--- _id: '14826' abstract: - lang: eng text: The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage. acknowledgement: 'We are grateful to Asuka Shitaku and Eri Koide for generating and sharing the Marchantia PRAF-mCitrine line and Peng-Cheng Wang for sharing the Arabidopsis raf mutant. We are grateful to our team members for discussions and helpful advice. This work was supported by funding from the Netherlands Organization for Scientific Research (NWO): VICI grant 865.14.001 and ENW-KLEIN OCENW.KLEIN.027 grants to D.W.; VENI grant VI.VENI.212.003 to A.K.; the European Research Council AdG DIRNDL (contract number 833867) to D.W.; CoG CATCH to J.S.; StG CELLONGATE (contract 803048) to M.F.; and AdG ETAP (contract 742985) to J.F.; MEXT KAKENHI grant number JP19H05675 to T.K.; JSPS KAKENHI grant number JP20H03275 to R.N.; Takeda Science Foundation to R.N.; and the Austrian Science Fund (FWF, P29988) to J.F.' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Andre full_name: Kuhn, Andre last_name: Kuhn - first_name: Mark full_name: Roosjen, Mark last_name: Roosjen - first_name: Sumanth full_name: Mutte, Sumanth last_name: Mutte - first_name: Shiv Mani full_name: Dubey, Shiv Mani last_name: Dubey - first_name: Vanessa Polet full_name: Carrillo Carrasco, Vanessa Polet last_name: Carrillo Carrasco - first_name: Sjef full_name: Boeren, Sjef last_name: Boeren - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Jasper full_name: Koehorst, Jasper last_name: Koehorst - first_name: Takayuki full_name: Kohchi, Takayuki last_name: Kohchi - first_name: Ryuichi full_name: Nishihama, Ryuichi last_name: Nishihama - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Joris full_name: Sprakel, Joris last_name: Sprakel - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers citation: ama: Kuhn A, Roosjen M, Mutte S, et al. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. 2024;187(1):130-148.e17. doi:10.1016/j.cell.2023.11.021 apa: Kuhn, A., Roosjen, M., Mutte, S., Dubey, S. M., Carrillo Carrasco, V. P., Boeren, S., … Weijers, D. (2024). RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. Elsevier. https://doi.org/10.1016/j.cell.2023.11.021 chicago: Kuhn, Andre, Mark Roosjen, Sumanth Mutte, Shiv Mani Dubey, Vanessa Polet Carrillo Carrasco, Sjef Boeren, Aline Monzer, et al. “RAF-like Protein Kinases Mediate a Deeply Conserved, Rapid Auxin Response.” Cell. Elsevier, 2024. https://doi.org/10.1016/j.cell.2023.11.021. ieee: A. Kuhn et al., “RAF-like protein kinases mediate a deeply conserved, rapid auxin response,” Cell, vol. 187, no. 1. Elsevier, p. 130–148.e17, 2024. ista: Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. 2024. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. 187(1), 130–148.e17. mla: Kuhn, Andre, et al. “RAF-like Protein Kinases Mediate a Deeply Conserved, Rapid Auxin Response.” Cell, vol. 187, no. 1, Elsevier, 2024, p. 130–148.e17, doi:10.1016/j.cell.2023.11.021. short: A. Kuhn, M. Roosjen, S. Mutte, S.M. Dubey, V.P. Carrillo Carrasco, S. Boeren, A. Monzer, J. Koehorst, T. Kohchi, R. Nishihama, M. Fendrych, J. Sprakel, J. Friml, D. Weijers, Cell 187 (2024) 130–148.e17. date_created: 2024-01-17T12:45:40Z date_published: 2024-01-04T00:00:00Z date_updated: 2024-01-22T13:43:40Z day: '04' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.cell.2023.11.021 ec_funded: 1 external_id: pmid: - '38128538' file: - access_level: open_access checksum: 06fd236a9ee0b46ccb05f44695bfc34b content_type: application/pdf creator: dernst date_created: 2024-01-22T13:41:41Z date_updated: 2024-01-22T13:41:41Z file_id: '14874' file_name: 2024_Cell_Kuhn.pdf file_size: 13194060 relation: main_file success: 1 file_date_updated: 2024-01-22T13:41:41Z has_accepted_license: '1' intvolume: ' 187' issue: '1' keyword: - General Biochemistry - Genetics and Molecular Biology language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 130-148.e17 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: Cell publication_identifier: eissn: - 1097-4172 issn: - 0092-8674 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: RAF-like protein kinases mediate a deeply conserved, rapid auxin response tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 187 year: '2024' ... --- _id: '14251' abstract: - lang: eng text: The phytohormone auxin and its directional transport through tissues play a fundamental role in development of higher plants. This polar auxin transport predominantly relies on PIN-FORMED (PIN) auxin exporters. Hence, PIN polarization is crucial for development, but its evolution during the rise of morphological complexity in land plants remains unclear. Here, we performed a cross-species investigation by observing the trafficking and localization of endogenous and exogenous PINs in two bryophytes, Physcomitrium patens and Marchantia polymorpha, and in the flowering plant Arabidopsis thaliana. We confirmed that the GFP fusion did not compromise the auxin export function of all examined PINs by using radioactive auxin export assay and by observing the phenotypic changes in transgenic bryophytes. Endogenous PINs polarize to filamentous apices, while exogenous Arabidopsis PINs distribute symmetrically on the membrane in both bryophytes. In Arabidopsis root epidermis, bryophytic PINs show no defined polarity. Pharmacological interference revealed a strong cytoskeleton dependence of bryophytic but not Arabidopsis PIN polarization. The divergence of PIN polarization and trafficking is also observed within the bryophyte clade and between tissues of individual species. These results collectively reveal a divergence of PIN trafficking and polarity mechanisms throughout land plant evolution and a co-evolution of PIN sequence-based and cell-based polarity mechanisms. acknowledgement: This work was supported by the ERC grant (PR1023ERC02) to H. T. and J. F., and by the ministry of science and technology (grant number 110-2636-B-005-001) to K. J. L. article_number: '100669' article_processing_charge: Yes article_type: original author: - first_name: Han full_name: Tang, Han id: 19BDF720-25A0-11EA-AC6E-928F3DDC885E last_name: Tang orcid: 0000-0001-6152-6637 - first_name: KJ full_name: Lu, KJ last_name: Lu - first_name: Y full_name: Zhang, Y last_name: Zhang - first_name: YL full_name: Cheng, YL last_name: Cheng - first_name: SL full_name: Tu, SL last_name: Tu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tang H, Lu K, Zhang Y, Cheng Y, Tu S, Friml J. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. Plant Communications. 2024;5(1). doi:10.1016/j.xplc.2023.100669 apa: Tang, H., Lu, K., Zhang, Y., Cheng, Y., Tu, S., & Friml, J. (2024). Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. Plant Communications. Elsevier. https://doi.org/10.1016/j.xplc.2023.100669 chicago: Tang, Han, KJ Lu, Y Zhang, YL Cheng, SL Tu, and Jiří Friml. “Divergence of Trafficking and Polarization Mechanisms for PIN Auxin Transporters during Land Plant Evolution.” Plant Communications. Elsevier, 2024. https://doi.org/10.1016/j.xplc.2023.100669. ieee: H. Tang, K. Lu, Y. Zhang, Y. Cheng, S. Tu, and J. Friml, “Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution,” Plant Communications, vol. 5, no. 1. Elsevier, 2024. ista: Tang H, Lu K, Zhang Y, Cheng Y, Tu S, Friml J. 2024. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. Plant Communications. 5(1), 100669. mla: Tang, Han, et al. “Divergence of Trafficking and Polarization Mechanisms for PIN Auxin Transporters during Land Plant Evolution.” Plant Communications, vol. 5, no. 1, 100669, Elsevier, 2024, doi:10.1016/j.xplc.2023.100669. short: H. Tang, K. Lu, Y. Zhang, Y. Cheng, S. Tu, J. Friml, Plant Communications 5 (2024). date_created: 2023-09-01T11:32:02Z date_published: 2024-01-08T00:00:00Z date_updated: 2024-01-30T13:00:47Z day: '08' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.xplc.2023.100669 ec_funded: 1 external_id: pmid: - '37528584' file: - access_level: open_access checksum: edbc44c6d4a394d2bf70f92fdbb08f0a content_type: application/pdf creator: dernst date_created: 2024-01-30T12:59:57Z date_updated: 2024-01-30T12:59:57Z file_id: '14911' file_name: 2023_PlantCommunications_Tang.pdf file_size: 2825565 relation: main_file success: 1 file_date_updated: 2024-01-30T12:59:57Z has_accepted_license: '1' intvolume: ' 5' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Communications publication_identifier: issn: - 2590-3462 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2024' ... --- _id: '15033' abstract: - lang: eng text: The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM. acknowledgement: "The authors would like to gratefully acknowledge Dr Xixi Zhang for cloning the GNL1/pDONR221 construct and for useful discussions.H2020 European Research\r\nCouncil Advanced Grant ETAP742985 to Jiří Friml, Austrian Science Fund I 3630-B25 to Jiří Friml" article_processing_charge: Yes article_type: original author: - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Ivana full_name: Matijevic, Ivana id: 83c17ce3-15b2-11ec-abd3-f486545870bd last_name: Matijevic - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Adamowski M, Matijevic I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife. 2024;13. doi:10.7554/elife.68993 apa: Adamowski, M., Matijevic, I., & Friml, J. (2024). Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.68993 chicago: Adamowski, Maciek, Ivana Matijevic, and Jiří Friml. “Developmental Patterning Function of GNOM ARF-GEF Mediated from the Cell Periphery.” ELife. eLife Sciences Publications, 2024. https://doi.org/10.7554/elife.68993. ieee: M. Adamowski, I. Matijevic, and J. Friml, “Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery,” eLife, vol. 13. eLife Sciences Publications, 2024. ista: Adamowski M, Matijevic I, Friml J. 2024. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife. 13. mla: Adamowski, Maciek, et al. “Developmental Patterning Function of GNOM ARF-GEF Mediated from the Cell Periphery.” ELife, vol. 13, eLife Sciences Publications, 2024, doi:10.7554/elife.68993. short: M. Adamowski, I. Matijevic, J. Friml, ELife 13 (2024). date_created: 2024-02-27T07:10:11Z date_published: 2024-02-21T00:00:00Z date_updated: 2024-02-28T12:29:43Z day: '21' ddc: - '580' department: - _id: JiFr doi: 10.7554/elife.68993 ec_funded: 1 has_accepted_license: '1' intvolume: ' 13' keyword: - General Immunology and Microbiology - General Biochemistry - Genetics and Molecular Biology - General Medicine - General Neuroscience language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.7554/eLife.68993 month: '02' oa: 1 oa_version: Published Version project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: eLife publication_identifier: issn: - 2050-084X publication_status: epub_ahead publisher: eLife Sciences Publications quality_controlled: '1' status: public title: Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2024' ... --- _id: '12878' abstract: - lang: eng text: Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components. acknowledgement: The authors thank Professor Jianqiang Wu (Kunming Institute of Botany, Chinese Academy of Sciences) for support with phytohormone measurement. Thanks also go to Professor Pieter. B. F. Ouwerkerk (Leiden University) and Professor Jean-Benoit Morel (Plant Health Institute of Montpellier) for provision of the rice lines NB-7B-70 and NB-7B-76 and wild-type NB-61-WT, Professor Zuhua He (Chinese Academy of Sciences) for provision of the rice OsNPR1-RNAi mutant, and Professor Yinong Yang (The Pennsylvania State University) for provision of the rice line NahG. This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 32260085, 31460453, 31660501, 31860064, 31970609, 31801792 and 31960554), the Key Projects of the Applied Basic Research Plan of Yunnan Province (202301AS070082), the Major Special Program for Scientific Research, Education Department of Yunnan Province (Grant No. ZD2015005), the Start-up fund from Xishuangbanna Tropical Botanical Garden, and ‘Top Talents Program in Science and Technology’ from Yunnan Province, the SRF for ROCS, SEM (Grant No. [2013] 1792), and the Major Science and Technology Project in Yunnan Province (202102AE090042 and 202202AE090036); and the young and middle-aged academic and technical leaders reserve talent program in Yunnan Province (202205AC160076). article_processing_charge: No article_type: original author: - first_name: Lihui full_name: Jiang, Lihui last_name: Jiang - first_name: Baolin full_name: Yao, Baolin last_name: Yao - first_name: Xiaoyan full_name: Zhang, Xiaoyan last_name: Zhang - first_name: Lixia full_name: Wu, Lixia last_name: Wu - first_name: Qijing full_name: Fu, Qijing last_name: Fu - first_name: Yiting full_name: Zhao, Yiting last_name: Zhao - first_name: Yuxin full_name: Cao, Yuxin last_name: Cao - first_name: Ruomeng full_name: Zhu, Ruomeng last_name: Zhu - first_name: Xinqi full_name: Lu, Xinqi last_name: Lu - first_name: Wuying full_name: Huang, Wuying last_name: Huang - first_name: Jianping full_name: Zhao, Jianping last_name: Zhao - first_name: Kuixiu full_name: Li, Kuixiu last_name: Li - first_name: Shuanglu full_name: Zhao, Shuanglu last_name: Zhao - first_name: Li full_name: Han, Li last_name: Han - first_name: Xuan full_name: Zhou, Xuan last_name: Zhou - first_name: Chongyu full_name: Luo, Chongyu last_name: Luo - first_name: Haiyan full_name: Zhu, Haiyan last_name: Zhu - first_name: Jing full_name: Yang, Jing last_name: Yang - first_name: Huichuan full_name: Huang, Huichuan last_name: Huang - first_name: Zhengge full_name: Zhu, Zhengge last_name: Zhu - first_name: Xiahong full_name: He, Xiahong last_name: He - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Zhongkai full_name: Zhang, Zhongkai last_name: Zhang - first_name: Changning full_name: Liu, Changning last_name: Liu - first_name: Yunlong full_name: Du, Yunlong last_name: Du citation: ama: Jiang L, Yao B, Zhang X, et al. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. 2023;115(1):155-174. doi:10.1111/tpj.16218 apa: Jiang, L., Yao, B., Zhang, X., Wu, L., Fu, Q., Zhao, Y., … Du, Y. (2023). Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. Wiley. https://doi.org/10.1111/tpj.16218 chicago: Jiang, Lihui, Baolin Yao, Xiaoyan Zhang, Lixia Wu, Qijing Fu, Yiting Zhao, Yuxin Cao, et al. “Salicylic Acid Inhibits Rice Endocytic Protein Trafficking Mediated by OsPIN3t and Clathrin to Affect Root Growth.” Plant Journal. Wiley, 2023. https://doi.org/10.1111/tpj.16218. ieee: L. Jiang et al., “Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth,” Plant Journal, vol. 115, no. 1. Wiley, pp. 155–174, 2023. ista: Jiang L, Yao B, Zhang X, Wu L, Fu Q, Zhao Y, Cao Y, Zhu R, Lu X, Huang W, Zhao J, Li K, Zhao S, Han L, Zhou X, Luo C, Zhu H, Yang J, Huang H, Zhu Z, He X, Friml J, Zhang Z, Liu C, Du Y. 2023. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. 115(1), 155–174. mla: Jiang, Lihui, et al. “Salicylic Acid Inhibits Rice Endocytic Protein Trafficking Mediated by OsPIN3t and Clathrin to Affect Root Growth.” Plant Journal, vol. 115, no. 1, Wiley, 2023, pp. 155–74, doi:10.1111/tpj.16218. short: L. Jiang, B. Yao, X. Zhang, L. Wu, Q. Fu, Y. Zhao, Y. Cao, R. Zhu, X. Lu, W. Huang, J. Zhao, K. Li, S. Zhao, L. Han, X. Zhou, C. Luo, H. Zhu, J. Yang, H. Huang, Z. Zhu, X. He, J. Friml, Z. Zhang, C. Liu, Y. Du, Plant Journal 115 (2023) 155–174. date_created: 2023-04-30T22:01:06Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-01T14:16:33Z day: '01' department: - _id: JiFr doi: 10.1111/tpj.16218 external_id: isi: - '000971861400001' pmid: - '37025008 ' intvolume: ' 115' isi: 1 issue: '1' language: - iso: eng month: '07' oa_version: None page: 155-174 pmid: 1 publication: Plant Journal publication_identifier: eissn: - 1365-313X issn: - 0960-7412 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 115 year: '2023' ... --- _id: '13213' abstract: - lang: eng text: The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate the role of the Arabidopsis (Arabidopsis thaliana) multicopper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and reduced nicotinamide adeninedinucleotide phosphate (NADPH) oxidase-dependent ROS overproduction in the root epidermis–cortex and cortex–endodermis junctions. A decrease in ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between the root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth. acknowledgement: We thank Dong liu for offering iron staining technique; ZhiChang Chen and Zhenbiao Yang for discussion; Dandan Zheng for earlier attempt; Liwen Jiang and Dingquan Huang for initial tests of the TEM experiment; John C. Sedbrook for a donation of sku5 and pSKU5::SKU5-GFP seeds; Catherine Perrot-Rechenmann and Ke Zhou for the donation of sks1, sks2, and sku5 sks1 seeds; Zengyu Liu and Zhongquan Lin for live-imaging microscopy assistance. We are grateful to Can Peng, and Xixia Li for helping with sample preparation, and taking TEM images, at the Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science. article_processing_charge: No article_type: original author: - first_name: C full_name: Chen, C last_name: Chen - first_name: Y full_name: Zhang, Y last_name: Zhang - first_name: J full_name: Cai, J last_name: Cai - first_name: Y full_name: Qiu, Y last_name: Qiu - first_name: L full_name: Li, L last_name: Li - first_name: C full_name: Gao, C last_name: Gao - first_name: Y full_name: Gao, Y last_name: Gao - first_name: M full_name: Ke, M last_name: Ke - first_name: S full_name: Wu, S last_name: Wu - first_name: C full_name: Wei, C last_name: Wei - first_name: J full_name: Chen, J last_name: Chen - first_name: T full_name: Xu, T last_name: Xu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Wang, J last_name: Wang - first_name: R full_name: Li, R last_name: Li - first_name: D full_name: Chao, D last_name: Chao - first_name: B full_name: Zhang, B last_name: Zhang - first_name: X full_name: Chen, X last_name: Chen - first_name: Z full_name: Gao, Z last_name: Gao citation: ama: Chen C, Zhang Y, Cai J, et al. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 2023;192(3):2243-2260. doi:10.1093/plphys/kiad207 apa: Chen, C., Zhang, Y., Cai, J., Qiu, Y., Li, L., Gao, C., … Gao, Z. (2023). Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1093/plphys/kiad207 chicago: Chen, C, Y Zhang, J Cai, Y Qiu, L Li, C Gao, Y Gao, et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology. American Society of Plant Biologists, 2023. https://doi.org/10.1093/plphys/kiad207. ieee: C. Chen et al., “Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots,” Plant Physiology, vol. 192, no. 3. American Society of Plant Biologists, pp. 2243–2260, 2023. ista: Chen C, Zhang Y, Cai J, Qiu Y, Li L, Gao C, Gao Y, Ke M, Wu S, Wei C, Chen J, Xu T, Friml J, Wang J, Li R, Chao D, Zhang B, Chen X, Gao Z. 2023. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 192(3), 2243–2260. mla: Chen, C., et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology, vol. 192, no. 3, American Society of Plant Biologists, 2023, pp. 2243–60, doi:10.1093/plphys/kiad207. short: C. Chen, Y. Zhang, J. Cai, Y. Qiu, L. Li, C. Gao, Y. Gao, M. Ke, S. Wu, C. Wei, J. Chen, T. Xu, J. Friml, J. Wang, R. Li, D. Chao, B. Zhang, X. Chen, Z. Gao, Plant Physiology 192 (2023) 2243–2260. date_created: 2023-07-12T07:32:58Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-02T06:27:55Z day: '01' ddc: - '575' department: - _id: JiFr doi: 10.1093/plphys/kiad207 external_id: isi: - '000971795800001' pmid: - '37010107' file: - access_level: open_access checksum: 5492e1d18ac3eaf202633d210fa0fb75 content_type: application/pdf creator: cchlebak date_created: 2023-07-13T13:26:33Z date_updated: 2023-07-13T13:26:33Z file_id: '13220' file_name: 2023_PlantPhys_Chen.pdf file_size: 2076977 relation: main_file success: 1 file_date_updated: 2023-07-13T13:26:33Z has_accepted_license: '1' intvolume: ' 192' isi: 1 issue: '3' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2243-2260 pmid: 1 publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 192 year: '2023' ... --- _id: '12543' abstract: - lang: eng text: Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts. acknowledged_ssus: - _id: LifeSc acknowledgement: We thank B. M. Steinwender, N. V. Meyling and J. Eilenberg for the fungal strains; J. Anaya-Rojas for statistical advice; the Social Immunity team at ISTA for ant collection and experimental help, in particular H. Leitner, and the ISTA Lab Support Facility for general laboratory support; D. Ebert, H. Schulenburg and J. Heinze for continued project discussion; and M. Sixt, R. Roemhild and the Social Immunity team for comments on the manuscript. The study was funded by the German Research Foundation (CR118/3-1) within the Framework of the Priority Program SPP 1399, and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (No. 771402; EPIDEMICSonCHIP), both to S.C. article_processing_charge: No article_type: original author: - first_name: Miriam full_name: Stock, Miriam id: 42462816-F248-11E8-B48F-1D18A9856A87 last_name: Stock - first_name: Barbara full_name: Milutinovic, Barbara id: 2CDC32B8-F248-11E8-B48F-1D18A9856A87 last_name: Milutinovic orcid: 0000-0002-8214-4758 - first_name: Michaela full_name: Hönigsberger, Michaela id: 953894f3-25bd-11ec-8556-f70a9d38ef60 last_name: Hönigsberger - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Florian full_name: Wiesenhofer, Florian id: 39523C54-F248-11E8-B48F-1D18A9856A87 last_name: Wiesenhofer - first_name: Niklas full_name: Kampleitner, Niklas id: 2AC57FAC-F248-11E8-B48F-1D18A9856A87 last_name: Kampleitner - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Thomas full_name: Schmitt, Thomas last_name: Schmitt - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Stock M, Milutinovic B, Hönigsberger M, et al. Pathogen evasion of social immunity. Nature Ecology and Evolution. 2023;7:450-460. doi:10.1038/s41559-023-01981-6 apa: Stock, M., Milutinovic, B., Hönigsberger, M., Grasse, A. V., Wiesenhofer, F., Kampleitner, N., … Cremer, S. (2023). Pathogen evasion of social immunity. Nature Ecology and Evolution. Springer Nature. https://doi.org/10.1038/s41559-023-01981-6 chicago: Stock, Miriam, Barbara Milutinovic, Michaela Hönigsberger, Anna V Grasse, Florian Wiesenhofer, Niklas Kampleitner, Madhumitha Narasimhan, Thomas Schmitt, and Sylvia Cremer. “Pathogen Evasion of Social Immunity.” Nature Ecology and Evolution. Springer Nature, 2023. https://doi.org/10.1038/s41559-023-01981-6. ieee: M. Stock et al., “Pathogen evasion of social immunity,” Nature Ecology and Evolution, vol. 7. Springer Nature, pp. 450–460, 2023. ista: Stock M, Milutinovic B, Hönigsberger M, Grasse AV, Wiesenhofer F, Kampleitner N, Narasimhan M, Schmitt T, Cremer S. 2023. Pathogen evasion of social immunity. Nature Ecology and Evolution. 7, 450–460. mla: Stock, Miriam, et al. “Pathogen Evasion of Social Immunity.” Nature Ecology and Evolution, vol. 7, Springer Nature, 2023, pp. 450–60, doi:10.1038/s41559-023-01981-6. short: M. Stock, B. Milutinovic, M. Hönigsberger, A.V. Grasse, F. Wiesenhofer, N. Kampleitner, M. Narasimhan, T. Schmitt, S. Cremer, Nature Ecology and Evolution 7 (2023) 450–460. date_created: 2023-02-12T23:00:59Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-16T11:55:48Z day: '01' ddc: - '570' department: - _id: SyCr - _id: LifeSc - _id: JiFr doi: 10.1038/s41559-023-01981-6 ec_funded: 1 external_id: isi: - '000924572800001' pmid: - '36732670' file: - access_level: open_access checksum: 8244f4650a0e7aeea488d1bcd4a31702 content_type: application/pdf creator: dernst date_created: 2023-08-16T11:54:59Z date_updated: 2023-08-16T11:54:59Z file_id: '14069' file_name: 2023_NatureEcoEvo_Stock.pdf file_size: 1600499 relation: main_file success: 1 file_date_updated: 2023-08-16T11:54:59Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 450-460 pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip - _id: 25DAF0B2-B435-11E9-9278-68D0E5697425 grant_number: CR-118/3-1 name: Host-Parasite Coevolution publication: Nature Ecology and Evolution publication_identifier: eissn: - 2397-334X publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA website relation: press_release url: https://ista.ac.at/en/news/how-sneaky-germs-hide-from-ants/ scopus_import: '1' status: public title: Pathogen evasion of social immunity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2023' ... --- _id: '14313' abstract: - lang: eng text: To respond to auxin, the chief orchestrator of their multicellularity, plants evolved multiple receptor systems and signal transduction cascades. Despite decades of research, however, we are still lacking a satisfactory synthesis of various auxin signaling mechanisms. The chief discrepancy and historical controversy of the field is that of rapid and slow auxin effects on plant physiology and development. How is it possible that ions begin to trickle across the plasma membrane as soon as auxin enters the cell, even though the best-characterized transcriptional auxin pathway can take effect only after tens of minutes? Recently, unexpected progress has been made in understanding this and other unknowns of auxin signaling. We provide a perspective on these exciting developments and concepts whose general applicability might have ramifications beyond auxin signaling. acknowledgement: The opening quote is not intended to reflect any political views of the authors. The authors by no means endorse the rhetoric of Donald Rumsfeld or the 2003 invasion of Iraq by the United States. Nevertheless, Rumsfeld's quote led to both public and academic debates on the concept of known and unknown unknowns, which can be applied to the recent unexpected developments in the auxin signaling field. We thank Linlin Qi and Huihuang Chen for their suggestions on figure presentation and inspiring discussions of TIR1/AFB signaling. Finally, we thank Aroosa Hussain for discussion of Greek mythology. article_number: '102443' article_processing_charge: No article_type: review author: - first_name: Lukas full_name: Fiedler, Lukas id: 7c417475-8972-11ed-ae7b-8b674ca26986 last_name: Fiedler - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Fiedler L, Friml J. Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. 2023;75(10). doi:10.1016/j.pbi.2023.102443' apa: 'Fiedler, L., & Friml, J. (2023). Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2023.102443' chicago: 'Fiedler, Lukas, and Jiří Friml. “Rapid Auxin Signaling: Unknowns Old and New.” Current Opinion in Plant Biology. Elsevier, 2023. https://doi.org/10.1016/j.pbi.2023.102443.' ieee: 'L. Fiedler and J. Friml, “Rapid auxin signaling: Unknowns old and new,” Current Opinion in Plant Biology, vol. 75, no. 10. Elsevier, 2023.' ista: 'Fiedler L, Friml J. 2023. Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. 75(10), 102443.' mla: 'Fiedler, Lukas, and Jiří Friml. “Rapid Auxin Signaling: Unknowns Old and New.” Current Opinion in Plant Biology, vol. 75, no. 10, 102443, Elsevier, 2023, doi:10.1016/j.pbi.2023.102443.' short: L. Fiedler, J. Friml, Current Opinion in Plant Biology 75 (2023). date_created: 2023-09-10T22:01:11Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-11-07T08:17:13Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.pbi.2023.102443 external_id: pmid: - '37666097' file: - access_level: open_access checksum: 1c476c3414d2dfb0c85db0cb6cfd8a28 content_type: application/pdf creator: amally date_created: 2023-11-02T17:03:20Z date_updated: 2023-11-02T17:03:20Z file_id: '14482' file_name: Fiedler CurrOpinOlantBiol 2023_revised.pdf file_size: 737872 relation: main_file success: 1 file_date_updated: 2023-11-02T17:03:20Z has_accepted_license: '1' intvolume: ' 75' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version pmid: 1 publication: Current Opinion in Plant Biology publication_identifier: issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Rapid auxin signaling: Unknowns old and new' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 75 year: '2023' ... --- _id: '14591' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development by controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scissin machinery in plants, but the precise roles of these proteins in this process is not fully understood. Here, we characterised the roles of Plant Dynamin-Related Proteins 2 (DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to Dynamins’ recruiters, like Endophilin and Amphiphysin, in the CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the Dsh3p1,2,3 triple-mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggests that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME. One Sentence Summary In contrast to predictions based on mammalian systems, plant Dynamin-related proteins 2 are recruited to the site of Clathrin-mediated endocytosis independently of BAR-SH3 proteins. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio article_processing_charge: No author: - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Marie-Kristin full_name: Nagel, Marie-Kristin last_name: Nagel - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Annamaria full_name: Hlavata, Annamaria id: 36062FEC-F248-11E8-B48F-1D18A9856A87 last_name: Hlavata - first_name: Erika full_name: Isono, Erika last_name: Isono - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Gnyliukh N, Johnson AJ, Nagel M-K, et al. Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv. doi:10.1101/2023.10.09.561523 apa: Gnyliukh, N., Johnson, A. J., Nagel, M.-K., Monzer, A., Hlavata, A., Isono, E., … Friml, J. (n.d.). Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv. https://doi.org/10.1101/2023.10.09.561523 chicago: Gnyliukh, Nataliia, Alexander J Johnson, Marie-Kristin Nagel, Aline Monzer, Annamaria Hlavata, Erika Isono, Martin Loose, and Jiří Friml. “Role of Dynamin-Related Proteins 2 and SH3P2 in Clathrin-Mediated Endocytosis in Plants.” BioRxiv, n.d. https://doi.org/10.1101/2023.10.09.561523. ieee: N. Gnyliukh et al., “Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants,” bioRxiv. . ista: Gnyliukh N, Johnson AJ, Nagel M-K, Monzer A, Hlavata A, Isono E, Loose M, Friml J. Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv, 10.1101/2023.10.09.561523. mla: Gnyliukh, Nataliia, et al. “Role of Dynamin-Related Proteins 2 and SH3P2 in Clathrin-Mediated Endocytosis in Plants.” BioRxiv, doi:10.1101/2023.10.09.561523. short: N. Gnyliukh, A.J. Johnson, M.-K. Nagel, A. Monzer, A. Hlavata, E. Isono, M. Loose, J. Friml, BioRxiv (n.d.). date_created: 2023-11-22T10:17:49Z date_published: 2023-10-10T00:00:00Z date_updated: 2023-12-01T13:51:06Z day: '10' department: - _id: JiFr - _id: MaLo - _id: CaBe doi: 10.1101/2023.10.09.561523 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2023.10.09.561523v2 month: '10' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: bioRxiv publication_status: submitted related_material: record: - id: '14510' relation: dissertation_contains status: public status: public title: Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14339' abstract: - lang: eng text: Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root—PINs and phosphatases acting upon them—are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux. acknowledgement: We thank D. Weijers, C. Schwechheimer and R. Offringa for generous sharing of published and unpublished materials and P. Masson for advice on the use of the ARL2 promoter. We are grateful to M. Del Bianco and O. Leyser for critical reading of the manuscript. This work was supported by the BBSRC (grants BB/N010124/1 and BB/R000859/1 to S.K.), the Gatsby Charitable Foundation and the Leverhulme Trust (RPG-2018-137 to S.K.). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: S full_name: Roychoudhry, S last_name: Roychoudhry - first_name: K full_name: Sageman-Furnas, K last_name: Sageman-Furnas - first_name: C full_name: Wolverton, C last_name: Wolverton - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: M full_name: De Angelis, M last_name: De Angelis - first_name: HL full_name: Goodman, HL last_name: Goodman - first_name: N full_name: Capstaff, N last_name: Capstaff - first_name: Lloyd full_name: JPB, Lloyd last_name: JPB - first_name: J full_name: Mullen, J last_name: Mullen - first_name: R full_name: Hangarter, R last_name: Hangarter - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: S full_name: Kepinski, S last_name: Kepinski citation: ama: Roychoudhry S, Sageman-Furnas K, Wolverton C, et al. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. Nature Plants. 2023;9:1500-1513. doi:10.1038/s41477-023-01478-x apa: Roychoudhry, S., Sageman-Furnas, K., Wolverton, C., Grones, P., Tan, S., Molnar, G., … Kepinski, S. (2023). Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-023-01478-x chicago: Roychoudhry, S, K Sageman-Furnas, C Wolverton, Peter Grones, Shutang Tan, Gergely Molnar, M De Angelis, et al. “Antigravitropic PIN Polarization Maintains Non-Vertical Growth in Lateral Roots.” Nature Plants. Springer Nature, 2023. https://doi.org/10.1038/s41477-023-01478-x. ieee: S. Roychoudhry et al., “Antigravitropic PIN polarization maintains non-vertical growth in lateral roots,” Nature Plants, vol. 9. Springer Nature, pp. 1500–1513, 2023. ista: Roychoudhry S, Sageman-Furnas K, Wolverton C, Grones P, Tan S, Molnar G, De Angelis M, Goodman H, Capstaff N, JPB L, Mullen J, Hangarter R, Friml J, Kepinski S. 2023. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. Nature Plants. 9, 1500–1513. mla: Roychoudhry, S., et al. “Antigravitropic PIN Polarization Maintains Non-Vertical Growth in Lateral Roots.” Nature Plants, vol. 9, Springer Nature, 2023, pp. 1500–13, doi:10.1038/s41477-023-01478-x. short: S. Roychoudhry, K. Sageman-Furnas, C. Wolverton, P. Grones, S. Tan, G. Molnar, M. De Angelis, H. Goodman, N. Capstaff, L. JPB, J. Mullen, R. Hangarter, J. Friml, S. Kepinski, Nature Plants 9 (2023) 1500–1513. date_created: 2023-09-15T09:56:01Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-12-13T12:23:49Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41477-023-01478-x external_id: isi: - '001069238800014' pmid: - '37666965' file: - access_level: open_access checksum: 3d6d5d5abb937c14a5f6f0afba3b8624 content_type: application/pdf creator: dernst date_created: 2023-09-20T10:51:31Z date_updated: 2023-09-20T10:51:31Z file_id: '14351' file_name: 2023_NaturePlants_Roychoudhry.pdf file_size: 9647103 relation: main_file success: 1 file_date_updated: 2023-09-20T10:51:31Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1500-1513 pmid: 1 publication: Nature Plants publication_identifier: issn: - 2055-0278 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Antigravitropic PIN polarization maintains non-vertical growth in lateral roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2023' ... --- _id: '14447' abstract: - lang: eng text: "Auxin belongs among major phytohormones and governs multiple aspects of plant growth and development. The establishment of auxin concentration gradients, determines, among other processes, plant organ positioning and growth responses to environmental stimuli.\r\nHerein we report the synthesis of new NBD- or DNS-labelled IAA derivatives and the elucidation of their biological activity, fluorescence properties and subcellular accumulation patterns in planta. These novel compounds did not show auxin-like activity, but instead antagonized physiological auxin effects. The DNS-labelled derivatives FL5 and FL6 showed strong anti-auxin activity in roots and hypocotyls, which also occurred at the level of gene transcription as confirmed by quantitative PCR analysis. The auxin antagonism of our derivatives was further demonstrated in vitro using an SPR-based binding assay. The NBD-labelled compound FL4 with the best fluorescence properties proved to be unsuitable to study auxin accumulation patterns in planta. On the other hand, the strongest anti-auxin activity possessing compounds FL5 and FL6 could be useful to study binding mechanisms to auxin receptors and for manipulations of auxin-regulated processes." acknowledgement: The authors would like to thank Karolína Kubiasová and Iñigo Saiz-Fernández for valuable scientific discussions. Open access publishing supported by the National Technical Library in Prague. This work was supported by the Palacký University Olomouc Young Researcher Grant Competition (JG_2020_002), by the Internal Grant Agency of Palacký University Olomouc (IGA_PrF_2023_016, IGA_PrF_2023_031), by the Ministry of Education, Youth and Sports of the Czech Republic through the European Regional Development Fund-Project Plants as a tool for sustainable global development (CZ.02.1.01/0.0/0.0/16_019/0000827) and the project Support of mobility at Palacký University Olomouc II. (CZ.02.2.69/0.0/0.0/18_053/0016919). The Biacore T200 SPR instrument was provided by the WISB Research Technology Facility within the School of Life Sciences, University of Warwick. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Kristýna full_name: Bieleszová, Kristýna last_name: Bieleszová - first_name: Pavel full_name: Hladík, Pavel last_name: Hladík - first_name: Martin full_name: Kubala, Martin last_name: Kubala - first_name: Richard full_name: Napier, Richard last_name: Napier - first_name: Federica full_name: Brunoni, Federica last_name: Brunoni - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Lukas full_name: Fiedler, Lukas id: 7c417475-8972-11ed-ae7b-8b674ca26986 last_name: Fiedler - first_name: Ivan full_name: Kulich, Ivan id: 57a1567c-8314-11eb-9063-c9ddc3451a54 last_name: Kulich - first_name: Miroslav full_name: Strnad, Miroslav last_name: Strnad - first_name: Karel full_name: Doležal, Karel last_name: Doležal - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Asta full_name: Žukauskaitė, Asta last_name: Žukauskaitė citation: ama: 'Bieleszová K, Hladík P, Kubala M, et al. New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana. Plant Growth Regulation. 2023. doi:10.1007/s10725-023-01083-0' apa: 'Bieleszová, K., Hladík, P., Kubala, M., Napier, R., Brunoni, F., Gelová, Z., … Žukauskaitė, A. (2023). New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana. Plant Growth Regulation. Springer Nature. https://doi.org/10.1007/s10725-023-01083-0' chicago: 'Bieleszová, Kristýna, Pavel Hladík, Martin Kubala, Richard Napier, Federica Brunoni, Zuzana Gelová, Lukas Fiedler, et al. “New Fluorescent Auxin Derivatives: Anti-Auxin Activity and Accumulation Patterns in Arabidopsis Thaliana.” Plant Growth Regulation. Springer Nature, 2023. https://doi.org/10.1007/s10725-023-01083-0.' ieee: 'K. Bieleszová et al., “New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana,” Plant Growth Regulation. Springer Nature, 2023.' ista: 'Bieleszová K, Hladík P, Kubala M, Napier R, Brunoni F, Gelová Z, Fiedler L, Kulich I, Strnad M, Doležal K, Novák O, Friml J, Žukauskaitė A. 2023. New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana. Plant Growth Regulation.' mla: 'Bieleszová, Kristýna, et al. “New Fluorescent Auxin Derivatives: Anti-Auxin Activity and Accumulation Patterns in Arabidopsis Thaliana.” Plant Growth Regulation, Springer Nature, 2023, doi:10.1007/s10725-023-01083-0.' short: K. Bieleszová, P. Hladík, M. Kubala, R. Napier, F. Brunoni, Z. Gelová, L. Fiedler, I. Kulich, M. Strnad, K. Doležal, O. Novák, J. Friml, A. Žukauskaitė, Plant Growth Regulation (2023). date_created: 2023-10-22T22:01:15Z date_published: 2023-10-13T00:00:00Z date_updated: 2023-12-13T13:08:25Z day: '13' department: - _id: JiFr doi: 10.1007/s10725-023-01083-0 external_id: isi: - '001084334300001' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s10725-023-01083-0 month: '10' oa: 1 oa_version: Published Version publication: Plant Growth Regulation publication_identifier: eissn: - 1573-5087 issn: - 0167-6903 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14709' abstract: - lang: eng text: Amid the delays due to the global pandemic, in early October 2022, the auxin community gathered in the idyllic peninsula of Cavtat, Croatia. More than 170 scientists from across the world converged to discuss the latest advancements in fundamental and applied research in the field. The topics, from signalling and transport to plant architecture and response to the environment, show how auxin research must bridge from the molecular realm to macroscopic developmental responses. This is mirrored in this collection of reviews, contributed by participants of the Auxin 2022 meeting. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Marta full_name: Del Bianco, Marta last_name: Del Bianco - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Lucia full_name: Strader, Lucia last_name: Strader - first_name: Stefan full_name: Kepinski, Stefan last_name: Kepinski citation: ama: 'Del Bianco M, Friml J, Strader L, Kepinski S. Auxin research: Creating tools for a greener future. Journal of Experimental Botany. 2023;74(22):6889-6892. doi:10.1093/jxb/erad420' apa: 'Del Bianco, M., Friml, J., Strader, L., & Kepinski, S. (2023). Auxin research: Creating tools for a greener future. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/erad420' chicago: 'Del Bianco, Marta, Jiří Friml, Lucia Strader, and Stefan Kepinski. “Auxin Research: Creating Tools for a Greener Future.” Journal of Experimental Botany. Oxford University Press, 2023. https://doi.org/10.1093/jxb/erad420.' ieee: 'M. Del Bianco, J. Friml, L. Strader, and S. Kepinski, “Auxin research: Creating tools for a greener future,” Journal of Experimental Botany, vol. 74, no. 22. Oxford University Press, pp. 6889–6892, 2023.' ista: 'Del Bianco M, Friml J, Strader L, Kepinski S. 2023. Auxin research: Creating tools for a greener future. Journal of Experimental Botany. 74(22), 6889–6892.' mla: 'Del Bianco, Marta, et al. “Auxin Research: Creating Tools for a Greener Future.” Journal of Experimental Botany, vol. 74, no. 22, Oxford University Press, 2023, pp. 6889–92, doi:10.1093/jxb/erad420.' short: M. Del Bianco, J. Friml, L. Strader, S. Kepinski, Journal of Experimental Botany 74 (2023) 6889–6892. date_created: 2023-12-24T23:00:53Z date_published: 2023-12-01T00:00:00Z date_updated: 2024-01-02T09:29:24Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/jxb/erad420 external_id: pmid: - '38038239' file: - access_level: open_access checksum: f66fb960fd791dea53fd0e087f2fbbe8 content_type: application/pdf creator: dernst date_created: 2024-01-02T09:23:57Z date_updated: 2024-01-02T09:23:57Z file_id: '14724' file_name: 2023_JourExperimentalBotany_DelBianco.pdf file_size: 425194 relation: main_file success: 1 file_date_updated: 2024-01-02T09:23:57Z has_accepted_license: '1' intvolume: ' 74' issue: '22' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 6889-6892 pmid: 1 publication: Journal of Experimental Botany publication_identifier: eissn: - 1460-2431 issn: - 0022-0957 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: 'Auxin research: Creating tools for a greener future' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2023' ... --- _id: '14776' abstract: - lang: eng text: Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident. acknowledgement: "We thank C.U.T. Hellen for critically reading the manuscript. The MALDI MS facility and CLSM became available to us in the framework of Moscow State University Development Programs PNG 5.13 and PNR 5.13.\r\nThis work was funded by the Russian Science Foundation, grant numbers 19-14-00010 and 22-14-00071." article_number: '16527' article_processing_charge: Yes article_type: original author: - first_name: Anastasiia full_name: Teplova, Anastasiia id: e3736151-106c-11ec-b916-c2558e2762c6 last_name: Teplova - first_name: Artemii A. full_name: Pigidanov, Artemii A. last_name: Pigidanov - first_name: Marina V. full_name: Serebryakova, Marina V. last_name: Serebryakova - first_name: Sergei A. full_name: Golyshev, Sergei A. last_name: Golyshev - first_name: Raisa A. full_name: Galiullina, Raisa A. last_name: Galiullina - first_name: Nina V. full_name: Chichkova, Nina V. last_name: Chichkova - first_name: Andrey B. full_name: Vartapetian, Andrey B. last_name: Vartapetian citation: ama: Teplova A, Pigidanov AA, Serebryakova MV, et al. Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. 2023;24(22). doi:10.3390/ijms242216527 apa: Teplova, A., Pigidanov, A. A., Serebryakova, M. V., Golyshev, S. A., Galiullina, R. A., Chichkova, N. V., & Vartapetian, A. B. (2023). Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms242216527 chicago: Teplova, Anastasiia, Artemii A. Pigidanov, Marina V. Serebryakova, Sergei A. Golyshev, Raisa A. Galiullina, Nina V. Chichkova, and Andrey B. Vartapetian. “Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3.” International Journal of Molecular Sciences. MDPI, 2023. https://doi.org/10.3390/ijms242216527. ieee: A. Teplova et al., “Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3,” International Journal of Molecular Sciences, vol. 24, no. 22. MDPI, 2023. ista: Teplova A, Pigidanov AA, Serebryakova MV, Golyshev SA, Galiullina RA, Chichkova NV, Vartapetian AB. 2023. Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. 24(22), 16527. mla: Teplova, Anastasiia, et al. “Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3.” International Journal of Molecular Sciences, vol. 24, no. 22, 16527, MDPI, 2023, doi:10.3390/ijms242216527. short: A. Teplova, A.A. Pigidanov, M.V. Serebryakova, S.A. Golyshev, R.A. Galiullina, N.V. Chichkova, A.B. Vartapetian, International Journal of Molecular Sciences 24 (2023). date_created: 2024-01-10T09:24:35Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-10T13:41:10Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.3390/ijms242216527 external_id: isi: - '001113792600001' pmid: - '38003717' file: - access_level: open_access checksum: 4df7d206ba022b7f54eff1f0aec1659a content_type: application/pdf creator: dernst date_created: 2024-01-10T13:39:42Z date_updated: 2024-01-10T13:39:42Z file_id: '14791' file_name: 2023_IJMS_Teplova.pdf file_size: 2637784 relation: main_file success: 1 file_date_updated: 2024-01-10T13:39:42Z has_accepted_license: '1' intvolume: ' 24' isi: 1 issue: '22' keyword: - Inorganic Chemistry - Organic Chemistry - Physical and Theoretical Chemistry - Computer Science Applications - Spectroscopy - Molecular Biology - General Medicine - Catalysis language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: International Journal of Molecular Sciences publication_identifier: issn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2023' ... --- _id: '13212' abstract: - lang: eng text: Auxin is the major plant hormone regulating growth and development (Friml, 2022). Forward genetic approaches in the model plant Arabidopsis thaliana have identified major components of auxin signalling and established the canonical mechanism mediating transcriptional and thus developmental reprogramming. In this textbook view, TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFBs) are auxin receptors, which act as F-box subunits determining the substrate specificity of the Skp1-Cullin1-F box protein (SCF) type E3 ubiquitin ligase complex. Auxin acts as a “molecular glue” increasing the affinity between TIR1/AFBs and the Aux/IAA repressors. Subsequently, Aux/IAAs are ubiquitinated and degraded, thus releasing auxin transcription factors from their repression making them free to mediate transcription of auxin response genes (Yu et al., 2022). Nonetheless, accumulating evidence suggests existence of rapid, non-transcriptional responses downstream of TIR1/AFBs such as auxin-induced cytosolic calcium (Ca2+) transients, plasma membrane depolarization and apoplast alkalinisation, all converging on the process of root growth inhibition and root gravitropism (Li et al., 2022). Particularly, these rapid responses are mostly contributed by predominantly cytosolic AFB1, while the long-term growth responses are mediated by mainly nuclear TIR1 and AFB2-AFB5 (Li et al., 2021; Prigge et al., 2020; Serre et al., 2021). How AFB1 conducts auxin-triggered rapid responses and how it is different from TIR1 and AFB2-AFB5 remains elusive. Here, we compare the roles of TIR1 and AFB1 in transcriptional and rapid responses by modulating their subcellular localization in Arabidopsis and by testing their ability to mediate transcriptional responses when part of the minimal auxin circuit reconstituted in yeast. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: We thank all the authors for sharing the published materials. This research was supported by the Lab Support Facility and the Imaging and Optics Facility of ISTA. We thank Lukáš Fiedler (ISTA) for critical reading of the manuscript. This project was funded by the European Research Council Advanced Grant (ETAP-742985). article_processing_charge: Yes (via OA deal) article_type: letter_note author: - first_name: Huihuang full_name: Chen, Huihuang id: 83c96512-15b2-11ec-abd3-b7eede36184f last_name: Chen - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Minxia full_name: Zou, Minxia id: 5c243f41-03f3-11ec-841c-96faf48a7ef9 last_name: Zou - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Chen H, Li L, Zou M, Qi L, Friml J. Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. 2023;16(7):1117-1119. doi:10.1016/j.molp.2023.06.007 apa: Chen, H., Li, L., Zou, M., Qi, L., & Friml, J. (2023). Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. Elsevier . https://doi.org/10.1016/j.molp.2023.06.007 chicago: Chen, Huihuang, Lanxin Li, Minxia Zou, Linlin Qi, and Jiří Friml. “Distinct Functions of TIR1 and AFB1 Receptors in Auxin Signalling.” Molecular Plant. Elsevier , 2023. https://doi.org/10.1016/j.molp.2023.06.007. ieee: H. Chen, L. Li, M. Zou, L. Qi, and J. Friml, “Distinct functions of TIR1 and AFB1 receptors in auxin signalling.,” Molecular Plant, vol. 16, no. 7. Elsevier , pp. 1117–1119, 2023. ista: Chen H, Li L, Zou M, Qi L, Friml J. 2023. Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. 16(7), 1117–1119. mla: Chen, Huihuang, et al. “Distinct Functions of TIR1 and AFB1 Receptors in Auxin Signalling.” Molecular Plant, vol. 16, no. 7, Elsevier , 2023, pp. 1117–19, doi:10.1016/j.molp.2023.06.007. short: H. Chen, L. Li, M. Zou, L. Qi, J. Friml, Molecular Plant 16 (2023) 1117–1119. date_created: 2023-07-12T07:32:46Z date_published: 2023-07-01T00:00:00Z date_updated: 2024-01-29T10:38:57Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.molp.2023.06.007 ec_funded: 1 external_id: isi: - '001044410900001' pmid: - '37393433' file: - access_level: open_access checksum: 6012b7e4a2f680ee6c1f84001e2b945f content_type: application/pdf creator: dernst date_created: 2024-01-29T10:37:05Z date_updated: 2024-01-29T10:37:05Z file_id: '14894' file_name: 2023_MolecularPlant_Chen.pdf file_size: 1000871 relation: main_file success: 1 file_date_updated: 2024-01-29T10:37:05Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '07' oa: 1 oa_version: Published Version page: 1117-1119 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Molecular Plant publication_identifier: eissn: - 1674-2052 issn: - 1752-9867 publication_status: published publisher: 'Elsevier ' quality_controlled: '1' scopus_import: '1' status: public title: Distinct functions of TIR1 and AFB1 receptors in auxin signalling. tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2023' ... --- _id: '13266' abstract: - lang: eng text: The 3′,5′-cyclic adenosine monophosphate (cAMP) is a versatile second messenger in many mammalian signaling pathways. However, its role in plants remains not well-recognized. Recent discovery of adenylate cyclase (AC) activity for transport inhibitor response 1/auxin-signaling F-box proteins (TIR1/AFB) auxin receptors and the demonstration of its importance for canonical auxin signaling put plant cAMP research back into spotlight. This insight briefly summarizes the well-established cAMP signaling pathways in mammalian cells and describes the turbulent and controversial history of plant cAMP research highlighting the major progress and the unresolved points. We also briefly review the current paradigm of auxin signaling to provide a background for the discussion on the AC activity of TIR1/AFB auxin receptors and its potential role in transcriptional auxin signaling as well as impact of these discoveries on plant cAMP research in general. acknowledgement: 'We gratefully acknowledge our brave colleagues, whose excellent efforts kept the plant cAMP research going in the last two decades. The authors were financially supported by the Austrian Science Fund (FWF): I 6123 and P 37051-B.' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Qi L, Friml J. Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. 2023;240(2):489-495. doi:10.1111/nph.19123 apa: Qi, L., & Friml, J. (2023). Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. Wiley. https://doi.org/10.1111/nph.19123 chicago: Qi, Linlin, and Jiří Friml. “Tale of CAMP as a Second Messenger in Auxin Signaling and Beyond.” New Phytologist. Wiley, 2023. https://doi.org/10.1111/nph.19123. ieee: L. Qi and J. Friml, “Tale of cAMP as a second messenger in auxin signaling and beyond,” New Phytologist, vol. 240, no. 2. Wiley, pp. 489–495, 2023. ista: Qi L, Friml J. 2023. Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. 240(2), 489–495. mla: Qi, Linlin, and Jiří Friml. “Tale of CAMP as a Second Messenger in Auxin Signaling and Beyond.” New Phytologist, vol. 240, no. 2, Wiley, 2023, pp. 489–95, doi:10.1111/nph.19123. short: L. Qi, J. Friml, New Phytologist 240 (2023) 489–495. date_created: 2023-07-23T22:01:13Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-29T11:21:55Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.19123 external_id: isi: - '001026321500001' pmid: - '37434303' file: - access_level: open_access checksum: 6d9bbd45b8e7bb3ceee2586d447bacb2 content_type: application/pdf creator: dernst date_created: 2024-01-29T11:21:43Z date_updated: 2024-01-29T11:21:43Z file_id: '14898' file_name: 2023_NewPhytologist_Qi.pdf file_size: 974464 relation: main_file success: 1 file_date_updated: 2024-01-29T11:21:43Z has_accepted_license: '1' intvolume: ' 240' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 489-495 pmid: 1 project: - _id: bd76d395-d553-11ed-ba76-f678c14f9033 grant_number: I06123 name: Peptide receptor complexes for auxin canalization and regeneration in Arabidopsis - _id: 7bcece63-9f16-11ee-852c-ae94e099eeb6 grant_number: P37051 name: Guanylate cyclase activity of TIR1/AFBs auxin receptors publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Tale of cAMP as a second messenger in auxin signaling and beyond tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 240 year: '2023' ... --- _id: '13209' abstract: - lang: eng text: The phytohormone auxin plays central roles in many growth and developmental processes in plants. Development of chemical tools targeting the auxin pathway is useful for both plant biology and agriculture. Here we reveal that naproxen, a synthetic compound with anti-inflammatory activity in humans, acts as an auxin transport inhibitor targeting PIN-FORMED (PIN) transporters in plants. Physiological experiments indicate that exogenous naproxen treatment affects pleiotropic auxin-regulated developmental processes. Additional cellular and biochemical evidence indicates that naproxen suppresses auxin transport, specifically PIN-mediated auxin efflux. Moreover, biochemical and structural analyses confirm that naproxen binds directly to PIN1 protein via the same binding cavity as the indole-3-acetic acid substrate. Thus, by combining cellular, biochemical, and structural approaches, this study clearly establishes that naproxen is a PIN inhibitor and elucidates the underlying mechanisms. Further use of this compound may advance our understanding of the molecular mechanisms of PIN-mediated auxin transport and expand our toolkit in auxin biology and agriculture. acknowledgement: "This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB37020103 to Linfeng Sun); research funds from the Center for Advanced Interdisciplinary Science\r\nand Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China (QYPY20220012 to S.T.); start-up funding from the University of Science and Technology of China and the\r\nChinese Academy of Sciences (GG9100007007, KY9100000026,KY9100000051, and KJ2070000079 to S.T.); the National Natural Science Foundation of China (31900885 to X.L. and 31870732 to Linfeng Sun); the Natural Science Foundation of Anhui Province (2008085MC90 to X.L. and 2008085J15 to Linfeng Sun); the Fundamental Research Funds for the Central Universities (WK9100000021 to S.T. and WK9100000031 to Linfeng Sun); and the USTC Research Funds of the Double First-Class Initiative (YD9100002016 to S.T. and YD9100002004 to Linfeng Sun). Linfeng Sun is supported by an Outstanding Young Scholar Award from the Qiu Shi Science and Technologies Foundation and a Young Scholar Award from the Cyrus Tang Foundation.We thank Dr. Yang Zhao for sharing published materials (Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences) and the Cryo-EM Center of the University of Science and Technology of China for the EM facility support. We are grateful to Y. Gao and all other staff members for their technical support on cryo-EM data collection. " article_number: '100632' article_processing_charge: Yes article_type: original author: - first_name: Jing full_name: Xia, Jing last_name: Xia - first_name: Mengjuan full_name: Kong, Mengjuan last_name: Kong - first_name: Zhisen full_name: Yang, Zhisen last_name: Yang - first_name: Lianghanxiao full_name: Sun, Lianghanxiao last_name: Sun - first_name: Yakun full_name: Peng, Yakun last_name: Peng - first_name: Yanbo full_name: Mao, Yanbo last_name: Mao - first_name: Hong full_name: Wei, Hong last_name: Wei - first_name: Wei full_name: Ying, Wei last_name: Ying - first_name: Yongxiao full_name: Gao, Yongxiao last_name: Gao - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jianping full_name: Weng, Jianping last_name: Weng - first_name: Xin full_name: Liu, Xin last_name: Liu - first_name: Linfeng full_name: Sun, Linfeng last_name: Sun - first_name: Shutang full_name: Tan, Shutang last_name: Tan citation: ama: Xia J, Kong M, Yang Z, et al. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. 2023;4(6). doi:10.1016/j.xplc.2023.100632 apa: Xia, J., Kong, M., Yang, Z., Sun, L., Peng, Y., Mao, Y., … Tan, S. (2023). Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. Elsevier . https://doi.org/10.1016/j.xplc.2023.100632 chicago: Xia, Jing, Mengjuan Kong, Zhisen Yang, Lianghanxiao Sun, Yakun Peng, Yanbo Mao, Hong Wei, et al. “Chemical Inhibition of Arabidopsis PIN-FORMED Auxin Transporters by the Anti-Inflammatory Drug Naproxen.” Plant Communications. Elsevier , 2023. https://doi.org/10.1016/j.xplc.2023.100632. ieee: J. Xia et al., “Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen,” Plant Communications, vol. 4, no. 6. Elsevier , 2023. ista: Xia J, Kong M, Yang Z, Sun L, Peng Y, Mao Y, Wei H, Ying W, Gao Y, Friml J, Weng J, Liu X, Sun L, Tan S. 2023. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. 