161–173. mla: Chatterjee, Krishnendu, et al. “Evolutionary Game Dynamics in Populations with Different Learners.” Journal of Theoretical Biology, vol. 301, Elsevier, 2012, pp. 161–73, doi:10.1016/j.jtbi.2012.02.021. short: K. Chatterjee, D. Zufferey, M. Nowak, Journal of Theoretical Biology 301 (2012) 161–173. date_created: 2018-12-11T11:59:55Z date_published: 2012-05-21T00:00:00Z date_updated: 2021-01-12T07:00:12Z day: '21' department: - _id: KrCh - _id: ToHe doi: 10.1016/j.jtbi.2012.02.021 ec_funded: 1 external_id: pmid: - '22394652' intvolume: ' 301' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322297/ month: '05' oa: 1 oa_version: Submitted Version page: 161 - 173 pmid: 1 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '3946' quality_controlled: '1' scopus_import: 1 status: public title: Evolutionary game dynamics in populations with different learners type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 301 year: '2012' ... --- _id: '2916' abstract: - lang: eng text: The classical (boolean) notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a quantitative measure for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intu- itively, tolerating errors (while counting them) in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies. author: - first_name: Pavol full_name: Cerny, Pavol id: 4DCBEFFE-F248-11E8-B48F-1D18A9856A87 last_name: Cerny - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Arjun full_name: Radhakrishna, Arjun id: 3B51CAC4-F248-11E8-B48F-1D18A9856A87 last_name: Radhakrishna citation: ama: 'Cerny P, Chmelik M, Henzinger TA, Radhakrishna A. Interface Simulation Distances. In: Electronic Proceedings in Theoretical Computer Science. Vol 96. EPTCS; 2012:29-42. doi:10.4204/EPTCS.96.3' apa: 'Cerny, P., Chmelik, M., Henzinger, T. A., & Radhakrishna, A. (2012). Interface Simulation Distances. In Electronic Proceedings in Theoretical Computer Science (Vol. 96, pp. 29–42). Napoli, Italy: EPTCS. https://doi.org/10.4204/EPTCS.96.3' chicago: Cerny, Pavol, Martin Chmelik, Thomas A Henzinger, and Arjun Radhakrishna. “Interface Simulation Distances.” In Electronic Proceedings in Theoretical Computer Science, 96:29–42. EPTCS, 2012. https://doi.org/10.4204/EPTCS.96.3. ieee: P. Cerny, M. Chmelik, T. A. Henzinger, and A. Radhakrishna, “Interface Simulation Distances,” in Electronic Proceedings in Theoretical Computer Science, Napoli, Italy, 2012, vol. 96, pp. 29–42. ista: 'Cerny P, Chmelik M, Henzinger TA, Radhakrishna A. 2012. Interface Simulation Distances. Electronic Proceedings in Theoretical Computer Science. GandALF: Games, Automata, Logic, and Formal Verification vol. 96, 29–42.' mla: Cerny, Pavol, et al. “Interface Simulation Distances.” Electronic Proceedings in Theoretical Computer Science, vol. 96, EPTCS, 2012, pp. 29–42, doi:10.4204/EPTCS.96.3. short: P. Cerny, M. Chmelik, T.A. Henzinger, A. Radhakrishna, in:, Electronic Proceedings in Theoretical Computer Science, EPTCS, 2012, pp. 29–42. conference: end_date: 2012-09-08 location: Napoli, Italy name: 'GandALF: Games, Automata, Logic, and Formal Verification' start_date: 2012-09-06 date_created: 2018-12-11T12:00:19Z date_published: 2012-10-07T00:00:00Z date_updated: 2023-02-23T10:12:05Z day: '07' department: - _id: ToHe - _id: KrCh doi: 10.4204/EPTCS.96.3 ec_funded: 1 external_id: arxiv: - '1210.2450' intvolume: ' 96' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1210.2450 month: '10' oa: 1 oa_version: Submitted Version page: 29 - 42 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Electronic Proceedings in Theoretical Computer Science publication_status: published publisher: EPTCS publist_id: '3827' quality_controlled: '1' related_material: record: - id: '1733' relation: later_version status: public scopus_import: 1 status: public title: Interface Simulation Distances type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 96 year: '2012' ... --- _id: '2936' abstract: - lang: eng text: The notion of delays arises naturally in many computational models, such as, in the design of circuits, control systems, and dataflow languages. In this work, we introduce automata with delay blocks (ADBs), extending finite state automata with variable time delay blocks, for deferring individual transition output symbols, in a discrete-time setting. We show that the ADB languages strictly subsume the regular languages, and are incomparable in expressive power to the context-free languages. We show that ADBs are closed under union, concatenation and Kleene star, and under intersection with