--- _id: '14846' abstract: - lang: eng text: Contraction and flow of the actin cell cortex have emerged as a common principle by which cells reorganize their cytoplasm and take shape. However, how these cortical flows interact with adjacent cytoplasmic components, changing their form and localization, and how this affects cytoplasmic organization and cell shape remains unclear. Here we show that in ascidian oocytes, the cooperative activities of cortical actomyosin flows and deformation of the adjacent mitochondria-rich myoplasm drive oocyte cytoplasmic reorganization and shape changes following fertilization. We show that vegetal-directed cortical actomyosin flows, established upon oocyte fertilization, lead to both the accumulation of cortical actin at the vegetal pole of the zygote and compression and local buckling of the adjacent elastic solid-like myoplasm layer due to friction forces generated at their interface. Once cortical flows have ceased, the multiple myoplasm buckles resolve into one larger buckle, which again drives the formation of the contraction pole—a protuberance of the zygote’s vegetal pole where maternal mRNAs accumulate. Thus, our findings reveal a mechanism where cortical actomyosin network flows determine cytoplasmic reorganization and cell shape by deforming adjacent cytoplasmic components through friction forces. acknowledged_ssus: - _id: EM-Fac - _id: Bio - _id: NanoFab acknowledgement: We would like to thank A. McDougall, E. Hannezo and the Heisenberg lab for fruitful discussions and reagents. We also thank E. Munro for the iMyo-YFP and Bra>iMyo-mScarlet constructs. This research was supported by the Scientific Service Units of the Institute of Science and Technology Austria through resources provided by the Electron Microscopy Facility, Imaging and Optics Facility and the Nanofabrication Facility. This work was supported by a Joint Project Grant from the FWF (I 3601-B27). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Silvia full_name: Caballero Mancebo, Silvia id: 2F1E1758-F248-11E8-B48F-1D18A9856A87 last_name: Caballero Mancebo orcid: 0000-0002-5223-3346 - first_name: Rushikesh full_name: Shinde, Rushikesh last_name: Shinde - first_name: Madison full_name: Bolger-Munro, Madison id: 516F03FA-93A3-11EA-A7C5-D6BE3DDC885E last_name: Bolger-Munro orcid: 0000-0002-8176-4824 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Gregory full_name: Szep, Gregory id: 4BFB7762-F248-11E8-B48F-1D18A9856A87 last_name: Szep - first_name: Irene full_name: Steccari, Irene id: 2705C766-9FE2-11EA-B224-C6773DDC885E last_name: Steccari - first_name: David full_name: Labrousse Arias, David id: CD573DF4-9ED3-11E9-9D77-3223E6697425 last_name: Labrousse Arias - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Andrew full_name: Callan-Jones, Andrew last_name: Callan-Jones - first_name: Raphaël full_name: Voituriez, Raphaël last_name: Voituriez - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 citation: ama: Caballero Mancebo S, Shinde R, Bolger-Munro M, et al. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. 2024. doi:10.1038/s41567-023-02302-1 apa: Caballero Mancebo, S., Shinde, R., Bolger-Munro, M., Peruzzo, M., Szep, G., Steccari, I., … Heisenberg, C.-P. J. (2024). Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02302-1 chicago: Caballero Mancebo, Silvia, Rushikesh Shinde, Madison Bolger-Munro, Matilda Peruzzo, Gregory Szep, Irene Steccari, David Labrousse Arias, et al. “Friction Forces Determine Cytoplasmic Reorganization and Shape Changes of Ascidian Oocytes upon Fertilization.” Nature Physics. Springer Nature, 2024. https://doi.org/10.1038/s41567-023-02302-1. ieee: S. Caballero Mancebo et al., “Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization,” Nature Physics. Springer Nature, 2024. ista: Caballero Mancebo S, Shinde R, Bolger-Munro M, Peruzzo M, Szep G, Steccari I, Labrousse Arias D, Zheden V, Merrin J, Callan-Jones A, Voituriez R, Heisenberg C-PJ. 2024. Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization. Nature Physics. mla: Caballero Mancebo, Silvia, et al. “Friction Forces Determine Cytoplasmic Reorganization and Shape Changes of Ascidian Oocytes upon Fertilization.” Nature Physics, Springer Nature, 2024, doi:10.1038/s41567-023-02302-1. short: S. Caballero Mancebo, R. Shinde, M. Bolger-Munro, M. Peruzzo, G. Szep, I. Steccari, D. Labrousse Arias, V. Zheden, J. Merrin, A. Callan-Jones, R. Voituriez, C.-P.J. Heisenberg, Nature Physics (2024). date_created: 2024-01-21T23:00:57Z date_published: 2024-01-09T00:00:00Z date_updated: 2024-03-05T09:33:38Z day: '09' department: - _id: CaHe - _id: JoFi - _id: MiSi - _id: EM-Fac - _id: NanoFab doi: 10.1038/s41567-023-02302-1 has_accepted_license: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41567-023-02302-1 month: '01' oa: 1 oa_version: Published Version project: - _id: 2646861A-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03601 name: Control of embryonic cleavage pattern publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/stranger-than-friction-a-force-initiating-life/ scopus_import: '1' status: public title: Friction forces determine cytoplasmic reorganization and shape changes of ascidian oocytes upon fertilization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2024' ... --- _id: '12819' abstract: - lang: eng text: 'Reaching a high cavity population with a coherent pump in the strong-coupling regime of a single-atom laser is impossible due to the photon blockade effect. In this Letter, we experimentally demonstrate that in a single-atom maser based on a transmon strongly coupled to two resonators, it is possible to pump over a dozen photons into the system. The first high-quality resonator plays the role of a usual lasing cavity, and the second one presents a controlled dissipation channel, bolstering population inversion, and modifies the energy-level structure to lift the blockade. As confirmation of the lasing action, we observe conventional laser features such as a narrowing of the emission linewidth and external signal amplification. Additionally, we report unique single-atom features: self-quenching and several lasing thresholds.' acknowledgement: We thank N.N. Abramov for assistance with the experimental setup. The sample was fabricated using equipment of MIPT Shared Facilities Center. This research was supported by Russian Science Foundation, grant no. 21-72-30026. article_number: L031701 article_processing_charge: No article_type: letter_note author: - first_name: Alesya full_name: Sokolova, Alesya id: 2d0a0600-edfb-11eb-afb5-c0f5fa7f4f3a last_name: Sokolova orcid: 0000-0002-8308-4144 - first_name: D. A. full_name: Kalacheva, D. A. last_name: Kalacheva - first_name: G. P. full_name: Fedorov, G. P. last_name: Fedorov - first_name: O. V. full_name: Astafiev, O. V. last_name: Astafiev citation: ama: Sokolova A, Kalacheva DA, Fedorov GP, Astafiev OV. Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. 2023;107(3). doi:10.1103/PhysRevA.107.L031701 apa: Sokolova, A., Kalacheva, D. A., Fedorov, G. P., & Astafiev, O. V. (2023). Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.107.L031701 chicago: Sokolova, Alesya, D. A. Kalacheva, G. P. Fedorov, and O. V. Astafiev. “Overcoming Photon Blockade in a Circuit-QED Single-Atom Maser with Engineered Metastability and Strong Coupling.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.107.L031701. ieee: A. Sokolova, D. A. Kalacheva, G. P. Fedorov, and O. V. Astafiev, “Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling,” Physical Review A, vol. 107, no. 3. American Physical Society, 2023. ista: Sokolova A, Kalacheva DA, Fedorov GP, Astafiev OV. 2023. Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling. Physical Review A. 107(3), L031701. mla: Sokolova, Alesya, et al. “Overcoming Photon Blockade in a Circuit-QED Single-Atom Maser with Engineered Metastability and Strong Coupling.” Physical Review A, vol. 107, no. 3, L031701, American Physical Society, 2023, doi:10.1103/PhysRevA.107.L031701. short: A. Sokolova, D.A. Kalacheva, G.P. Fedorov, O.V. Astafiev, Physical Review A 107 (2023). date_created: 2023-04-09T22:01:00Z date_published: 2023-03-22T00:00:00Z date_updated: 2023-08-01T14:06:05Z day: '22' department: - _id: JoFi doi: 10.1103/PhysRevA.107.L031701 external_id: arxiv: - '2209.05165' isi: - '000957799000006' intvolume: ' 107' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2209.05165 month: '03' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Overcoming photon blockade in a circuit-QED single-atom maser with engineered metastability and strong coupling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13117' abstract: - lang: eng text: The ability to control the direction of scattered light is crucial to provide flexibility and scalability for a wide range of on-chip applications, such as integrated photonics, quantum information processing, and nonlinear optics. Tunable directionality can be achieved by applying external magnetic fields that modify optical selection rules, by using nonlinear effects, or interactions with vibrations. However, these approaches are less suitable to control microwave photon propagation inside integrated superconducting quantum devices. Here, we demonstrate on-demand tunable directional scattering based on two periodically modulated transmon qubits coupled to a transmission line at a fixed distance. By changing the relative phase between the modulation tones, we realize unidirectional forward or backward photon scattering. Such an in-situ switchable mirror represents a versatile tool for intra- and inter-chip microwave photonic processors. In the future, a lattice of qubits can be used to realize topological circuits that exhibit strong nonreciprocity or chirality. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: The authors thank W.D. Oliver for discussions, L. Drmic and P. Zielinski for software development, and the MIBA workshop and the IST nanofabrication facility for technical support. This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105) and IST Austria. E.R. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. and M.Z. acknowledge support from the European Research Council under grant agreement No 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. The work of A.N.P. and A.V.P. has been supported by the Russian Science Foundation under the grant No 20-12-00194. article_number: '2998' article_processing_charge: No article_type: original author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alexander V. full_name: Poshakinskiy, Alexander V. last_name: Poshakinskiy - first_name: Riya full_name: Sett, Riya id: 2E6D040E-F248-11E8-B48F-1D18A9856A87 last_name: Sett - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Alexander N. full_name: Poddubny, Alexander N. last_name: Poddubny - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 2023;14. doi:10.1038/s41467-023-38761-6 apa: Redchenko, E., Poshakinskiy, A. V., Sett, R., Zemlicka, M., Poddubny, A. N., & Fink, J. M. (2023). Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-38761-6 chicago: Redchenko, Elena, Alexander V. Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander N. Poddubny, and Johannes M Fink. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-38761-6. ieee: E. Redchenko, A. V. Poshakinskiy, R. Sett, M. Zemlicka, A. N. Poddubny, and J. M. Fink, “Tunable directional photon scattering from a pair of superconducting qubits,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Redchenko E, Poshakinskiy AV, Sett R, Zemlicka M, Poddubny AN, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits. Nature Communications. 14, 2998. mla: Redchenko, Elena, et al. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Nature Communications, vol. 14, 2998, Springer Nature, 2023, doi:10.1038/s41467-023-38761-6. short: E. Redchenko, A.V. Poshakinskiy, R. Sett, M. Zemlicka, A.N. Poddubny, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-06-04T22:01:02Z date_published: 2023-05-24T00:00:00Z date_updated: 2023-08-02T06:10:26Z day: '24' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-023-38761-6 ec_funded: 1 external_id: arxiv: - '2205.03293' isi: - '001001099700002' file: - access_level: open_access checksum: a857df40f0882859c48a1ff1e2001ec2 content_type: application/pdf creator: dernst date_created: 2023-06-06T07:31:20Z date_updated: 2023-06-06T07:31:20Z file_id: '13123' file_name: 2023_NaturePhysics_Redchenko.pdf file_size: 1654389 relation: main_file success: 1 file_date_updated: 2023-06-06T07:31:20Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 26B354CA-B435-11E9-9278-68D0E5697425 name: Controllable Collective States of Superconducting Qubit Ensembles - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '13124' relation: research_data status: public scopus_import: '1' status: public title: Tunable directional photon scattering from a pair of superconducting qubits tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2023' ... --- _id: '13106' abstract: - lang: eng text: Quantum entanglement is a key resource in currently developed quantum technologies. Sharing this fragile property between superconducting microwave circuits and optical or atomic systems would enable new functionalities, but this has been hindered by an energy scale mismatch of >104 and the resulting mutually imposed loss and noise. In this work, we created and verified entanglement between microwave and optical fields in a millikelvin environment. Using an optically pulsed superconducting electro-optical device, we show entanglement between propagating microwave and optical fields in the continuous variable domain. This achievement not only paves the way for entanglement between superconducting circuits and telecom wavelength light, but also has wide-ranging implications for hybrid quantum networks in the context of modularization, scaling, sensing, and cross-platform verification. acknowledgement: This work was supported by the European Research Council (grant no. 758053, ERC StG QUNNECT) and the European Union’s Horizon 2020 Research and Innovation Program (grant no. 899354, FETopen SuperQuLAN). L.Q. acknowledges generous support from the ISTFELLOW program. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 Research and Innovation Program (Marie Sklodowska-Curie grant no. 754411). G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (grant no. F7105) and the European Union’s Horizon 2020 Research and Innovation Program (grant no. 862644, FETopen QUARTET). article_processing_charge: No article_type: original author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold - first_name: Y. full_name: Minoguchi, Y. last_name: Minoguchi - first_name: P. full_name: Rabl, P. last_name: Rabl - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Sahu R, Qiu L, Hease WJ, et al. Entangling microwaves with light. Science. 2023;380(6646):718-721. doi:10.1126/science.adg3812 apa: Sahu, R., Qiu, L., Hease, W. J., Arnold, G. M., Minoguchi, Y., Rabl, P., & Fink, J. M. (2023). Entangling microwaves with light. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adg3812 chicago: Sahu, Rishabh, Liu Qiu, William J Hease, Georg M Arnold, Y. Minoguchi, P. Rabl, and Johannes M Fink. “Entangling Microwaves with Light.” Science. American Association for the Advancement of Science, 2023. https://doi.org/10.1126/science.adg3812. ieee: R. Sahu et al., “Entangling microwaves with light,” Science, vol. 380, no. 6646. American Association for the Advancement of Science, pp. 718–721, 2023. ista: Sahu R, Qiu L, Hease WJ, Arnold GM, Minoguchi Y, Rabl P, Fink JM. 2023. Entangling microwaves with light. Science. 380(6646), 718–721. mla: Sahu, Rishabh, et al. “Entangling Microwaves with Light.” Science, vol. 380, no. 6646, American Association for the Advancement of Science, 2023, pp. 718–21, doi:10.1126/science.adg3812. short: R. Sahu, L. Qiu, W.J. Hease, G.M. Arnold, Y. Minoguchi, P. Rabl, J.M. Fink, Science 380 (2023) 718–721. date_created: 2023-05-31T11:39:24Z date_published: 2023-05-18T00:00:00Z date_updated: 2023-08-02T06:08:57Z day: '18' department: - _id: JoFi doi: 10.1126/science.adg3812 ec_funded: 1 external_id: arxiv: - '2301.03315' isi: - '000996515200004' intvolume: ' 380' isi: 1 issue: '6646' keyword: - Multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2301.03315 month: '05' oa: 1 oa_version: Preprint page: 718-721 project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on ISTA Website relation: press_release url: https://ista.ac.at/en/news/wiring-up-quantum-circuits-with-light/ record: - id: '13122' relation: research_data status: public status: public title: Entangling microwaves with light type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 380 year: '2023' ... --- _id: '13124' abstract: - lang: eng text: This dataset comprises all data shown in the figures of the submitted article "Tunable directional photon scattering from a pair of superconducting qubits" at arXiv:2205.03293. Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alexander full_name: Poshakinskiy, Alexander last_name: Poshakinskiy - first_name: Riya full_name: Sett, Riya id: 2E6D040E-F248-11E8-B48F-1D18A9856A87 last_name: Sett - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Alexander full_name: Poddubny, Alexander last_name: Poddubny - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Redchenko E, Poshakinskiy A, Sett R, Zemlicka M, Poddubny A, Fink JM. Tunable directional photon scattering from a pair of superconducting qubits. 2023. doi:10.5281/ZENODO.7858567 apa: Redchenko, E., Poshakinskiy, A., Sett, R., Zemlicka, M., Poddubny, A., & Fink, J. M. (2023). Tunable directional photon scattering from a pair of superconducting qubits. Zenodo. https://doi.org/10.5281/ZENODO.7858567 chicago: Redchenko, Elena, Alexander Poshakinskiy, Riya Sett, Martin Zemlicka, Alexander Poddubny, and Johannes M Fink. “Tunable Directional Photon Scattering from a Pair of Superconducting Qubits.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7858567. ieee: E. Redchenko, A. Poshakinskiy, R. Sett, M. Zemlicka, A. Poddubny, and J. M. Fink, “Tunable directional photon scattering from a pair of superconducting qubits.” Zenodo, 2023. ista: Redchenko E, Poshakinskiy A, Sett R, Zemlicka M, Poddubny A, Fink JM. 2023. Tunable directional photon scattering from a pair of superconducting qubits, Zenodo, 10.5281/ZENODO.7858567. mla: Redchenko, Elena, et al. Tunable Directional Photon Scattering from a Pair of Superconducting Qubits. Zenodo, 2023, doi:10.5281/ZENODO.7858567. short: E. Redchenko, A. Poshakinskiy, R. Sett, M. Zemlicka, A. Poddubny, J.M. Fink, (2023). date_created: 2023-06-06T07:36:50Z date_published: 2023-04-28T00:00:00Z date_updated: 2023-08-02T06:10:25Z day: '28' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.7858567 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7858567 month: '04' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '13117' relation: used_in_publication status: public status: public title: Tunable directional photon scattering from a pair of superconducting qubits tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13122' abstract: - lang: eng text: Data for submitted article "Entangling microwaves with light" at arXiv:2301.03315v1 article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 citation: ama: Sahu R. Entangling microwaves with light. 