4(6), 100632. mla: Xia, Jing, et al. “Chemical Inhibition of Arabidopsis PIN-FORMED Auxin Transporters by the Anti-Inflammatory Drug Naproxen.” Plant Communications, vol. 4, no. 6, 100632, Elsevier , 2023, doi:10.1016/j.xplc.2023.100632. short: J. Xia, M. Kong, Z. Yang, L. Sun, Y. Peng, Y. Mao, H. Wei, W. Ying, Y. Gao, J. Friml, J. Weng, X. Liu, L. Sun, S. Tan, Plant Communications 4 (2023). date_created: 2023-07-12T07:32:00Z date_published: 2023-11-13T00:00:00Z date_updated: 2024-01-30T10:55:34Z day: '13' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.xplc.2023.100632 external_id: isi: - '001113003000001' pmid: - '37254481' file: - access_level: open_access checksum: f8ef92af6096834f91ce38587fb1db9f content_type: application/pdf creator: dernst date_created: 2024-01-30T10:54:40Z date_updated: 2024-01-30T10:54:40Z file_id: '14900' file_name: 2023_PlantCommunications_Xia.pdf file_size: 1434862 relation: main_file success: 1 file_date_updated: 2024-01-30T10:54:40Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Plant Communications publication_identifier: eissn: - 2590-3462 publication_status: published publisher: 'Elsevier ' quality_controlled: '1' status: public title: Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2023' ... --- _id: '13201' abstract: - lang: eng text: As a crucial nitrogen source, nitrate (NO3−) is a key nutrient for plants. Accordingly, root systems adapt to maximize NO3− availability, a developmental regulation also involving the phytohormone auxin. Nonetheless, the molecular mechanisms underlying this regulation remain poorly understood. Here, we identify low-nitrate-resistant mutant (lonr) in Arabidopsis (Arabidopsis thaliana), whose root growth fails to adapt to low-NO3− conditions. lonr2 is defective in the high-affinity NO3− transporter NRT2.1. lonr2 (nrt2.1) mutants exhibit defects in polar auxin transport, and their low-NO3−-induced root phenotype depends on the PIN7 auxin exporter activity. NRT2.1 directly associates with PIN7 and antagonizes PIN7-mediated auxin efflux depending on NO3− levels. These results reveal a mechanism by which NRT2.1 in response to NO3− limitation directly regulates auxin transport activity and, thus, root growth. This adaptive mechanism contributes to the root developmental plasticity to help plants cope with changes in NO3− availability. acknowledgement: We are grateful to Caifu Jiang for providing ethyl metha-nesulfonate- mutagenized population, Yi Wang for providing Xenopus oocytes, Jun Fan and Zhaosheng Kong for providing tobacco BY- 2 cells, and Claus Schwechheimer, Alain Gojon, and Shutang Tan for helpful discussions. This work was supported by the National Key Research and Development Program of China (2021YFF1000500), the National Natural Science Foundation of China (32170265 and 32022007), Hainan Provincial Natural Science Foundation of China (323CXTD379), Chinese Universities Scientific Fund (2023TC019), Beijing Municipal Natural Science Foundation (5192011), Beijing Outstanding University Discipline Program, and China Postdoctoral Science Foundation (BH2020259460). article_number: e2221313120 article_processing_charge: No article_type: original author: - first_name: Yalu full_name: Wang, Yalu last_name: Wang - first_name: Zhi full_name: Yuan, Zhi last_name: Yuan - first_name: Jinyi full_name: Wang, Jinyi last_name: Wang - first_name: Huixin full_name: Xiao, Huixin last_name: Xiao - first_name: Lu full_name: Wan, Lu last_name: Wan - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Yan full_name: Guo, Yan last_name: Guo - first_name: Zhizhong full_name: Gong, Zhizhong last_name: Gong - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jing full_name: Zhang, Jing last_name: Zhang citation: ama: Wang Y, Yuan Z, Wang J, et al. The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation. Proceedings of the National Academy of Sciences of the United States of America. 2023;120(25). doi:10.1073/pnas.2221313120 apa: Wang, Y., Yuan, Z., Wang, J., Xiao, H., Wan, L., Li, L., … Zhang, J. (2023). The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2221313120 chicago: Wang, Yalu, Zhi Yuan, Jinyi Wang, Huixin Xiao, Lu Wan, Lanxin Li, Yan Guo, Zhizhong Gong, Jiří Friml, and Jing Zhang. “The Nitrate Transporter NRT2.1 Directly Antagonizes PIN7-Mediated Auxin Transport for Root Growth Adaptation.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2023. https://doi.org/10.1073/pnas.2221313120. ieee: Y. Wang et al., “The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 25. National Academy of Sciences, 2023. ista: Wang Y, Yuan Z, Wang J, Xiao H, Wan L, Li L, Guo Y, Gong Z, Friml J, Zhang J. 2023. The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation. Proceedings of the National Academy of Sciences of the United States of America. 120(25), e2221313120. mla: Wang, Yalu, et al. “The Nitrate Transporter NRT2.1 Directly Antagonizes PIN7-Mediated Auxin Transport for Root Growth Adaptation.” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 25, e2221313120, National Academy of Sciences, 2023, doi:10.1073/pnas.2221313120. short: Y. Wang, Z. Yuan, J. Wang, H. Xiao, L. Wan, L. Li, Y. Guo, Z. Gong, J. Friml, J. Zhang, Proceedings of the National Academy of Sciences of the United States of America 120 (2023). date_created: 2023-07-09T22:01:12Z date_published: 2023-06-12T00:00:00Z date_updated: 2023-12-13T23:30:04Z day: '12' ddc: - '570' department: - _id: JiFr doi: 10.1073/pnas.2221313120 external_id: isi: - '001030689600003' pmid: - '37307446' file: - access_level: open_access checksum: d800e06252eaefba28531fa9440f23f0 content_type: application/pdf creator: alisjak date_created: 2023-07-10T08:48:40Z date_updated: 2023-12-13T23:30:03Z embargo: 2023-12-12 file_id: '13204' file_name: 2023_PNAS_Wang.pdf file_size: 5244581 relation: main_file file_date_updated: 2023-12-13T23:30:03Z has_accepted_license: '1' intvolume: ' 120' isi: 1 issue: '25' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 120 year: '2023' ... --- _id: '14510' acknowledged_ssus: - _id: EM-Fac - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 citation: ama: Gnyliukh N. Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. 2023. doi:10.15479/at:ista:14510 apa: Gnyliukh, N. (2023). Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14510 chicago: Gnyliukh, Nataliia. “Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14510. ieee: N. Gnyliukh, “Mechanism of clathrin-coated vesicle  formation during endocytosis in plants,” Institute of Science and Technology Austria, 2023. ista: Gnyliukh N. 2023. Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. Institute of Science and Technology Austria. mla: Gnyliukh, Nataliia. Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14510. short: N. Gnyliukh, Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants, Institute of Science and Technology Austria, 2023. date_created: 2023-11-10T09:10:06Z date_published: 2023-11-10T00:00:00Z date_updated: 2024-03-27T23:30:45Z day: '10' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: JiFr - _id: MaLo doi: 10.15479/at:ista:14510 ec_funded: 1 file: - access_level: closed checksum: 3d5e680bfc61f98e308c434f45cc9bd6 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: ngnyliuk date_created: 2023-11-20T09:18:51Z date_updated: 2023-11-20T09:18:51Z file_id: '14567' file_name: Thesis_Gnyliukh_final_08_11_23.docx file_size: 20824903 relation: source_file - access_level: closed checksum: bfc96d47fc4e7e857dd71656097214a4 content_type: application/pdf creator: ngnyliuk date_created: 2023-11-20T09:23:11Z date_updated: 2023-11-23T13:10:55Z embargo: 2024-11-23 embargo_to: open_access file_id: '14568' file_name: Thesis_Gnyliukh_final_20_11_23.pdf file_size: 24871844 relation: main_file file_date_updated: 2023-11-23T13:10:55Z has_accepted_license: '1' keyword: - Clathrin-Mediated Endocytosis - vesicle scission - Dynamin-Related Protein 2 - SH3P2 - TPLATE complex - Total internal reflection fluorescence microscopy - Arabidopsis thaliana language: - iso: eng month: '11' oa_version: Published Version page: '180' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-037-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '14591' relation: part_of_dissertation status: public - id: '9887' relation: part_of_dissertation status: public - id: '8139' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: Mechanism of clathrin-coated vesicle formation during endocytosis in plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '10016' abstract: - lang: eng text: 'Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research. ' acknowledgement: "The author thanks the whole community of researchers consciously or unconsciously working on questions related to auxin, whose hard work and enthusiasm contributed to development of this exciting story. Particular thanks go to many\r\nbrilliant present and past members of the Friml group and our numerous excellent collaborators, without whom my own personal journey would not be possible. The way of the cross with its 14 stations is a popular devotion among Roman Catholics and inspires them to make a spiritual pilgrimage through contemplation of Christ on his last day. Its aspects of gradual progress, struggle, passion, and revelation served as an inspiration for the formal depiction of our journey to understanding auxin as described in this review. It is in no way intended to reflect the personal beliefs of the author and readers. I am grateful to Nick Barton, Eva Benková, Lenka Caisová, Matyáš Fendrych, Lukáš Fiedler, Monika Frátriková, Jarmila Frimlová, Michelle Gallei, Jakub Hajný, Lukas Hoermayer, Alexandra Mally, Ondrˇej Novák, Jan Petrášek, Aleš Pěnčík, Steffen Vanneste, Tongda Xu, and Zhenbiao Yang for their valuable comments. Special thanks go to Michelle Gallei for her invaluable assistance with the figures." article_number: a039859 article_processing_charge: No article_type: review author: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Friml J. Fourteen stations of auxin. Cold Spring Harbor Perspectives in Biology. 2022;14(5). doi:10.1101/cshperspect.a039859 apa: Friml, J. (2022). Fourteen stations of auxin. Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory. https://doi.org/10.1101/cshperspect.a039859 chicago: Friml, Jiří. “Fourteen Stations of Auxin.” Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory, 2022. https://doi.org/10.1101/cshperspect.a039859 . ieee: J. Friml, “Fourteen stations of auxin,” Cold Spring Harbor Perspectives in Biology, vol. 14, no. 5. Cold Spring Harbor Laboratory, 2022. ista: Friml J. 2022. Fourteen stations of auxin. Cold Spring Harbor Perspectives in Biology. 14(5), a039859. mla: Friml, Jiří. “Fourteen Stations of Auxin.” Cold Spring Harbor Perspectives in Biology, vol. 14, no. 5, a039859, Cold Spring Harbor Laboratory, 2022, doi:10.1101/cshperspect.a039859 . short: J. Friml, Cold Spring Harbor Perspectives in Biology 14 (2022). date_created: 2021-09-14T11:36:53Z date_published: 2022-05-27T00:00:00Z date_updated: 2023-08-02T06:54:42Z day: '27' department: - _id: JiFr doi: '10.1101/cshperspect.a039859 ' external_id: isi: - '000806563000003' pmid: - '34400554' intvolume: ' 14' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: 'https://doi.org/10.1101/cshperspect.a039859 ' month: '05' oa: 1 oa_version: Published Version pmid: 1 publication: Cold Spring Harbor Perspectives in Biology publication_identifier: issn: - 1943-0264 publication_status: published publisher: Cold Spring Harbor Laboratory quality_controlled: '1' scopus_import: '1' status: public title: Fourteen stations of auxin type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2022' ... --- _id: '10583' abstract: - lang: eng text: The synthetic strigolactone (SL) analog, rac-GR24, has been instrumental in studying the role of SLs as well as karrikins because it activates the receptors DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2) of their signaling pathways, respectively. Treatment with rac-GR24 modifies the root architecture at different levels, such as decreasing the lateral root density (LRD), while promoting root hair elongation or flavonol accumulation. Previously, we have shown that the flavonol biosynthesis is transcriptionally activated in the root by rac-GR24 treatment, but, thus far, the molecular players involved in that response have remained unknown. To get an in-depth insight into the changes that occur after the compound is perceived by the roots, we compared the root transcriptomes of the wild type and the more axillary growth2 (max2) mutant, affected in both SL and karrikin signaling pathways, with and without rac-GR24 treatment. Quantitative reverse transcription (qRT)-PCR, reporter line analysis and mutant phenotyping indicated that the flavonol response and the root hair elongation are controlled by the ELONGATED HYPOCOTYL 5 (HY5) and MYB12 transcription factors, but HY5, in contrast to MYB12, affects the LRD as well. Furthermore, we identified the transcription factors TARGET OF MONOPTEROS 5 (TMO5) and TMO5 LIKE1 as negative and the Mediator complex as positive regulators of the rac-GR24 effect on LRD. Altogether, hereby, we get closer toward understanding the molecular mechanisms that underlay the rac-GR24 responses in the root. acknowledgement: The authors thank Ralf Stracke (Bielefeld University, Bielefeld, Germany) for providing the myb mutants and their colleagues Bert De Rybel for the tmo5t;mo5l1 double mutant, Boris Parizot for tips on the RNA-seq analysis, Veronique Storme for statistical help on both the RNA-seq and lateral root density, and Martine De Cock for help in preparing the manuscript. article_processing_charge: No article_type: original author: - first_name: Sylwia full_name: Struk, Sylwia last_name: Struk - first_name: Lukas full_name: Braem, Lukas last_name: Braem - first_name: Cedrick full_name: Matthys, Cedrick last_name: Matthys - first_name: Alan full_name: Walton, Alan last_name: Walton - first_name: Nick full_name: Vangheluwe, Nick last_name: Vangheluwe - first_name: Stan full_name: Van Praet, Stan last_name: Van Praet - first_name: Lingxiang full_name: Jiang, Lingxiang last_name: Jiang - first_name: Pawel full_name: Baster, Pawel id: 3028BD74-F248-11E8-B48F-1D18A9856A87 last_name: Baster - first_name: Carolien full_name: De Cuyper, Carolien last_name: De Cuyper - first_name: Francois-Didier full_name: Boyer, Francois-Didier last_name: Boyer - first_name: Elisabeth full_name: Stes, Elisabeth last_name: Stes - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Kris full_name: Gevaert, Kris last_name: Gevaert - first_name: Sofie full_name: Goormachtig, Sofie last_name: Goormachtig citation: ama: Struk S, Braem L, Matthys C, et al. Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density. Plant & Cell Physiology. 2022;63(1):104-119. doi:10.1093/pcp/pcab149 apa: Struk, S., Braem, L., Matthys, C., Walton, A., Vangheluwe, N., Van Praet, S., … Goormachtig, S. (2022). Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density. Plant & Cell Physiology. Oxford University Press. https://doi.org/10.1093/pcp/pcab149 chicago: Struk, Sylwia, Lukas Braem, Cedrick Matthys, Alan Walton, Nick Vangheluwe, Stan Van Praet, Lingxiang Jiang, et al. “Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators That Link Rac-GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density.” Plant & Cell Physiology. Oxford University Press, 2022. https://doi.org/10.1093/pcp/pcab149. ieee: S. Struk et al., “Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density,” Plant & Cell Physiology, vol. 63, no. 1. Oxford University Press, pp. 104–119, 2022. ista: Struk S, Braem L, Matthys C, Walton A, Vangheluwe N, Van Praet S, Jiang L, Baster P, De Cuyper C, Boyer F-D, Stes E, Beeckman T, Friml J, Gevaert K, Goormachtig S. 2022. Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density. Plant & Cell Physiology. 63(1), 104–119. mla: Struk, Sylwia, et al. “Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators That Link Rac-GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density.” Plant & Cell Physiology, vol. 63, no. 1, Oxford University Press, 2022, pp. 104–19, doi:10.1093/pcp/pcab149. short: S. Struk, L. Braem, C. Matthys, A. Walton, N. Vangheluwe, S. Van Praet, L. Jiang, P. Baster, C. De Cuyper, F.-D. Boyer, E. Stes, T. Beeckman, J. Friml, K. Gevaert, S. Goormachtig, Plant & Cell Physiology 63 (2022) 104–119. date_created: 2021-12-28T11:44:18Z date_published: 2022-01-21T00:00:00Z date_updated: 2023-08-02T13:40:43Z day: '21' department: - _id: JiFr doi: 10.1093/pcp/pcab149 external_id: isi: - '000877899400009' pmid: - '34791413' intvolume: ' 63' isi: 1 issue: '1' keyword: - flavonols - MAX2 - rac-Gr24 - RNA-seq - root development - transcriptional regulation language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/pcp/pcab149 month: '01' oa: 1 oa_version: Published Version page: 104-119 pmid: 1 publication: Plant & Cell Physiology publication_identifier: eissn: - 1471-9053 issn: - 0032-0781 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 63 year: '2022' ... --- _id: '10717' abstract: - lang: eng text: Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins and auxin analogs. In this context, synthetic auxin analogs, such as 1-Naphtalene Acetic Acid (1-NAA), are often favored over the endogenous auxin indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven to be instrumental to reveal the various faces of auxin, they display in some cases distinct bioactivities compared to IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in Brefeldin A-sensitive endosomal aggregations (BFA bodies), and the correlation with the ability to elicit Ca 2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin-analog induced Ca 2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca 2+ response, and their differential ability to elicit Ca 2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca 2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca 2+ signaling does not inhibit BFA body formation in Arabidopsis roots. acknowledgement: "We thank Joerg Kudla (WWU Munster, Germany), Petra Dietrich (F.A. University of Erlangen-Nurnberg, Germany) for sharing published materials, and NASC for providing seeds. We thank Veronique Storme for help with the statistical analyses. Part of the imaging analysis was carried out at NOLIMITS, an advanced imaging facility established by the University of Milan.\r\nThis work was supported by grants of the China Scholarship Council (CSC) to RW and JC; Fonds Wetenschappelijk Onderzoek (FWO) to TB and (G002220N) SV; the special research fund of Ghent University to EH; the Deutsche Forschungsgemeinschaft (DFG) through Grants within FOR964 (MK and KS); Piano di Sviluppo di Ateneo 2019 (University of Milan) to AC; the European Research Council (ERC) T-Rex project 682436 to DVD; the ERC ETAP project 742985 to JF, and by a PhD fellowship from the University of Milan to MG." article_number: erac019 article_processing_charge: No article_type: original author: - first_name: R full_name: Wang, R last_name: Wang - first_name: E full_name: Himschoot, E last_name: Himschoot - first_name: M full_name: Grenzi, M last_name: Grenzi - first_name: J full_name: Chen, J last_name: Chen - first_name: A full_name: Safi, A last_name: Safi - first_name: M full_name: Krebs, M last_name: Krebs - first_name: K full_name: Schumacher, K last_name: Schumacher - first_name: MK full_name: Nowack, MK last_name: Nowack - first_name: W full_name: Moeder, W last_name: Moeder - first_name: K full_name: Yoshioka, K last_name: Yoshioka - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: I full_name: De Smet, I last_name: De Smet - first_name: D full_name: Geelen, D last_name: Geelen - first_name: T full_name: Beeckman, T last_name: Beeckman - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: A full_name: Costa, A last_name: Costa - first_name: S full_name: Vanneste, S last_name: Vanneste citation: ama: Wang R, Himschoot E, Grenzi M, et al. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. Journal of Experimental Botany. 2022;73(8). doi:10.1093/jxb/erac019 apa: Wang, R., Himschoot, E., Grenzi, M., Chen, J., Safi, A., Krebs, M., … Vanneste, S. (2022). Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. Journal of Experimental Botany. Oxford Academic. https://doi.org/10.1093/jxb/erac019 chicago: Wang, R, E Himschoot, M Grenzi, J Chen, A Safi, M Krebs, K Schumacher, et al. “Auxin Analog-Induced Ca2+ Signaling Is Independent of Inhibition of Endosomal Aggregation in Arabidopsis Roots.” Journal of Experimental Botany. Oxford Academic, 2022. https://doi.org/10.1093/jxb/erac019. ieee: R. Wang et al., “Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots,” Journal of Experimental Botany, vol. 73, no. 8. Oxford Academic, 2022. ista: Wang R, Himschoot E, Grenzi M, Chen J, Safi A, Krebs M, Schumacher K, Nowack M, Moeder W, Yoshioka K, Van Damme D, De Smet I, Geelen D, Beeckman T, Friml J, Costa A, Vanneste S. 2022. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. Journal of Experimental Botany. 73(8), erac019. mla: Wang, R., et al. “Auxin Analog-Induced Ca2+ Signaling Is Independent of Inhibition of Endosomal Aggregation in Arabidopsis Roots.” Journal of Experimental Botany, vol. 73, no. 8, erac019, Oxford Academic, 2022, doi:10.1093/jxb/erac019. short: R. Wang, E. Himschoot, M. Grenzi, J. Chen, A. Safi, M. Krebs, K. Schumacher, M. Nowack, W. Moeder, K. Yoshioka, D. Van Damme, I. De Smet, D. Geelen, T. Beeckman, J. Friml, A. Costa, S. Vanneste, Journal of Experimental Botany 73 (2022). date_created: 2022-02-03T09:19:01Z date_published: 2022-04-18T00:00:00Z date_updated: 2023-08-02T14:07:58Z day: '18' department: - _id: JiFr doi: 10.1093/jxb/erac019 ec_funded: 1 external_id: isi: - '000764220900001' pmid: - '35085386' intvolume: ' 73' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://biblio.ugent.be/publication/8738721 month: '04' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Journal of Experimental Botany publication_identifier: eissn: - 1460-2431 issn: - 0022-0957 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 73 year: '2022' ... --- _id: '10719' abstract: - lang: eng text: Auxin, one of the first identified and most widely studied phytohormones, has been and will remain a hot topic in plant biology. After more than a century of passionate exploration, the mysteries of its synthesis, transport, signaling, and metabolism have largely been unlocked. Due to the rapid development of new technologies, new methods, and new genetic materials, the study of auxin has entered the fast lane over the past 30 years. Here, we highlight advances in understanding auxin signaling, including auxin perception, rapid auxin responses, TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALING F-boxes (TIR1/AFBs)-mediated transcriptional and non-transcriptional branches, and the epigenetic regulation of auxin signaling. We also focus on feedback inhibition mechanisms that prevent the over-amplification of auxin signals. In addition, we cover the TRANSMEMBRANE KINASEs (TMKs)-mediated non-canonical signaling, which converges with TIR1/AFBs-mediated transcriptional regulation to coordinate plant growth and development. The identification of additional auxin signaling components and their regulation will continue to open new avenues of research in this field, leading to an increasingly deeper, more comprehensive understanding of how auxin signals are interpreted at the cellular level to regulate plant growth and development. acknowledgement: "This research was financially supported by the National Natural Science Foundation of China and the Israel Science Foundation (NSFC-ISF; 32061143005), National Natural Science Foundation of China (32000225), Natural Science Foundation of Shandong Province (ZR2020QC036), and China Postdoctoral Science Foundation (2020M682165).\r\n" article_processing_charge: No article_type: review author: - first_name: Z full_name: Yu, Z last_name: Yu - first_name: F full_name: Zhang, F last_name: Zhang - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Z full_name: Ding, Z last_name: Ding citation: ama: 'Yu Z, Zhang F, Friml J, Ding Z. Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology. 2022;64(2):371-392. doi:10.1111/jipb.13225' apa: 'Yu, Z., Zhang, F., Friml, J., & Ding, Z. (2022). Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology. Wiley. https://doi.org/10.1111/jipb.13225' chicago: 'Yu, Z, F Zhang, Jiří Friml, and Z Ding. “Auxin Signaling: Research Advances over the Past 30 Years.” Journal of Integrative Plant Biology. Wiley, 2022. https://doi.org/10.1111/jipb.13225.' ieee: 'Z. Yu, F. Zhang, J. Friml, and Z. Ding, “Auxin signaling: Research advances over the past 30 years,” Journal of Integrative Plant Biology, vol. 64, no. 2. Wiley, pp. 371–392, 2022.' ista: 'Yu Z, Zhang F, Friml J, Ding Z. 2022. Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology. 64(2), 371–392.' mla: 'Yu, Z., et al. “Auxin Signaling: Research Advances over the Past 30 Years.” Journal of Integrative Plant Biology, vol. 64, no. 2, Wiley, 2022, pp. 371–92, doi:10.1111/jipb.13225.' short: Z. Yu, F. Zhang, J. Friml, Z. Ding, Journal of Integrative Plant Biology 64 (2022) 371–392. date_created: 2022-02-03T09:52:59Z date_published: 2022-02-01T00:00:00Z date_updated: 2023-08-02T14:08:30Z day: '01' department: - _id: JiFr doi: 10.1111/jipb.13225 external_id: isi: - '000761281200011' pmid: - '35018726' intvolume: ' 64' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/jipb.13225 month: '02' oa: 1 oa_version: Published Version page: 371-392 pmid: 1 publication: Journal of Integrative Plant Biology publication_identifier: eissn: - 1744-7909 issn: - 1672-9072 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Auxin signaling: Research advances over the past 30 years' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 64 year: '2022' ... --- _id: '10768' abstract: - lang: eng text: Among the most fascinated properties of the plant hormone auxin is its ability to promote formation of its own directional transport routes. These gradually narrowing auxin channels form from the auxin source toward the sink and involve coordinated, collective polarization of individual cells. Once established, the channels provide positional information, along which new vascular strands form, for example, during organogenesis, regeneration, or leave venation. The main prerequisite of this still mysterious auxin canalization mechanism is a feedback between auxin signaling and its directional transport. This is manifested by auxin-induced re-arrangements of polar, subcellular localization of PIN-FORMED (PIN) auxin exporters. Immanent open questions relate to how position of auxin source and sink as well as tissue context are sensed and translated into tissue polarization and how cells communicate to polarize coordinately. Recently, identification of the first molecular players opens new avenues into molecular studies of this intriguing example of self-organizing plant development. acknowledgement: The authors apologize to those researchers whose work was not cited. In addition, exciting topics such as PIN polarization in context of phyllotaxis, shoot branching and termination of gravitropic bending, or role of additional auxin transporters could not have been included owing to lack of space. This work was supported by the Czech Science Foundation GAČR (GA18-26981S). The authors also acknowledge the EMBO for supporting J.H. with a long-term fellowship (ALTF217-2021). article_number: '102174' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Hajny J, Tan S, Friml J. Auxin canalization: From speculative models toward molecular players. Current Opinion in Plant Biology. 2022;65(2). doi:10.1016/j.pbi.2022.102174' apa: 'Hajny, J., Tan, S., & Friml, J. (2022). Auxin canalization: From speculative models toward molecular players. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2022.102174' chicago: 'Hajny, Jakub, Shutang Tan, and Jiří Friml. “Auxin Canalization: From Speculative Models toward Molecular Players.” Current Opinion in Plant Biology. Elsevier, 2022. https://doi.org/10.1016/j.pbi.2022.102174.' ieee: 'J. Hajny, S. Tan, and J. Friml, “Auxin canalization: From speculative models toward molecular players,” Current Opinion in Plant Biology, vol. 65, no. 2. Elsevier, 2022.' ista: 'Hajny J, Tan S, Friml J. 2022. Auxin canalization: From speculative models toward molecular players. Current Opinion in Plant Biology. 