regular languages, but not closed under complementation and intersection with other ADB languages. We show that the emptiness and the membership problems are decidable in polynomial time for ADBs, whereas the universality problem is undecidable. Finally we consider the linear-time model checking problem, i.e., whether the language of an ADB is contained in a regular language, and show that the model checking problem is PSPACE-complete. Copyright 2012 ACM. acknowledgement: 'This work has been financially supported in part by the European Commission FP7-ICT Cognitive Systems, Interaction, and Robotics under the contract # 270180 (NOPTILUS); by Fundacao para Ciencia e Tecnologia under project PTDC/EEA-CRO/104901/2008 (Modeling and control of Networked vehicle systems in persistent autonomous operations); by Austrian Science Fund (FWF) Grant No P 23499-N23 on Modern Graph Algorithmic Techniques in Formal Verification; FWF NFN Grant No S11407-N23 (RiSE); ERC Start grant (279307: Graph Games); Microsoft faculty fellows award; ERC Advanced grant QUAREM; and FWF Grant No S11403-N23 (RiSE).' author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Vinayak full_name: Prabhu, Vinayak last_name: Prabhu citation: ama: 'Chatterjee K, Henzinger TA, Prabhu V. Finite automata with time delay blocks. In: Roceedings of the Tenth ACM International Conference on Embedded Software. ACM; 2012:43-52. doi:10.1145/2380356.2380370' apa: 'Chatterjee, K., Henzinger, T. A., & Prabhu, V. (2012). Finite automata with time delay blocks. In roceedings of the tenth ACM international conference on Embedded software (pp. 43–52). Tampere, Finland: ACM. https://doi.org/10.1145/2380356.2380370' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Vinayak Prabhu. “Finite Automata with Time Delay Blocks.” In Roceedings of the Tenth ACM International Conference on Embedded Software, 43–52. ACM, 2012. https://doi.org/10.1145/2380356.2380370. ieee: K. Chatterjee, T. A. Henzinger, and V. Prabhu, “Finite automata with time delay blocks,” in roceedings of the tenth ACM international conference on Embedded software, Tampere, Finland, 2012, pp. 43–52. ista: 'Chatterjee K, Henzinger TA, Prabhu V. 2012. Finite automata with time delay blocks. roceedings of the tenth ACM international conference on Embedded software. EMSOFT: Embedded Software , 43–52.' mla: Chatterjee, Krishnendu, et al. “Finite Automata with Time Delay Blocks.” Roceedings of the Tenth ACM International Conference on Embedded Software, ACM, 2012, pp. 43–52, doi:10.1145/2380356.2380370. short: K. Chatterjee, T.A. Henzinger, V. Prabhu, in:, Roceedings of the Tenth ACM International Conference on Embedded Software, ACM, 2012, pp. 43–52. conference: end_date: 2012-10-12 location: Tampere, Finland name: 'EMSOFT: Embedded Software ' start_date: 2012-10-07 date_created: 2018-12-11T12:00:26Z date_published: 2012-10-01T00:00:00Z date_updated: 2021-01-12T07:39:53Z day: '01' department: - _id: KrCh - _id: ToHe doi: 10.1145/2380356.2380370 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1207.7019 month: '10' oa: 1 oa_version: Preprint page: 43 - 52 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: roceedings of the tenth ACM international conference on Embedded software publication_status: published publisher: ACM publist_id: '3799' quality_controlled: '1' scopus_import: 1 status: public title: Finite automata with time delay blocks type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2012' ... --- _id: '2947' abstract: - lang: eng text: We introduce games with probabilistic uncertainty, a model for controller synthesis in which the controller observes the state through imprecise sensors that provide correct information about the current state with a fixed probability. That is, in each step, the sensors return an observed state, and given the observed state, there is a probability distribution (due to the estimation error) over the actual current state. The controller must base its decision on the observed state (rather than the actual current state, which it does not know). On the other hand, we assume that the environment can perfectly observe the current state. We show that controller synthesis for qualitative ω-regular objectives in our model can be reduced in polynomial time to standard partial-observation stochastic games, and vice-versa. As a consequence we establish the precise decidability frontier for the new class of games, and establish optimal complexity results for all the decidable problems. acknowledgement: 'The research was supported by