2023. doi:10.5281/ZENODO.7789417 apa: Sahu, R. (2023). Entangling microwaves with light. Zenodo. https://doi.org/10.5281/ZENODO.7789417 chicago: Sahu, Rishabh. “Entangling Microwaves with Light.” Zenodo, 2023. https://doi.org/10.5281/ZENODO.7789417. ieee: R. Sahu, “Entangling microwaves with light.” Zenodo, 2023. ista: Sahu R. 2023. Entangling microwaves with light, Zenodo, 10.5281/ZENODO.7789417. mla: Sahu, Rishabh. Entangling Microwaves with Light. Zenodo, 2023, doi:10.5281/ZENODO.7789417. short: R. Sahu, (2023). date_created: 2023-06-06T06:46:16Z date_published: 2023-03-31T00:00:00Z date_updated: 2023-08-02T06:08:56Z day: '31' department: - _id: JoFi doi: 10.5281/ZENODO.7789417 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.7789418 month: '03' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '13106' relation: used_in_publication status: public status: public title: Entangling microwaves with light tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13175' abstract: - lang: eng text: "About a 100 years ago, we discovered that our universe is inherently noisy, that is, measuring any physical quantity with a precision beyond a certain point is not possible because of an omnipresent inherent noise. We call this - the quantum noise. Certain physical processes allow this quantum noise to get correlated in conjugate physical variables. These quantum correlations can be used to go beyond the potential of our inherently noisy universe and obtain a quantum advantage over the classical applications. \r\n\r\nQuantum noise being inherent also means that, at the fundamental level, the physical quantities are not well defined and therefore, objects can stay in multiple states at the same time. For example, the position of a particle not being well defined means that the particle is in multiple positions at the same time. About 4 decades ago, we started exploring the possibility of using objects which can be in multiple states at the same time to increase the dimensionality in computation. Thus, the field of quantum computing was born. We discovered that using quantum entanglement, a property closely related to quantum correlations, can be used to speed up computation of certain problems, such as factorisation of large numbers, faster than any known classical algorithm. Thus began the pursuit to make quantum computers a reality. \r\n\r\nTill date, we have explored quantum control over many physical systems including photons, spins, atoms, ions and even simple circuits made up of superconducting material. However, there persists one ubiquitous theme. The more readily a system interacts with an external field or matter, the more easily we can control it. But this also means that such a system can easily interact with a noisy environment and quickly lose its coherence. Consequently, such systems like electron spins need to be protected from the environment to ensure the longevity of their coherence. Other systems like nuclear spins are naturally protected as they do not interact easily with the environment. But, due to the same reason, it is harder to interact with such systems. \r\n\r\nAfter decades of experimentation with various systems, we are convinced that no one type of quantum system would be the best for all the quantum applications. We would need hybrid systems which are all interconnected - much like the current internet where all sorts of devices can all talk to each other - but now for quantum devices. A quantum internet. \r\n\r\nOptical photons are the best contenders to carry information for the quantum internet. They can carry quantum information cheaply and without much loss - the same reasons which has made them the backbone of our current internet. Following this direction, many systems, like trapped ions, have already demonstrated successful quantum links over a large distances using optical photons. However, some of the most promising contenders for quantum computing which are based on microwave frequencies have been left behind. This is because high energy optical photons can adversely affect fragile low-energy microwave systems. \r\n\r\nIn this thesis, we present substantial progress on this missing quantum link between microwave and optics using electrooptical nonlinearities in lithium niobate. The nonlinearities are enhanced by using resonant cavities for all the involved modes leading to observation of strong direct coupling between optical and microwave frequencies. With this strong coupling we are not only able to achieve almost 100\\% internal conversion efficiency with low added noise, thus presenting a quantum-enabled transducer, but also we are able to observe novel effects such as cooling of a microwave mode using optics. The strong coupling regime also leads to direct observation of dynamical backaction effect between microwave and optical frequencies which are studied in detail here. Finally, we also report first observation of microwave-optics entanglement in form of two-mode squeezed vacuum squeezed 0.7dB below vacuum level. \r\nWith this new bridge between microwave and optics, the microwave-based quantum technologies can finally be a part of a quantum network which is based on optical photons - putting us one step closer to a future with quantum internet. " acknowledged_ssus: - _id: M-Shop - _id: SSU - _id: NanoFab alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 citation: ama: Sahu R. Cavity quantum electrooptics. 2023. doi:10.15479/at:ista:13175 apa: Sahu, R. (2023). Cavity quantum electrooptics. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13175 chicago: Sahu, Rishabh. “Cavity Quantum Electrooptics.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:13175. ieee: R. Sahu, “Cavity quantum electrooptics,” Institute of Science and Technology Austria, 2023. ista: Sahu R. 2023. Cavity quantum electrooptics. Institute of Science and Technology Austria. mla: Sahu, Rishabh. Cavity Quantum Electrooptics. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:13175. short: R. Sahu, Cavity Quantum Electrooptics, Institute of Science and Technology Austria, 2023. date_created: 2023-06-30T08:07:43Z date_published: 2023-05-05T00:00:00Z date_updated: 2023-08-24T11:16:35Z day: '05' ddc: - '537' - '535' - '539' degree_awarded: PhD department: - _id: GradSch - _id: JoFi doi: 10.15479/at:ista:13175 ec_funded: 1 file: - access_level: open_access checksum: 7d03f1a5a5258ee43dfc3323dea4e08f content_type: application/pdf creator: cchlebak date_created: 2023-06-30T08:17:25Z date_updated: 2023-06-30T08:17:25Z file_id: '13176' file_name: thesis_pdfa.pdf file_size: 18688376 relation: main_file success: 1 - access_level: closed checksum: c3b45317ae58e0527533f98c202d81b7 content_type: application/x-zip-compressed creator: cchlebak date_created: 2023-07-06T11:35:15Z date_updated: 2023-07-06T11:35:15Z file_id: '13196' file_name: thesis.zip file_size: 37847025 relation: source_file file_date_updated: 2023-07-06T11:35:15Z has_accepted_license: '1' keyword: - quantum optics - electrooptics - quantum networks - quantum communication - transduction language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '05' oa: 1 oa_version: Published Version page: '202' project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: bdb108fd-d553-11ed-ba76-83dc74a9864f name: QUANTUM INFORMATION SYSTEMS BEYOND CLASSICAL CAPABILITIES / P5- Integration of Superconducting Quantum Circuits publication_identifier: isbn: - 978-3-99078-030-5 issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '12900' relation: old_edition status: public - id: '10924' relation: part_of_dissertation status: public - id: '9114' relation: part_of_dissertation status: public status: public supervisor: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X title: Cavity quantum electrooptics tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '12900' abstract: - lang: eng text: "About a 100 years ago, we discovered that our universe is inherently noisy, that is, measuring any physical quantity with a precision beyond a certain point is not possible because of an omnipresent inherent noise. We call this - the quantum noise. Certain physical processes allow this quantum noise to get correlated in conjugate physical variables. These quantum correlations can be used to go beyond the potential of our inherently noisy universe and obtain a quantum advantage over the classical applications. \r\n\r\nQuantum noise being inherent also means that, at the fundamental level, the physical quantities are not well defined and therefore, objects can stay in multiple states at the same time. For example, the position of a particle not being well defined means that the particle is in multiple positions at the same time. About 4 decades ago, we started exploring the possibility of using objects which can be in multiple states at the same time to increase the dimensionality in computation. Thus, the field of quantum computing was born. We discovered that using quantum entanglement, a property closely related to quantum correlations, can be used to speed up computation of certain problems, such as factorisation of large numbers, faster than any known classical algorithm. Thus began the pursuit to make quantum computers a reality. \r\n\r\nTill date, we have explored quantum control over many physical systems including photons, spins, atoms, ions and even simple circuits made up of superconducting material. However, there persists one ubiquitous theme. The more readily a system interacts with an external field or matter, the more easily we can control it. But this also means that such a system can easily interact with a noisy environment and quickly lose its coherence. Consequently, such systems like electron spins need to be protected from the environment to ensure the longevity of their coherence. Other systems like nuclear spins are naturally protected as they do not interact easily with the environment. But, due to the same reason, it is harder to interact with such systems. \r\n\r\nAfter decades of experimentation with various systems, we are convinced that no one type of quantum system would be the best for all the quantum applications. We would need hybrid systems which are all interconnected - much like the current internet where all sorts of devices can all talk to each other - but now for quantum devices. A quantum internet. \r\n\r\nOptical photons are the best contenders to carry information for the quantum internet. They can carry quantum information cheaply and without much loss - the same reasons which has made them the backbone of our current internet. Following this direction, many systems, like trapped ions, have already demonstrated successful quantum links over a large distances using optical photons. However, some of the most promising contenders for quantum computing which are based on microwave frequencies have been left behind. This is because high energy optical photons can adversely affect fragile low-energy microwave systems. \r\n\r\nIn this thesis, we present substantial progress on this missing quantum link between microwave and optics using electrooptical nonlinearities in lithium niobate. The nonlinearities are enhanced by using resonant cavities for all the involved modes leading to observation of strong direct coupling between optical and microwave frequencies. With this strong coupling we are not only able to achieve almost 100\\% internal conversion efficiency with low added noise, thus presenting a quantum-enabled transducer, but also we are able to observe novel effects such as cooling of a microwave mode using optics. The strong coupling regime also leads to direct observation of dynamical backaction effect between microwave and optical frequencies which are studied in detail here. Finally, we also report first observation of microwave-optics entanglement in form of two-mode squeezed vacuum squeezed 0.7dB below vacuum level. \r\nWith this new bridge between microwave and optics, the microwave-based quantum technologies can finally be a part of a quantum network which is based on optical photons - putting us one step closer to a future with quantum internet. " acknowledged_ssus: - _id: M-Shop - _id: SSU - _id: NanoFab alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 citation: ama: Sahu R. Cavity quantum electrooptics. 