65(2), 102174.' mla: 'Hajny, Jakub, et al. “Auxin Canalization: From Speculative Models toward Molecular Players.” Current Opinion in Plant Biology, vol. 65, no. 2, 102174, Elsevier, 2022, doi:10.1016/j.pbi.2022.102174.' short: J. Hajny, S. Tan, J. Friml, Current Opinion in Plant Biology 65 (2022). date_created: 2022-02-20T23:01:32Z date_published: 2022-02-01T00:00:00Z date_updated: 2023-08-02T14:29:12Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.pbi.2022.102174 external_id: isi: - '000758724700004' pmid: - '35123880' file: - access_level: open_access checksum: f1ee02b6fb4200934eeb31fa69120885 content_type: application/pdf creator: dernst date_created: 2022-03-10T13:34:09Z date_updated: 2022-03-10T13:34:09Z file_id: '10844' file_name: 2022_CurrentOpPlantBiology_Hajny.pdf file_size: 820322 relation: main_file success: 1 file_date_updated: 2022-03-10T13:34:09Z has_accepted_license: '1' intvolume: ' 65' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Current Opinion in Plant Biology publication_identifier: issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Auxin canalization: From speculative models toward molecular players' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 65 year: '2022' ... --- _id: '10841' abstract: - lang: eng text: In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data. acknowledged_ssus: - _id: EM-Fac acknowledgement: 'The authors would like to acknowledge the VIB Proteomics Core Facility (VIB-UGent Center for Medical Biotechnology in Ghent, Belgium) and the Research Technology Support Facility Proteomics Core (Michigan State University in East Lansing, Michigan) for sample analysis, as well as the University of Wisconsin Biotechnology Center Mass Spectrometry Core Facility (Madison, WI) for help with data processing. Additionally, we are grateful to Sue Weintraub (UT Health San Antonio) and Sydney Thomas (UW- Madison) for assistance with data analysis. This research was supported by grants to S.Y.B. from the National Science Foundation (Nos. 1121998 and 1614915) and a Vilas Associate Award (University of Wisconsin, Madison, Graduate School); to J.P. from the National Natural Science Foundation of China (Nos. 91754104, 31820103008, and 31670283); to I.H. from the National Research Foundation of Korea (No. 2019R1A2B5B03099982). This research was also supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Electron microscopy Facility (EMF). A.J. is supported by funding from the Austrian Science Fund (FWF): I3630B25 to J.F. A.H. is supported by funding from the National Science Foundation (NSF IOS Nos. 1025837 and 1147032).' article_processing_charge: No article_type: original author: - first_name: DA full_name: Dahhan, DA last_name: Dahhan - first_name: GD full_name: Reynolds, GD last_name: Reynolds - first_name: JJ full_name: Cárdenas, JJ last_name: Cárdenas - first_name: D full_name: Eeckhout, D last_name: Eeckhout - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: K full_name: Yperman, K last_name: Yperman - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: N full_name: Vang, N last_name: Vang - first_name: X full_name: Yan, X last_name: Yan - first_name: I full_name: Hwang, I last_name: Hwang - first_name: A full_name: Heese, A last_name: Heese - first_name: G full_name: De Jaeger, G last_name: De Jaeger - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: J full_name: Pan, J last_name: Pan - first_name: SY full_name: Bednarek, SY last_name: Bednarek citation: ama: Dahhan D, Reynolds G, Cárdenas J, et al. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. 2022;34(6):2150-2173. doi:10.1093/plcell/koac071 apa: Dahhan, D., Reynolds, G., Cárdenas, J., Eeckhout, D., Johnson, A. J., Yperman, K., … Bednarek, S. (2022). Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. Oxford Academic. https://doi.org/10.1093/plcell/koac071 chicago: Dahhan, DA, GD Reynolds, JJ Cárdenas, D Eeckhout, Alexander J Johnson, K Yperman, Walter Kaufmann, et al. “Proteomic Characterization of Isolated Arabidopsis Clathrin-Coated Vesicles Reveals Evolutionarily Conserved and Plant-Specific Components.” Plant Cell. Oxford Academic, 2022. https://doi.org/10.1093/plcell/koac071. ieee: D. Dahhan et al., “Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components,” Plant Cell, vol. 34, no. 6. Oxford Academic, pp. 2150–2173, 2022. ista: Dahhan D, Reynolds G, Cárdenas J, Eeckhout D, Johnson AJ, Yperman K, Kaufmann W, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek S. 2022. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. 34(6), 2150–2173. mla: Dahhan, DA, et al. “Proteomic Characterization of Isolated Arabidopsis Clathrin-Coated Vesicles Reveals Evolutionarily Conserved and Plant-Specific Components.” Plant Cell, vol. 34, no. 6, Oxford Academic, 2022, pp. 2150–73, doi:10.1093/plcell/koac071. short: D. Dahhan, G. Reynolds, J. Cárdenas, D. Eeckhout, A.J. Johnson, K. Yperman, W. Kaufmann, N. Vang, X. Yan, I. Hwang, A. Heese, G. De Jaeger, J. Friml, D. Van Damme, J. Pan, S. Bednarek, Plant Cell 34 (2022) 2150–2173. date_created: 2022-03-08T13:47:51Z date_published: 2022-06-01T00:00:00Z date_updated: 2023-08-02T14:46:48Z day: '01' department: - _id: JiFr - _id: EM-Fac doi: 10.1093/plcell/koac071 external_id: isi: - '000767438800001' pmid: - '35218346' intvolume: ' 34' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2021.09.16.460678 month: '06' oa: 1 oa_version: Preprint page: 2150-2173 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2022' ... --- _id: '10888' abstract: - lang: eng text: Despite the growing interest in using chemical genetics in plant research, small molecule target identification remains a major challenge. The cellular thermal shift assay coupled with high-resolution mass spectrometry (CETSA MS) that monitors changes in the thermal stability of proteins caused by their interactions with small molecules, other proteins, or posttranslational modifications, allows the discovery of drug targets or the study of protein–metabolite and protein–protein interactions mainly in mammalian cells. To showcase the applicability of this method in plants, we applied CETSA MS to intact Arabidopsis thaliana cells and identified the thermal proteome of the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, bikinin. A comparison between the thermal and the phosphoproteomes of bikinin revealed the auxin efflux carrier PIN-FORMED1 (PIN1) as a substrate of the Arabidopsis GSK3s that negatively regulate the brassinosteroid signaling. We established that PIN1 phosphorylation by the GSK3s is essential for maintaining its intracellular polarity that is required for auxin-mediated regulation of vascular patterning in the leaf, thus revealing cross-talk between brassinosteroid and auxin signaling. acknowledgement: "We thank Yanhai Yin for providing the anti-BES1 antibody, Johan Winne and Brenda Callebaut for synthesizing bikinin, Yuki Kondo and Hiroo Fukuda for published materials, Tomasz Nodzy\x03nski for useful advice, and Martine De Cock for help in preparing the manuscript. This\r\nwork was supported by the China Scholarship Council for predoctoral (Q.L. and X.X.) and postdoctoral (Y.Z.) fellowships; the Agency for Innovation by Science and Technology for a predoctoral fellowship (W.D.); the Research Foundation-Flanders, Projects G009018N and G002121N (E.R.); and the VIB TechWatch Fund (E.R.)." article_number: e2118220119 article_processing_charge: No article_type: original author: - first_name: Qing full_name: Lu, Qing last_name: Lu - first_name: Yonghong full_name: Zhang, Yonghong last_name: Zhang - first_name: Joakim full_name: Hellner, Joakim last_name: Hellner - first_name: Caterina full_name: Giannini, Caterina id: e3fdddd5-f6e0-11ea-865d-ca99ee6367f4 last_name: Giannini - first_name: Xiangyu full_name: Xu, Xiangyu last_name: Xu - first_name: Jarne full_name: Pauwels, Jarne last_name: Pauwels - first_name: Qian full_name: Ma, Qian last_name: Ma - first_name: Wim full_name: Dejonghe, Wim last_name: Dejonghe - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Brigitte full_name: Van De Cotte, Brigitte last_name: Van De Cotte - first_name: Francis full_name: Impens, Francis last_name: Impens - first_name: Kris full_name: Gevaert, Kris last_name: Gevaert - first_name: Ive full_name: De Smet, Ive last_name: De Smet - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Daniel Martinez full_name: Molina, Daniel Martinez last_name: Molina - first_name: Eugenia full_name: Russinova, Eugenia last_name: Russinova citation: ama: Lu Q, Zhang Y, Hellner J, et al. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proceedings of the National Academy of Sciences of the United States of America. 2022;119(11). doi:10.1073/pnas.2118220119 apa: Lu, Q., Zhang, Y., Hellner, J., Giannini, C., Xu, X., Pauwels, J., … Russinova, E. (2022). Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2118220119 chicago: Lu, Qing, Yonghong Zhang, Joakim Hellner, Caterina Giannini, Xiangyu Xu, Jarne Pauwels, Qian Ma, et al. “Proteome-Wide Cellular Thermal Shift Assay Reveals Unexpected Cross-Talk between Brassinosteroid and Auxin Signaling.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2022. https://doi.org/10.1073/pnas.2118220119. ieee: Q. Lu et al., “Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 11. Proceedings of the National Academy of Sciences, 2022. ista: Lu Q, Zhang Y, Hellner J, Giannini C, Xu X, Pauwels J, Ma Q, Dejonghe W, Han H, Van De Cotte B, Impens F, Gevaert K, De Smet I, Friml J, Molina DM, Russinova E. 2022. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proceedings of the National Academy of Sciences of the United States of America. 119(11), e2118220119. mla: Lu, Qing, et al. “Proteome-Wide Cellular Thermal Shift Assay Reveals Unexpected Cross-Talk between Brassinosteroid and Auxin Signaling.” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 11, e2118220119, Proceedings of the National Academy of Sciences, 2022, doi:10.1073/pnas.2118220119. short: Q. Lu, Y. Zhang, J. Hellner, C. Giannini, X. Xu, J. Pauwels, Q. Ma, W. Dejonghe, H. Han, B. Van De Cotte, F. Impens, K. Gevaert, I. De Smet, J. Friml, D.M. Molina, E. Russinova, Proceedings of the National Academy of Sciences of the United States of America 119 (2022). date_created: 2022-03-20T23:01:39Z date_published: 2022-03-07T00:00:00Z date_updated: 2023-08-03T06:06:27Z day: '07' ddc: - '580' department: - _id: JiFr doi: 10.1073/pnas.2118220119 external_id: isi: - '000771756300008' pmid: - '35254915' file: - access_level: open_access checksum: 83e0fea7919570d0b519b41193342571 content_type: application/pdf creator: dernst date_created: 2022-03-21T09:19:47Z date_updated: 2022-03-21T09:19:47Z file_id: '10910' file_name: 2022_PNAS_Lu.pdf file_size: 2169534 relation: main_file success: 1 file_date_updated: 2022-03-21T09:19:47Z has_accepted_license: '1' intvolume: ' 119' isi: 1 issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 119 year: '2022' ... --- _id: '11589' abstract: - lang: eng text: Calcium-dependent protein kinases (CPK) are key components of a wide array of signaling pathways, translating stress and nutrient signaling into the modulation of cellular processes such as ion transport and transcription. However, not much is known about CPKs in endomembrane trafficking. Here, we screened for CPKs that impact on root growth and gravitropism, by overexpressing constitutively active forms of CPKs under the control of an inducible promoter in Arabidopsis thaliana. We found that inducible overexpression of an constitutive active CPK30 (CA-CPK30) resulted in a loss of root gravitropism and ectopic auxin accumulation in the root tip. Immunolocalization revealed that CA-CPK30 roots have reduced PIN protein levels, PIN1 polarity defects and impaired Brefeldin A (BFA)-sensitive trafficking. Moreover, FM4-64 uptake was reduced, indicative of a defect in endocytosis. The effects on BFA-sensitive trafficking were not specific to PINs, as BFA could not induce aggregation of ARF1- and CHC-labeled endosomes in CA-CPK30. Interestingly, the interference with BFA-body formation, could be reverted by increasing the extracellular pH, indicating a pH-dependence of this CA-CPK30 effect. Altogether, our data reveal an important role for CPK30 in root growth regulation and endomembrane trafficking in Arabidopsis thaliana. acknowledgement: "RW and JC predoctoral fellows that were supported by the Chinese Science Counsil. The IPS2 benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS).\r\nWe thank Jen Sheen for establishing and generously sharing the CKP family clone sets, and for providing useful feedback on the manuscript." article_number: '862398' article_processing_charge: No article_type: original author: - first_name: Ren full_name: Wang, Ren last_name: Wang - first_name: Ellie full_name: Himschoot, Ellie last_name: Himschoot - first_name: Jian full_name: Chen, Jian last_name: Chen - first_name: Marie full_name: Boudsocq, Marie last_name: Boudsocq - first_name: Danny full_name: Geelen, Danny last_name: Geelen - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste citation: ama: Wang R, Himschoot E, Chen J, et al. Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana. Frontiers in Plant Science. 2022;13. doi:10.3389/fpls.2022.862398 apa: Wang, R., Himschoot, E., Chen, J., Boudsocq, M., Geelen, D., Friml, J., … Vanneste, S. (2022). Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana. Frontiers in Plant Science. Frontiers. https://doi.org/10.3389/fpls.2022.862398 chicago: Wang, Ren, Ellie Himschoot, Jian Chen, Marie Boudsocq, Danny Geelen, Jiří Friml, Tom Beeckman, and Steffen Vanneste. “Constitutive Active CPK30 Interferes with Root Growth and Endomembrane Trafficking in Arabidopsis Thaliana.” Frontiers in Plant Science. Frontiers, 2022. https://doi.org/10.3389/fpls.2022.862398. ieee: R. Wang et al., “Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana,” Frontiers in Plant Science, vol. 13. Frontiers, 2022. ista: Wang R, Himschoot E, Chen J, Boudsocq M, Geelen D, Friml J, Beeckman T, Vanneste S. 2022. Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana. Frontiers in Plant Science. 13, 862398. mla: Wang, Ren, et al. “Constitutive Active CPK30 Interferes with Root Growth and Endomembrane Trafficking in Arabidopsis Thaliana.” Frontiers in Plant Science, vol. 13, 862398, Frontiers, 2022, doi:10.3389/fpls.2022.862398. short: R. Wang, E. Himschoot, J. Chen, M. Boudsocq, D. Geelen, J. Friml, T. Beeckman, S. Vanneste, Frontiers in Plant Science 13 (2022). date_created: 2022-07-17T22:01:54Z date_published: 2022-06-16T00:00:00Z date_updated: 2023-08-03T12:01:47Z day: '16' ddc: - '580' department: - _id: JiFr doi: 10.3389/fpls.2022.862398 external_id: isi: - '000819250500001' pmid: - '35783951' file: - access_level: open_access checksum: 95313515637c0f84de591d204375d764 content_type: application/pdf creator: dernst date_created: 2022-07-18T08:05:15Z date_updated: 2022-07-18T08:05:15Z file_id: '11596' file_name: 2022_FrontiersPlantScience_Wang.pdf file_size: 5040638 relation: main_file success: 1 file_date_updated: 2022-07-18T08:05:15Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Plant Science publication_identifier: eissn: - 1664-462X publication_status: published publisher: Frontiers quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.3389/fpls.2022.1100792 scopus_import: '1' status: public title: Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '11723' abstract: - lang: eng text: Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379–402 (2020); Blackburn et al., Plant Physiol. 182, 1657–1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term. acknowledgement: We thank Sarah M. Assmann, Kris Vissenberg, and Nadine Paris for kindly sharing seeds; Matyáš Fendrych for initiating this project and providing constant support; Lukas Fiedler for revising the manuscript; and Huibin Han and Arseny Savin for contributing to genotyping. This work was supported by the Austrian Science Fund (FWF) I 3630-B25 (to J.F.) and the Doctoral Fellowship Progrmme of the Austrian Academy of Sciences (to L.L.) We also acknowledge Taif University Researchers Supporting Project TURSP-HC2021/02 and funding “Plants as a tool for sustainable global development (no. CZ.02.1.01/0.0/0.0/16_019/0000827).” article_number: e2121058119 article_processing_charge: No article_type: original author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Huihuang full_name: Chen, Huihuang id: 83c96512-15b2-11ec-abd3-b7eede36184f last_name: Chen - first_name: Saqer S. full_name: Alotaibi, Saqer S. last_name: Alotaibi - first_name: Aleš full_name: Pěnčík, Aleš last_name: Pěnčík - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li L, Chen H, Alotaibi SS, et al. RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proceedings of the National Academy of Sciences. 2022;119(31). doi:10.1073/pnas.2121058119 apa: Li, L., Chen, H., Alotaibi, S. S., Pěnčík, A., Adamowski, M., Novák, O., & Friml, J. (2022). RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2121058119 chicago: Li, Lanxin, Huihuang Chen, Saqer S. Alotaibi, Aleš Pěnčík, Maciek Adamowski, Ondřej Novák, and Jiří Friml. “RALF1 Peptide Triggers Biphasic Root Growth Inhibition Upstream of Auxin Biosynthesis.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2022. https://doi.org/10.1073/pnas.2121058119. ieee: L. Li et al., “RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis,” Proceedings of the National Academy of Sciences, vol. 119, no. 31. Proceedings of the National Academy of Sciences, 2022. ista: Li L, Chen H, Alotaibi SS, Pěnčík A, Adamowski M, Novák O, Friml J. 2022. RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proceedings of the National Academy of Sciences. 119(31), e2121058119. mla: Li, Lanxin, et al. “RALF1 Peptide Triggers Biphasic Root Growth Inhibition Upstream of Auxin Biosynthesis.” Proceedings of the National Academy of Sciences, vol. 119, no. 31, e2121058119, Proceedings of the National Academy of Sciences, 2022, doi:10.1073/pnas.2121058119. short: L. Li, H. Chen, S.S. Alotaibi, A. Pěnčík, M. Adamowski, O. Novák, J. Friml, Proceedings of the National Academy of Sciences 119 (2022). date_created: 2022-08-04T20:06:49Z date_published: 2022-07-25T00:00:00Z date_updated: 2023-08-03T12:43:53Z day: '25' ddc: - '580' department: - _id: GradSch - _id: JiFr doi: 10.1073/pnas.2121058119 external_id: isi: - '000881496900002' pmid: - '35878023' file: - access_level: open_access checksum: ae6f19b0d9efba6687f9e4dc1bab1d6e content_type: application/pdf creator: dernst date_created: 2022-08-08T07:42:09Z date_updated: 2022-08-08T07:42:09Z file_id: '11747' file_name: 2022_PNAS_Li.pdf file_size: 2506262 relation: main_file success: 1 file_date_updated: 2022-08-08T07:42:09Z has_accepted_license: '1' intvolume: ' 119' isi: 1 issue: '31' keyword: - Multidisciplinary language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 119 year: '2022' ... --- _id: '12053' abstract: - lang: eng text: Strigolactones (SLs) are a class of phytohormones that regulate plant shoot branching and adventitious root development. However, little is known regarding the role of SLs in controlling the behavior of the smallest unit of the organism, the single cell. Here, taking advantage of a classic single-cell model offered by the cotton (Gossypium hirsutum) fiber cell, we show that SLs, whose biosynthesis is fine-tuned by gibberellins (GAs), positively regulate cell elongation and cell wall thickness by promoting the biosynthesis of very-long-chain fatty acids (VLCFAs) and cellulose, respectively. Furthermore, we identified two layers of transcription factors (TFs) involved in the hierarchical regulation of this GA-SL crosstalk. The top-layer TF GROWTH-REGULATING FACTOR 4 (GhGRF4) directly activates expression of the SL biosynthetic gene DWARF27 (D27) to increase SL accumulation in fiber cells and GAs induce GhGRF4 expression. SLs induce the expression of four second-layer TF genes (GhNAC100-2, GhBLH51, GhGT2, and GhB9SHZ1), which transmit SL signals downstream to two ketoacyl-CoA synthase genes (KCS) and three cellulose synthase (CesA) genes by directly activating their transcription. Finally, the KCS and CesA enzymes catalyze the biosynthesis of very long chain fatty acids and cellulose, respectively, to regulate development of high-grade cotton fibers. In addition to providing a theoretical basis for cotton fiber improvement, our results shed light on SL signaling in plant development at the single-cell level. acknowledgement: This work was supported by the National Natural Science Foundation of China (32070549), Shaanxi Youth Entrusted Talent Program (20190205), Fundamental Research Funds for the Central Universities (GK202002005 and GK202201017), Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (2019-2021QNRC001), State Key Laboratory of Cotton Biology Open Fund (CB2020A12 and CB2021A21) and FWF Stand-alone Project (P29988). article_processing_charge: No article_type: original author: - first_name: Z full_name: Tian, Z last_name: Tian - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: L full_name: Zhu, L last_name: Zhu - first_name: B full_name: Jiang, B last_name: Jiang - first_name: H full_name: Wang, H last_name: Wang - first_name: R full_name: Gao, R last_name: Gao - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: G full_name: Xiao, G last_name: Xiao citation: ama: Tian Z, Zhang Y, Zhu L, et al. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). The Plant Cell. 2022;34(12):4816-4839. doi:10.1093/plcell/koac270 apa: Tian, Z., Zhang, Y., Zhu, L., Jiang, B., Wang, H., Gao, R., … Xiao, G. (2022). Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). The Plant Cell. Oxford University Press. https://doi.org/10.1093/plcell/koac270 chicago: Tian, Z, Yuzhou Zhang, L Zhu, B Jiang, H Wang, R Gao, Jiří Friml, and G Xiao. “Strigolactones Act Downstream of Gibberellins to Regulate Fiber Cell Elongation and Cell Wall Thickness in Cotton (Gossypium Hirsutum).” The Plant Cell. Oxford University Press, 2022. https://doi.org/10.1093/plcell/koac270. ieee: Z. Tian et al., “Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum),” The Plant Cell, vol. 34, no. 12. Oxford University Press, pp. 4816–4839, 2022. ista: Tian Z, Zhang Y, Zhu L, Jiang B, Wang H, Gao R, Friml J, Xiao G. 2022. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). The Plant Cell. 34(12), 4816–4839. mla: Tian, Z., et al. “Strigolactones Act Downstream of Gibberellins to Regulate Fiber Cell Elongation and Cell Wall Thickness in Cotton (Gossypium Hirsutum).” The Plant Cell, vol. 34, no. 12, Oxford University Press, 2022, pp. 4816–39, doi:10.1093/plcell/koac270. short: Z. Tian, Y. Zhang, L. Zhu, B. Jiang, H. Wang, R. Gao, J. Friml, G. Xiao, The Plant Cell 34 (2022) 4816–4839. date_created: 2022-09-07T14:19:39Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-03T13:41:06Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/plcell/koac270 external_id: isi: - '000852753000001' pmid: - '36040191' file: - access_level: open_access checksum: 1c606d9545f29dfca15235f69ad27b58 content_type: application/pdf creator: dernst date_created: 2023-01-20T08:29:12Z date_updated: 2023-01-20T08:29:12Z file_id: '12318' file_name: 2022_PlantCell_Tian.pdf file_size: 3282540 relation: main_file success: 1 file_date_updated: 2023-01-20T08:29:12Z has_accepted_license: '1' intvolume: ' 34' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 4816-4839 pmid: 1 project: - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: The Plant Cell publication_identifier: eissn: - 1532-298X issn: - 1040-4651 publication_status: published publisher: Oxford University Press quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1093/plcell/koac342 scopus_import: '1' status: public title: Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum) tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2022' ... --- _id: '12052' abstract: - lang: eng text: Directionality in the intercellular transport of the plant hormone auxin is determined by polar plasma membrane localization of PIN-FORMED (PIN) auxin transport proteins. However, apart from PIN phosphorylation at conserved motifs, no further determinants explicitly controlling polar PIN sorting decisions have been identified. Here we present Arabidopsis WAVY GROWTH 3 (WAV3) and closely related RING-finger E3 ubiquitin ligases, whose loss-of-function mutants show a striking apical-to-basal polarity switch in PIN2 localization in root meristem cells. WAV3 E3 ligases function as essential determinants for PIN polarity, acting independently from PINOID/WAG-dependent PIN phosphorylation. They antagonize ectopic deposition of de novo synthesized PIN proteins already immediately following completion of cell division, presumably via preventing PIN sorting into basal, ARF GEF-mediated trafficking. Our findings reveal an involvement of E3 ligases in the selective targeting of apically localized PINs in higher plants. acknowledgement: We would like to thank Tatsuo Sakai, Marcus Heisler, Toru Fujiwara, Lucia Strader, Christian Hardtke, Malcolm Bennett, Claus Schwechheimer, Gerd Jürgens and Remko Offringa for sharing published materials and Alba Grau Gimeno for support. We are greatly indebted to Bert de Rybel for supporting N.K. and M.G. to work on the final stages of manuscript preparation as postdocs in his laboratory. A full-length SOR1 cDNA clone (J090099M14) was obtained from the National Agriculture and Food Research Organization (NARO, Japan). Support by the Multiscale Imaging Core Facility at the BOKU is greatly acknowledged. This work has been supported by grants from the Austrian Science Fund (FWF P25931-B16; P31493-B25 to Christian Luschnig; I3630-B25 to Jiří Friml; P30850-B32 to Barbara Korbei) and from the Swiss National Funds (31003A-165877/1 to Markus Geisler) and the European Union’s Horizon 2020 research and innovation program (Marie Skłodowska-Curie grant agreement No 885979 to Matouš Glanc). article_number: '5147' article_processing_charge: No article_type: original author: - first_name: N full_name: Konstantinova, N last_name: Konstantinova - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: R full_name: Keshkeih, R last_name: Keshkeih - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: M full_name: Di Donato, M last_name: Di Donato - first_name: K full_name: Retzer, K last_name: Retzer - first_name: J full_name: Moulinier-Anzola, J last_name: Moulinier-Anzola - first_name: M full_name: Schwihla, M last_name: Schwihla - first_name: B full_name: Korbei, B last_name: Korbei - first_name: M full_name: Geisler, M last_name: Geisler - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: C full_name: Luschnig, C last_name: Luschnig citation: ama: Konstantinova N, Hörmayer L, Glanc M, et al. WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions. Nature Communications. 2022;13. doi:10.1038/s41467-022-32888-8 apa: Konstantinova, N., Hörmayer, L., Glanc, M., Keshkeih, R., Tan, S., Di Donato, M., … Luschnig, C. (2022). WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-32888-8 chicago: Konstantinova, N, Lukas Hörmayer, Matous Glanc, R Keshkeih, Shutang Tan, M Di Donato, K Retzer, et al. “WAVY GROWTH Arabidopsis E3 Ubiquitin Ligases Affect Apical PIN Sorting Decisions.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-32888-8. ieee: N. Konstantinova et al., “WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions,” Nature Communications, vol. 13. Springer Nature, 2022. ista: Konstantinova N, Hörmayer L, Glanc M, Keshkeih R, Tan S, Di Donato M, Retzer K, Moulinier-Anzola J, Schwihla M, Korbei B, Geisler M, Friml J, Luschnig C. 2022. WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions. Nature Communications. 13, 5147. mla: Konstantinova, N., et al. “WAVY GROWTH Arabidopsis E3 Ubiquitin Ligases Affect Apical PIN Sorting Decisions.” Nature Communications, vol. 13, 5147, Springer Nature, 2022, doi:10.1038/s41467-022-32888-8. short: N. Konstantinova, L. Hörmayer, M. Glanc, R. Keshkeih, S. Tan, M. Di Donato, K. Retzer, J. Moulinier-Anzola, M. Schwihla, B. Korbei, M. Geisler, J. Friml, C. Luschnig, Nature Communications 13 (2022). date_created: 2022-09-07T14:19:26Z date_published: 2022-09-01T00:00:00Z date_updated: 2023-08-03T13:40:32Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-022-32888-8 external_id: isi: - '000848744900004' pmid: - '36050482' file: - access_level: open_access checksum: 43336758c89cd6c045839089af070afe content_type: application/pdf creator: dernst date_created: 2022-09-08T07:46:16Z date_updated: 2022-09-08T07:46:16Z file_id: '12063' file_name: 2022_NatureCommunications_Konstantinova.pdf file_size: 6678579 relation: main_file success: 1 file_date_updated: 2022-09-08T07:46:16Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41467-022-33198-9 status: public title: WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '12054' abstract: - lang: eng text: 'Polar auxin transport is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters exhibit highly asymmetrical localizations at the plasma membrane and drive polar auxin transport3,4; however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of Arabidopsis thaliana PIN1: the apo state, bound to the natural auxin indole-3-acetic acid (IAA), and in complex with the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of PIN1 shares a conserved NhaA fold5. In the substrate-bound structure, IAA is coordinated by both hydrophobic stacking and hydrogen bonding. NPA competes with IAA for the same site at the intracellular pocket, but with a much higher affinity. These findings inform our understanding of the substrate recognition and transport mechanisms of PINs and set up a framework for future research on directional auxin transport, one of the most crucial processes underlying plant development.' acknowledgement: We thank the Cryo-EM Center of the University of Science and Technology of China (USTC) and the Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science, for the EM facility support; we thank B. Zhu, X. Huang and all the other staff members for their technical support on cryo-EM data collection. We thank J. Ren for his technical support with the transport assays and M. Seeger for providing the sybody libraries. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB 37020204 to D.L. and XDB37020103 to Linfeng Sun), National Natural Science Foundation of China (82151215 and 31870726 to D.L., 31900885 to X.L., and 31870732 to Linfeng Sun), Natural Science Foundation of Anhui Province (2008085MC90 to X.L. and 2008085J15 to Linfeng Sun), the Fundamental Research Funds for the Central Universities (WK9100000031 to Linfeng Sun), and the USTC Research Funds of the Double First-Class Initiative (YD9100002004 to Linfeng Sun). Linfeng Sun is supported by an Outstanding Young Scholar Award from the Qiu Shi Science and Technologies Foundation, and a Young Scholar Award from the Cyrus Tang Foundation. article_processing_charge: No article_type: original author: - first_name: Z full_name: Yang, Z last_name: Yang - first_name: J full_name: Xia, J last_name: Xia - first_name: J full_name: Hong, J last_name: Hong - first_name: C full_name: Zhang, C last_name: Zhang - first_name: H full_name: Wei, H last_name: Wei - first_name: W full_name: Ying, W last_name: Ying - first_name: C full_name: Sun, C last_name: Sun - first_name: L full_name: Sun, L last_name: Sun - first_name: Y full_name: Mao, Y last_name: Mao - first_name: Y full_name: Gao, Y last_name: Gao - first_name: S full_name: Tan, S last_name: Tan - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: D full_name: Li, D last_name: Li - first_name: X full_name: Liu, X last_name: Liu - first_name: L full_name: Sun, L last_name: Sun citation: ama: Yang Z, Xia J, Hong J, et al. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature. 2022;609(7927):611-615. doi:10.1038/s41586-022-05143-9 apa: Yang, Z., Xia, J., Hong, J., Zhang, C., Wei, H., Ying, W., … Sun, L. (2022). Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature. Springer Nature. https://doi.org/10.1038/s41586-022-05143-9 chicago: Yang, Z, J Xia, J Hong, C Zhang, H Wei, W Ying, C Sun, et al. “Structural Insights into Auxin Recognition and Efflux by Arabidopsis PIN1.” Nature. Springer Nature, 2022. https://doi.org/10.1038/s41586-022-05143-9. ieee: Z. Yang et al., “Structural insights into auxin recognition and efflux by Arabidopsis PIN1,” Nature, vol. 609, no. 7927. Springer Nature, pp. 611–615, 2022. ista: Yang Z, Xia J, Hong J, Zhang C, Wei H, Ying W, Sun C, Sun L, Mao Y, Gao Y, Tan S, Friml J, Li D, Liu X, Sun L. 2022. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature. 609(7927), 611–615. mla: Yang, Z., et al. “Structural Insights into Auxin Recognition and Efflux by Arabidopsis PIN1.” Nature, vol. 609, no. 7927, Springer Nature, 2022, pp. 611–15, doi:10.1038/s41586-022-05143-9. short: Z. Yang, J. Xia, J. Hong, C. Zhang, H. Wei, W. Ying, C. Sun, L. Sun, Y. Mao, Y. Gao, S. Tan, J. Friml, D. Li, X. Liu, L. Sun, Nature 609 (2022) 611–615. date_created: 2022-09-07T14:19:52Z date_published: 2022-08-02T00:00:00Z date_updated: 2023-08-03T13:41:44Z day: '02' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41586-022-05143-9 external_id: isi: - '000848082900002' pmid: - '35917925' file: - access_level: open_access checksum: 3136a585f8e1c7e73b5e1418b3d01898 content_type: application/pdf creator: dernst date_created: 2022-09-08T08:02:54Z date_updated: 2022-09-08T08:02:54Z file_id: '12064' file_name: 2022_Nature_Yang.pdf file_size: 32344580 relation: main_file success: 1 file_date_updated: 2022-09-08T08:02:54Z has_accepted_license: '1' intvolume: ' 609' isi: 1 issue: '7927' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 611-615 pmid: 1 publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Structural insights into auxin recognition and efflux by Arabidopsis PIN1 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 609 year: '2022' ... --- _id: '12121' abstract: - lang: eng text: Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, autophagosome maturation, i.e., delivery and fusion with the vacuole, remains largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1’s function is evolutionarily conserved in plants, as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by bridging autophagosomes with the multivesicular body-localized ESCRT-I component VPS23A, leading to the formation of amphisomes. Similar to CFS1-ATG8 interaction, disrupting the CFS1-VPS23A interaction blocks autophagic flux and renders plants sensitive to nitrogen starvation. Altogether, our results reveal a conserved vacuolar sorting hub that regulates autophagic flux in plants. acknowledgement: "We thank Suayip Ustün, Karin Schumacher, Erika Isono, Gerd Juergens, Takashi Ueda, Daniel Hofius, and Liwen Jiang for sharing published materials.\r\nWe acknowledge funding from Austrian Academy of Sciences, Austrian Science Fund (FWF, P 32355, P 34944), Austrian Science Fund (FWF-SFB F79), Vienna Science and Technology\r\nFund (WWTF, LS17-047) to Y. Dagdas; Austrian Academy of Sciences DOC Fellowship to J. Zhao, Marie Curie VIP2 Fellowship to J.C. De La Concepcion and M. Clavel; Hong Kong Research Grant Council (GRF14121019, 14113921, AoE/M-05/12, C4002-17G) to B.-H. Kang. We thank Vienna Biocenter Core Facilities (VBCF) Protein Chemistry, Biooptics, Plant Sciences, Molecular Biology, and Protein Technologies. We thank J. Matthew Watson\r\nand members of the Dagdas lab for the critical reading and editing of the manuscript." article_number: e202203139 article_processing_charge: No article_type: original author: - first_name: Jierui full_name: Zhao, Jierui last_name: Zhao - first_name: Mai Thu full_name: Bui, Mai Thu last_name: Bui - first_name: Juncai full_name: Ma, Juncai last_name: Ma - first_name: Fabian full_name: Künzl, Fabian last_name: Künzl - first_name: Lorenzo full_name: Picchianti, Lorenzo last_name: Picchianti - first_name: Juan Carlos full_name: De La Concepcion, Juan Carlos last_name: De La Concepcion - first_name: Yixuan full_name: Chen, Yixuan last_name: Chen - first_name: Sofia full_name: Petsangouraki, Sofia last_name: Petsangouraki - first_name: Azadeh full_name: Mohseni, Azadeh last_name: Mohseni - first_name: Marta full_name: García-Leon, Marta last_name: García-Leon - first_name: Marta Salas full_name: Gomez, Marta Salas last_name: Gomez - first_name: Caterina full_name: Giannini, Caterina id: e3fdddd5-f6e0-11ea-865d-ca99ee6367f4 last_name: Giannini - first_name: Dubois full_name: Gwennogan, Dubois last_name: Gwennogan - first_name: Roksolana full_name: Kobylinska, Roksolana last_name: Kobylinska - first_name: Marion full_name: Clavel, Marion last_name: Clavel - first_name: Swen full_name: Schellmann, Swen last_name: Schellmann - first_name: Yvon full_name: Jaillais, Yvon last_name: Jaillais - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Byung-Ho full_name: Kang, Byung-Ho last_name: Kang - first_name: Yasin full_name: Dagdas, Yasin last_name: Dagdas citation: ama: Zhao J, Bui MT, Ma J, et al. Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. Journal of Cell Biology. 2022;221(12). doi:10.1083/jcb.202203139 apa: Zhao, J., Bui, M. T., Ma, J., Künzl, F., Picchianti, L., De La Concepcion, J. C., … Dagdas, Y. (2022). Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.202203139 chicago: Zhao, Jierui, Mai Thu Bui, Juncai Ma, Fabian Künzl, Lorenzo Picchianti, Juan Carlos De La Concepcion, Yixuan Chen, et al. “Plant Autophagosomes Mature into Amphisomes Prior to Their Delivery to the Central Vacuole.” Journal of Cell Biology. Rockefeller University Press, 2022. https://doi.org/10.1083/jcb.202203139. ieee: J. Zhao et al., “Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole,” Journal of Cell Biology, vol. 221, no. 12. Rockefeller University Press, 2022. ista: Zhao J, Bui MT, Ma J, Künzl F, Picchianti L, De La Concepcion JC, Chen Y, Petsangouraki S, Mohseni A, García-Leon M, Gomez MS, Giannini C, Gwennogan D, Kobylinska R, Clavel M, Schellmann S, Jaillais Y, Friml J, Kang B-H, Dagdas Y. 2022. Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. Journal of Cell Biology. 221(12), e202203139. mla: Zhao, Jierui, et al. “Plant Autophagosomes Mature into Amphisomes Prior to Their Delivery to the Central Vacuole.” Journal of Cell Biology, vol. 221, no. 12, e202203139, Rockefeller University Press, 2022, doi:10.1083/jcb.202203139. short: J. Zhao, M.T. Bui, J. Ma, F. Künzl, L. Picchianti, J.C. De La Concepcion, Y. Chen, S. Petsangouraki, A. Mohseni, M. García-Leon, M.S. Gomez, C. Giannini, D. Gwennogan, R. Kobylinska, M. Clavel, S. Schellmann, Y. Jaillais, J. Friml, B.-H. Kang, Y. Dagdas, Journal of Cell Biology 221 (2022). date_created: 2023-01-12T11:57:10Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-03T14:20:15Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1083/jcb.202203139 external_id: isi: - '000932958800001' pmid: - '36260289' file: - access_level: open_access checksum: 050b5cc4b25e6b94fe3e3cbfe0f5c06b content_type: application/pdf creator: dernst date_created: 2023-01-23T10:30:11Z date_updated: 2023-01-23T10:30:11Z file_id: '12342' file_name: 2022_JCB_Zhao.pdf file_size: 10365777 relation: main_file success: 1 file_date_updated: 2023-01-23T10:30:11Z has_accepted_license: '1' intvolume: ' 221' isi: 1 issue: '12' keyword: - Cell Biology language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 publication: Journal of Cell Biology publication_identifier: eissn: - 1540-8140 issn: - 0021-9525 publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 221 year: '2022' ... --- _id: '12130' abstract: - lang: eng text: Germline determination is essential for species survival and evolution in multicellular organisms. In most flowering plants, formation of the female germline is initiated with specification of one megaspore mother cell (MMC) in each ovule; however, the molecular mechanism underlying this key event remains unclear. Here we report that spatially restricted auxin signaling promotes MMC fate in Arabidopsis. Our results show that the microRNA160 (miR160) targeted gene ARF17 (AUXIN RESPONSE FACTOR17) is required for promoting MMC specification by genetically interacting with the SPL/NZZ (SPOROCYTELESS/NOZZLE) gene. Alterations of auxin signaling cause formation of supernumerary MMCs in an ARF17- and SPL/NZZ-dependent manner. Furthermore, miR160 and ARF17 are indispensable for attaining a normal auxin maximum at the ovule apex via modulating the expression domain of PIN1 (PIN-FORMED1) auxin transporter. Our findings elucidate the mechanism by which auxin signaling promotes the acquisition of female germline cell fate in plants. acknowledgement: "We thank A. Cheung,W. Lukowitz, V.Walbot, D.Weijers, and R. Yadegari for critically reading the manuscript; E. Xiong and G. Zhang for preparing some experiments, T. Schuck, J. Gonnering, and P. Engevold for plant care, the Arabidopsis Biological Resource Center (ABRC) for ARF10,ARF16, ARF17, EMS1,MIR160a BAC clones and cDNAs, the SALK_090804 seed, T. Nakagawa for pGBW vectors, Y. Zhao for the YUC1 cDNA, Q. Chen for the pHEE401E vector, R. Yadegari for pAT5G01860::n1GFP, pAT5G45980:n1GFP, pAT5G50490::n1GFP, pAT5G56200:n1GFP vectors, and D.Weijers for the pGreenII KAN SV40-3×GFP and R2D2 vectors, W. Yang for the splmutant, Y. Qin for the pKNU::KNU-VENUS vector and seed, G. Tang for the STTM160/160-48 vector, and L. Colombo for pPIN1::PIN1-GFP spl and pin1-5 seeds. This work was supported by the US National Science Foundation (NSF)-Israel Binational Science Foundation (BSF) research grant to D.Z. (IOS-1322796) and T.A. (2012756). D.Z. also\r\ngratefully acknowledges supports of the Shaw Scientist Award from the Greater Milwaukee Foundation, USDA National Institute of Food and Agriculture (NIFA, 2022-67013-36294), the UWM Discovery and Innovation Grant, the Bradley Catalyst Award from the UWM Research\r\nFoundation, and WiSys and UW System Applied Research Funding Programs." article_number: '6960' article_processing_charge: No article_type: original author: - first_name: Jian full_name: Huang, Jian last_name: Huang - first_name: Lei full_name: Zhao, Lei last_name: Zhao - first_name: Shikha full_name: Malik, Shikha last_name: Malik - first_name: Benjamin R. full_name: Gentile, Benjamin R. last_name: Gentile - first_name: Va full_name: Xiong, Va last_name: Xiong - first_name: Tzahi full_name: Arazi, Tzahi last_name: Arazi - first_name: Heather A. full_name: Owen, Heather A. last_name: Owen - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Dazhong full_name: Zhao, Dazhong last_name: Zhao citation: ama: Huang J, Zhao L, Malik S, et al. Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nature Communications. 2022;13. doi:10.1038/s41467-022-34723-6 apa: Huang, J., Zhao, L., Malik, S., Gentile, B. R., Xiong, V., Arazi, T., … Zhao, D. (2022). Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-34723-6 chicago: Huang, Jian, Lei Zhao, Shikha Malik, Benjamin R. Gentile, Va Xiong, Tzahi Arazi, Heather A. Owen, Jiří Friml, and Dazhong Zhao. “Specification of Female Germline by MicroRNA Orchestrated Auxin Signaling in Arabidopsis.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-34723-6. ieee: J. Huang et al., “Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis,” Nature Communications, vol. 13. Springer Nature, 2022. ista: Huang J, Zhao L, Malik S, Gentile BR, Xiong V, Arazi T, Owen HA, Friml J, Zhao D. 2022. Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nature Communications. 13, 6960. mla: Huang, Jian, et al. “Specification of Female Germline by MicroRNA Orchestrated Auxin Signaling in Arabidopsis.” Nature Communications, vol. 13, 6960, Springer Nature, 2022, doi:10.1038/s41467-022-34723-6. short: J. Huang, L. Zhao, S. Malik, B.R. Gentile, V. Xiong, T. Arazi, H.A. Owen, J. Friml, D. Zhao, Nature Communications 13 (2022). date_created: 2023-01-12T12:02:41Z date_published: 2022-11-15T00:00:00Z date_updated: 2023-08-04T08:52:01Z day: '15' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-022-34723-6 external_id: isi: - '000884426700001' pmid: - '36379956' file: - access_level: open_access checksum: 233922a7b9507d9d48591e6799e4526e content_type: application/pdf creator: dernst date_created: 2023-01-23T11:17:33Z date_updated: 2023-01-23T11:17:33Z file_id: '12346' file_name: 2022_NatureCommunications_Huang.pdf file_size: 3375249 relation: main_file success: 1 file_date_updated: 2023-01-23T11:17:33Z has_accepted_license: '1' intvolume: ' 13' isi: 1 keyword: - General Physics and Astronomy - General Biochemistry - Genetics and Molecular Biology - General Chemistry - Multidisciplinary language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '12239' abstract: - lang: eng text: Biological systems are the sum of their dynamic three-dimensional (3D) parts. Therefore, it is critical to study biological structures in 3D and at high resolution to gain insights into their physiological functions. Electron microscopy of metal replicas of unroofed cells and isolated organelles has been a key technique to visualize intracellular structures at nanometer resolution. However, many of these methods require specialized equipment and personnel to complete them. Here, we present novel accessible methods to analyze biological structures in unroofed cells and biochemically isolated organelles in 3D and at nanometer resolution, focusing on Arabidopsis clathrin-coated vesicles (CCVs). While CCVs are essential trafficking organelles, their detailed structural information is lacking due to their poor preservation when observed via classical electron microscopy protocols experiments. First, we establish a method to visualize CCVs in unroofed cells using scanning transmission electron microscopy tomography, providing sufficient resolution to define the clathrin coat arrangements. Critically, the samples are prepared directly on electron microscopy grids, removing the requirement to use extremely corrosive acids, thereby enabling the use of this method in any electron microscopy lab. Secondly, we demonstrate that this standardized sample preparation allows the direct comparison of isolated CCV samples with those visualized in cells. Finally, to facilitate the high-throughput and robust screening of metal replicated samples, we provide a deep learning analysis method to screen the “pseudo 3D” morphologies of CCVs imaged with 2D modalities. Collectively, our work establishes accessible ways to examine the 3D structure of biological samples and provide novel insights into the structure of plant CCVs. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio acknowledgement: A.J. is supported by funding from the Austrian Science Fund I3630B25 (to J.F.). This research was supported by the Scientific Service Units of Institute of Science and Technology Austria (ISTA) through resources provided by the Electron Microscopy Facility, Lab Support Facility, and the Imaging and Optics Facility. We acknowledge Prof. David Robinson (Heidelberg) and Prof. Jan Traas (Lyon) for making us aware of previously published classical on-grid preparation methods. No conflict of interest declared. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Dana A. full_name: Dahhan, Dana A. last_name: Dahhan - first_name: Sebastian Y. full_name: Bednarek, Sebastian Y. last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Kaufmann W, Sommer CM, et al. Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. 2022;15(10):1533-1542. doi:10.1016/j.molp.2022.09.003 apa: Johnson, A. J., Kaufmann, W., Sommer, C. M., Costanzo, T., Dahhan, D. A., Bednarek, S. Y., & Friml, J. (2022). Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2022.09.003 chicago: Johnson, Alexander J, Walter Kaufmann, Christoph M Sommer, Tommaso Costanzo, Dana A. Dahhan, Sebastian Y. Bednarek, and Jiří Friml. “Three-Dimensional Visualization of Planta Clathrin-Coated Vesicles at Ultrastructural Resolution.” Molecular Plant. Elsevier, 2022. https://doi.org/10.1016/j.molp.2022.09.003. ieee: A. J. Johnson et al., “Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution,” Molecular Plant, vol. 15, no. 10. Elsevier, pp. 1533–1542, 2022. ista: Johnson AJ, Kaufmann W, Sommer CM, Costanzo T, Dahhan DA, Bednarek SY, Friml J. 2022. Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. 15(10), 1533–1542. mla: Johnson, Alexander J., et al. “Three-Dimensional Visualization of Planta Clathrin-Coated Vesicles at Ultrastructural Resolution.” Molecular Plant, vol. 15, no. 10, Elsevier, 2022, pp. 1533–42, doi:10.1016/j.molp.2022.09.003. short: A.J. Johnson, W. Kaufmann, C.M. Sommer, T. Costanzo, D.A. Dahhan, S.Y. Bednarek, J. Friml, Molecular Plant 15 (2022) 1533–1542. date_created: 2023-01-16T09:51:49Z date_published: 2022-10-03T00:00:00Z date_updated: 2023-08-04T09:39:24Z day: '03' ddc: - '580' department: - _id: JiFr - _id: EM-Fac - _id: Bio doi: 10.1016/j.molp.2022.09.003 external_id: isi: - '000882769800009' pmid: - '36081349' file: - access_level: open_access checksum: 04d5c12490052d03e4dc4412338a43dd content_type: application/pdf creator: dernst date_created: 2023-01-30T07:46:51Z date_updated: 2023-01-30T07:46:51Z file_id: '12435' file_name: 2022_MolecularPlant_Johnson.pdf file_size: 2307251 relation: main_file success: 1 file_date_updated: 2023-01-30T07:46:51Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '10' keyword: - Plant Science - Molecular Biology language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 1533-1542 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Molecular Plant publication_identifier: issn: - 1674-2052 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2022' ... --- _id: '11489' abstract: - lang: eng text: Much of plant development depends on cell-to-cell redistribution of the plant hormone auxin, which is facilitated by the plasma membrane (PM) localized PIN FORMED (PIN) proteins. Auxin export activity, developmental roles, subcellular trafficking, and polarity of PINs have been well studied, but their structure remains elusive besides a rough outline that they contain two groups of 5 alpha-helices connected by a large hydrophilic loop (HL). Here, we focus on the PIN1 HL as we could produce it in sufficient quantities for biochemical investigations to provide insights into its secondary structure. Circular dichroism (CD) studies revealed its nature as an intrinsically disordered protein (IDP), manifested by the increase of structure content upon thermal melting. Consistent with IDPs serving as interaction platforms, PIN1 loops homodimerize. PIN1 HL cytoplasmic overexpression in Arabidopsis disrupts early endocytic trafficking of PIN1 and PIN2 and causes defects in the cotyledon vasculature formation. In summary, we demonstrate that PIN1 HL has an intrinsically disordered nature, which must be considered to gain further structural insights. Some secondary structures may form transiently during pairing with known and yet-to-be-discovered interactors. acknowledgement: 'We thank Charo del Genio from Coventry University and Richard Napier from the University of Warwick for helpful discussion concerning protein modeling and inspiration concerning CD spectroscopy, respectively. We thank Jan Hejatko for sharing the published AHP2 construct. We also thank Josef Houser from the core facility BIC CEITEC for valuable assistance, discussions, and ideas relating to CD. We acknowledge the: Core Facility CELLIM of CEITEC supported by the Czech-BioImaging large RI project (LM2018129 funded by MEYS CR), part of the Euro-BioImaging (www.eurobioimaging.eu accessed on 1 January 2016) ALM and medical imaging Node (Brno, CZ), CF Biomolecular Interactions and Crystallization of CIISB, Instruct-CZ Centre, supported by MEYS CR (LM2018127) and European Regional Development Fund-Project “UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974) for their support with obtaining scientific data presented in this paper; Plant Sciences Core Facility of CEITEC Masaryk University for technical support. Open Access Funding by the Austrian Science Fund (FWF).' article_processing_charge: Yes article_type: original author: - first_name: V full_name: Bilanovičová, V last_name: Bilanovičová - first_name: N full_name: Rýdza, N last_name: Rýdza - first_name: L full_name: Koczka, L last_name: Koczka - first_name: M full_name: Hess, M last_name: Hess - first_name: E full_name: Feraru, E last_name: Feraru - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: T full_name: Nodzyński, T last_name: Nodzyński citation: ama: Bilanovičová V, Rýdza N, Koczka L, et al. The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein. International Journal of Molecular Sciences. 2022;23(11):6352. doi:10.3390/ijms23116352 apa: Bilanovičová, V., Rýdza, N., Koczka, L., Hess, M., Feraru, E., Friml, J., & Nodzyński, T. (2022). The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms23116352 chicago: Bilanovičová, V, N Rýdza, L Koczka, M Hess, E Feraru, Jiří Friml, and T Nodzyński. “The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein.” International Journal of Molecular Sciences. MDPI, 2022. https://doi.org/10.3390/ijms23116352. ieee: V. Bilanovičová et al., “The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein,” International Journal of Molecular Sciences, vol. 23, no. 11. MDPI, p. 6352, 2022. ista: Bilanovičová V, Rýdza N, Koczka L, Hess M, Feraru E, Friml J, Nodzyński T. 2022. The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein. International Journal of Molecular Sciences. 23(11), 6352. mla: Bilanovičová, V., et al. “The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein.” International Journal of Molecular Sciences, vol. 23, no. 11, MDPI, 2022, p. 6352, doi:10.3390/ijms23116352. short: V. Bilanovičová, N. Rýdza, L. Koczka, M. Hess, E. Feraru, J. Friml, T. Nodzyński, International Journal of Molecular Sciences 23 (2022) 6352. date_created: 2022-07-05T15:14:34Z date_published: 2022-06-06T00:00:00Z date_updated: 2023-08-09T10:13:57Z day: '06' ddc: - '570' department: - _id: JiFr doi: 10.3390/ijms23116352 external_id: isi: - '000808733300001' pmid: - '35683031' file: - access_level: open_access checksum: e997a57a928ec9d51fad8ce824a05935 content_type: application/pdf creator: cchlebak date_created: 2022-07-06T07:36:59Z date_updated: 2022-07-06T07:36:59Z file_id: '11492' file_name: 2022_IntJMolSci_Bilanovicova.pdf file_size: 2324542 relation: main_file success: 1 file_date_updated: 2022-07-06T07:36:59Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '11' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '6352' pmid: 1 project: - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: International Journal of Molecular Sciences publication_identifier: issn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2022' ... --- _id: '12144' abstract: - lang: eng text: The phytohormone auxin is the major coordinative signal in plant development1, mediating transcriptional reprogramming by a well-established canonical signalling pathway. TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB) auxin receptors are F-box subunits of ubiquitin ligase complexes. In response to auxin, they associate with Aux/IAA transcriptional repressors and target them for degradation via ubiquitination2,3. Here we identify adenylate cyclase (AC) activity as an additional function of TIR1/AFB receptors across land plants. Auxin, together with Aux/IAAs, stimulates cAMP production. Three separate mutations in the AC motif of the TIR1 C-terminal region, all of which abolish the AC activity, each render TIR1 ineffective in mediating gravitropism and sustained auxin-induced root growth inhibition, and also affect auxin-induced transcriptional regulation. These results highlight the importance of TIR1/AFB AC activity in canonical auxin signalling. They also identify a unique phytohormone receptor cassette combining F-box and AC motifs, and the role of cAMP as a second messenger in plants. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: This research was supported by the Lab Support Facility (LSF) and the Imaging and Optics Facility (IOF) of IST Austria. We thank C. Gehring for suggestions and advice; and K. U. Torii and G. Stacey for seeds and plasmids. This project was funded by a European Research Council Advanced Grant (ETAP-742985). M.F.K. and R.N. acknowledge the support of the EU MSCA-IF project CrysPINs (792329). M.K. was supported by the project POWR.03.05.00-00-Z302/17 Universitas Copernicana Thoruniensis in Futuro–IDS “Academia Copernicana”. CIDG acknowledges support from UKRI under Future Leaders Fellowship grant number MR/T020652/1. article_processing_charge: No article_type: original author: - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: Mateusz full_name: Kwiatkowski, Mateusz last_name: Kwiatkowski - first_name: Huihuang full_name: Chen, Huihuang id: 83c96512-15b2-11ec-abd3-b7eede36184f last_name: Chen - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Scott A full_name: Sinclair, Scott A id: 2D99FE6A-F248-11E8-B48F-1D18A9856A87 last_name: Sinclair orcid: 0000-0002-4566-0593 - first_name: Minxia full_name: Zou, Minxia id: 5c243f41-03f3-11ec-841c-96faf48a7ef9 last_name: Zou - first_name: Charo I. full_name: del Genio, Charo I. last_name: del Genio - first_name: Martin F. full_name: Kubeš, Martin F. last_name: Kubeš - first_name: Richard full_name: Napier, Richard last_name: Napier - first_name: Krzysztof full_name: Jaworski, Krzysztof last_name: Jaworski - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Qi L, Kwiatkowski M, Chen H, et al. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 2022;611(7934):133-138. doi:10.1038/s41586-022-05369-7 apa: Qi, L., Kwiatkowski, M., Chen, H., Hörmayer, L., Sinclair, S. A., Zou, M., … Friml, J. (2022). Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. Springer Nature. https://doi.org/10.1038/s41586-022-05369-7 chicago: Qi, Linlin, Mateusz Kwiatkowski, Huihuang Chen, Lukas Hörmayer, Scott A Sinclair, Minxia Zou, Charo I. del Genio, et al. “Adenylate Cyclase Activity of TIR1/AFB Auxin Receptors in Plants.” Nature. Springer Nature, 2022. https://doi.org/10.1038/s41586-022-05369-7. ieee: L. Qi et al., “Adenylate cyclase activity of TIR1/AFB auxin receptors in plants,” Nature, vol. 611, no. 7934. Springer Nature, pp. 133–138, 2022. ista: Qi L, Kwiatkowski M, Chen H, Hörmayer L, Sinclair SA, Zou M, del Genio CI, Kubeš MF, Napier R, Jaworski K, Friml J. 2022. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 611(7934), 133–138. mla: Qi, Linlin, et al. “Adenylate Cyclase Activity of TIR1/AFB Auxin Receptors in Plants.” Nature, vol. 611, no. 7934, Springer Nature, 2022, pp. 133–38, doi:10.1038/s41586-022-05369-7. short: L. Qi, M. Kwiatkowski, H. Chen, L. Hörmayer, S.A. Sinclair, M. Zou, C.I. del Genio, M.F. Kubeš, R. Napier, K. Jaworski, J. Friml, Nature 611 (2022) 133–138. date_created: 2023-01-12T12:06:05Z date_published: 2022-11-03T00:00:00Z date_updated: 2023-10-03T11:04:53Z day: '03' department: - _id: JiFr doi: 10.1038/s41586-022-05369-7 ec_funded: 1 external_id: isi: - '000875061600013' pmid: - '36289340' intvolume: ' 611' isi: 1 issue: '7934' language: - iso: eng main_file_link: - open_access: '1' url: http://wrap.warwick.ac.uk/168325/1/WRAP-denylate-cyclase-activity-TIR1-AFB-auxin-receptors-root-growth-22.pdf month: '11' oa: 1 oa_version: Submitted Version page: 133-138 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Adenylate cyclase activity of TIR1/AFB auxin receptors in plants type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 611 year: '2022' ... --- _id: '12120' abstract: - lang: eng text: Plant root architecture flexibly adapts to changing nitrate (NO3−) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3−-mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3− in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3− availability. Under low-NO3− availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth. acknowledgement: The authors are grateful to Jörg Kudla, Ying Miao, Yu Zheng, Gang Li, and Jun Zheng for providing published materials and to Wenkun Zhou and Caifu Jiang for helpful discussions. This work was supported by grants from the National Key Research and Development Program of China (2021YFF1000500), the National Natural Science Foundation of China (32170265 and 32022007), the Beijing Municipal Natural Science Foundation (5192011), and the Chinese Universities Scientific Fund (2022TC153). article_processing_charge: No article_type: original author: - first_name: Huixin full_name: Xiao, Huixin last_name: Xiao - first_name: Yumei full_name: Hu, Yumei last_name: Hu - first_name: Yaping full_name: Wang, Yaping last_name: Wang - first_name: Jinkui full_name: Cheng, Jinkui last_name: Cheng - first_name: Jinyi full_name: Wang, Jinyi last_name: Wang - first_name: Guojingwei full_name: Chen, Guojingwei last_name: Chen - first_name: Qian full_name: Li, Qian last_name: Li - first_name: Shuwei full_name: Wang, Shuwei last_name: Wang - first_name: Yalu full_name: Wang, Yalu last_name: Wang - first_name: Shao-Shuai full_name: Wang, Shao-Shuai last_name: Wang - first_name: Yi full_name: Wang, Yi last_name: Wang - first_name: Wei full_name: Xuan, Wei last_name: Xuan - first_name: Zhen full_name: Li, Zhen last_name: Li - first_name: Yan full_name: Guo, Yan last_name: Guo - first_name: Zhizhong full_name: Gong, Zhizhong last_name: Gong - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jing full_name: Zhang, Jing last_name: Zhang citation: ama: Xiao H, Hu Y, Wang Y, et al. Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Developmental Cell. 2022;57(23):2638-2651.e6. doi:10.1016/j.devcel.2022.11.006 apa: Xiao, H., Hu, Y., Wang, Y., Cheng, J., Wang, J., Chen, G., … Zhang, J. (2022). Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2022.11.006 chicago: Xiao, Huixin, Yumei Hu, Yaping Wang, Jinkui Cheng, Jinyi Wang, Guojingwei Chen, Qian Li, et al. “Nitrate Availability Controls Translocation of the Transcription Factor NAC075 for Cell-Type-Specific Reprogramming of Root Growth.” Developmental Cell. Elsevier, 2022. https://doi.org/10.1016/j.devcel.2022.11.006. ieee: H. Xiao et al., “Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth,” Developmental Cell, vol. 57, no. 23. Elsevier, p. 2638–2651.e6, 2022. ista: Xiao H, Hu Y, Wang Y, Cheng J, Wang J, Chen G, Li Q, Wang S, Wang Y, Wang S-S, Wang Y, Xuan W, Li Z, Guo Y, Gong Z, Friml J, Zhang J. 2022. Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Developmental Cell. 57(23), 2638–2651.e6. mla: Xiao, Huixin, et al. “Nitrate Availability Controls Translocation of the Transcription Factor NAC075 for Cell-Type-Specific Reprogramming of Root Growth.” Developmental Cell, vol. 57, no. 23, Elsevier, 2022, p. 2638–2651.e6, doi:10.1016/j.devcel.2022.11.006. short: H. Xiao, Y. Hu, Y. Wang, J. Cheng, J. Wang, G. Chen, Q. Li, S. Wang, Y. Wang, S.-S. Wang, Y. Wang, W. Xuan, Z. Li, Y. Guo, Z. Gong, J. Friml, J. Zhang, Developmental Cell 57 (2022) 2638–2651.e6. date_created: 2023-01-12T11:57:00Z date_published: 2022-12-05T00:00:00Z date_updated: 2023-10-04T08:23:20Z day: '05' department: - _id: JiFr doi: 10.1016/j.devcel.2022.11.006 external_id: isi: - '000919603800005' pmid: - '36473460' intvolume: ' 57' isi: 1 issue: '23' keyword: - Developmental Biology - Cell Biology - General Biochemistry - Genetics and Molecular Biology - Molecular Biology language: - iso: eng month: '12' oa_version: None page: 2638-2651.e6 pmid: 1 publication: Developmental Cell publication_identifier: issn: - 1534-5807 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 57 year: '2022' ... --- _id: '12291' abstract: - lang: eng text: The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1,2,3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization. acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: LifeSc acknowledgement: We acknowledge K. Kubiasová for excellent technical assistance, J. Neuhold, A. Lehner and A. Sedivy for technical assistance with protein production and purification at Vienna Biocenter Core Facilities; Creoptix for performing GCI; and the Bioimaging, Electron Microscopy and Life Science Facilities at ISTA, the Plant Sciences Core Facility of CEITEC Masaryk University, the Core Facility CELLIM (MEYS CR, LM2018129 Czech-BioImaging) and J. Sprakel for their assistance. J.F. is grateful to R. Napier for many insightful suggestions and support. We thank all past and present members of the Friml group for their support and for other contributions to this effort to clarify the controversial role of ABP1 over the past seven years. The project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 742985 to J.F. and 833867 to D.W.); the Austrian Science Fund (FWF; P29988 to J.F.); the Netherlands Organization for Scientific Research (NWO; VICI grant 865.14.001 to D.W. and VENI grant VI.Veni.212.003 to A.K.); the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract no. 451-03-68/2022-14/200053 to B.D.Ž.); and the MEXT/JSPS KAKENHI to K.T. (20K06685) and T.K. (20H05687 and 20H05910). article_processing_charge: No article_type: original author: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Ewa full_name: Mazur, Ewa last_name: Mazur - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Mark full_name: Roosjen, Mark last_name: Roosjen - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Branka D. full_name: Živanović, Branka D. last_name: Živanović - first_name: Minxia full_name: Zou, Minxia id: 5c243f41-03f3-11ec-841c-96faf48a7ef9 last_name: Zou - first_name: Lukas full_name: Fiedler, Lukas id: 7c417475-8972-11ed-ae7b-8b674ca26986 last_name: Fiedler - first_name: Caterina full_name: Giannini, Caterina id: e3fdddd5-f6e0-11ea-865d-ca99ee6367f4 last_name: Giannini - first_name: Peter full_name: Grones, Peter last_name: Grones - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Andre full_name: Kuhn, Andre last_name: Kuhn - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Marek full_name: Randuch, Marek id: 6ac4636d-15b2-11ec-abd3-fb8df79972ae last_name: Randuch - first_name: Nikola full_name: Rýdza, Nikola last_name: Rýdza - first_name: Koji full_name: Takahashi, Koji last_name: Takahashi - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Anastasiia full_name: Teplova, Anastasiia id: e3736151-106c-11ec-b916-c2558e2762c6 last_name: Teplova - first_name: Toshinori full_name: Kinoshita, Toshinori last_name: Kinoshita - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Hana full_name: Rakusová, Hana last_name: Rakusová citation: ama: Friml J, Gallei MC, Gelová Z, et al. ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature. 2022;609(7927):575-581. doi:10.1038/s41586-022-05187-x apa: Friml, J., Gallei, M. C., Gelová, Z., Johnson, A. J., Mazur, E., Monzer, A., … Rakusová, H. (2022). ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature. Springer Nature. https://doi.org/10.1038/s41586-022-05187-x chicago: Friml, Jiří, Michelle C Gallei, Zuzana Gelová, Alexander J Johnson, Ewa Mazur, Aline Monzer, Lesia Rodriguez Solovey, et al. “ABP1–TMK Auxin Perception for Global Phosphorylation and Auxin Canalization.” Nature. Springer Nature, 2022. https://doi.org/10.1038/s41586-022-05187-x. ieee: J. Friml et al., “ABP1–TMK auxin perception for global phosphorylation and auxin canalization,” Nature, vol. 609, no. 7927. Springer Nature, pp. 575–581, 2022. ista: Friml J, Gallei MC, Gelová Z, Johnson AJ, Mazur E, Monzer A, Rodriguez Solovey L, Roosjen M, Verstraeten I, Živanović BD, Zou M, Fiedler L, Giannini C, Grones P, Hrtyan M, Kaufmann W, Kuhn A, Narasimhan M, Randuch M, Rýdza N, Takahashi K, Tan S, Teplova A, Kinoshita T, Weijers D, Rakusová H. 2022. ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature. 609(7927), 575–581. mla: Friml, Jiří, et al. “ABP1–TMK Auxin Perception for Global Phosphorylation and Auxin Canalization.” Nature, vol. 609, no. 7927, Springer Nature, 2022, pp. 575–81, doi:10.1038/s41586-022-05187-x. short: J. Friml, M.C. Gallei, Z. Gelová, A.J. Johnson, E. Mazur, A. Monzer, L. Rodriguez Solovey, M. Roosjen, I. Verstraeten, B.D. Živanović, M. Zou, L. Fiedler, C. Giannini, P. Grones, M. Hrtyan, W. Kaufmann, A. Kuhn, M. Narasimhan, M. Randuch, N. Rýdza, K. Takahashi, S. Tan, A. Teplova, T. Kinoshita, D. Weijers, H. Rakusová, Nature 609 (2022) 575–581. date_created: 2023-01-16T10:04:48Z date_published: 2022-09-15T00:00:00Z date_updated: 2023-11-07T08:16:09Z day: '15' ddc: - '580' department: - _id: JiFr - _id: GradSch - _id: EvBe - _id: EM-Fac doi: 10.1038/s41586-022-05187-x ec_funded: 1 external_id: isi: - '000851357500002' pmid: - '36071161' file: - access_level: open_access checksum: a6055c606aefb900bf62ae3e7d15f921 content_type: application/pdf creator: amally date_created: 2023-11-02T17:12:37Z date_updated: 2023-11-02T17:12:37Z file_id: '14483' file_name: Friml Nature 2022_merged.pdf file_size: 79774945 relation: main_file success: 1 file_date_updated: 2023-11-02T17:12:37Z has_accepted_license: '1' intvolume: ' 609' isi: 1 issue: '7927' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 575-581 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: ABP1–TMK auxin perception for global phosphorylation and auxin canalization type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 609 year: '2022' ... --- _id: '11626' abstract: - lang: eng text: Plant growth and development is well known to be both, flexible and dynamic. The high capacity for post-embryonic organ formation and tissue regeneration requires tightly regulated intercellular communication and coordinated tissue polarization. One of the most important drivers for patterning and polarity in plant development is the phytohormone auxin. Auxin has the unique characteristic to establish polarized channels for its own active directional cell to cell transport. This fascinating phenomenon is called auxin canalization. Those auxin transport channels are characterized by the expression and polar, subcellular localization of PIN auxin efflux carriers. PIN proteins have the ability to dynamically change their localization and auxin itself can affect this by interfering with trafficking. Most of the underlying molecular mechanisms of canalization still remain enigmatic. What is known so far is that canonical auxin signaling is indispensable but also other non-canonical signaling components are thought to play a role. In order to shed light into the mysteries auf auxin canalization this study revisits the branches of auxin signaling in detail. Further a new auxin analogue, PISA, is developed which triggers auxin-like responses but does not directly activate canonical transcriptional auxin signaling. We revisit the direct auxin effect on PIN trafficking where we found that, contradictory to previous observations, auxin is very specifically promoting endocytosis of PIN2 but has no overall effect on endocytosis. Further, we evaluate which cellular processes related to PIN subcellular dynamics are involved in the establishment of auxin conducting channels and the formation of vascular tissue. We are re-evaluating the function of AUXIN BINDING PROTEIN 1 (ABP1) and provide a comprehensive picture about its developmental phneotypes and involvement in auxin signaling and canalization. Lastly, we are focusing on the crosstalk between the hormone strigolactone (SL) and auxin and found that SL is interfering with essentially all processes involved in auxin canalization in a non-transcriptional manner. Lastly we identify a new way of SL perception and signaling which is emanating from mitochondria, is independent of canonical SL signaling and is modulating primary root growth. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 citation: ama: Gallei MC. Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana. 2022. doi:10.15479/at:ista:11626 apa: Gallei, M. C. (2022). Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11626 chicago: Gallei, Michelle C. “Auxin and Strigolactone Non-Canonical Signaling Regulating Development in Arabidopsis Thaliana.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11626. ieee: M. C. Gallei, “Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana,” Institute of Science and Technology Austria, 2022. ista: Gallei MC. 2022. Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana. Institute of Science and Technology Austria. mla: Gallei, Michelle C. Auxin and Strigolactone Non-Canonical Signaling Regulating Development in Arabidopsis Thaliana. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11626. short: M.C. Gallei, Auxin and Strigolactone Non-Canonical Signaling Regulating Development in Arabidopsis Thaliana, Institute of Science and Technology Austria, 2022. date_created: 2022-07-20T11:21:53Z date_published: 2022-07-20T00:00:00Z date_updated: 2023-11-07T08:20:13Z day: '20' ddc: - '575' degree_awarded: PhD department: - _id: GradSch - _id: JiFr doi: 10.15479/at:ista:11626 ec_funded: 1 file: - access_level: open_access checksum: bd7ac35403cf5b4b2607287d2a104b3a content_type: application/pdf creator: mgallei date_created: 2022-07-25T09:08:47Z date_updated: 2022-07-25T09:08:47Z file_id: '11645' file_name: Thesis_Gallei.pdf file_size: 9730864 relation: main_file - access_level: closed checksum: a9e54fe5471ba25dc13c2150c1b8ccbb content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mgallei date_created: 2022-07-25T09:09:09Z date_updated: 2022-07-25T09:39:58Z file_id: '11646' file_name: Thesis_Gallei_source.docx file_size: 19560720 relation: source_file - access_level: closed checksum: 3994f7f20058941b5bb8a16886b21e71 content_type: application/pdf creator: mgallei date_created: 2022-07-25T09:09:32Z date_updated: 2022-07-25T09:39:58Z description: This is the print version of the thesis including the full appendix file_id: '11647' file_name: Thesis_Gallei_to_print.pdf file_size: 24542837 relation: source_file - access_level: open_access checksum: f24acd3c0d864f4c6676e8b0d7bfa76b content_type: application/pdf creator: mgallei date_created: 2022-07-25T11:48:45Z date_updated: 2022-07-25T11:48:45Z file_id: '11650' file_name: Thesis_Gallei_Appendix.pdf file_size: 15435966 relation: main_file file_date_updated: 2022-07-25T11:48:45Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '248' project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication_identifier: isbn: - 978-3-99078-019-0 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8931' relation: part_of_dissertation status: public - id: '9287' relation: part_of_dissertation status: public - id: '7142' relation: part_of_dissertation status: public - id: '7465' relation: part_of_dissertation status: public - id: '8138' relation: part_of_dissertation status: public - id: '6260' relation: part_of_dissertation status: public - id: '10411' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Eilon full_name: Shani, Eilon last_name: Shani title: Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10411' abstract: - lang: eng text: The phytohormone auxin is the major growth regulator governing tropic responses including gravitropism. Auxin build-up at the lower side of stimulated shoots promotes cell expansion, whereas in roots it inhibits growth, leading to upward shoot bending and downward root bending, respectively. Yet it remains an enigma how the same signal can trigger such opposite cellular responses. In this review, we discuss several recent unexpected insights into the mechanisms underlying auxin regulation of growth, challenging several existing models. We focus on the divergent mechanisms of apoplastic pH regulation in shoots and roots revisiting the classical Acid Growth Theory and discuss coordinated involvement of multiple auxin signaling pathways. From this emerges a more comprehensive, updated picture how auxin regulates growth. acknowledgement: The authors thank Alexandra Mally for editing the text. This work was supported by the Austrian Science Fund (FWF) I 3630-B25 to Jiří Friml and the DOC Fellowship of the Austrian Academy of Sciences to Lanxin Li. All figures were created with BioRender.com. article_processing_charge: No article_type: original author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Li L, Gallei MC, Friml J. Bending to auxin: Fast acid growth for tropisms. Trends in Plant Science. 2022;27(5):440-449. doi:10.1016/j.tplants.2021.11.006' apa: 'Li, L., Gallei, M. C., & Friml, J. (2022). Bending to auxin: Fast acid growth for tropisms. Trends in Plant Science. Cell Press. https://doi.org/10.1016/j.tplants.2021.11.006' chicago: 'Li, Lanxin, Michelle C Gallei, and Jiří Friml. “Bending to Auxin: Fast Acid Growth for Tropisms.” Trends in Plant Science. Cell Press, 2022. https://doi.org/10.1016/j.tplants.2021.11.006.' ieee: 'L. Li, M. C. Gallei, and J. Friml, “Bending to auxin: Fast acid growth for tropisms,” Trends in Plant Science, vol. 27, no. 5. Cell Press, pp. 440–449, 2022.' ista: 'Li L, Gallei MC, Friml J. 2022. Bending to auxin: Fast acid growth for tropisms. Trends in Plant Science. 27(5), 440–449.' mla: 'Li, Lanxin, et al. “Bending to Auxin: Fast Acid Growth for Tropisms.” Trends in Plant Science, vol. 27, no. 5, Cell Press, 2022, pp. 440–49, doi:10.1016/j.tplants.2021.11.006.' short: L. Li, M.C. Gallei, J. Friml, Trends in Plant Science 27 (2022) 440–449. date_created: 2021-12-05T23:01:43Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-11-07T08:20:14Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.tplants.2021.11.006 external_id: isi: - '000793707900005' pmid: - '34848141' file: - access_level: open_access checksum: 3d94980ee1ff6bec100dd813f6a921a6 content_type: application/pdf creator: amally date_created: 2023-11-02T17:00:03Z date_updated: 2023-11-02T17:00:03Z file_id: '14480' file_name: Li Plants 2021_accepted.pdf file_size: 805779 relation: main_file success: 1 file_date_updated: 2023-11-02T17:00:03Z has_accepted_license: '1' intvolume: ' 27' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 440-449 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Trends in Plant Science publication_identifier: issn: - 1360-1385 publication_status: published publisher: Cell Press quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Bending to auxin: Fast acid growth for tropisms' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2022' ... --- _id: '13240' abstract: - lang: eng text: Ustilago maydis is a biotrophic phytopathogenic fungus that causes corn smut disease. As a well-established model system, U. maydis is genetically fully accessible with large omics datasets available and subject to various biological questions ranging from DNA-repair, RNA-transport, and protein secretion to disease biology. For many genetic approaches, tight control of transgene regulation is important. Here we established an optimised version of the Tetracycline-ON (TetON) system for U. maydis. We demonstrate the Tetracycline concentration-dependent expression of fluorescent protein transgenes and the system’s suitability for the induced expression of the toxic protein BCL2 Associated X-1 (Bax1). The Golden Gate compatible vector system contains a native minimal promoter from the mating factor a-1 encoding gene, mfa with ten copies of the tet-regulated operator (tetO) and a codon optimised Tet-repressor (tetR*) which is translationally fused to the native transcriptional corepressor Mql1 (UMAG_05501). The metabolism-independent transcriptional regulator system is functional both, in liquid culture as well as on solid media in the presence of the inducer and can become a useful tool for toxin-antitoxin studies, identification of antifungal proteins, and to study functions of toxic gene products in Ustilago maydis. acknowledgement: "The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme ERC-2013-STG (grant agreement: 335691), the Austrian Science Fund (I 3033-B22), the Austrian Academy of Sciences, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC-2070-390732324 (PhenoRob) and DFG grant (DJ 64/5-1).\r\nWe would like to thank the GMI/IMBA/IMP core facilities for their excellent technical support. We would like to acknowledge Dr. Sinéad A. O’Sullivan from DZNE, University of Bonn for providing anti-GFP antibodies. The authors are thankful to the Excellence University of Bonn for providing infrastructure and instrumentation facilities at the INRES-Plant Pathology department." article_number: '1029114' article_processing_charge: Yes article_type: original author: - first_name: Kishor D. full_name: Ingole, Kishor D. last_name: Ingole - first_name: Nithya full_name: Nagarajan, Nithya last_name: Nagarajan - first_name: Simon full_name: Uhse, Simon last_name: Uhse - first_name: Caterina full_name: Giannini, Caterina id: e3fdddd5-f6e0-11ea-865d-ca99ee6367f4 last_name: Giannini - first_name: Armin full_name: Djamei, Armin last_name: Djamei citation: ama: Ingole KD, Nagarajan N, Uhse S, Giannini C, Djamei A. Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis. Frontiers in Fungal Biology. 2022;3. doi:10.3389/ffunb.2022.1029114 apa: Ingole, K. D., Nagarajan, N., Uhse, S., Giannini, C., & Djamei, A. (2022). Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis. Frontiers in Fungal Biology. Frontiers Media. https://doi.org/10.3389/ffunb.2022.1029114 chicago: Ingole, Kishor D., Nithya Nagarajan, Simon Uhse, Caterina Giannini, and Armin Djamei. “Tetracycline-Controlled (TetON) Gene Expression System for the Smut Fungus Ustilago Maydis.” Frontiers in Fungal Biology. Frontiers Media, 2022. https://doi.org/10.3389/ffunb.2022.1029114. ieee: K. D. Ingole, N. Nagarajan, S. Uhse, C. Giannini, and A. Djamei, “Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis,” Frontiers in Fungal Biology, vol. 3. Frontiers Media, 2022. ista: Ingole KD, Nagarajan N, Uhse S, Giannini C, Djamei A. 2022. Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis. Frontiers in Fungal Biology. 3, 1029114. mla: Ingole, Kishor D., et al. “Tetracycline-Controlled (TetON) Gene Expression System for the Smut Fungus Ustilago Maydis.” Frontiers in Fungal Biology, vol. 3, 1029114, Frontiers Media, 2022, doi:10.3389/ffunb.2022.1029114. short: K.D. Ingole, N. Nagarajan, S. Uhse, C. Giannini, A. Djamei, Frontiers in Fungal Biology 3 (2022). date_created: 2023-07-16T22:01:12Z date_published: 2022-10-19T00:00:00Z date_updated: 2024-03-06T14:01:57Z day: '19' ddc: - '579' department: - _id: JiFr doi: 10.3389/ffunb.2022.1029114 file: - access_level: open_access checksum: 2254e0119c0749d6f7237084fefcece6 content_type: application/pdf creator: dernst date_created: 2023-07-17T11:46:34Z date_updated: 2023-07-17T11:46:34Z file_id: '13242' file_name: 2023_FrontiersFungalBio_Ingole.pdf file_size: 27966699 relation: main_file success: 1 file_date_updated: 2023-07-17T11:46:34Z has_accepted_license: '1' intvolume: ' 3' language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: Frontiers in Fungal Biology publication_identifier: eissn: - 2673-6128 publication_status: published publisher: Frontiers Media quality_controlled: '1' scopus_import: '1' status: public title: Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2022' ... --- _id: '10267' abstract: - lang: eng text: Tropisms are among the most important growth responses for plant adaptation to the surrounding environment. One of the most common tropisms is root gravitropism. Root gravitropism enables the plant to anchor securely to the soil enabling the absorption of water and nutrients. Most of the knowledge related to the plant gravitropism has been acquired from the flowering plants, due to limited research in non-seed plants. Limited research on non-seed plants is due in large part to the lack of standard research methods. Here, we describe the experimental methods to evaluate gravitropism in representative non-seed plant species, including the non-vascular plant moss Physcomitrium patens, the early diverging extant vascular plant lycophyte Selaginella moellendorffii and fern Ceratopteris richardii. In addition, we introduce the methods used for statistical analysis of the root gravitropism in non-seed plant species. acknowledgement: The Ceratopteris richardii spores were obtained from the lab of Jo Ann Banks at Purdue University. This work was supported by funding from the European Union’s Horizon 2020 research and innovation program (ERC grant agreement number 742985), Austrian Science Fund (FWF, grant number I 3630-B25), IST Fellow program and DOC Fellowship of the Austrian Academy of Sciences. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Zhang Y, Li L, Friml J. Evaluation of gravitropism in non-seed plants. In: Blancaflor EB, ed. Plant Gravitropism. Vol 2368. MIMB. Springer Nature; 2021:43-51. doi:10.1007/978-1-0716-1677-2_2' apa: Zhang, Y., Li, L., & Friml, J. (2021). Evaluation of gravitropism in non-seed plants. In E. B. Blancaflor (Ed.), Plant Gravitropism (Vol. 2368, pp. 43–51). Springer Nature. https://doi.org/10.1007/978-1-0716-1677-2_2 chicago: Zhang, Yuzhou, Lanxin Li, and Jiří Friml. “Evaluation of Gravitropism in Non-Seed Plants.” In Plant Gravitropism, edited by Elison B Blancaflor, 2368:43–51. MIMB. Springer Nature, 2021. https://doi.org/10.1007/978-1-0716-1677-2_2. ieee: Y. Zhang, L. Li, and J. Friml, “Evaluation of gravitropism in non-seed plants,” in Plant Gravitropism, vol. 2368, E. B. Blancaflor, Ed. Springer Nature, 2021, pp. 43–51. ista: 'Zhang Y, Li L, Friml J. 2021.Evaluation of gravitropism in non-seed plants. In: Plant Gravitropism. Methods in Molecular Biology, vol. 2368, 43–51.' mla: Zhang, Yuzhou, et al. “Evaluation of Gravitropism in Non-Seed Plants.” Plant Gravitropism, edited by Elison B Blancaflor, vol. 2368, Springer Nature, 2021, pp. 43–51, doi:10.1007/978-1-0716-1677-2_2. short: Y. Zhang, L. Li, J. Friml, in:, E.B. Blancaflor (Ed.), Plant Gravitropism, Springer Nature, 2021, pp. 43–51. date_created: 2021-11-11T09:26:10Z date_published: 2021-10-14T00:00:00Z date_updated: 2022-08-26T09:13:00Z day: '14' department: - _id: JiFr doi: 10.1007/978-1-0716-1677-2_2 ec_funded: 1 editor: - first_name: Elison B full_name: Blancaflor, Elison B last_name: Blancaflor external_id: pmid: - '34647246' intvolume: ' 2368' language: - iso: eng month: '10' oa_version: None page: 43-51 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Gravitropism publication_identifier: eisbn: - 978-1-0716-1677-2 isbn: - 978-1-0716-1676-5 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: MIMB status: public title: Evaluation of gravitropism in non-seed plants type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2368 year: '2021' ... --- _id: '10268' abstract: - lang: eng text: The analysis of dynamic cellular processes such as plant cytokinesis stands and falls with live-cell time-lapse confocal imaging. Conventional approaches to time-lapse imaging of cell division in Arabidopsis root tips are tedious and have low throughput. Here, we describe a protocol for long-term time-lapse simultaneous imaging of multiple root tips on a vertical-stage confocal microscope with automated root tracking. We also provide modifications of the basic protocol to implement this imaging method in the analysis of genetic, pharmacological or laser ablation wounding-mediated experimental manipulations. Our method dramatically improves the efficiency of cell division time-lapse imaging by increasing the throughput, while reducing the person-hour requirements of such experiments. acknowledged_ssus: - _id: Bio acknowledgement: We thank B. De Rybel for allowing M.G. to work on this manuscript during a postdoc in his laboratory, and EMBO for supporting M.G. with a Long-Term fellowship (ALTF 1005-2019) during this time. We acknowledge the service and support by the Bioimaging Facility at IST Austria, and finally, we thank A. Mally for proofreading and correcting the manuscript. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 citation: ama: 'Hörmayer L, Friml J, Glanc M. Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy. In: Plant Cell Division. Vol 2382. MIMB. Humana Press; 2021:105-114. doi:10.1007/978-1-0716-1744-1_6' apa: Hörmayer, L., Friml, J., & Glanc, M. (2021). Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy. In Plant Cell Division (Vol. 2382, pp. 105–114). Humana Press. https://doi.org/10.1007/978-1-0716-1744-1_6 chicago: Hörmayer, Lukas, Jiří Friml, and Matous Glanc. “Automated Time-Lapse Imaging and Manipulation of Cell Divisions in Arabidopsis Roots by Vertical-Stage Confocal Microscopy.” In Plant Cell Division, 2382:105–14. MIMB. Humana Press, 2021. https://doi.org/10.1007/978-1-0716-1744-1_6. ieee: L. Hörmayer, J. Friml, and M. Glanc, “Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy,” in Plant Cell Division, vol. 2382, Humana Press, 2021, pp. 105–114. ista: 'Hörmayer L, Friml J, Glanc M. 2021.Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy. In: Plant Cell Division. Methods in Molecular Biology, vol. 2382, 105–114.' mla: Hörmayer, Lukas, et al. “Automated Time-Lapse Imaging and Manipulation of Cell Divisions in Arabidopsis Roots by Vertical-Stage Confocal Microscopy.” Plant Cell Division, vol. 2382, Humana Press, 2021, pp. 105–14, doi:10.1007/978-1-0716-1744-1_6. short: L. Hörmayer, J. Friml, M. Glanc, in:, Plant Cell Division, Humana Press, 2021, pp. 105–114. date_created: 2021-11-11T10:03:30Z date_published: 2021-10-28T00:00:00Z date_updated: 2022-06-03T06:47:06Z day: '28' department: - _id: JiFr doi: 10.1007/978-1-0716-1744-1_6 external_id: pmid: - '34705235' intvolume: ' 2382' language: - iso: eng month: '10' oa_version: None page: 105-114 pmid: 1 publication: Plant Cell Division publication_identifier: eisbn: - 978-1-0716-1744-1 eissn: - 1940-6029 isbn: - 978-1-0716-1743-4 issn: - 1064-3745 publication_status: published publisher: Humana Press quality_controlled: '1' scopus_import: '1' series_title: MIMB status: public title: Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2382 year: '2021' ... --- _id: '8582' abstract: - lang: eng text: "Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear.\r\nHere, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains.\r\nPharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane.\r\nThis study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems." acknowledged_ssus: - _id: Bio acknowledgement: We thank Dr Ingo Heilmann (Martin‐Luther‐University Halle‐Wittenberg) for the XVE>>PIP5K1‐YFP line, Dr Brad Day (Michigan State University) for the ndr1‐1 mutant and the complementation lines, and Dr Patricia C. Zambryski (University of California, Berkeley) for the 35S::P30‐GFP line, the Bioimaging team (IST Austria) for assistance with imaging, group members for discussions, Martine De Cock for help in preparing the manuscript and Nataliia Gnyliukh for critical reading and revision of the manuscript. This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 742985) and Comisión Nacional de Investigación Científica y Tecnológica (Project CONICYT‐PAI 82130047). DvW received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007‐2013) under REA grant agreement no. 291734. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Hongjiang full_name: Li, Hongjiang id: 33CA54A6-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0001-5039-9660 - first_name: Daniel full_name: von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Nasser full_name: Darwish-Miranda, Nasser id: 39CD9926-F248-11E8-B48F-1D18A9856A87 last_name: Darwish-Miranda orcid: 0000-0002-8821-8236 - first_name: Satoshi full_name: Naramoto, Satoshi last_name: Naramoto - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Riet full_name: de Rycke, Riet last_name: de Rycke - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Daniel J full_name: Gütl, Daniel J id: 381929CE-F248-11E8-B48F-1D18A9856A87 last_name: Gütl - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Meiyu full_name: Ke, Meiyu last_name: Ke - first_name: Xu full_name: Chen, Xu id: 4E5ADCAA-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Jan full_name: Dettmer, Jan last_name: Dettmer - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li H, von Wangenheim D, Zhang X, et al. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist. 2021;229(1):351-369. doi:10.1111/nph.16887 apa: Li, H., von Wangenheim, D., Zhang, X., Tan, S., Darwish-Miranda, N., Naramoto, S., … Friml, J. (2021). Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist. Wiley. https://doi.org/10.1111/nph.16887 chicago: Li, Hongjiang, Daniel von Wangenheim, Xixi Zhang, Shutang Tan, Nasser Darwish-Miranda, Satoshi Naramoto, Krzysztof T Wabnik, et al. “Cellular Requirements for PIN Polar Cargo Clustering in Arabidopsis Thaliana.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.16887. ieee: H. Li et al., “Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana,” New Phytologist, vol. 229, no. 1. Wiley, pp. 351–369, 2021. ista: Li H, von Wangenheim D, Zhang X, Tan S, Darwish-Miranda N, Naramoto S, Wabnik KT, de Rycke R, Kaufmann W, Gütl DJ, Tejos R, Grones P, Ke M, Chen X, Dettmer J, Friml J. 2021. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist. 229(1), 351–369. mla: Li, Hongjiang, et al. “Cellular Requirements for PIN Polar Cargo Clustering in Arabidopsis Thaliana.” New Phytologist, vol. 229, no. 1, Wiley, 2021, pp. 351–69, doi:10.1111/nph.16887. short: H. Li, D. von Wangenheim, X. Zhang, S. Tan, N. Darwish-Miranda, S. Naramoto, K.T. Wabnik, R. de Rycke, W. Kaufmann, D.J. Gütl, R. Tejos, P. Grones, M. Ke, X. Chen, J. Dettmer, J. Friml, New Phytologist 229 (2021) 351–369. date_created: 2020-09-28T08:59:28Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-08-04T11:01:21Z day: '01' ddc: - '580' department: - _id: JiFr - _id: EM-Fac - _id: Bio - _id: EvBe doi: 10.1111/nph.16887 ec_funded: 1 external_id: isi: - '000570187900001' file: - access_level: open_access checksum: b45621607b4cab97eeb1605ab58e896e content_type: application/pdf creator: dernst date_created: 2021-02-04T09:44:17Z date_updated: 2021-02-04T09:44:17Z file_id: '9084' file_name: 2021_NewPhytologist_Li.pdf file_size: 4061962 relation: main_file success: 1 file_date_updated: 2021-02-04T09:44:17Z has_accepted_license: '1' intvolume: ' 229' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 351-369 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: New Phytologist publication_identifier: eissn: - '14698137' issn: - 0028646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 229 year: '2021' ... --- _id: '8606' abstract: - lang: eng text: The leaf is a crucial organ evolved with remarkable morphological diversity to maximize plant photosynthesis. The leaf shape is a key trait that affects photosynthesis, flowering rates, disease resistance, and yield. Although many genes regulating leaf development have been identified in the past years, the precise regulatory architecture underlying the generation of diverse leaf shapes remains to be elucidated. We used cotton as a reference model to probe the genetic framework underlying divergent leaf forms. Comparative transcriptome analysis revealed that the GhARF16‐1 and GhKNOX2‐1 genes might be potential regulators of leaf shape. We functionally characterized the auxin‐responsive factor ARF16‐1 acting upstream of GhKNOX2‐1 to determine leaf morphology in cotton. The transcription of GhARF16‐1 was significantly higher in lobed‐leaved cotton than in smooth‐leaved cotton. Furthermore, the overexpression of GhARF16‐1 led to the upregulation of GhKNOX2‐1 and resulted in more and deeper serrations in cotton leaves, similar to the leaf shape of cotton plants overexpressing GhKNOX2‐1. We found that GhARF16‐1 specifically bound to the promoter of GhKNOX2‐1 to induce its expression. The heterologous expression of GhARF16‐1 and GhKNOX2‐1 in Arabidopsis led to lobed and curly leaves, and a genetic analysis revealed that GhKNOX2‐1 is epistatic to GhARF16‐1 in Arabidopsis, suggesting that the GhARF16‐1 and GhKNOX2‐1 interaction paradigm also functions to regulate leaf shape in Arabidopsis. To our knowledge, our results uncover a novel mechanism by which auxin, through the key component ARF16‐1 and its downstream‐activated gene KNOX2‐1, determines leaf morphology in eudicots. acknowledgement: We are thankful to Professor Yuxian Zhu from Wuhan University for his extremely valuable remarks and helpful comments on the manuscript. This work was supported by the Shaanxi Natural Science Foundation (2019JQ‐062 and 2020JQ‐410), Shaanxi Youth Entrusted Talents Program (20190205), China Postdoctoral Science Foundation (2018M640947, 2020T130394), Shaanxi Postdoctoral Project (2018BSHYDZZ76), Natural Science Basic Research Plan in Shaanxi Province of China (2018JZ3006), Fundamental Research Funds for the Central Universities (GK201903064, GK201901004, GK202002005 and GK202001004), and State Key Laboratory of Cotton Biology Open Fund (CB2020A12). article_processing_charge: No article_type: original author: - first_name: P full_name: He, P last_name: He - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: H full_name: Li, H last_name: Li - first_name: X full_name: Fu, X last_name: Fu - first_name: H full_name: Shang, H last_name: Shang - first_name: C full_name: Zou, C last_name: Zou - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: G full_name: Xiao, G last_name: Xiao citation: ama: He P, Zhang Y, Li H, et al. GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton. Plant Biotechnology Journal. 2021;19(3):548-562. doi:10.1111/pbi.13484 apa: He, P., Zhang, Y., Li, H., Fu, X., Shang, H., Zou, C., … Xiao, G. (2021). GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton. Plant Biotechnology Journal. Wiley. https://doi.org/10.1111/pbi.13484 chicago: He, P, Yuzhou Zhang, H Li, X Fu, H Shang, C Zou, Jiří Friml, and G Xiao. “GhARF16-1 Modulates Leaf Development by Transcriptionally Regulating the GhKNOX2-1 Gene in Cotton.” Plant Biotechnology Journal. Wiley, 2021. https://doi.org/10.1111/pbi.13484. ieee: P. He et al., “GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton,” Plant Biotechnology Journal, vol. 19, no. 3. Wiley, pp. 548–562, 2021. ista: He P, Zhang Y, Li H, Fu X, Shang H, Zou C, Friml J, Xiao G. 2021. GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton. Plant Biotechnology Journal. 19(3), 548–562. mla: He, P., et al. “GhARF16-1 Modulates Leaf Development by Transcriptionally Regulating the GhKNOX2-1 Gene in Cotton.” Plant Biotechnology Journal, vol. 19, no. 3, Wiley, 2021, pp. 548–62, doi:10.1111/pbi.13484. short: P. He, Y. Zhang, H. Li, X. Fu, H. Shang, C. Zou, J. Friml, G. Xiao, Plant Biotechnology Journal 19 (2021) 548–562. date_created: 2020-10-05T12:44:33Z date_published: 2021-03-01T00:00:00Z date_updated: 2023-08-04T11:03:10Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/pbi.13484 external_id: isi: - '000577682300001' pmid: - '32981232' file: - access_level: open_access checksum: 63845be37fb962586e0c7773f2355970 content_type: application/pdf creator: dernst date_created: 2021-04-12T12:29:07Z date_updated: 2021-04-12T12:29:07Z file_id: '9321' file_name: 2021_PlantBiotechJournal_He.pdf file_size: 15691871 relation: main_file success: 1 file_date_updated: 2021-04-12T12:29:07Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 548-562 pmid: 1 publication: Plant Biotechnology Journal publication_identifier: issn: - 1467-7644 - 1467-7652 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2021' ... --- _id: '8992' abstract: - lang: eng text: The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network. acknowledgement: This work was supported by the European Union’s Horizon 2020 Program (ERC grant agreement no. 742985 to J.F.). S.T. was funded by a European Molecular Biology Organization (EMBO) long-term postdoctoral fellowship (ALTF 723-2015). C.L. is supported by the Austrian Science Fund (FWF; P 31493). article_processing_charge: No article_type: original author: - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Tan S, Luschnig C, Friml J. Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. 2021;14(1):151-165. doi:10.1016/j.molp.2020.11.004' apa: 'Tan, S., Luschnig, C., & Friml, J. (2021). Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2020.11.004' chicago: 'Tan, Shutang, Christian Luschnig, and Jiří Friml. “Pho-View of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling.” Molecular Plant. Elsevier, 2021. https://doi.org/10.1016/j.molp.2020.11.004.' ieee: 'S. Tan, C. Luschnig, and J. Friml, “Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling,” Molecular Plant, vol. 14, no. 1. Elsevier, pp. 151–165, 2021.' ista: 'Tan S, Luschnig C, Friml J. 2021. Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. 14(1), 151–165.' mla: 'Tan, Shutang, et al. “Pho-View of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling.” Molecular Plant, vol. 14, no. 1, Elsevier, 2021, pp. 151–65, doi:10.1016/j.molp.2020.11.004.' short: S. Tan, C. Luschnig, J. Friml, Molecular Plant 14 (2021) 151–165. date_created: 2021-01-03T23:01:23Z date_published: 2021-01-04T00:00:00Z date_updated: 2023-08-04T11:21:13Z day: '04' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.molp.2020.11.004 ec_funded: 1 external_id: isi: - '000605359400014' pmid: - '33186755' file: - access_level: open_access checksum: 917e60e57092f22e16beac70b1775ea6 content_type: application/pdf creator: dernst date_created: 2021-01-07T14:03:53Z date_updated: 2021-01-07T14:03:53Z file_id: '8995' file_name: 2020_MolecularPlant_Tan.pdf file_size: 871088 relation: main_file success: 1 file_date_updated: 2021-01-07T14:03:53Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 151-165 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship publication: Molecular Plant publication_identifier: eissn: - '17529867' issn: - '16742052' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2021' ... --- _id: '8993' abstract: - lang: eng text: N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism. acknowledgement: "This work was supported by Austrian Science Fund Grant FWF P21533-B20 (to L.A.); German Research Foundation Grant DFG HA3468/6-1 (to U.Z.H.); and European Research Council Grant 742985 (to J.F.). We thank Herta Steinkellner and Alexandra Castilho for N. benthamiana plants, Fabian Nagelreiter for statistical advice, Lanassa Bassukas for help with [ɣ32P]-\r\nATP assays, and Josef Penninger for providing access to mass spectrometry instruments at the Vienna BioCenter Core Facilities. We thank PNAS reviewers for the many comments and suggestions that helped to improve this manuscript." article_number: e2020857118 article_processing_charge: No article_type: original author: - first_name: Lindy full_name: Abas, Lindy last_name: Abas - first_name: Martina full_name: Kolb, Martina last_name: Kolb - first_name: Johannes full_name: Stadlmann, Johannes last_name: Stadlmann - first_name: Dorina P. full_name: Janacek, Dorina P. last_name: Janacek - first_name: Kristina full_name: Lukic, Kristina id: 2B04DB84-F248-11E8-B48F-1D18A9856A87 last_name: Lukic orcid: 0000-0003-1581-881X - first_name: Claus full_name: Schwechheimer, Claus last_name: Schwechheimer - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 - first_name: Lukas full_name: Mach, Lukas last_name: Mach - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Ulrich Z. full_name: Hammes, Ulrich Z. last_name: Hammes citation: ama: Abas L, Kolb M, Stadlmann J, et al. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. PNAS. 2021;118(1). doi:10.1073/pnas.2020857118 apa: Abas, L., Kolb, M., Stadlmann, J., Janacek, D. P., Lukic, K., Schwechheimer, C., … Hammes, U. Z. (2021). Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.2020857118 chicago: Abas, Lindy, Martina Kolb, Johannes Stadlmann, Dorina P. Janacek, Kristina Lukic, Claus Schwechheimer, Leonid A Sazanov, Lukas Mach, Jiří Friml, and Ulrich Z. Hammes. “Naphthylphthalamic Acid Associates with and Inhibits PIN Auxin Transporters.” PNAS. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2020857118. ieee: L. Abas et al., “Naphthylphthalamic acid associates with and inhibits PIN auxin transporters,” PNAS, vol. 118, no. 1. National Academy of Sciences, 2021. ista: Abas L, Kolb M, Stadlmann J, Janacek DP, Lukic K, Schwechheimer C, Sazanov LA, Mach L, Friml J, Hammes UZ. 2021. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. PNAS. 118(1), e2020857118. mla: Abas, Lindy, et al. “Naphthylphthalamic Acid Associates with and Inhibits PIN Auxin Transporters.” PNAS, vol. 118, no. 1, e2020857118, National Academy of Sciences, 2021, doi:10.1073/pnas.2020857118. short: L. Abas, M. Kolb, J. Stadlmann, D.P. Janacek, K. Lukic, C. Schwechheimer, L.A. Sazanov, L. Mach, J. Friml, U.Z. Hammes, PNAS 118 (2021). date_created: 2021-01-03T23:01:23Z date_published: 2021-01-05T00:00:00Z date_updated: 2023-08-07T13:29:23Z day: '05' department: - _id: JiFr - _id: LeSa doi: 10.1073/pnas.2020857118 ec_funded: 1 external_id: isi: - '000607270100073' pmid: - '33443187' intvolume: ' 118' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1073/pnas.2020857118 month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: PNAS publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1073/pnas.2102232118 scopus_import: '1' status: public title: Naphthylphthalamic acid associates with and inhibits PIN auxin transporters type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '9254' abstract: - lang: eng text: 'Auxin is a key regulator of plant growth and development. Local auxin biosynthesis and intercellular transport generates regional gradients in the root that are instructive for processes such as specification of developmental zones that maintain root growth and tropic responses. Here we present a toolbox to study auxin-mediated root development that features: (i) the ability to control auxin synthesis with high spatio-temporal resolution and (ii) single-cell nucleus tracking and morphokinetic analysis infrastructure. Integration of these two features enables cutting-edge analysis of root development at single-cell resolution based on morphokinetic parameters under normal growth conditions and during cell-type-specific induction of auxin biosynthesis. We show directional auxin flow in the root and refine the contributions of key players in this process. In addition, we determine the quantitative kinetics of Arabidopsis root meristem skewing, which depends on local auxin gradients but does not require PIN2 and AUX1 auxin transporter activities. Beyond the mechanistic insights into root development, the tools developed here will enable biologists to study kinetics and morphology of various critical processes at the single cell-level in whole organisms.' acknowledgement: This work was supported by grants from the Israel Science Foundation (2378/19 to E.S.), the Joint NSFC-ISF Research Grant (3419/20 to E.S. and Z.D.), the Human Frontier Science Program (HFSP—LIY000540/2020 to E.S.), the European Research Council Starting Grant (757683- RobustHormoneTrans to E.S.), PBC postdoctoral fellowships (to Y.H. and M.O.), NIH (GM114660 to Y.Z.), Breast Cancer Research Foundation (BCRF to I.T.). article_number: '1657' article_processing_charge: No article_type: original author: - first_name: Yangjie full_name: Hu, Yangjie last_name: Hu - first_name: Moutasem full_name: Omary, Moutasem last_name: Omary - first_name: Yun full_name: Hu, Yun last_name: Hu - first_name: Ohad full_name: Doron, Ohad last_name: Doron - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer - first_name: Qingguo full_name: Chen, Qingguo last_name: Chen - first_name: Or full_name: Megides, Or last_name: Megides - first_name: Ori full_name: Chekli, Ori last_name: Chekli - first_name: Zhaojun full_name: Ding, Zhaojun last_name: Ding - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Yunde full_name: Zhao, Yunde last_name: Zhao - first_name: Ilan full_name: Tsarfaty, Ilan last_name: Tsarfaty - first_name: Eilon full_name: Shani, Eilon last_name: Shani citation: ama: Hu Y, Omary M, Hu Y, et al. Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nature Communications. 2021;12. doi:10.1038/s41467-021-21802-3 apa: Hu, Y., Omary, M., Hu, Y., Doron, O., Hörmayer, L., Chen, Q., … Shani, E. (2021). Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-21802-3 chicago: Hu, Yangjie, Moutasem Omary, Yun Hu, Ohad Doron, Lukas Hörmayer, Qingguo Chen, Or Megides, et al. “Cell Kinetics of Auxin Transport and Activity in Arabidopsis Root Growth and Skewing.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-21802-3. ieee: Y. Hu et al., “Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing,” Nature Communications, vol. 12. Springer Nature, 2021. ista: Hu Y, Omary M, Hu Y, Doron O, Hörmayer L, Chen Q, Megides O, Chekli O, Ding Z, Friml J, Zhao Y, Tsarfaty I, Shani E. 2021. Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nature Communications. 12, 1657. mla: Hu, Yangjie, et al. “Cell Kinetics of Auxin Transport and Activity in Arabidopsis Root Growth and Skewing.” Nature Communications, vol. 12, 1657, Springer Nature, 2021, doi:10.1038/s41467-021-21802-3. short: Y. Hu, M. Omary, Y. Hu, O. Doron, L. Hörmayer, Q. Chen, O. Megides, O. Chekli, Z. Ding, J. Friml, Y. Zhao, I. Tsarfaty, E. Shani, Nature Communications 12 (2021). date_created: 2021-03-21T23:01:19Z date_published: 2021-03-12T00:00:00Z date_updated: 2023-08-07T14:17:55Z day: '12' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-021-21802-3 external_id: isi: - '000630419400048' pmid: - '33712581' file: - access_level: open_access checksum: e1022f3aee349853ded2b2b3e092362d content_type: application/pdf creator: dernst date_created: 2021-03-22T11:18:58Z date_updated: 2021-03-22T11:18:58Z file_id: '9275' file_name: 2021_NatureComm_Hu.pdf file_size: 8602096 relation: main_file success: 1 file_date_updated: 2021-03-22T11:18:58Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9443' abstract: - lang: eng text: Endoplasmic reticulum–plasma membrane contact sites (ER–PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER–PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER–PM tether that also functions in maintaining PM integrity. The ER–PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild-type while the levels of most glycerolipid species remain unchanged. In addition, the SYT1-green fluorescent protein fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress. acknowledgement: "We would also like to thank Lothar Willmitzer for the lipidomic analysis at the Max Planck Institute of Molecular Plant Physiology (Potsdam, Germany). We thank Manuela Vega from SCI for her technical assistance in image analysis. We thank John R. Pearson and the Bionand Nanoimaging Unit, F. David Navas Fernández and the SCAI Imaging Facility and The Plant Cell Biology facility at the Shanghai Center for Plant Stress Biology for assistance with confocal microscopy. The FaFAH1 clone was a gift from Iraida Amaya Saavedra (IFAPA-Centro de Churriana, Málaga, Spain). The AHA3 antibody against the H+-ATPase was a gift from Ramón Serrano Salom (Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain). The MAP-mTU2-SAC1 construct was provided by Yvon Jaillais (Laboratoire Reproduction et Développement des Plantes, Univ Lyon, France). The pGWB5 from the pGWB vector series, was provided by Tsuyoshi Nakagawa (Department of Molecular and Functional Genomics, Shimane University). We thank Plan Propio from the University of Málaga for financial support.\r\nFunding" article_processing_charge: No article_type: original author: - first_name: N full_name: Ruiz-Lopez, N last_name: Ruiz-Lopez - first_name: J full_name: Pérez-Sancho, J last_name: Pérez-Sancho - first_name: A full_name: Esteban Del Valle, A last_name: Esteban Del Valle - first_name: RP full_name: Haslam, RP last_name: Haslam - first_name: S full_name: Vanneste, S last_name: Vanneste - first_name: R full_name: Catalá, R last_name: Catalá - first_name: C full_name: Perea-Resa, C last_name: Perea-Resa - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: S full_name: García-Hernández, S last_name: García-Hernández - first_name: A full_name: Albert, A last_name: Albert - first_name: J full_name: Vallarino, J last_name: Vallarino - first_name: J full_name: Lin, J last_name: Lin - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: AP full_name: Macho, AP last_name: Macho - first_name: J full_name: Salinas, J last_name: Salinas - first_name: A full_name: Rosado, A last_name: Rosado - first_name: JA full_name: Napier, JA last_name: Napier - first_name: V full_name: Amorim-Silva, V last_name: Amorim-Silva - first_name: MA full_name: Botella, MA last_name: Botella citation: ama: Ruiz-Lopez N, Pérez-Sancho J, Esteban Del Valle A, et al. Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. 2021;33(7):2431-2453. doi:10.1093/plcell/koab122 apa: Ruiz-Lopez, N., Pérez-Sancho, J., Esteban Del Valle, A., Haslam, R., Vanneste, S., Catalá, R., … Botella, M. (2021). Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1093/plcell/koab122 chicago: Ruiz-Lopez, N, J Pérez-Sancho, A Esteban Del Valle, RP Haslam, S Vanneste, R Catalá, C Perea-Resa, et al. “Synaptotagmins at the Endoplasmic Reticulum-Plasma Membrane Contact Sites Maintain Diacylglycerol Homeostasis during Abiotic Stress.” Plant Cell. American Society of Plant Biologists, 2021. https://doi.org/10.1093/plcell/koab122. ieee: N. Ruiz-Lopez et al., “Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress,” Plant Cell, vol. 33, no. 7. American Society of Plant Biologists, pp. 2431–2453, 2021. ista: Ruiz-Lopez N, Pérez-Sancho J, Esteban Del Valle A, Haslam R, Vanneste S, Catalá R, Perea-Resa C, Van Damme D, García-Hernández S, Albert A, Vallarino J, Lin J, Friml J, Macho A, Salinas J, Rosado A, Napier J, Amorim-Silva V, Botella M. 2021. Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. 33(7), 2431–2453. mla: Ruiz-Lopez, N., et al. “Synaptotagmins at the Endoplasmic Reticulum-Plasma Membrane Contact Sites Maintain Diacylglycerol Homeostasis during Abiotic Stress.” Plant Cell, vol. 33, no. 7, American Society of Plant Biologists, 2021, pp. 2431–53, doi:10.1093/plcell/koab122. short: N. Ruiz-Lopez, J. Pérez-Sancho, A. Esteban Del Valle, R. Haslam, S. Vanneste, R. Catalá, C. Perea-Resa, D. Van Damme, S. García-Hernández, A. Albert, J. Vallarino, J. Lin, J. Friml, A. Macho, J. Salinas, A. Rosado, J. Napier, V. Amorim-Silva, M. Botella, Plant Cell 33 (2021) 2431–2453. date_created: 2021-06-02T13:13:58Z date_published: 2021-07-01T00:00:00Z date_updated: 2023-08-08T13:54:32Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/plcell/koab122 ec_funded: 1 external_id: isi: - '000703938100026' pmid: - '33944955' file: - access_level: open_access checksum: 22d596678d00310d793611864a6d0fcd content_type: application/pdf creator: cchlebak date_created: 2021-10-14T13:36:38Z date_updated: 2021-10-14T13:36:38Z file_id: '10141' file_name: 2021_PlantCell_RuizLopez.pdf file_size: 2952028 relation: main_file success: 1 file_date_updated: 2021-10-14T13:36:38Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2431-2453 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 33 year: '2021' ... --- _id: '9657' abstract: - lang: eng text: To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that is fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia. article_processing_charge: No article_type: original author: - first_name: Z full_name: Gao, Z last_name: Gao - first_name: Z full_name: Chen, Z last_name: Chen - first_name: Y full_name: Cui, Y last_name: Cui - first_name: M full_name: Ke, M last_name: Ke - first_name: H full_name: Xu, H last_name: Xu - first_name: Q full_name: Xu, Q last_name: Xu - first_name: J full_name: Chen, J last_name: Chen - first_name: Y full_name: Li, Y last_name: Li - first_name: L full_name: Huang, L last_name: Huang - first_name: H full_name: Zhao, H last_name: Zhao - first_name: D full_name: Huang, D last_name: Huang - first_name: S full_name: Mai, S last_name: Mai - first_name: T full_name: Xu, T last_name: Xu - first_name: X full_name: Liu, X last_name: Liu - first_name: S full_name: Li, S last_name: Li - first_name: Y full_name: Guan, Y last_name: Guan - first_name: W full_name: Yang, W last_name: Yang - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Petrášek, J last_name: Petrášek - first_name: J full_name: Zhang, J last_name: Zhang - first_name: X full_name: Chen, X last_name: Chen citation: ama: Gao Z, Chen Z, Cui Y, et al. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. 2021;33(9):2981–3003. doi:10.1093/plcell/koab183 apa: Gao, Z., Chen, Z., Cui, Y., Ke, M., Xu, H., Xu, Q., … Chen, X. (2021). GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1093/plcell/koab183 chicago: Gao, Z, Z Chen, Y Cui, M Ke, H Xu, Q Xu, J Chen, et al. “GmPIN-Dependent Polar Auxin Transport Is Involved in Soybean Nodule Development.” Plant Cell. American Society of Plant Biologists, 2021. https://doi.org/10.1093/plcell/koab183. ieee: Z. Gao et al., “GmPIN-dependent polar auxin transport is involved in soybean nodule development,” Plant Cell, vol. 33, no. 9. American Society of Plant Biologists, pp. 2981–3003, 2021. ista: Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. 2021. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. 33(9), 2981–3003. mla: Gao, Z., et al. “GmPIN-Dependent Polar Auxin Transport Is Involved in Soybean Nodule Development.” Plant Cell, vol. 33, no. 9, American Society of Plant Biologists, 2021, pp. 2981–3003, doi:10.1093/plcell/koab183. short: Z. Gao, Z. Chen, Y. Cui, M. Ke, H. Xu, Q. Xu, J. Chen, Y. Li, L. Huang, H. Zhao, D. Huang, S. Mai, T. Xu, X. Liu, S. Li, Y. Guan, W. Yang, J. Friml, J. Petrášek, J. Zhang, X. Chen, Plant Cell 33 (2021) 2981–3003. date_created: 2021-07-14T15:32:43Z date_published: 2021-07-07T00:00:00Z date_updated: 2023-08-10T14:01:41Z day: '07' ddc: - '580' department: - _id: JiFr doi: 10.1093/plcell/koab183 external_id: isi: - '000702165300012' pmid: - '34240197' file: - access_level: open_access checksum: 6715712ec306c321f0204c817b7f8ae7 content_type: application/pdf creator: cziletti date_created: 2021-07-19T12:13:34Z date_updated: 2021-07-19T12:13:34Z file_id: '9691' file_name: 2021_PlantCell_Gao.pdf file_size: 10566921 relation: main_file success: 1 file_date_updated: 2021-07-19T12:13:34Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '9' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2981–3003 pmid: 1 publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: GmPIN-dependent polar auxin transport is involved in soybean nodule development tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 33 year: '2021' ... --- _id: '9656' abstract: - lang: eng text: Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment. acknowledgement: We are grateful to Lukas Fiedler, Alexandra Mally (IST Austria) and Dr. Bartel Vanholme (VIB, Ghent) for their critical comments on the manuscript. We apologize to those researchers whose great work was not cited. This work is supported by the European Research Council under the European Union’s Horizon 2020 research and innovation Programme (ERC grant agreement number 742985), and the Austrian Science Fund (FWF, grant number I 3630-B25) to JF. HH is supported by the China Scholarship Council (CSC scholarship, 201506870018) and a starting grant from Jiangxi Agriculture University (9232308314). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: SS full_name: Alotaibi, SS last_name: Alotaibi - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Han H, Adamowski M, Qi L, Alotaibi S, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. 2021;232(2):510-522. doi:10.1111/nph.17617 apa: Han, H., Adamowski, M., Qi, L., Alotaibi, S., & Friml, J. (2021). PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. Wiley. https://doi.org/10.1111/nph.17617 chicago: Han, Huibin, Maciek Adamowski, Linlin Qi, SS Alotaibi, and Jiří Friml. “PIN-Mediated Polar Auxin Transport Regulations in Plant Tropic Responses.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.17617. ieee: H. Han, M. Adamowski, L. Qi, S. Alotaibi, and J. Friml, “PIN-mediated polar auxin transport regulations in plant tropic responses,” New Phytologist, vol. 232, no. 2. Wiley, pp. 510–522, 2021. ista: Han H, Adamowski M, Qi L, Alotaibi S, Friml J. 2021. PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. 