Austrian Science Fund (FWF) Grant No P 23499-N23 on Modern Graph Algorithmic Techniques in Formal Verification, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows award.' alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin full_name: Chmelik, Martin id: 3624234E-F248-11E8-B48F-1D18A9856A87 last_name: Chmelik - first_name: Ritankar full_name: Majumdar, Ritankar last_name: Majumdar citation: ama: 'Chatterjee K, Chmelik M, Majumdar R. Equivalence of games with probabilistic uncertainty and partial observation games. In: Vol 7561. Springer; 2012:385-399. doi:10.1007/978-3-642-33386-6_30' apa: 'Chatterjee, K., Chmelik, M., & Majumdar, R. (2012). Equivalence of games with probabilistic uncertainty and partial observation games (Vol. 7561, pp. 385–399). Presented at the ATVA: Automated Technology for Verification and Analysis, Thiruvananthapuram, India: Springer. https://doi.org/10.1007/978-3-642-33386-6_30' chicago: Chatterjee, Krishnendu, Martin Chmelik, and Ritankar Majumdar. “Equivalence of Games with Probabilistic Uncertainty and Partial Observation Games,” 7561:385–99. Springer, 2012. https://doi.org/10.1007/978-3-642-33386-6_30. ieee: 'K. Chatterjee, M. Chmelik, and R. Majumdar, “Equivalence of games with probabilistic uncertainty and partial observation games,” presented at the ATVA: Automated Technology for Verification and Analysis, Thiruvananthapuram, India, 2012, vol. 7561, pp. 385–399.' ista: 'Chatterjee K, Chmelik M, Majumdar R. 2012. Equivalence of games with probabilistic uncertainty and partial observation games. ATVA: Automated Technology for Verification and Analysis, LNCS, vol. 7561, 385–399.' mla: Chatterjee, Krishnendu, et al. Equivalence of Games with Probabilistic Uncertainty and Partial Observation Games. Vol. 7561, Springer, 2012, pp. 385–99, doi:10.1007/978-3-642-33386-6_30. short: K. Chatterjee, M. Chmelik, R. Majumdar, in:, Springer, 2012, pp. 385–399. conference: end_date: 2012-10-06 location: Thiruvananthapuram, India name: ' ATVA: Automated Technology for Verification and Analysis' start_date: 2012-10-03 date_created: 2018-12-11T12:00:29Z date_published: 2012-06-01T00:00:00Z date_updated: 2021-01-12T07:39:58Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-33386-6_30 ec_funded: 1 intvolume: ' 7561' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1202.4140 month: '06' oa: 1 oa_version: Preprint page: 385 - 399 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '3785' quality_controlled: '1' scopus_import: 1 status: public title: Equivalence of games with probabilistic uncertainty and partial observation games type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7561 year: '2012' ... --- _id: '3135' abstract: - lang: eng text: 'We introduce consumption games, a model for discrete interactive system with multiple resources that are consumed or reloaded independently. More precisely, a consumption game is a finite-state graph where each transition is labeled by a vector of resource updates, where every update is a non-positive number or ω. The ω updates model the reloading of a given resource. Each vertex belongs either to player □ or player ◇, where the aim of player □ is to play so that the resources are never exhausted. We consider several natural algorithmic problems about consumption games, and show that although these problems are computationally hard in general, they are solvable in polynomial time for every fixed number of resource types (i.e., the dimension of the update vectors) and bounded resource updates. ' acknowledgement: 'Tomas Brazdil, Antonin Kucera, and Petr Novotny are supported by the Czech Science Foundation, grant No. P202/10/1469. Krishnendu Chatterjee is supported by the FWF (Austrian Science Fund) NFN Grant No S11407-N23 (RiSE) and ERC Start grant (279307: Graph Games).' alternative_title: - LNCS author: - first_name: Brázdil full_name: Brázdil, Brázdil last_name: Brázdil - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Antonín full_name: Kučera, Antonín last_name: Kučera - first_name: Petr full_name: Novotny, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotny citation: ama: 'Brázdil B, Chatterjee K, Kučera A, Novotný P. Efficient controller synthesis for consumption games with multiple resource types. In: Vol 7358. Springer; 2012:23-38. doi:10.1007/978-3-642-31424-7_8' apa: 'Brázdil, B., Chatterjee, K., Kučera, A., & Novotný, P. (2012). Efficient controller synthesis for consumption games with multiple resource types (Vol. 7358, pp. 23–38). Presented at the CAV: Computer Aided