--- _id: '8038' abstract: - lang: eng text: Microelectromechanical systems and integrated photonics provide the basis for many reliable and compact circuit elements in modern communication systems. Electro-opto-mechanical devices are currently one of the leading approaches to realize ultra-sensitive, low-loss transducers for an emerging quantum information technology. Here we present an on-chip microwave frequency converter based on a planar aluminum on silicon nitride platform that is compatible with slot-mode coupled photonic crystal cavities. We show efficient frequency conversion between two propagating microwave modes mediated by the radiation pressure interaction with a metalized dielectric nanobeam oscillator. We achieve bidirectional coherent conversion with a total device efficiency of up to ~60%, a dynamic range of 2 × 10^9 photons/s and an instantaneous bandwidth of up to 1.7 kHz. A high fidelity quantum state transfer would be possible if the drive dependent output noise of currently ~14 photons s^−1 Hz^−1 is further reduced. Such a silicon nitride based transducer is in situ reconfigurable and could be used for on-chip classical and quantum signal routing and filtering, both for microwave and hybrid microwave-optical applications. article_number: '034011' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X - first_name: M. full_name: Kalaee, M. last_name: Kalaee - first_name: R. full_name: Norte, R. last_name: Norte - first_name: A. full_name: Pitanti, A. last_name: Pitanti - first_name: O. full_name: Painter, O. last_name: Painter citation: ama: Fink JM, Kalaee M, Norte R, Pitanti A, Painter O. Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. 2020;5(3). doi:10.1088/2058-9565/ab8dce apa: Fink, J. M., Kalaee, M., Norte, R., Pitanti, A., & Painter, O. (2020). Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. IOP Publishing. https://doi.org/10.1088/2058-9565/ab8dce chicago: Fink, Johannes M, M. Kalaee, R. Norte, A. Pitanti, and O. Painter. “Efficient Microwave Frequency Conversion Mediated by a Photonics Compatible Silicon Nitride Nanobeam Oscillator.” Quantum Science and Technology. IOP Publishing, 2020. https://doi.org/10.1088/2058-9565/ab8dce. ieee: J. M. Fink, M. Kalaee, R. Norte, A. Pitanti, and O. Painter, “Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator,” Quantum Science and Technology, vol. 5, no. 3. IOP Publishing, 2020. ista: Fink JM, Kalaee M, Norte R, Pitanti A, Painter O. 2020. Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology. 5(3), 034011. mla: Fink, Johannes M., et al. “Efficient Microwave Frequency Conversion Mediated by a Photonics Compatible Silicon Nitride Nanobeam Oscillator.” Quantum Science and Technology, vol. 5, no. 3, 034011, IOP Publishing, 2020, doi:10.1088/2058-9565/ab8dce. short: J.M. Fink, M. Kalaee, R. Norte, A. Pitanti, O. Painter, Quantum Science and Technology 5 (2020). date_created: 2020-06-29T07:59:35Z date_published: 2020-05-25T00:00:00Z date_updated: 2023-08-22T07:49:01Z day: '25' ddc: - '530' department: - _id: JoFi doi: 10.1088/2058-9565/ab8dce ec_funded: 1 external_id: isi: - '000539300800001' file: - access_level: open_access checksum: 8f25f05053f511f892ae8fa93f341e61 content_type: application/pdf creator: cziletti date_created: 2020-06-30T10:29:10Z date_updated: 2020-07-14T12:48:08Z file_id: '8072' file_name: 2020_QuantumSciTechnol_Fink.pdf file_size: 2600967 relation: main_file file_date_updated: 2020-07-14T12:48:08Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '3' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 26927A52-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: F07105 name: Integrating superconducting quantum circuits - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 2622978C-B435-11E9-9278-68D0E5697425 name: Hybrid Semiconductor - Superconductor Quantum Devices publication: Quantum Science and Technology publication_identifier: eissn: - '20589565' publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2020' ... --- _id: '8529' abstract: - lang: eng text: Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer interfacing the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135%) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams reaching a Vπ as low as 16 μV for sub-nanowatt pump powers. Without the associated optomechanical gain, we achieve a total (internal) pure conversion efficiency of up to 0.019% (1.6%), relevant for future noise-free operation