2023. doi:10.15479/at:ista:12900 apa: Sahu, R. (2023). Cavity quantum electrooptics. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:12900 chicago: Sahu, Rishabh. “Cavity Quantum Electrooptics.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:12900. ieee: R. Sahu, “Cavity quantum electrooptics,” Institute of Science and Technology Austria, 2023. ista: Sahu R. 2023. Cavity quantum electrooptics. Institute of Science and Technology Austria. mla: Sahu, Rishabh. Cavity Quantum Electrooptics. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:12900. short: R. Sahu, Cavity Quantum Electrooptics, Institute of Science and Technology Austria, 2023. date_created: 2023-05-05T11:08:50Z date_published: 2023-05-05T00:00:00Z date_updated: 2023-08-24T11:16:35Z day: '05' ddc: - '537' - '535' - '539' degree_awarded: PhD department: - _id: GradSch - _id: JoFi doi: 10.15479/at:ista:12900 ec_funded: 1 file: - access_level: closed checksum: 8cbdab9c37ee55e591092a6f66b272c4 content_type: application/x-zip-compressed creator: rsahu date_created: 2023-05-09T08:45:14Z date_updated: 2023-06-06T22:30:03Z embargo_to: open_access file_id: '12928' file_name: thesis.zip file_size: 36767177 relation: source_file - access_level: closed checksum: 439659ead46618147309be39d9dd5a8c content_type: application/pdf creator: rsahu date_created: 2023-05-09T08:51:17Z date_updated: 2023-07-06T11:37:40Z file_id: '12929' file_name: thesis_pdfa_final.pdf file_size: 17501990 relation: main_file file_date_updated: 2023-07-06T11:37:40Z has_accepted_license: '1' keyword: - quantum optics - electrooptics - quantum networks - quantum communication - transduction language: - iso: eng month: '05' oa_version: Published Version page: '190' project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: bdb108fd-d553-11ed-ba76-83dc74a9864f name: QUANTUM INFORMATION SYSTEMS BEYOND CLASSICAL CAPABILITIES / P5- Integration of Superconducting Quantum Circuits publication_identifier: isbn: - 978-3-99078-030-5 issn: - 2663 - 337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '13175' relation: new_edition status: public - id: '10924' relation: part_of_dissertation status: public - id: '9114' relation: part_of_dissertation status: public status: public supervisor: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X title: Cavity quantum electrooptics tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '13200' abstract: - lang: eng text: Recent quantum technologies have established precise quantum control of various microscopic systems using electromagnetic waves. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. Quantum optical control of superconducting microwave circuits has been precluded so far due to the weak electro-optical coupling as well as quasi-particles induced by the pump laser. Here we report the coherent control of a superconducting microwave cavity using laser pulses in a multimode electro-optical device at millikelvin temperature with near-unity cooperativity. Both the stationary and instantaneous responses of the microwave and optical modes comply with the coherent electro-optical interaction, and reveal only minuscule amount of excess back-action with an unanticipated time delay. Our demonstration enables wide ranges of applications beyond quantum transductions, from squeezing and quantum non-demolition measurements of microwave fields, to entanglement generation and hybrid quantum networks. acknowledgement: This work was supported by the European Research Council under grant agreement no. 758053 (ERC StG QUNNECT), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 899354 (FETopen SuperQuLAN), and the Austrian Science Fund (FWF) through BeyondC (F7105). L.Q. acknowledges generous support from the ISTFELLOW programme. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 754411. G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. article_number: '3784' article_processing_charge: No article_type: original author: - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Qiu L, Sahu R, Hease WJ, Arnold GM, Fink JM. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. 2023;14. doi:10.1038/s41467-023-39493-3 apa: Qiu, L., Sahu, R., Hease, W. J., Arnold, G. M., & Fink, J. M. (2023). Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. Nature Research. https://doi.org/10.1038/s41467-023-39493-3 chicago: Qiu, Liu, Rishabh Sahu, William J Hease, Georg M Arnold, and Johannes M Fink. “Coherent Optical Control of a Superconducting Microwave Cavity via Electro-Optical Dynamical Back-Action.” Nature Communications. Nature Research, 2023. https://doi.org/10.1038/s41467-023-39493-3. ieee: L. Qiu, R. Sahu, W. J. Hease, G. M. Arnold, and J. M. Fink, “Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action,” Nature Communications, vol. 14. Nature Research, 2023. ista: Qiu L, Sahu R, Hease WJ, Arnold GM, Fink JM. 2023. Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action. Nature Communications. 14, 3784. mla: Qiu, Liu, et al. “Coherent Optical Control of a Superconducting Microwave Cavity via Electro-Optical Dynamical Back-Action.” Nature Communications, vol. 14, 3784, Nature Research, 2023, doi:10.1038/s41467-023-39493-3. short: L. Qiu, R. Sahu, W.J. Hease, G.M. Arnold, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-07-09T22:01:11Z date_published: 2023-06-24T00:00:00Z date_updated: 2023-10-17T11:46:12Z day: '24' ddc: - '000' department: - _id: JoFi doi: 10.1038/s41467-023-39493-3 ec_funded: 1 external_id: arxiv: - '2210.12443' isi: - '001018100800002' pmid: - '37355691' file: - access_level: open_access checksum: ec7ccd2c08f90d59cab302fd0d7776a4 content_type: application/pdf creator: alisjak date_created: 2023-07-10T10:10:54Z date_updated: 2023-07-10T10:10:54Z file_id: '13206' file_name: 2023_NatureComms_Qiu.pdf file_size: 1349134 relation: main_file success: 1 file_date_updated: 2023-07-10T10:10:54Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: bdb108fd-d553-11ed-ba76-83dc74a9864f name: QUANTUM INFORMATION SYSTEMS BEYOND CLASSICAL CAPABILITIES / P5- Integration of Superconducting Quantum Circuits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Nature Research quality_controlled: '1' scopus_import: '1' status: public title: Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '14517' abstract: - lang: eng text: 'State-of-the-art transmon qubits rely on large capacitors, which systematically improve their coherence due to reduced surface-loss participation. However, this approach increases both the footprint and the parasitic cross-coupling and is ultimately limited by radiation losses—a potential roadblock for scaling up quantum processors to millions of qubits. In this work we present transmon qubits with sizes as low as 36 × 39 µm2 with 100-nm-wide vacuum-gap capacitors that are micromachined from commercial silicon-on-insulator wafers and shadow evaporated with aluminum. We achieve a vacuum participation ratio up to 99.6% in an in-plane design that is compatible with standard coplanar circuits. Qubit relaxationtime measurements for small gaps with high zero-point electric field variance of up to 22 V/m reveal a double exponential decay indicating comparably strong qubit interaction with long-lived two-level systems. The exceptionally high selectivity of up to 20 dB to the superconductor-vacuum interface allows us to precisely back out the sub-single-photon dielectric loss tangent of aluminum oxide previously exposed to ambient conditions. In terms of future scaling potential, we achieve a ratio of qubit quality factor to a footprint area equal to 20 µm−2, which is comparable with the highest T1 devices relying on larger geometries, a value that could improve substantially for lower surface-loss superconductors. ' acknowledged_ssus: - _id: NanoFab acknowledgement: "This work was supported by the Austrian Science Fund (FWF) through BeyondC (F7105), the European Research Council under Grant Agreement No. 758053 (ERC StG QUNNECT) and a NOMIS foundation research grant. M.Z. was the recipient of a SAIA scholarship, E.R. of\r\na DOC fellowship of the Austrian Academy of Sciences, and M.P. of a Pöttinger scholarship at IST Austria. S.B. acknowledges support from Marie Skłodowska Curie Program No. 707438 (MSC-IF SUPEREOM). J.M.F. acknowledges support from the Horizon Europe Program HORIZON-CL4-2022-QUANTUM-01-SGA via Project No. 101113946 OpenSuperQPlus100 and the ISTA Nanofabrication Facility." article_number: '044054' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Zemlicka M, Redchenko E, Peruzzo M, et al. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 2023;20(4). doi:10.1103/PhysRevApplied.20.044054' apa: 'Zemlicka, M., Redchenko, E., Peruzzo, M., Hassani, F., Trioni, A., Barzanjeh, S., & Fink, J. M. (2023). Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.20.044054' chicago: 'Zemlicka, Martin, Elena Redchenko, Matilda Peruzzo, Farid Hassani, Andrea Trioni, Shabir Barzanjeh, and Johannes M Fink. “Compact Vacuum-Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Physical Review Applied. American Physical Society, 2023. https://doi.org/10.1103/PhysRevApplied.20.044054.' ieee: 'M. Zemlicka et al., “Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses,” Physical Review Applied, vol. 20, no. 4. American Physical Society, 2023.' ista: 'Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2023. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 20(4), 044054.' mla: 'Zemlicka, Martin, et al. “Compact Vacuum-Gap Transmon Qubits: Selective and Sensitive Probes for Superconductor Surface Losses.” Physical Review Applied, vol. 20, no. 4, 044054, American Physical Society, 2023, doi:10.1103/PhysRevApplied.20.044054.' short: M. Zemlicka, E. Redchenko, M. Peruzzo, F. Hassani, A. Trioni, S. Barzanjeh, J.M. Fink, Physical Review Applied 20 (2023). date_created: 2023-11-12T23:00:55Z date_published: 2023-10-20T00:00:00Z date_updated: 2023-11-13T09:22:47Z day: '20' department: - _id: JoFi doi: 10.1103/PhysRevApplied.20.044054 ec_funded: 1 external_id: arxiv: - '2206.14104' intvolume: ' 20' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2206.14104 month: '10' oa: 1 oa_version: Preprint project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter - _id: 258047B6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '707438' name: 'Microwave-to-Optical Quantum Link: Quantum Teleportation and Quantum Illumination with cavity Optomechanics SUPEREOM' - _id: bdb7cfc1-d553-11ed-ba76-d2eaab167738 grant_number: '101080139' name: Open Superconducting Quantum Computers (OpenSuperQPlus) publication: Physical Review Applied publication_identifier: eissn: - 2331-7019 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '14520' relation: research_data status: public scopus_import: '1' status: public title: 'Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 20 year: '2023' ... --- _id: '14553' abstract: - lang: eng text: Quantum state tomography is an essential component of modern quantum technology. In application to continuous-variable harmonic-oscillator systems, such as the electromagnetic field, existing tomography methods typically reconstruct the state in discrete bases, and are hence limited to states with relatively low amplitudes and energies. Here, we overcome this limitation by utilizing a feed-forward neural network to obtain the density matrix directly in the continuous position basis. An important benefit of our approach is the ability to choose specific regions in the phase space for detailed reconstruction. This results in a relatively slow scaling of the amount of resources required for the reconstruction with the state amplitude, and hence allows us to dramatically increase the range of amplitudes accessible with our method. article_number: '042430' article_processing_charge: No article_type: original author: - first_name: Ekaterina full_name: Fedotova, Ekaterina id: c1bea5e1-878e-11ee-9dff-d7404e4422ab last_name: Fedotova orcid: 0000-0001-7242-015X - first_name: Nikolai full_name: Kuznetsov, Nikolai last_name: Kuznetsov - first_name: Egor full_name: Tiunov, Egor last_name: Tiunov - first_name: A. E. full_name: Ulanov, A. E. last_name: Ulanov - first_name: A. I. full_name: Lvovsky, A. I. last_name: Lvovsky citation: ama: Fedotova E, Kuznetsov N, Tiunov E, Ulanov AE, Lvovsky AI. Continuous-variable quantum tomography of high-amplitude states. Physical Review A. 2023;108(4). doi:10.1103/PhysRevA.108.042430 apa: Fedotova, E., Kuznetsov, N., Tiunov, E., Ulanov, A. E., & Lvovsky, A. I. (2023). Continuous-variable quantum tomography of high-amplitude states. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.108.042430 chicago: Fedotova, Ekaterina, Nikolai Kuznetsov, Egor Tiunov, A. E. Ulanov, and A. I. Lvovsky. “Continuous-Variable Quantum Tomography of High-Amplitude States.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.108.042430. ieee: E. Fedotova, N. Kuznetsov, E. Tiunov, A. E. Ulanov, and A. I. Lvovsky, “Continuous-variable quantum tomography of high-amplitude states,” Physical Review A, vol. 108, no. 4. American Physical Society, 2023. ista: Fedotova E, Kuznetsov N, Tiunov E, Ulanov AE, Lvovsky AI. 2023. Continuous-variable quantum tomography of high-amplitude states. Physical Review A. 108(4), 042430. mla: Fedotova, Ekaterina, et al. “Continuous-Variable Quantum Tomography of High-Amplitude States.” Physical Review A, vol. 108, no. 4, 042430, American Physical Society, 2023, doi:10.1103/PhysRevA.108.042430. short: E. Fedotova, N. Kuznetsov, E. Tiunov, A.E. Ulanov, A.I. Lvovsky, Physical Review A 108 (2023). date_created: 2023-11-19T23:00:54Z date_published: 2023-10-30T00:00:00Z date_updated: 2023-11-20T10:26:51Z day: '30' department: - _id: JoFi doi: 10.1103/PhysRevA.108.042430 external_id: arxiv: - '2212.07406' intvolume: ' 108' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2212.07406 month: '10' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Continuous-variable quantum tomography of high-amplitude states type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '13227' abstract: - lang: eng text: Currently available quantum processors are dominated by noise, which severely limits their applicability and motivates the search for new physical qubit encodings. In this work, we introduce the inductively shunted transmon, a weakly flux-tunable superconducting qubit that offers charge offset protection for all levels and a 20-fold reduction in flux dispersion compared to the state-of-the-art resulting in a constant coherence over a full flux quantum. The parabolic confinement provided by the inductive shunt as well as the linearity of the geometric superinductor facilitates a high-power readout that resolves quantum jumps with a fidelity and QND-ness of >90% and without the need for a Josephson parametric amplifier. Moreover, the device reveals quantum tunneling physics between the two prepared fluxon ground states with a measured average decay time of up to 3.5 h. In the future, fast time-domain control of the transition matrix elements could offer a new path forward to also achieve full qubit control in the decay-protected fluxon basis. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: The authors thank J. Koch for discussions and support with the scQubits python package, I. Rozhansky and A. Poddubny for important insights into photon-assisted tunneling, S. Barzanjeh and G. Arnold for theory, E. Redchenko, S. Pepic, the MIBA workshop and the IST nanofabrication facility for technical contributions, as well as L. Drmic, P. Zielinski and R. Sett for software development. We acknowledge the prompt support of Quantum Machines to implement active state preparation with their OPX+. This work was supported by a NOMIS foundation research grant (J.F.), the Austrian Science Fund (FWF) through BeyondC F7105 (J.F.) and IST Austria. article_number: '3968' article_processing_charge: No article_type: original author: - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Lucky full_name: Kapoor, Lucky id: 84b9700b-15b2-11ec-abd3-831089e67615 last_name: Kapoor - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Hassani F, Peruzzo M, Kapoor L, Trioni A, Zemlicka M, Fink JM. Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. 2023;14. doi:10.1038/s41467-023-39656-2 apa: Hassani, F., Peruzzo, M., Kapoor, L., Trioni, A., Zemlicka, M., & Fink, J. M. (2023). Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-023-39656-2 chicago: Hassani, Farid, Matilda Peruzzo, Lucky Kapoor, Andrea Trioni, Martin Zemlicka, and Johannes M Fink. “Inductively Shunted Transmons Exhibit Noise Insensitive Plasmon States and a Fluxon Decay Exceeding 3 Hours.” Nature Communications. Springer Nature, 2023. https://doi.org/10.1038/s41467-023-39656-2. ieee: F. Hassani, M. Peruzzo, L. Kapoor, A. Trioni, M. Zemlicka, and J. M. Fink, “Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours,” Nature Communications, vol. 14. Springer Nature, 2023. ista: Hassani F, Peruzzo M, Kapoor L, Trioni A, Zemlicka M, Fink JM. 2023. Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. 14, 3968. mla: Hassani, Farid, et al. “Inductively Shunted Transmons Exhibit Noise Insensitive Plasmon States and a Fluxon Decay Exceeding 3 Hours.” Nature Communications, vol. 14, 3968, Springer Nature, 2023, doi:10.1038/s41467-023-39656-2. short: F. Hassani, M. Peruzzo, L. Kapoor, A. Trioni, M. Zemlicka, J.M. Fink, Nature Communications 14 (2023). date_created: 2023-07-16T22:01:08Z date_published: 2023-07-05T00:00:00Z date_updated: 2023-12-13T11:32:25Z day: '05' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-023-39656-2 external_id: isi: - '001024729900009' pmid: - '37407570' file: - access_level: open_access checksum: a85773b5fe23516f60f7d5d31b55c200 content_type: application/pdf creator: dernst date_created: 2023-07-18T08:43:07Z date_updated: 2023-07-18T08:43:07Z file_id: '13248' file_name: 2023_NatureComm_Hassani.pdf file_size: 2899592 relation: main_file success: 1 file_date_updated: 2023-07-18T08:43:07Z has_accepted_license: '1' intvolume: ' 14' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: Nature Communications publication_identifier: eissn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '14872' abstract: - lang: eng text: We entangled microwave and optical photons for the first time as verified by a measured two-mode vacuum squeezing of 0.7 dB. This electro-optic entanglement is the key resource needed to connect cryogenic quantum circuits. article_number: LM1F.3 article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: Liu full_name: Qiu, Liu last_name: Qiu - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Yuri full_name: Minoguchi, Yuri last_name: Minoguchi - first_name: Peter full_name: Rabl, Peter last_name: Rabl - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Sahu R, Qiu L, Hease WJ, et al. Entangling microwaves and telecom wavelength light. In: Frontiers in Optics + Laser Science 2023. Optica Publishing Group; 2023. doi:10.1364/ls.2023.lm1f.3' apa: 'Sahu, R., Qiu, L., Hease, W. J., Arnold, G. M., Minoguchi, Y., Rabl, P., & Fink, J. M. (2023). Entangling microwaves and telecom wavelength light. In Frontiers in Optics + Laser Science 2023. Tacoma, WA, United States: Optica Publishing Group. https://doi.org/10.1364/ls.2023.lm1f.3' chicago: Sahu, Rishabh, Liu Qiu, William J Hease, Georg M Arnold, Yuri Minoguchi, Peter Rabl, and Johannes M Fink. “Entangling Microwaves and Telecom Wavelength Light.” In Frontiers in Optics + Laser Science 2023. Optica Publishing Group, 2023. https://doi.org/10.1364/ls.2023.lm1f.3. ieee: R. Sahu et al., “Entangling microwaves and telecom wavelength light,” in Frontiers in Optics + Laser Science 2023, Tacoma, WA, United States, 2023. ista: Sahu R, Qiu L, Hease WJ, Arnold GM, Minoguchi Y, Rabl P, Fink JM. 2023. Entangling microwaves and telecom wavelength light. Frontiers in Optics + Laser Science 2023. Laser Science, LM1F.3. mla: Sahu, Rishabh, et al. “Entangling Microwaves and Telecom Wavelength Light.” Frontiers in Optics + Laser Science 2023, LM1F.3, Optica Publishing Group, 2023, doi:10.1364/ls.2023.lm1f.3. short: R. Sahu, L. Qiu, W.J. Hease, G.M. Arnold, Y. Minoguchi, P. Rabl, J.M. Fink, in:, Frontiers in Optics + Laser Science 2023, Optica Publishing Group, 2023. conference: end_date: 2023-10-12 location: Tacoma, WA, United States name: Laser Science start_date: 2023-10-09 date_created: 2024-01-22T12:29:41Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-24T08:43:28Z day: '01' department: - _id: JoFi doi: 10.1364/ls.2023.lm1f.3 language: - iso: eng month: '10' oa_version: None publication: Frontiers in Optics + Laser Science 2023 publication_identifier: isbn: - '9781957171296' publication_status: published publisher: Optica Publishing Group quality_controlled: '1' status: public title: Entangling microwaves and telecom wavelength light type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14032' abstract: - lang: eng text: Arrays of Josephson junctions are governed by a competition between superconductivity and repulsive Coulomb interactions, and are expected to exhibit diverging low-temperature resistance when interactions exceed a critical level. Here we report a study of the transport and microwave response of Josephson arrays with interactions exceeding this level. Contrary to expectations, we observe that the array resistance drops dramatically as the temperature is decreased—reminiscent of superconducting behaviour—and then saturates at low temperature. Applying a magnetic field, we eventually observe a transition to a highly resistive regime. These observations can be understood within a theoretical picture that accounts for the effect of thermal fluctuations on the insulating phase. On the basis of the agreement between experiment and theory, we suggest that apparent superconductivity in our Josephson arrays arises from melting the zero-temperature insulator. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: We thank D. Haviland, J. Pekola, C. Ciuti, A. Bubis and A. Shnirman for helpful feedback on the paper. This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the Nanofabrication Facility. Work supported by the Austrian FWF grant P33692-N (S.M., J.S. and A.P.H.), the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411 (J.S.) and a NOMIS foundation research grant (J.M.F. and A.P.H.). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Soham full_name: Mukhopadhyay, Soham id: FDE60288-A89D-11E9-947F-1AF6E5697425 last_name: Mukhopadhyay - first_name: Jorden L full_name: Senior, Jorden L id: 5479D234-2D30-11EA-89CC-40953DDC885E last_name: Senior orcid: 0000-0002-0672-9295 - first_name: Jaime full_name: Saez Mollejo, Jaime id: e0390f72-f6e0-11ea-865d-862393336714 last_name: Saez Mollejo - first_name: Denise full_name: Puglia, Denise id: 4D495994-AE37-11E9-AC72-31CAE5697425 last_name: Puglia orcid: 0000-0003-1144-2763 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Mukhopadhyay S, Senior JL, Saez Mollejo J, et al. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 2023;19:1630-1635. doi:10.1038/s41567-023-02161-w apa: Mukhopadhyay, S., Senior, J. L., Saez Mollejo, J., Puglia, D., Zemlicka, M., Fink, J. M., & Higginbotham, A. P. (2023). Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-02161-w chicago: Mukhopadhyay, Soham, Jorden L Senior, Jaime Saez Mollejo, Denise Puglia, Martin Zemlicka, Johannes M Fink, and Andrew P Higginbotham. “Superconductivity from a Melted Insulator in Josephson Junction Arrays.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-02161-w. ieee: S. Mukhopadhyay et al., “Superconductivity from a melted insulator in Josephson junction arrays,” Nature Physics, vol. 19. Springer Nature, pp. 1630–1635, 2023. ista: Mukhopadhyay S, Senior JL, Saez Mollejo J, Puglia D, Zemlicka M, Fink JM, Higginbotham AP. 2023. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. 19, 1630–1635. mla: Mukhopadhyay, Soham, et al. “Superconductivity from a Melted Insulator in Josephson Junction Arrays.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1630–35, doi:10.1038/s41567-023-02161-w. short: S. Mukhopadhyay, J.L. Senior, J. Saez Mollejo, D. Puglia, M. Zemlicka, J.M. Fink, A.P. Higginbotham, Nature Physics 19 (2023) 1630–1635. date_created: 2023-08-11T07:41:17Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-29T11:27:49Z day: '01' ddc: - '530' department: - _id: GradSch - _id: AnHi - _id: JoFi doi: 10.1038/s41567-023-02161-w ec_funded: 1 external_id: isi: - '001054563800006' file: - access_level: open_access checksum: 1fc86d71bfbf836e221c1e925343adc5 content_type: application/pdf creator: dernst date_created: 2024-01-29T11:25:38Z date_updated: 2024-01-29T11:25:38Z file_id: '14899' file_name: 2023_NaturePhysics_Mukhopadhyay.pdf file_size: 1977706 relation: main_file success: 1 file_date_updated: 2024-01-29T11:25:38Z has_accepted_license: '1' intvolume: ' 19' isi: 1 keyword: - General Physics and Astronomy language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1630-1635 project: - _id: 0aa3608a-070f-11eb-9043-e9cd8a2bd931 grant_number: P33692 name: Cavity electromechanics across a quantum phase transition - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: eb9b30ac-77a9-11ec-83b8-871f581d53d2 name: Protected states of quantum matter - _id: bd5b4ec5-d553-11ed-ba76-a6eedb083344 name: Protected states of quantum matter publication: Nature Physics publication_identifier: eissn: - 1745-2481 issn: - 1745-2473 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Superconductivity from a melted insulator in Josephson junction arrays tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 19 year: '2023' ... --- _id: '14489' abstract: - lang: eng text: Microwave-optics entanglement is a vital component for building hybrid quantum networks. Here, a new mechanism for preparing stationary entanglement between microwave and optical cavity fields in a cavity optomagnomechanical system is proposed. It consists of a magnon mode in a ferrimagnetic crystal that couples directly to a microwave cavity mode via the magnetic dipole interaction and indirectly to an optical cavity through the deformation displacement of the crystal. The mechanical displacement is induced by the magnetostrictive force and coupled to the optical cavity via radiation pressure. Both the opto- and magnomechanical couplings are dispersive. Magnon–phonon entanglement is created via magnomechanical parametric down-conversion, which is further distributed to optical and microwave photons via simultaneous optomechanical beamsplitter interaction and electromagnonic state-swap interaction, yielding stationary microwave-optics entanglement. The microwave-optics entanglement is robust against thermal noise, which will find broad potential applications in quantum networks and quantum information processing with hybrid quantum systems. acknowledgement: This work was supported by the National Key Research and Development Program of China (Grant no. 2022YFA1405200), the National Natural Science Foundation of China (Nos. 92265202), and the European Research Council (ERC CoG Q-ECHOS, 101001005). article_number: '2200866' article_processing_charge: No article_type: original author: - first_name: Zhi Yuan full_name: Fan, Zhi Yuan last_name: Fan - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Simon full_name: Gröblacher, Simon last_name: Gröblacher - first_name: Jie full_name: Li, Jie last_name: Li citation: ama: Fan ZY, Qiu L, Gröblacher S, Li J. Microwave-optics entanglement via cavity optomagnomechanics. Laser and Photonics Reviews. 2023;17(12). doi:10.1002/lpor.202200866 apa: Fan, Z. Y., Qiu, L., Gröblacher, S., & Li, J. (2023). Microwave-optics entanglement via cavity optomagnomechanics. Laser and Photonics Reviews. Wiley. https://doi.org/10.1002/lpor.202200866 chicago: Fan, Zhi Yuan, Liu Qiu, Simon Gröblacher, and Jie Li. “Microwave-Optics Entanglement via Cavity Optomagnomechanics.” Laser and Photonics Reviews. Wiley, 2023. https://doi.org/10.1002/lpor.202200866. ieee: Z. Y. Fan, L. Qiu, S. Gröblacher, and J. Li, “Microwave-optics entanglement via cavity optomagnomechanics,” Laser and Photonics Reviews, vol. 17, no. 12. Wiley, 2023. ista: Fan ZY, Qiu L, Gröblacher S, Li J. 2023. Microwave-optics entanglement via cavity optomagnomechanics. Laser and Photonics Reviews. 17(12), 2200866. mla: Fan, Zhi Yuan, et al. “Microwave-Optics Entanglement via Cavity Optomagnomechanics.” Laser and Photonics Reviews, vol. 17, no. 12, 2200866, Wiley, 2023, doi:10.1002/lpor.202200866. short: Z.Y. Fan, L. Qiu, S. Gröblacher, J. Li, Laser and Photonics Reviews 17 (2023). date_created: 2023-11-05T23:00:54Z date_published: 2023-12-01T00:00:00Z date_updated: 2024-01-30T14:36:42Z day: '01' department: - _id: JoFi doi: 10.1002/lpor.202200866 external_id: arxiv: - '2208.10703' intvolume: ' 17' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2208.10703 month: '12' oa: 1 oa_version: Preprint publication: Laser and Photonics Reviews publication_identifier: eissn: - 1863-8899 issn: - 1863-8880 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Microwave-optics entanglement via cavity optomagnomechanics type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2023' ... --- _id: '12088' abstract: - lang: eng text: We present a quantum-enabled microwave-telecom interface with bidirectional conversion efficiencies up to 15% and added input noise quanta as low as 0.16. Moreover, we observe evidence for electro-optic laser cooling and vacuum amplification. article_number: FW4D.4 article_processing_charge: No author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: 'Sahu R, Hease WJ, Rueda Sanchez AR, Arnold GM, Qiu L, Fink JM. Realizing a quantum-enabled interconnect between microwave and telecom light. In: Conference on Lasers and Electro-Optics. Optica Publishing Group; 2022. doi:10.1364/CLEO_QELS.2022.FW4D.4' apa: 'Sahu, R., Hease, W. J., Rueda Sanchez, A. R., Arnold, G. M., Qiu, L., & Fink, J. M. (2022). Realizing a quantum-enabled interconnect between microwave and telecom light. In Conference on Lasers and Electro-Optics. San Jose, CA, United States: Optica Publishing Group. https://doi.org/10.1364/CLEO_QELS.2022.FW4D.4' chicago: Sahu, Rishabh, William J Hease, Alfredo R Rueda Sanchez, Georg M Arnold, Liu Qiu, and Johannes M Fink. “Realizing a Quantum-Enabled Interconnect between Microwave and Telecom Light.” In Conference on Lasers and Electro-Optics. Optica Publishing Group, 2022. https://doi.org/10.1364/CLEO_QELS.2022.FW4D.4. ieee: R. Sahu, W. J. Hease, A. R. Rueda Sanchez, G. M. Arnold, L. Qiu, and J. M. Fink, “Realizing a quantum-enabled interconnect between microwave and telecom light,” in Conference on Lasers and Electro-Optics, San Jose, CA, United States, 2022. ista: 'Sahu R, Hease WJ, Rueda Sanchez AR, Arnold GM, Qiu L, Fink JM. 2022. Realizing a quantum-enabled interconnect between microwave and telecom light. Conference on Lasers and Electro-Optics. CLEO: QELS Fundamental Science, FW4D.4.' mla: Sahu, Rishabh, et