Verification, Berkeley, CA, USA: Springer. https://doi.org/10.1007/978-3-642-31424-7_8' chicago: Brázdil, Brázdil, Krishnendu Chatterjee, Antonín Kučera, and Petr Novotný. “Efficient Controller Synthesis for Consumption Games with Multiple Resource Types,” 7358:23–38. Springer, 2012. https://doi.org/10.1007/978-3-642-31424-7_8. ieee: 'B. Brázdil, K. Chatterjee, A. Kučera, and P. Novotný, “Efficient controller synthesis for consumption games with multiple resource types,” presented at the CAV: Computer Aided Verification, Berkeley, CA, USA, 2012, vol. 7358, pp. 23–38.' ista: 'Brázdil B, Chatterjee K, Kučera A, Novotný P. 2012. Efficient controller synthesis for consumption games with multiple resource types. CAV: Computer Aided Verification, LNCS, vol. 7358, 23–38.' mla: Brázdil, Brázdil, et al. Efficient Controller Synthesis for Consumption Games with Multiple Resource Types. Vol. 7358, Springer, 2012, pp. 23–38, doi:10.1007/978-3-642-31424-7_8. short: B. Brázdil, K. Chatterjee, A. Kučera, P. Novotný, in:, Springer, 2012, pp. 23–38. conference: end_date: 2012-07-13 location: Berkeley, CA, USA name: 'CAV: Computer Aided Verification' start_date: 2012-07-07 date_created: 2018-12-11T12:01:35Z date_published: 2012-07-01T00:00:00Z date_updated: 2021-01-12T07:41:18Z day: '01' department: - _id: KrCh doi: 10.1007/978-3-642-31424-7_8 ec_funded: 1 intvolume: ' 7358' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1202.0796 month: '07' oa: 1 oa_version: Preprint page: 23 - 38 project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_status: published publisher: Springer publist_id: '3562' quality_controlled: '1' scopus_import: 1 status: public title: Efficient controller synthesis for consumption games with multiple resource types type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7358 year: '2012' ... --- _id: '3252' abstract: - lang: eng text: 'We study the automatic synthesis of fair non-repudiation protocols, a class of fair exchange protocols, used for digital contract signing. First, we show how to specify the objectives of the participating agents, the trusted third party (TTP) and the protocols as path formulas in Linear Temporal Logic (LTL) and prove that the satisfaction of the objectives of the agents and the TTP imply satisfaction of the protocol objectives. We then show that weak (co-operative) co-synthesis and classical (strictly competitive) co-synthesis fail in synthesizing these protocols, whereas assume-guarantee synthesis (AGS) succeeds. We demonstrate the success of assume-guarantee synthesis as follows: (a) any solution of assume-guarantee synthesis is attack-free; no subset of participants can violate the objectives of the other participants without violating their own objectives; (b) the Asokan-Shoup-Waidner (ASW) certified mail protocol that has known vulnerabilities is not a solution of AGS; and (c) the Kremer-Markowitch (KM) non-repudiation protocol is a solution of AGS. To our knowledge this is the first application of synthesis to fair non-repudiation protocols, and our results show how synthesis can generate correct protocols and automatically discover vulnerabilities. The solution to assume-guarantee synthesis can be computed efficiently as the secure equilibrium solution of three-player graph games. © 2012 Springer-Verlag.' acknowledgement: "The research was supported by Austrian Science Fund (FWF) Grant No P 23499-N23 (Modern Graph Algorithmic Techniques in Formal Verification), FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph Games), and Microsoft faculty fellows award.\r\nThe authors would like to thank Avik Chaudhuri for his invaluable help and feedback." alternative_title: - LNCS author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Vishwanath full_name: Raman, Vishwanath last_name: Raman citation: ama: 'Chatterjee K, Raman V. Synthesizing protocols for digital contract signing. In: Vol 7148. Springer; 2012:152-168. doi:10.1007/978-3-642-27940-9_11' apa: 'Chatterjee, K., & Raman, V. (2012). Synthesizing protocols for digital contract signing (Vol. 7148, pp. 152–168). Presented at the VMCAI: Verification, Model Checking and Abstract Interpretation, Philadelphia, PA, USA: Springer. https://doi.org/10.1007/978-3-642-27940-9_11' chicago: Chatterjee, Krishnendu, and Vishwanath Raman. “Synthesizing Protocols for Digital Contract Signing,” 7148:152–68. Springer, 2012. https://doi.org/10.1007/978-3-642-27940-9_11. ieee: 'K. Chatterjee and V. Raman, “Synthesizing protocols for digital contract signing,” presented at the VMCAI: Verification, Model