on this qubit-compatible platform. acknowledged_ssus: - _id: NanoFab acknowledgement: We thank Yuan Chen for performing supplementary FEM simulations and Andrew Higginbotham, Ralf Riedinger, Sungkun Hong, and Lorenzo Magrini for valuable discussions. This work was supported by IST Austria, the IST nanofabrication facility (NFF), the European Union’s Horizon 2020 research and innovation program under grant agreement no. 732894 (FET Proactive HOT) and the European Research Council under grant agreement no. 758053 (ERC StG QUNNECT). G.A. is the recipient of a DOC fellowship of the Austrian Academy of Sciences at IST Austria. W.H. is the recipient of an ISTplus postdoctoral fellowship with funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 754411. J.M.F. acknowledges support from the Austrian Science Fund (FWF) through BeyondC (F71), a NOMIS foundation research grant, and the EU’s Horizon 2020 research and innovation program under grant agreement no. 862644 (FET Open QUARTET). article_number: '4460' article_processing_charge: No article_type: original author: - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Arnold GM, Wulf M, Barzanjeh S, et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. 2020;11. doi:10.1038/s41467-020-18269-z apa: Arnold, G. M., Wulf, M., Barzanjeh, S., Redchenko, E., Rueda Sanchez, A. R., Hease, W. J., … Fink, J. M. (2020). Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-18269-z chicago: Arnold, Georg M, Matthias Wulf, Shabir Barzanjeh, Elena Redchenko, Alfredo R Rueda Sanchez, William J Hease, Farid Hassani, and Johannes M Fink. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-18269-z. ieee: G. M. Arnold et al., “Converting microwave and telecom photons with a silicon photonic nanomechanical interface,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Arnold GM, Wulf M, Barzanjeh S, Redchenko E, Rueda Sanchez AR, Hease WJ, Hassani F, Fink JM. 2020. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nature Communications. 11, 4460. mla: Arnold, Georg M., et al. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Nature Communications, vol. 11, 4460, Springer Nature, 2020, doi:10.1038/s41467-020-18269-z. short: G.M. Arnold, M. Wulf, S. Barzanjeh, E. Redchenko, A.R. Rueda Sanchez, W.J. Hease, F. Hassani, J.M. Fink, Nature Communications 11 (2020). date_created: 2020-09-18T10:56:20Z date_published: 2020-09-08T00:00:00Z date_updated: 2023-08-22T09:27:12Z day: '08' ddc: - '530' department: - _id: JoFi doi: 10.1038/s41467-020-18269-z ec_funded: 1 external_id: isi: - '000577280200001' file: - access_level: open_access checksum: 88f92544889eb18bb38e25629a422a86 content_type: application/pdf creator: dernst date_created: 2020-09-18T13:02:37Z date_updated: 2020-09-18T13:02:37Z file_id: '8530' file_name: 2020_NatureComm_Arnold.pdf file_size: 1002818 relation: main_file success: 1 file_date_updated: 2020-09-18T13:02:37Z has_accepted_license: '1' intvolume: ' 11' isi: 1 keyword: - General Biochemistry - Genetics and Molecular Biology - General Physics and Astronomy - General Chemistry language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 257EB838-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '732894' name: Hybrid Optomechanical Technologies - _id: 26336814-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '758053' name: A Fiber Optic Transceiver for Superconducting Qubits - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 237CBA6C-32DE-11EA-91FC-C7463DDC885E call_identifier: H2020 grant_number: '862644' name: Quantum readout techniques and technologies - _id: 2671EB66-B435-11E9-9278-68D0E5697425 name: Coherent on-chip conversion of superconducting qubit signals from microwaves to optical frequencies publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41467-020-18912-9 - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-to-transport-microwave-quantum-information-via-optical-fiber/ record: - id: '13056' relation: research_data status: public status: public title: Converting microwave and telecom photons with a silicon photonic nanomechanical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '13056' abstract: - lang: eng text: This datasets comprises all data shown in plots of the submitted article "Converting microwave and telecom photons with a silicon photonic nanomechanical interface". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Georg M full_name: Arnold, Georg M id: 3770C838-F248-11E8-B48F-1D18A9856A87 last_name: Arnold orcid: 0000-0003-1397-7876 - first_name: Matthias full_name: Wulf, Matthias id: 45598606-F248-11E8-B48F-1D18A9856A87 last_name: Wulf orcid: 0000-0001-6613-1378 - first_name: Shabir full_name: Barzanjeh, Shabir id: 2D25E1F6-F248-11E8-B48F-1D18A9856A87 last_name: Barzanjeh orcid: 0000-0003-0415-1423 - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Alfredo R full_name: Rueda Sanchez, Alfredo R id: 3B82B0F8-F248-11E8-B48F-1D18A9856A87 last_name: Rueda Sanchez orcid: 0000-0001-6249-5860 - first_name: William J full_name: Hease, William J id: 29705398-F248-11E8-B48F-1D18A9856A87 last_name: Hease orcid: 0000-0001-9868-2166 - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Arnold GM, Wulf M, Barzanjeh S, et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. 2020. doi:10.5281/ZENODO.3961561 apa: Arnold, G. M., Wulf, M., Barzanjeh, S., Redchenko, E., Rueda Sanchez, A. R., Hease, W. J., … Fink, J. M. (2020). Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Zenodo. https://doi.org/10.5281/ZENODO.3961561 chicago: Arnold, Georg M, Matthias Wulf, Shabir Barzanjeh, Elena Redchenko, Alfredo R Rueda Sanchez, William J Hease, Farid Hassani, and Johannes M Fink. “Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.3961561. ieee: G. M. Arnold et al., “Converting microwave and telecom photons with a silicon photonic nanomechanical interface.” Zenodo, 2020. ista: Arnold GM, Wulf M, Barzanjeh S, Redchenko E, Rueda Sanchez AR, Hease WJ, Hassani F, Fink JM. 2020. Converting microwave and telecom photons with a silicon photonic nanomechanical interface, Zenodo, 10.5281/ZENODO.3961561. mla: Arnold, Georg M., et al. Converting Microwave and Telecom Photons with a Silicon Photonic Nanomechanical Interface. Zenodo, 2020, doi:10.5281/ZENODO.3961561. short: G.M. Arnold, M. Wulf, S. Barzanjeh, E. Redchenko, A.R. Rueda Sanchez, W.J. Hease, F. Hassani, J.M. Fink, (2020). date_created: 2023-05-23T13:37:41Z date_published: 2020-07-27T00:00:00Z date_updated: 2023-08-22T09:27:11Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.3961561 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.3961562 month: '07' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '8529' relation: used_in_publication status: public status: public title: Converting microwave and telecom photons with a silicon photonic nanomechanical interface tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '13070' abstract: - lang: eng text: This dataset comprises all data shown in the figures of the submitted article "Surpassing the resistance quantum with a geometric superinductor". Additional raw data are available from the corresponding author on reasonable request. article_processing_charge: No author: - first_name: Matilda full_name: Peruzzo, Matilda id: 3F920B30-F248-11E8-B48F-1D18A9856A87 last_name: Peruzzo orcid: 0000-0002-3415-4628 - first_name: Andrea full_name: Trioni, Andrea id: 42F71B44-F248-11E8-B48F-1D18A9856A87 last_name: Trioni - first_name: Farid full_name: Hassani, Farid id: 2AED110C-F248-11E8-B48F-1D18A9856A87 last_name: Hassani orcid: 0000-0001-6937-5773 - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: Johannes M full_name: Fink, Johannes M id: 4B591CBA-F248-11E8-B48F-1D18A9856A87 last_name: Fink orcid: 0000-0001-8112-028X citation: ama: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. Surpassing the resistance quantum with a geometric superinductor. 2020. doi:10.5281/ZENODO.4052882 apa: Peruzzo, M., Trioni, A., Hassani, F., Zemlicka, M., & Fink, J. M. (2020). Surpassing the resistance quantum with a geometric superinductor. Zenodo. https://doi.org/10.5281/ZENODO.4052882 chicago: Peruzzo, Matilda, Andrea Trioni, Farid Hassani, Martin Zemlicka, and Johannes M Fink. “Surpassing the Resistance Quantum with a Geometric Superinductor.” Zenodo, 2020. https://doi.org/10.5281/ZENODO.4052882. ieee: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, and J. M. Fink, “Surpassing the resistance quantum with a geometric superinductor.” Zenodo, 2020. ista: Peruzzo M, Trioni A, Hassani F, Zemlicka M, Fink JM. 2020. Surpassing the resistance quantum with a geometric superinductor, Zenodo, 10.5281/ZENODO.4052882. mla: Peruzzo, Matilda, et al. Surpassing the Resistance Quantum with a Geometric Superinductor. Zenodo, 2020, doi:10.5281/ZENODO.4052882. short: M. Peruzzo, A. Trioni, F. Hassani, M. Zemlicka, J.M. Fink, (2020). date_created: 2023-05-23T16:42:30Z date_published: 