al. “Realizing a Quantum-Enabled Interconnect between Microwave and Telecom Light.” Conference on Lasers and Electro-Optics, FW4D.4, Optica Publishing Group, 2022, doi:10.1364/CLEO_QELS.2022.FW4D.4. short: R. Sahu, W.J. Hease, A.R. Rueda Sanchez, G.M. Arnold, L. Qiu, J.M. Fink, in:, Conference on Lasers and Electro-Optics, Optica Publishing Group, 2022. conference: end_date: 2022-05-20 location: San Jose, CA, United States name: 'CLEO: QELS Fundamental Science' start_date: 2022-05-15 date_created: 2022-09-11T22:01:58Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-02-13T09:06:10Z day: '01' department: - _id: JoFi doi: 10.1364/CLEO_QELS.2022.FW4D.4 language: - iso: eng month: '05' oa_version: None publication: Conference on Lasers and Electro-Optics publication_identifier: isbn: - '9781557528209' publication_status: published publisher: Optica Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Realizing a quantum-enabled interconnect between microwave and telecom light type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '10924' abstract: - lang: eng text: Solid-state microwave systems offer strong interactions for fast quantum logic and sensing but photons at telecom wavelength are the ideal choice for high-density low-loss quantum interconnects. A general-purpose interface that can make use of single photon effects requires < 1 input noise quanta, which has remained elusive due to either low efficiency or pump induced heating. Here we demonstrate coherent electro-optic modulation on nanosecond-timescales with only 0.16+0.02−0.01 microwave input noise photons with a total bidirectional transduction efficiency of 8.7% (or up to 15% with 0.41+0.02−0.02), as required for near-term heralded quantum network protocols. The use of short and high-power optical pump pulses also enables near-unity cooperativity of the electro-optic interaction leading to an internal pure conversion efficiency of up to 99.5%. Together with the low mode occupancy this provides evidence for electro-optic laser cooling and vacuum amplification as predicted a decade ago. acknowledged_ssus: - _id: M-Shop acknowledgement: "The authors thank S. Wald and F. Diorico for their help with optical filtering, O. Hosten\r\nand M. Aspelmeyer for equipment, H.G.L. Schwefel for materials and discussions, L.\r\nDrmic and P. Zielinski for software support, and the MIBA workshop at IST Austria for\r\nmachining the microwave cavity. This work was supported by the European Research\r\nCouncil under grant agreement no. 758053 (ERC StG QUNNECT) and the European\r\nUnion’s Horizon 2020 research and innovation program under grant agreement no.\r\n899354 (FETopen SuperQuLAN). W.H. is the recipient of an ISTplus postdoctoral fellowship\r\nwith funding from the European Union’s Horizon 2020 research and innovation\r\nprogram under the Marie Skłodowska-Curie grant agreement no. 754411. G.A. is the\r\nrecipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. J.M.F.\r\nacknowledges support from the Austrian Science Fund (FWF) through BeyondC (F7105)\r\nand the European Union’s Horizon 2020 research and innovation programs under grant\r\nagreement no. 862644 (FETopen QUARTET)." article_number: '1276' article_processing_charge: No article_type: original author: - first_name: Rishabh full_name: Sahu, Rishabh id: 47D26E34-F248-11E8-B48F-1D18A9856A87 last_name: Sahu orcid: 0000-0001-6264-2162 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Sahu R, Hease WJ, Rueda Sanchez AR, Arnold GM, Qiu L, Fink JM. Quantum-enabled operation of a microwave-optical interface. Nature Communications. 2022;13. doi:10.1038/s41467-022-28924-2 apa: Sahu, R., Hease, W. J., Rueda Sanchez, A. R., Arnold, G. M., Qiu, L., & Fink, J. M. (2022). Quantum-enabled operation of a microwave-optical interface. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-28924-2 chicago: Sahu, Rishabh, William J Hease, Alfredo R Rueda Sanchez, Georg M Arnold, Liu Qiu, and Johannes M Fink. “Quantum-Enabled Operation of a Microwave-Optical Interface.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-28924-2. ieee: R. Sahu, W. J. Hease, A. R. Rueda Sanchez, G. M. Arnold, L. Qiu, and J. M. Fink, “Quantum-enabled operation of a microwave-optical interface,” Nature Communications, vol. 13. Springer Nature, 2022. ista: Sahu R, Hease WJ, Rueda Sanchez AR, Arnold GM, Qiu L, Fink JM. 2022. Quantum-enabled operation of a microwave-optical interface. Nature Communications. 13, 1276. mla: Sahu, Rishabh, et al. “Quantum-Enabled Operation of a Microwave-Optical Interface.” Nature Communications, vol. 13, 1276, Springer Nature, 2022, doi:10.1038/s41467-022-28924-2. short: R. Sahu, W.J. Hease, A.R. Rueda Sanchez, G.M. Arnold, L. Qiu, J.M. Fink, Nature Communications 13 (2022). date_created: 2022-03-27T22:01:45Z date_published: 2022-03-11T00:00:00Z date_updated: 2023-08-03T06:21:11Z day: '11' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-022-28924-2 ec_funded: 1 external_id: arxiv: - '2107.08303' isi: - '000767892300013' file: - access_level: open_access checksum: 7c5176db7b8e2ed18a4e0c5aca70a72c content_type: application/pdf creator: dernst date_created: 2022-03-28T08:02:12Z date_updated: 2022-03-28T08:02:12Z file_id: '10929' file_name: 2022_NatureCommunications_Sahu.pdf file_size: 1167492 relation: main_file success: 1 file_date_updated: 2022-03-28T08:02:12Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 9B868D20-BA93-11EA-9121-9846C619BF3A call_identifier: H2020 grant_number: '899354' name: Quantum Local Area Networks with Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '12900' relation: dissertation_contains status: public - id: '13175' relation: dissertation_contains status: public scopus_import: '1' status: public title: Quantum-enabled operation of a microwave-optical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '10940' abstract: - lang: eng text: 'Magnetic-field-resilient superconducting circuits enable sensing applications and hybrid quantum computing architectures involving spin or topological qubits and electromechanical elements, as well as studying flux noise and quasiparticle loss. We investigate the effect of in-plane magnetic fields up to 1 T on the spectrum and coherence times of thin-film three-dimensional aluminum transmons. Using a copper cavity, unaffected by strong magnetic fields, we can probe solely the effect of magnetic fields on the transmons. We present data on a single-junction and a superconducting-quantum-interference-device (SQUID) transmon that are cooled down in the same cavity. As expected, the transmon frequencies decrease with increasing field, due to suppression of the superconducting gap and a geometric Fraunhofer-like contribution. Nevertheless, the thin-film transmons show strong magnetic field resilience: both transmons display microsecond coherence up to at least 0.65 T, and T1 remains above 1μs over the entire measurable range. SQUID spectroscopy is feasible up to 1 T, the limit of our magnet. We conclude that thin-film aluminum Josephson junctions are suitable hardware for superconducting circuits in the high-magnetic-field regime.' acknowledgement: "We would like to thank Ida Milow for her internship in the laboratory and contributions to our code base. We thank T. Zent and L. Hamdan for technical assistance, and D. Fan for help with setting up the aluminum evaporator. We thank A. Salari, M. Rößler, S. Barzanjeh, M. Zemlicka, F. Hassani, and M. Peruzzo for contributions in the early stages of the experiments. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 741121) and was also funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under CRC 1238 – 277146847 (Subproject B01), as well as under Germany’s Excellence Strategy – Cluster of Excellence Matter and Light for Quantum Computing (ML4Q), EXC 2004/1\r\n– 390534769." article_number: '034032' article_processing_charge: No article_type: original author: - first_name: J. full_name: Krause, J. last_name: Krause - first_name: C. full_name: Dickel, C. last_name: Dickel - first_name: E. full_name: Vaal, E. last_name: Vaal - first_name: M. full_name: Vielmetter, M. last_name: Vielmetter - first_name: J. full_name: Feng, J. last_name: Feng - first_name: R. full_name: Bounds, R. last_name: Bounds - first_name: G. full_name: Catelani, G. last_name: Catelani - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Yoichi full_name: Ando, Yoichi last_name: Ando citation: ama: Krause J, Dickel C, Vaal E, et al. Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T. Physical Review Applied. 2022;17(3). doi:10.1103/PhysRevApplied.17.034032 apa: Krause, J., Dickel, C., Vaal, E., Vielmetter, M., Feng, J., Bounds, R., … Ando, Y. (2022). Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T. Physical Review Applied. American Physical Society. https://doi.org/10.1103/PhysRevApplied.17.034032 chicago: Krause, J., C. Dickel, E. Vaal, M. Vielmetter, J. Feng, R. Bounds, G. Catelani, Johannes M Fink, and Yoichi Ando. “Magnetic Field Resilience of Three-Dimensional Transmons with Thin-Film Al/AlOx/Al Josephson Junctions Approaching 1 T.” Physical Review Applied. American Physical Society, 2022. https://doi.org/10.1103/PhysRevApplied.17.034032. ieee: J. Krause et al., “Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T,” Physical Review Applied, vol. 17, no. 3. American Physical Society, 2022. ista: Krause J, Dickel C, Vaal E, Vielmetter M, Feng J, Bounds R, Catelani G, Fink JM, Ando Y. 2022. Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T. Physical Review Applied. 