TY - JOUR
AB - The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold r⋆ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than r⋆. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process.
AU - Tkadlec, Josef
AU - Pavlogiannis, Andreas
AU - Chatterjee, Krishnendu
AU - Nowak, Martin A.
ID - 7212
JF - PLoS computational biology
TI - Limits on amplifiers of natural selection under death-Birth updating
VL - 16
ER -
TY - JOUR
AB - Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.
AU - Milutinovic, Barbara
AU - Stock, Miriam
AU - Grasse, Anna V
AU - Naderlinger, Elisabeth
AU - Hilbe, Christian
AU - Cremer, Sylvia
ID - 7343
IS - 3
JF - Ecology Letters
SN - 1461-023X
TI - Social immunity modulates competition between coinfecting pathogens
VL - 23
ER -
TY - CONF
AB - The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coordination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a centralized system design. However, the PoA relies on strong assumptions about agents' rationality (e.g., resources and information) and interactions, whereas in many distributed systems agents interact locally with bounded resources. They do so repeatedly over time (in contrast to "one-shot games"), and their strategies may evolve. Using a more realistic evolutionary game model, this paper introduces a realized evolutionary Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic distributed systems with multiple equilibria, based on local interactions of simple memoryless agents. Considering a fundamental game related to virus propagation on networks, we present analytical bounds on the ePoA in basic network topologies and for different strategy update dynamics. In particular, deriving stationary distributions of the stochastic evolutionary process, we find that the Nash equilibria are not always the most abundant states, and that different processes can feature significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA studied traditionally in the literature.
AU - Schmid, Laura
AU - Chatterjee, Krishnendu
AU - Schmid, Stefan
ID - 7346
T2 - Proceedings of the 23rd International Conference on Principles of Distributed Systems
TI - The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game
VL - 153
ER -
TY - CONF
AB - Simple stochastic games are turn-based 2½-player games with a reachability objective. The basic question asks whether one player can ensure reaching a given target with at least a given probability. A natural extension is games with a conjunction of such conditions as objective. Despite a plethora of recent results on the analysis of systems with multiple objectives, the decidability of this basic problem remains open. In this paper, we present an algorithm approximating the Pareto frontier of the achievable values to a given precision. Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the current approximation and its error bound.
AU - Ashok, Pranav
AU - Chatterjee, Krishnendu
AU - Kretinsky, Jan
AU - Weininger, Maximilian
AU - Winkler, Tobias
ID - 7955
SN - 9781450371049
T2 - Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science
TI - Approximating values of generalized-reachability stochastic games
ER -
TY - JOUR
AB - In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve.
AU - Avni, Guy
AU - Ibsen-Jensen, Rasmus
AU - Tkadlec, Josef
ID - 9197
IS - 02
JF - Proceedings of the AAAI Conference on Artificial Intelligence
SN - 2374-3468
TI - All-pay bidding games on graphs
VL - 34
ER -