2020-09-27T00:00:00Z date_updated: 2023-08-22T13:23:57Z day: '27' ddc: - '530' department: - _id: JoFi doi: 10.5281/ZENODO.4052882 main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.4052883 month: '09' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '8755' relation: used_in_publication status: public status: public title: Surpassing the resistance quantum with a geometric superinductor tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '8944' abstract: - lang: eng text: "Superconductor insulator transition in transverse magnetic field is studied in the highly disordered MoC film with the product of the Fermi momentum and the mean free path kF*l close to unity. Surprisingly, the Zeeman paramagnetic effects dominate over orbital coupling on both sides of the transition. In superconducting state it is evidenced by a high upper critical magnetic field \U0001D435\U0001D4502, by its square root dependence on temperature, as well as by the Zeeman splitting of the quasiparticle density of states (DOS) measured by scanning tunneling microscopy. At \U0001D435\U0001D4502 a logarithmic anomaly in DOS is observed. This anomaly is further enhanced in increasing magnetic field, which is explained by the Zeeman splitting of the Altshuler-Aronov DOS driving\r\nthe system into a more insulating or resistive state. Spin dependent Altshuler-Aronov correction is also needed to explain the transport behavior above \U0001D435\U0001D4502." acknowledgement: 'We gratefully acknowledge helpful conversations with B.L. Altshuler and R. Hlubina. The work was supported by the projects APVV-18-0358, VEGA 2/0058/20, VEGA 1/0743/19 the European Microkelvin Platform, the COST action CA16218 (Nanocohybri) and by U.S. Steel Košice. ' article_number: '180508' article_processing_charge: No article_type: original author: - first_name: Martin full_name: Zemlicka, Martin id: 2DCF8DE6-F248-11E8-B48F-1D18A9856A87 last_name: Zemlicka - first_name: M. full_name: Kopčík, M. last_name: Kopčík - first_name: P. full_name: Szabó, P. last_name: Szabó - first_name: T. full_name: Samuely, T. last_name: Samuely - first_name: J. full_name: Kačmarčík, J. last_name: Kačmarčík - first_name: P. full_name: Neilinger, P. last_name: Neilinger - first_name: M. full_name: Grajcar, M. last_name: Grajcar - first_name: P. full_name: Samuely, P. last_name: Samuely citation: ama: 'Zemlicka M, Kopčík M, Szabó P, et al. Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. 2020;102(18). doi:10.1103/PhysRevB.102.180508' apa: 'Zemlicka, M., Kopčík, M., Szabó, P., Samuely, T., Kačmarčík, J., Neilinger, P., … Samuely, P. (2020). Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.102.180508' chicago: 'Zemlicka, Martin, M. Kopčík, P. Szabó, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, and P. Samuely. “Zeeman-Driven Superconductor-Insulator Transition in Strongly Disordered MoC Films: Scanning Tunneling Microscopy and Transport Studies in a Transverse Magnetic Field.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/PhysRevB.102.180508.' ieee: 'M. Zemlicka et al., “Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field,” Physical Review B, vol. 102, no. 18. American Physical Society, 2020.' ista: 'Zemlicka M, Kopčík M, Szabó P, Samuely T, Kačmarčík J, Neilinger P, Grajcar M, Samuely P. 2020. Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field. Physical Review B. 102(18), 180508.' mla: 'Zemlicka, Martin, et al. “Zeeman-Driven Superconductor-Insulator Transition in Strongly Disordered MoC Films: Scanning Tunneling Microscopy and Transport Studies in a Transverse Magnetic Field.” Physical Review B, vol. 102, no. 18, 180508, American Physical Society, 2020, doi:10.1103/PhysRevB.102.180508.' short: M. Zemlicka, M. Kopčík, P. Szabó, T. Samuely, J. Kačmarčík, P. Neilinger, M. Grajcar, P. Samuely, Physical Review B 102 (2020). date_created: 2020-12-13T23:01:21Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-24T10:53:36Z day: '01' department: - _id: JoFi doi: 10.1103/PhysRevB.102.180508 external_id: arxiv: - '2011.04329' isi: - '000591509900003' intvolume: ' 102' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2011.04329 month: '11' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Zeeman-driven superconductor-insulator transition in strongly disordered MoC films: Scanning tunneling microscopy and transport studies in a transverse magnetic field' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 102 year: '2020' ...