17(3), 034032. mla: Krause, J., et al. “Magnetic Field Resilience of Three-Dimensional Transmons with Thin-Film Al/AlOx/Al Josephson Junctions Approaching 1 T.” Physical Review Applied, vol. 17, no. 3, 034032, American Physical Society, 2022, doi:10.1103/PhysRevApplied.17.034032. short: J. Krause, C. Dickel, E. Vaal, M. Vielmetter, J. Feng, R. Bounds, G. Catelani, J.M. Fink, Y. Ando, Physical Review Applied 17 (2022). date_created: 2022-04-03T22:01:43Z date_published: 2022-03-11T00:00:00Z date_updated: 2023-08-03T06:23:58Z day: '11' department: - _id: JoFi doi: 10.1103/PhysRevApplied.17.034032 external_id: arxiv: - '2111.01115' isi: - '000770371400003' intvolume: ' 17' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2111.01115 month: '03' oa: 1 oa_version: Preprint publication: Physical Review Applied publication_identifier: eissn: - 2331-7019 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Magnetic field resilience of three-dimensional transmons with thin-film Al/AlOx/Al Josephson junctions approaching 1 T type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 17 year: '2022' ... --- _id: '11353' abstract: - lang: eng text: Micro- and nanoscale optical or microwave cavities are used in a wide range of classical applications and quantum science experiments, ranging from precision measurements, laser technologies to quantum control of mechanical motion. The dissipative photon loss via absorption, present to some extent in any optical cavity, is known to introduce thermo-optical effects and thereby impose fundamental limits on precision measurements. Here, we theoretically and experimentally reveal that such dissipative photon absorption can result in quantum feedback via in-loop field detection of the absorbed optical field, leading to the intracavity field fluctuations to be squashed or antisquashed. A closed-loop dissipative quantum feedback to the cavity field arises. Strikingly, this modifies the optical cavity susceptibility in coherent response measurements (capable of both increasing or decreasing the bare cavity linewidth) and causes excess noise and correlations in incoherent interferometric optomechanical measurements using a cavity, that is parametrically coupled to a mechanical oscillator. We experimentally observe such unanticipated dissipative dynamics in optomechanical spectroscopy of sideband-cooled optomechanical crystal cavitiess at both cryogenic temperature (approximately 8 K) and ambient conditions. The dissipative feedback introduces effective modifications to the optical cavity linewidth and the optomechanical scattering rate and gives rise to excess imprecision noise in the interferometric quantum measurement of mechanical motion. Such dissipative feedback differs fundamentally from a quantum nondemolition feedback, e.g., optical Kerr squeezing. The dissipative feedback itself always results in an antisqueezed out-of-loop optical field, while it can enhance the coexisting Kerr squeezing under certain conditions. Our result applies to cavity spectroscopy in both optical and superconducting microwave cavities, and equally applies to any dissipative feedback mechanism of different bandwidth inside the cavity. It has wide-ranging implications for future dissipation engineering, such as dissipation enhanced sideband cooling and Kerr squeezing, quantum frequency conversion, and nonreciprocity in photonic systems. acknowledgement: "L.Q. acknowledges fruitful discussions with D. Vitali, R. Schnabel, P.K. Lam, A. Nunnenkamp, and D. Malz. This work is supported by the EUH2020 research and innovation programme under Grant No. 732894 (FET Proactive HOT), and the European Research Council through \r\nGrant No. 835329 (ExCOM-cCEO). This work was further supported by Swiss National Science Foundation under Grant Agreements No. 185870 (Ambizione) and No. 204927. Samples were fabricated at the Center of MicroNanoTechnology (CMi) at EPFL and the Binnig and Rohrer Nanotechnology Center at IBM Research-Zurich." article_number: '020309' article_processing_charge: No article_type: original author: - first_name: Liu full_name: Qiu, Liu id: 45e99c0d-1eb1-11eb-9b96-ed8ab2983cac last_name: Qiu orcid: 0000-0003-4345-4267 - first_name: Guanhao full_name: Huang, Guanhao last_name: Huang - first_name: Itay full_name: Shomroni, Itay last_name: Shomroni - first_name: Jiahe full_name: Pan, Jiahe last_name: Pan - first_name: Paul full_name: Seidler, Paul last_name: Seidler - first_name: Tobias J. full_name: Kippenberg, Tobias J. last_name: Kippenberg citation: ama: Qiu L, Huang G, Shomroni I, Pan J, Seidler P, Kippenberg TJ. Dissipative quantum feedback in measurements using a parametrically coupled microcavity. PRX Quantum. 2022;3(2). doi:10.1103/PRXQuantum.3.020309 apa: Qiu, L., Huang, G., Shomroni, I., Pan, J., Seidler, P., & Kippenberg, T. J. (2022). Dissipative quantum feedback in measurements using a parametrically coupled microcavity. PRX Quantum. American Physical Society. https://doi.org/10.1103/PRXQuantum.3.020309 chicago: Qiu, Liu, Guanhao Huang, Itay Shomroni, Jiahe Pan, Paul Seidler, and Tobias J. Kippenberg. “Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity.” PRX Quantum. American Physical Society, 2022. https://doi.org/10.1103/PRXQuantum.3.020309. ieee: L. Qiu, G. Huang, I. Shomroni, J. Pan, P. Seidler, and T. J. Kippenberg, “Dissipative quantum feedback in measurements using a parametrically coupled microcavity,” PRX Quantum, vol. 3, no. 2. American Physical Society, 2022. ista: Qiu L, Huang G, Shomroni I, Pan J, Seidler P, Kippenberg TJ. 2022. Dissipative quantum feedback in measurements using a parametrically coupled microcavity. PRX Quantum. 3(2), 020309. mla: Qiu, Liu, et al. “Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity.” PRX Quantum, vol. 3, no. 2, 020309, American Physical Society, 2022, doi:10.1103/PRXQuantum.3.020309. short: L. Qiu, G. Huang, I. Shomroni, J. Pan, P. Seidler, T.J. Kippenberg, PRX Quantum 3 (2022). date_created: 2022-05-08T22:01:43Z date_published: 2022-04-13T00:00:00Z date_updated: 2023-08-03T07:05:00Z day: '13' ddc: - '530' department: - _id: JoFi doi: 10.1103/PRXQuantum.3.020309 ec_funded: 1 external_id: isi: - '000789316700001' file: - access_level: open_access checksum: 35ff9ddf1d54f64432e435b660edaeb6 content_type: application/pdf creator: dernst date_created: 2022-05-09T07:10:51Z date_updated: 2022-05-09T07:10:51Z file_id: '11358' file_name: 2022_PRXQuantum_Qiu.pdf file_size: 1657177 relation: main_file success: 1 file_date_updated: 2022-05-09T07:10:51Z has_accepted_license: '1' intvolume: ' 3' isi: 1 issue: '2' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies publication: PRX Quantum publication_identifier: eissn: - '26913399' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Dissipative quantum feedback in measurements using a parametrically coupled microcavity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 3 year: '2022' ... --- _id: '11417' abstract: - lang: eng text: "Over the past few years, the field of quantum information science has seen tremendous progress toward realizing large-scale quantum computers. With demonstrations of quantum computers outperforming classical computers for a select range of problems,1–3 we have finally entered the noisy, intermediate-scale quantum (NISQ) computing era. While the quantum computers of today are technological marvels, they are not yet error corrected, and it is unclear whether any system will scale beyond a few hundred logical qubits without significant changes to architecture and control schemes. Today's quantum systems are analogous to the ENIAC (Electronic Numerical Integrator And Computer) and EDVAC (Electronic Discrete Variable Automatic Computer) systems of the 1940s, which ran on vacuum tubes. These machines were built on a solid, nominally scalable architecture and when they were developed, nobody could have predicted the development of the transistor and the impact of the resulting semiconductor industry. Simply put, the computers of today are nothing like the early computers of the 1940s. We believe that the qubits of future fault-tolerant quantum systems will look quite different from the qubits of the NISQ machines in operation today. This Special Topic issue is devoted to new and emerging quantum systems with a focus on enabling technologies that can eventually lead to the quantum analog to the transistor. We have solicited both research4–18 and perspective articles19–21 to discuss new and emerging qubit systems with a focus on novel materials, encodings, and architectures. We are proud to present a collection that touches on a wide range of technologies including superconductors,7–13,21 semiconductors,15–17,19 and individual atomic qubits.18\r\n" acknowledgement: "We would like to thank all of the authors who contributed to\r\nthis Special Topic. We would also like to thank the editorial team at\r\nAPL including Jessica Trudeau, Emma Van Burns, Martin Weides,\r\nand Lesley Cohen." article_number: '190401' article_processing_charge: No article_type: letter_note author: - first_name: Anthony J. full_name: Sigillito, Anthony J. last_name: Sigillito - first_name: Jacob P. full_name: Covey, Jacob P. last_name: Covey - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: Karl full_name: Petersson, Karl last_name: Petersson - first_name: Stefan full_name: Preble, Stefan last_name: Preble citation: ama: 'Sigillito AJ, Covey JP, Fink JM, Petersson K, Preble S. Emerging qubit systems: Guest editorial. Applied Physics Letters. 2022;120(19). doi:10.1063/5.0097339' apa: 'Sigillito, A. J., Covey, J. P., Fink, J. M., Petersson, K., & Preble, S. (2022). Emerging qubit systems: Guest editorial. Applied Physics Letters. American Institute of Physics. https://doi.org/10.1063/5.0097339' chicago: 'Sigillito, Anthony J., Jacob P. Covey, Johannes M Fink, Karl Petersson, and Stefan Preble. “Emerging Qubit Systems: Guest Editorial.” Applied Physics Letters. American Institute of Physics, 2022. https://doi.org/10.1063/5.0097339.' ieee: 'A. J. Sigillito, J. P. Covey, J. M. Fink, K. Petersson, and S. Preble, “Emerging qubit systems: Guest editorial,” Applied Physics Letters, vol. 120, no. 19. American Institute of Physics, 2022.' ista: 'Sigillito AJ, Covey JP, Fink JM, Petersson K, Preble S. 2022. Emerging qubit systems: Guest editorial. Applied Physics Letters. 120(19), 190401.' mla: 'Sigillito, Anthony J., et al. “Emerging Qubit Systems: Guest Editorial.” Applied Physics Letters, vol. 120, no. 19, 190401, American Institute of Physics, 2022, doi:10.1063/5.0097339.' short: A.J. Sigillito, J.P. Covey, J.M. Fink, K. Petersson, S. Preble, Applied Physics Letters 120 (2022). date_created: 2022-05-29T22:01:53Z date_published: 2022-05-12T00:00:00Z date_updated: 2023-08-03T07:16:20Z day: '12' department: - _id: JoFi doi: 10.1063/5.0097339 external_id: isi: - '000796002100002' intvolume: ' 120' isi: 1 issue: '19' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1063/5.0097339 month: '05' oa: 1 oa_version: Published Version publication: Applied Physics Letters publication_identifier: issn: - 0003-6951 publication_status: published publisher: American Institute of Physics quality_controlled: '1' scopus_import: '1' status: public title: 'Emerging qubit systems: Guest editorial' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 120 year: '2022' ...