Checking and Abstract Interpretation, Philadelphia, PA, USA, 2012, vol. 7148, pp. 152–168.' ista: 'Chatterjee K, Raman V. 2012. Synthesizing protocols for digital contract signing. VMCAI: Verification, Model Checking and Abstract Interpretation, LNCS, vol. 7148, 152–168.' mla: Chatterjee, Krishnendu, and Vishwanath Raman. Synthesizing Protocols for Digital Contract Signing. Vol. 7148, Springer, 2012, pp. 152–68, doi:10.1007/978-3-642-27940-9_11. short: K. Chatterjee, V. Raman, in:, Springer, 2012, pp. 152–168. conference: end_date: 2012-01-24 location: Philadelphia, PA, USA name: 'VMCAI: Verification, Model Checking and Abstract Interpretation' start_date: 2012-01-22 date_created: 2018-12-11T12:02:16Z date_published: 2012-01-20T00:00:00Z date_updated: 2021-01-12T07:42:08Z day: '20' department: - _id: KrCh doi: 10.1007/978-3-642-27940-9_11 ec_funded: 1 intvolume: ' 7148' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1004.2697 month: '01' oa: 1 oa_version: Preprint page: 152 - 168 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication_status: published publisher: Springer publist_id: '3405' quality_controlled: '1' scopus_import: 1 status: public title: Synthesizing protocols for digital contract signing type: conference user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7148 year: '2012' ... --- _id: '3255' abstract: - lang: eng text: In this paper we survey results of two-player games on graphs and Markov decision processes with parity, mean-payoff and energy objectives, and the combination of mean-payoff and energy objectives with parity objectives. These problems have applications in verification and synthesis of reactive systems in resource-constrained environments. acknowledgement: This work was partially supported by FWF NFN Grant S11407-N23 (RiSE) and a Microsoft faculty fellowship. alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Laurent full_name: Doyen, Laurent last_name: Doyen citation: ama: 'Chatterjee K, Doyen L. Games and Markov decision processes with mean payoff parity and energy parity objectives. In: Vol 7119. Springer; 2012:37-46. doi:10.1007/978-3-642-25929-6_3' apa: 'Chatterjee, K., & Doyen, L. (2012). Games and Markov decision processes with mean payoff parity and energy parity objectives (Vol. 7119, pp. 37–46). Presented at the MEMICS: Mathematical and Engineering Methods in Computer Science, Lednice, Czech Republic: Springer. https://doi.org/10.1007/978-3-642-25929-6_3' chicago: Chatterjee, Krishnendu, and Laurent Doyen. “Games and Markov Decision Processes with Mean Payoff Parity and Energy Parity Objectives,” 7119:37–46. Springer, 2012. https://doi.org/10.1007/978-3-642-25929-6_3. ieee: 'K. Chatterjee and L. Doyen, “Games and Markov decision processes with mean payoff parity and energy parity objectives,” presented at the MEMICS: Mathematical and Engineering Methods in Computer Science, Lednice, Czech Republic, 2012, vol. 7119, pp. 37–46.' ista: 'Chatterjee K, Doyen L. 2012. Games and Markov decision processes with mean payoff parity and energy parity objectives. MEMICS: Mathematical and Engineering Methods in Computer Science, LNCS, vol. 7119, 37–46.' mla: Chatterjee, Krishnendu, and Laurent Doyen. Games and Markov Decision Processes with Mean Payoff Parity and Energy Parity Objectives. Vol. 7119, Springer, 2012, pp. 37–46, doi:10.1007/978-3-642-25929-6_3. short: K. Chatterjee, L. Doyen, in:, Springer, 2012, pp. 37–46. conference: end_date: 2011-10-16 location: Lednice, Czech Republic name: 'MEMICS: Mathematical and Engineering Methods in Computer Science' start_date: 2011-10-14 date_created: 2018-12-11T12:02:17Z date_published: 2012-01-01T00:00:00Z date_updated: 2021-01-12T07:42:10Z day: '01' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-642-25929-6_3 file: - access_level: open_access checksum: eed2cc1e76b160418c977e76e8899a60 content_type: application/pdf creator: dernst date_created: 2020-05-15T12:53:12Z date_updated: 2020-07-14T12:46:05Z file_id: '7863' file_name: 2012_MEMICS_Chatterjee.pdf file_size: 114060 relation: main_file file_date_updated: 2020-07-14T12:46:05Z has_accepted_license: '1' intvolume: ' 7119' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 37 - 46 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_status: published publisher: Springer publist_id: '3400' quality_controlled: '1' scopus_import: 1 status: public title: Games and Markov decision processes with mean payoff parity and energy parity objectives type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7119 year: '2012' ...