232(2), 510–522. mla: Han, Huibin, et al. “PIN-Mediated Polar Auxin Transport Regulations in Plant Tropic Responses.” New Phytologist, vol. 232, no. 2, Wiley, 2021, pp. 510–22, doi:10.1111/nph.17617. short: H. Han, M. Adamowski, L. Qi, S. Alotaibi, J. Friml, New Phytologist 232 (2021) 510–522. date_created: 2021-07-14T15:29:14Z date_published: 2021-10-01T00:00:00Z date_updated: 2023-08-10T14:02:41Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.17617 ec_funded: 1 external_id: isi: - '000680587100001' pmid: - '34254313' file: - access_level: open_access checksum: 6422a6eb329b52d96279daaee0fcf189 content_type: application/pdf creator: kschuh date_created: 2021-10-07T13:42:47Z date_updated: 2021-10-07T13:42:47Z file_id: '10105' file_name: 2021_NewPhytologist_Han.pdf file_size: 1939800 relation: main_file success: 1 file_date_updated: 2021-10-07T13:42:47Z has_accepted_license: '1' intvolume: ' 232' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 510-522 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: PIN-mediated polar auxin transport regulations in plant tropic responses tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 232 year: '2021' ... --- _id: '9909' abstract: - lang: eng text: Roots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling. Exogenously applied ABA suppressed AR formation at 0.25 µM or higher doses. AR formation was less sensitive to the synthetic ABA analog pyrabactin (PB). However, PB was a more potent inhibitor at concentrations above 1 µM, suggesting that it was more selective in triggering a root inhibition response. Analysis of a series of phosphonamide and phosphonate pyrabactin analogs suggested that adventitious root formation and lateral root branching are differentially regulated by ABA signaling. ABA biosynthesis and signaling mutants affirmed a general inhibitory role of ABA and point to PYL1 and PYL2 as candidate ABA receptors that regulate AR inhibition. acknowledgement: We thank S. Cutler (Riverside, USA) for providing the ABA biosynthesis mutants and ABA signaling mutants. article_number: '1141' article_processing_charge: Yes article_type: original author: - first_name: Yinwei full_name: Zeng, Yinwei last_name: Zeng - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Hoang Khai full_name: Trinh, Hoang Khai last_name: Trinh - first_name: Thomas full_name: Heugebaert, Thomas last_name: Heugebaert - first_name: Christian V. full_name: Stevens, Christian V. last_name: Stevens - first_name: Irene full_name: Garcia-Maquilon, Irene last_name: Garcia-Maquilon - first_name: Pedro L. full_name: Rodriguez, Pedro L. last_name: Rodriguez - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Danny full_name: Geelen, Danny last_name: Geelen citation: ama: Zeng Y, Verstraeten I, Trinh HK, et al. Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling. Genes. 2021;12(8). doi:10.3390/genes12081141 apa: Zeng, Y., Verstraeten, I., Trinh, H. K., Heugebaert, T., Stevens, C. V., Garcia-Maquilon, I., … Geelen, D. (2021). Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling. Genes. MDPI. https://doi.org/10.3390/genes12081141 chicago: Zeng, Yinwei, Inge Verstraeten, Hoang Khai Trinh, Thomas Heugebaert, Christian V. Stevens, Irene Garcia-Maquilon, Pedro L. Rodriguez, Steffen Vanneste, and Danny Geelen. “Arabidopsis Hypocotyl Adventitious Root Formation Is Suppressed by ABA Signaling.” Genes. MDPI, 2021. https://doi.org/10.3390/genes12081141. ieee: Y. Zeng et al., “Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling,” Genes, vol. 12, no. 8. MDPI, 2021. ista: Zeng Y, Verstraeten I, Trinh HK, Heugebaert T, Stevens CV, Garcia-Maquilon I, Rodriguez PL, Vanneste S, Geelen D. 2021. Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling. Genes. 12(8), 1141. mla: Zeng, Yinwei, et al. “Arabidopsis Hypocotyl Adventitious Root Formation Is Suppressed by ABA Signaling.” Genes, vol. 12, no. 8, 1141, MDPI, 2021, doi:10.3390/genes12081141. short: Y. Zeng, I. Verstraeten, H.K. Trinh, T. Heugebaert, C.V. Stevens, I. Garcia-Maquilon, P.L. Rodriguez, S. Vanneste, D. Geelen, Genes 12 (2021). date_created: 2021-08-15T22:01:28Z date_published: 2021-07-27T00:00:00Z date_updated: 2023-08-11T10:32:21Z day: '27' ddc: - '580' - '570' department: - _id: JiFr doi: 10.3390/genes12081141 external_id: isi: - '000690558000001' file: - access_level: open_access checksum: 3d99535618cf9a5b14d264408fa52e97 content_type: application/pdf creator: asandaue date_created: 2021-08-16T09:02:40Z date_updated: 2021-08-16T09:02:40Z file_id: '9919' file_name: 2021_Genes_Zeng.pdf file_size: 1340305 relation: main_file success: 1 file_date_updated: 2021-08-16T09:02:40Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '8' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Genes publication_identifier: eissn: - '20734425' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '10282' abstract: - lang: eng text: Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development. acknowledgement: We thank Claus Schwechheimer for the pin34 and pin347 seeds, Yuliia Mironova for technical assistance, Ksenia Timofeyenko and Dmitry Konovalov for help with the evolutional analysis, Konstantin Kutashev and Siarhei Dabravolski for assistance with FRET-FLIM, Huibin Han for advice with hypocotyl imaging, Karel Müller for the initial qRT-PCR on the tobacco cell lines, Stano Pekár for suggestions regarding the statistical analysis of the morphodynamic measurements, and Jozef Mravec, Dolf Weijers and Lindy Abas for their comments on the manuscript. This work was supported by the Czech Science Foundation (projects 16-26428S and 19-23773S to IK, MH and KRůžička, 19-18917S to JHumpolíčková and 18-26981S to JF), and the Ministry of Education, Youth and Sports of the Czech Republic (MEYS, CZ.02.1.01/0.0/0.0/16_019/0000738) to KRůžička and JHejátko. The imaging facilities of the Institute of Experimental Botany and CEITEC are supported by MEYS (LM2018129 – Czech BioImaging and CZ.02.1.01/0.0/0.0/16_013/0001775). The authors declare no competing interests. article_processing_charge: No article_type: original author: - first_name: Ivan full_name: Kashkan, Ivan last_name: Kashkan - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Katarzyna full_name: Retzer, Katarzyna last_name: Retzer - first_name: Jana full_name: Humpolíčková, Jana last_name: Humpolíčková - first_name: Aswathy full_name: Jayasree, Aswathy last_name: Jayasree - first_name: Roberta full_name: Filepová, Roberta last_name: Filepová - first_name: Zuzana full_name: Vondráková, Zuzana last_name: Vondráková - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 - first_name: Debbie full_name: Rombaut, Debbie last_name: Rombaut - first_name: Thomas B. full_name: Jacobs, Thomas B. last_name: Jacobs - first_name: Mikko J. full_name: Frilander, Mikko J. last_name: Frilander - first_name: Jan full_name: Hejátko, Jan last_name: Hejátko - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Kamil full_name: Růžička, Kamil last_name: Růžička citation: ama: Kashkan I, Hrtyan M, Retzer K, et al. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. New Phytologist. 2021;233:329-343. doi:10.1111/nph.17792 apa: Kashkan, I., Hrtyan, M., Retzer, K., Humpolíčková, J., Jayasree, A., Filepová, R., … Růžička, K. (2021). Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. New Phytologist. Wiley. https://doi.org/10.1111/nph.17792 chicago: Kashkan, Ivan, Mónika Hrtyan, Katarzyna Retzer, Jana Humpolíčková, Aswathy Jayasree, Roberta Filepová, Zuzana Vondráková, et al. “Mutually Opposing Activity of PIN7 Splicing Isoforms Is Required for Auxin-Mediated Tropic Responses in Arabidopsis Thaliana.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.17792. ieee: I. Kashkan et al., “Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana,” New Phytologist, vol. 233. Wiley, pp. 329–343, 2021. ista: Kashkan I, Hrtyan M, Retzer K, Humpolíčková J, Jayasree A, Filepová R, Vondráková Z, Simon S, Rombaut D, Jacobs TB, Frilander MJ, Hejátko J, Friml J, Petrášek J, Růžička K. 2021. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. New Phytologist. 233, 329–343. mla: Kashkan, Ivan, et al. “Mutually Opposing Activity of PIN7 Splicing Isoforms Is Required for Auxin-Mediated Tropic Responses in Arabidopsis Thaliana.” New Phytologist, vol. 233, Wiley, 2021, pp. 329–43, doi:10.1111/nph.17792. short: I. Kashkan, M. Hrtyan, K. Retzer, J. Humpolíčková, A. Jayasree, R. Filepová, Z. Vondráková, S. Simon, D. Rombaut, T.B. Jacobs, M.J. Frilander, J. Hejátko, J. Friml, J. Petrášek, K. Růžička, New Phytologist 233 (2021) 329–343. date_created: 2021-11-14T23:01:24Z date_published: 2021-11-05T00:00:00Z date_updated: 2023-08-14T11:46:43Z day: '05' department: - _id: JiFr doi: 10.1111/nph.17792 external_id: isi: - '000714678100001' pmid: - '34637542' intvolume: ' 233' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2020.05.02.074070v2 month: '11' oa: 1 oa_version: Preprint page: 329-343 pmid: 1 publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 233 year: '2021' ... --- _id: '10326' abstract: - lang: eng text: Strigolactones (SLs) are carotenoid-derived plant hormones that control shoot branching and communications between host plants and symbiotic fungi or root parasitic plants. Extensive studies have identified the key components participating in SL biosynthesis and signalling, whereas the catabolism or deactivation of endogenous SLs in planta remains largely unknown. Here, we report that the Arabidopsis carboxylesterase 15 (AtCXE15) and its orthologues function as efficient hydrolases of SLs. We show that overexpression of AtCXE15 promotes shoot branching by dampening SL-inhibited axillary bud outgrowth. We further demonstrate that AtCXE15 could bind and efficiently hydrolyse SLs both in vitro and in planta. We also provide evidence that AtCXE15 is capable of catalysing hydrolysis of diverse SL analogues and that such CXE15-dependent catabolism of SLs is evolutionarily conserved in seed plants. These results disclose a catalytic mechanism underlying homoeostatic regulation of SLs in plants, which also provides a rational approach to spatial-temporally manipulate the endogenous SLs and thus architecture of crops and ornamental plants. acknowledgement: We thank J. Li (Institute of Genetics and Developmental Biology, China) for providing the at14-1, atmax2-1, atmax3-9, atmax4-1, atmax1-1, kai2-2 (Col-0 background) mutants and B. Xu for providing the complementary DNA of P. patens. We are grateful to L. Wang for assistance with MST, B. Han for assistance with UPLC–MS, J. Li for assistance with confocal microscopy and B. Mikael and J. Zhang for their comments on the manuscript. This work was supported by grants from Strategic Priority Research Program of Chinese Academy of Sciences (Y.H., XDB27030102) and the National Natural Science Foundation of China (E.X., 31700253; Y.H., 31830055). article_processing_charge: No article_type: original author: - first_name: Enjun full_name: Xu, Enjun last_name: Xu - first_name: Liang full_name: Chai, Liang last_name: Chai - first_name: Shiqi full_name: Zhang, Shiqi last_name: Zhang - first_name: Ruixue full_name: Yu, Ruixue last_name: Yu - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Chongyi full_name: Xu, Chongyi last_name: Xu - first_name: Yuxin full_name: Hu, Yuxin last_name: Hu citation: ama: Xu E, Chai L, Zhang S, et al. Catabolism of strigolactones by a carboxylesterase. Nature Plants. 2021;7:1495–1504. doi:10.1038/s41477-021-01011-y apa: Xu, E., Chai, L., Zhang, S., Yu, R., Zhang, X., Xu, C., & Hu, Y. (2021). Catabolism of strigolactones by a carboxylesterase. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-021-01011-y chicago: Xu, Enjun, Liang Chai, Shiqi Zhang, Ruixue Yu, Xixi Zhang, Chongyi Xu, and Yuxin Hu. “Catabolism of Strigolactones by a Carboxylesterase.” Nature Plants. Springer Nature, 2021. https://doi.org/10.1038/s41477-021-01011-y. ieee: E. Xu et al., “Catabolism of strigolactones by a carboxylesterase,” Nature Plants, vol. 7. Springer Nature, pp. 1495–1504, 2021. ista: Xu E, Chai L, Zhang S, Yu R, Zhang X, Xu C, Hu Y. 2021. Catabolism of strigolactones by a carboxylesterase. Nature Plants. 7, 1495–1504. mla: Xu, Enjun, et al. “Catabolism of Strigolactones by a Carboxylesterase.” Nature Plants, vol. 7, Springer Nature, 2021, pp. 1495–1504, doi:10.1038/s41477-021-01011-y. short: E. Xu, L. Chai, S. Zhang, R. Yu, X. Zhang, C. Xu, Y. Hu, Nature Plants 7 (2021) 1495–1504. date_created: 2021-11-21T23:01:30Z date_published: 2021-11-11T00:00:00Z date_updated: 2023-08-14T11:54:02Z day: '11' department: - _id: JiFr doi: 10.1038/s41477-021-01011-y external_id: isi: - '000717408000002' pmid: - '34764442' intvolume: ' 7' isi: 1 language: - iso: eng month: '11' oa_version: None page: '1495–1504 ' pmid: 1 publication: Nature Plants publication_identifier: eissn: - 2055-0278 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Catabolism of strigolactones by a carboxylesterase type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2021' ... --- _id: '9368' abstract: - lang: eng text: The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3'-Phosphoinositide-Dependent Protein Kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.2 in Arabidopsis thaliana. Notably, the severe growth attenuation of pdk1.1 pdk1.2 was rescued by sop21 (suppressor of pdk1.1 pdk1.2), which harbours a loss-of-function mutation in PELOTA1 (PEL1). PEL1 is a homologue of mammalian PELOTA and yeast (Saccharomyces cerevisiae) DOM34p, which each form a heterodimeric complex with the GTPase HBS1 (HSP70 SUBFAMILY B SUPPRESSOR1, also called SUPERKILLER PROTEIN7, SKI7), a protein that is responsible for ribosomal rescue and thereby assures the quality and fidelity of mRNA molecules during translation. Genetic analysis further revealed that a dysfunctional PEL1-HBS1 complex failed to degrade the T-DNA-disrupted PDK1 transcripts, which were truncated but functional, and thus rescued the growth and developmental defects of pdk1.1 pdk1.2. Our studies demonstrated the functionality of a homologous PELOTA-HBS1 complex and identified its essential regulatory role in plants, providing insights into the mechanism of mRNA quality control. acknowledgement: 'We gratefully acknowledge the Arabidopsis Biological Resource Centre (ABRC) for providing T-DNA insertional mutants, and Prof. Remko Offringa for sharing published seeds. We thank Yuchuan Liu (Shanghai OE Biotech Co., Ltd) for help with proteomics data analysis, Xixi Zhang (IST Austria) for providing the pDONR-P4P1r-mCherry plasmid, and Yao Xiao (Technical University of Munich), Alexander Johnson (IST Austria) and Hana Semeradova (IST Austria) for helpful discussions. The study was supported by National Natural Science Foundation of China (NSFC, 31721001, 91954206, to H.-W. X.), “Ten-Thousand Talent Program” (to H.-W. X.) and Collaborative Innovation Center of Crop Stress Biology, Henan Province, and Austrian Science Fund (FWF): I 3630-B25 (to J. F.). S.T. was funded by a European Molecular Biology Organization (EMBO) long-term postdoctoral fellowship (ALTF 723-2015).' article_processing_charge: No article_type: original author: - first_name: W full_name: Kong, W last_name: Kong - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Q full_name: Zhao, Q last_name: Zhao - first_name: DL full_name: Lin, DL last_name: Lin - first_name: ZH full_name: Xu, ZH last_name: Xu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: HW full_name: Xue, HW last_name: Xue citation: ama: Kong W, Tan S, Zhao Q, et al. mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth. Plant Physiology. 2021;186(4):2003-2020. doi:10.1093/plphys/kiab199 apa: Kong, W., Tan, S., Zhao, Q., Lin, D., Xu, Z., Friml, J., & Xue, H. (2021). mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1093/plphys/kiab199 chicago: Kong, W, Shutang Tan, Q Zhao, DL Lin, ZH Xu, Jiří Friml, and HW Xue. “MRNA Surveillance Complex PELOTA-HBS1 Eegulates Phosphoinositide-Sependent Protein Kinase1 and Plant Growth.” Plant Physiology. American Society of Plant Biologists, 2021. https://doi.org/10.1093/plphys/kiab199. ieee: W. Kong et al., “mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth,” Plant Physiology, vol. 186, no. 4. American Society of Plant Biologists, pp. 2003–2020, 2021. ista: Kong W, Tan S, Zhao Q, Lin D, Xu Z, Friml J, Xue H. 2021. mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth. Plant Physiology. 186(4), 2003–2020. mla: Kong, W., et al. “MRNA Surveillance Complex PELOTA-HBS1 Eegulates Phosphoinositide-Sependent Protein Kinase1 and Plant Growth.” Plant Physiology, vol. 186, no. 4, American Society of Plant Biologists, 2021, pp. 2003–20, doi:10.1093/plphys/kiab199. short: W. Kong, S. Tan, Q. Zhao, D. Lin, Z. Xu, J. Friml, H. Xue, Plant Physiology 186 (2021) 2003–2020. date_created: 2021-05-03T13:28:20Z date_published: 2021-04-30T00:00:00Z date_updated: 2023-09-05T12:20:27Z day: '30' department: - _id: JiFr doi: 10.1093/plphys/kiab199 external_id: isi: - '000703922000025' pmid: - '33930167' intvolume: ' 186' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/plphys/kiab199 month: '04' oa: 1 oa_version: Published Version page: 2003-2020 pmid: 1 project: - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 186 year: '2021' ... --- _id: '9290' abstract: - lang: eng text: Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development. acknowledged_ssus: - _id: Bio acknowledgement: We acknowledge Ben Scheres, Christian Luschnig, and Claus Schwechheimer for sharing published material. We thank Monika Hrtyan and Dorota Jaworska at IST Austria and Gerda Lamers and Ward de Winter at IBL Netherlands for technical assistance; Corinna Hartinger, Jakub Hajný, Lesia Rodriguez, Mingyue Li, and Lindy Abas for experimental support; and the Bioimaging Facility at IST Austria and the Bioimaging Core at VIB for imaging support. We are grateful to Christian Luschnig, Lindy Abas, and Roman Pleskot for valuable discussions. We also acknowledge the EMBO for supporting M.G. with a long-term fellowship ( ALTF 1005-2019 ) during the finalization and revision of this manuscript in the laboratory of B.D.R., and we thank R. Pierik for allowing K.V.G. to work on this manuscript during a postdoc in his laboratory at Utrecht University. This work was supported by grants from the European Research Council under the European Union’s Seventh Framework Programme (ERC grant agreements 742985 to J.F., 714055 to B.D.R., and 803048 to M.F.), the Austrian Science Fund (FWF; I 3630-B25 to J.F.), Chemical Sciences (partly) financed by the Dutch Research Council (NWO-CW TOP 700.58.301 to R.O.), the Dutch Research Council (NWO-VICI 865.17.002 to R. Pierik), Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (KAKENHI grant 17K17595 to S.N.), the Ministry of Education, Youth and Sports of the Czech Republic (MŠMT project NPUI-LO1417 ), and a China Scholarship Council (to X.W.). article_processing_charge: No article_type: original author: - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: K full_name: Van Gelderen, K last_name: Van Gelderen - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: S full_name: Naramoto, S last_name: Naramoto - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: David full_name: Domjan, David id: C684CD7A-257E-11EA-9B6F-D8588B4F947F last_name: Domjan orcid: 0000-0003-2267-106X - first_name: L full_name: Vcelarova, L last_name: Vcelarova - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: E full_name: de Koning, E last_name: de Koning - first_name: M full_name: van Dop, M last_name: van Dop - first_name: E full_name: Rademacher, E last_name: Rademacher - first_name: S full_name: Janson, S last_name: Janson - first_name: X full_name: Wei, X last_name: Wei - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: B full_name: De Rybel, B last_name: De Rybel - first_name: R full_name: Offringa, R last_name: Offringa - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Glanc M, Van Gelderen K, Hörmayer L, et al. AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Current Biology. 2021;31(9):1918-1930. doi:10.1016/j.cub.2021.02.028 apa: Glanc, M., Van Gelderen, K., Hörmayer, L., Tan, S., Naramoto, S., Zhang, X., … Friml, J. (2021). AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2021.02.028 chicago: Glanc, Matous, K Van Gelderen, Lukas Hörmayer, Shutang Tan, S Naramoto, Xixi Zhang, David Domjan, et al. “AGC Kinases and MAB4/MEL Proteins Maintain PIN Polarity by Limiting Lateral Diffusion in Plant Cells.” Current Biology. Elsevier, 2021. https://doi.org/10.1016/j.cub.2021.02.028. ieee: M. Glanc et al., “AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells,” Current Biology, vol. 31, no. 9. Elsevier, pp. 1918–1930, 2021. ista: Glanc M, Van Gelderen K, Hörmayer L, Tan S, Naramoto S, Zhang X, Domjan D, Vcelarova L, Hauschild R, Johnson AJ, de Koning E, van Dop M, Rademacher E, Janson S, Wei X, Molnar G, Fendrych M, De Rybel B, Offringa R, Friml J. 2021. AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Current Biology. 31(9), 1918–1930. mla: Glanc, Matous, et al. “AGC Kinases and MAB4/MEL Proteins Maintain PIN Polarity by Limiting Lateral Diffusion in Plant Cells.” Current Biology, vol. 31, no. 9, Elsevier, 2021, pp. 1918–30, doi:10.1016/j.cub.2021.02.028. short: M. Glanc, K. Van Gelderen, L. Hörmayer, S. Tan, S. Naramoto, X. Zhang, D. Domjan, L. Vcelarova, R. Hauschild, A.J. Johnson, E. de Koning, M. van Dop, E. Rademacher, S. Janson, X. Wei, G. Molnar, M. Fendrych, B. De Rybel, R. Offringa, J. Friml, Current Biology 31 (2021) 1918–1930. date_created: 2021-03-26T12:09:33Z date_published: 2021-03-10T00:00:00Z date_updated: 2023-09-05T13:03:34Z day: '10' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.cub.2021.02.028 ec_funded: 1 external_id: isi: - '000653077800004' pmid: - '33705718' file: - access_level: open_access checksum: b1723040ecfd8c81194185472eb62546 content_type: application/pdf creator: dernst date_created: 2021-04-01T10:53:42Z date_updated: 2021-04-01T10:53:42Z file_id: '9303' file_name: 2021_CurrentBiology_Glanc.pdf file_size: 4324371 relation: main_file success: 1 file_date_updated: 2021-04-01T10:53:42Z has_accepted_license: '1' intvolume: ' 31' isi: 1 issue: '9' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 1918-1930 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Current Biology publication_identifier: eissn: - 1879-0445 issn: - 0960-9822 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 31 year: '2021' ... --- _id: '8824' abstract: - lang: eng text: Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1, 2, 3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1, 2, 3, 4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7, 8, 9, 10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface. acknowledgement: "We thank the SiCE group for discussions and comments; S. Yalovsky, B. Scheres, and the NASC/ABRC collection for providing transgenic Arabidopsis lines and plasmids; L. Kalmbach and M. Barberon for the gift of pLOK180_pFR7m34GW; A. Lacroix, J. Berger, and P. Bolland for plant care; and M. Fendrych for help with microfluidics in the J.F. lab. We acknowledge\r\nthe contribution of the SFR Biosciences (UMS3444/CNRS, US8/Inser m, ENS de Lyon, UCBL) facilities: C. Lionet, E. Chatre, and J. Brocard at LBIPLATIM-MICROSCOPY for assistance with imaging, and V. GuegenChaignon and A. Page at the Protein Science Facility (PSF) for assistance with protein purification and mass spectrometry. Y.J. was funded by ERC\r\ngrant 3363360-APPL under FP/2007–2013. Y.J. and Z.L.N. were funded by an ANR- and NSF-supported ERA-CAPS project (SICOPID: ANR-17-CAPS0003-01/NSF PGRP IOS-1841917). A.I.C.-D. is funded by an ERC consolidator grant (ERC-2015-CoG–683163) and BIO2016-78955 grant from the Spanish Ministry of Economy and Competitiveness. Exchanges between the Y.J. and T.B. laboratories were funded by Tournesol grant 35656NB. B.K.M. was\r\nfunded by the Omics@vib Marie Curie COFUND and Research Foundation Flanders for a postdoctoral fellowship." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: MM full_name: Marquès-Bueno, MM last_name: Marquès-Bueno - first_name: L full_name: Armengot, L last_name: Armengot - first_name: LC full_name: Noack, LC last_name: Noack - first_name: J full_name: Bareille, J last_name: Bareille - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: MP full_name: Platre, MP last_name: Platre - first_name: V full_name: Bayle, V last_name: Bayle - first_name: M full_name: Liu, M last_name: Liu - first_name: D full_name: Opdenacker, D last_name: Opdenacker - first_name: S full_name: Vanneste, S last_name: Vanneste - first_name: BK full_name: Möller, BK last_name: Möller - first_name: ZL full_name: Nimchuk, ZL last_name: Nimchuk - first_name: T full_name: Beeckman, T last_name: Beeckman - first_name: AI full_name: Caño-Delgado, AI last_name: Caño-Delgado - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Y full_name: Jaillais, Y last_name: Jaillais citation: ama: Marquès-Bueno M, Armengot L, Noack L, et al. Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism. Current Biology. 2021;31(1). doi:10.1016/j.cub.2020.10.011 apa: Marquès-Bueno, M., Armengot, L., Noack, L., Bareille, J., Rodriguez Solovey, L., Platre, M., … Jaillais, Y. (2021). Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism. Current Biology. Elsevier. https://doi.org/10.1016/j.cub.2020.10.011 chicago: Marquès-Bueno, MM, L Armengot, LC Noack, J Bareille, Lesia Rodriguez Solovey, MP Platre, V Bayle, et al. “Auxin-Regulated Reversible Inhibition of TMK1 Signaling by MAKR2 Modulates the Dynamics of Root Gravitropism.” Current Biology. Elsevier, 2021. https://doi.org/10.1016/j.cub.2020.10.011. ieee: M. Marquès-Bueno et al., “Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism,” Current Biology, vol. 31, no. 1. Elsevier, 2021. ista: Marquès-Bueno M, Armengot L, Noack L, Bareille J, Rodriguez Solovey L, Platre M, Bayle V, Liu M, Opdenacker D, Vanneste S, Möller B, Nimchuk Z, Beeckman T, Caño-Delgado A, Friml J, Jaillais Y. 2021. Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism. Current Biology. 31(1). mla: Marquès-Bueno, MM, et al. “Auxin-Regulated Reversible Inhibition of TMK1 Signaling by MAKR2 Modulates the Dynamics of Root Gravitropism.” Current Biology, vol. 31, no. 1, Elsevier, 2021, doi:10.1016/j.cub.2020.10.011. short: M. Marquès-Bueno, L. Armengot, L. Noack, J. Bareille, L. Rodriguez Solovey, M. Platre, V. Bayle, M. Liu, D. Opdenacker, S. Vanneste, B. Möller, Z. Nimchuk, T. Beeckman, A. Caño-Delgado, J. Friml, Y. Jaillais, Current Biology 31 (2021). date_created: 2020-12-01T13:39:46Z date_published: 2021-01-11T00:00:00Z date_updated: 2023-09-05T13:03:15Z day: '11' ddc: - '570' department: - _id: JiFr doi: 10.1016/j.cub.2020.10.011 external_id: isi: - '000614361000039' pmid: - '33157019' file: - access_level: open_access checksum: 30b3393d841fb2b1e2b22fb42b5c8fff content_type: application/pdf creator: dernst date_created: 2021-02-04T11:37:50Z date_updated: 2021-02-04T11:37:50Z file_id: '9090' file_name: 2021_CurrentBiology_MarquesBueno.pdf file_size: 3458646 relation: main_file success: 1 file_date_updated: 2021-02-04T11:37:50Z has_accepted_license: '1' intvolume: ' 31' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 publication: Current Biology publication_identifier: eissn: - 1879-0445 issn: - 0960-9822 publication_status: published publisher: Elsevier quality_controlled: '1' status: public title: Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 31 year: '2021' ... --- _id: '9288' abstract: - lang: eng text: "• The phenylpropanoid pathway serves a central role in plant metabolism, providing numerous compounds involved in diverse physiological processes. Most carbon entering the pathway is incorporated into lignin. Although several phenylpropanoid pathway mutants show seedling growth arrest, the role for lignin in seedling growth and development is unexplored.\r\n• We use complementary pharmacological and genetic approaches to block CINNAMATE‐4‐HYDROXYLASE (C4H) functionality in Arabidopsis seedlings and a set of molecular and biochemical techniques to investigate the underlying phenotypes.\r\n• Blocking C4H resulted in reduced lateral rooting and increased adventitious rooting apically in the hypocotyl. These phenotypes coincided with an inhibition in auxin transport. The upstream accumulation in cis‐cinnamic acid was found to likely cause polar auxin transport inhibition. Conversely, a downstream depletion in lignin perturbed phloem‐mediated auxin transport. Restoring lignin deposition effectively reestablished phloem transport and, accordingly, auxin homeostasis.\r\n• Our results show that the accumulation of bioactive intermediates and depletion in lignin jointly cause the aberrant phenotypes upon blocking C4H, and demonstrate that proper deposition of lignin is essential for the establishment of auxin distribution in seedlings. Our data position the phenylpropanoid pathway and lignin in a new physiological framework, consolidating their importance in plant growth and development." article_processing_charge: No article_type: original author: - first_name: I full_name: El Houari, I last_name: El Houari - first_name: C full_name: Van Beirs, C last_name: Van Beirs - first_name: HE full_name: Arents, HE last_name: Arents - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: A full_name: Chanoca, A last_name: Chanoca - first_name: D full_name: Opdenacker, D last_name: Opdenacker - first_name: J full_name: Pollier, J last_name: Pollier - first_name: V full_name: Storme, V last_name: Storme - first_name: W full_name: Steenackers, W last_name: Steenackers - first_name: M full_name: Quareshy, M last_name: Quareshy - first_name: R full_name: Napier, R last_name: Napier - first_name: T full_name: Beeckman, T last_name: Beeckman - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: B full_name: De Rybel, B last_name: De Rybel - first_name: W full_name: Boerjan, W last_name: Boerjan - first_name: B full_name: Vanholme, B last_name: Vanholme citation: ama: El Houari I, Van Beirs C, Arents H, et al. Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport. New Phytologist. 2021;230(6):2275-2291. doi:10.1111/nph.17349 apa: El Houari, I., Van Beirs, C., Arents, H., Han, H., Chanoca, A., Opdenacker, D., … Vanholme, B. (2021). Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport. New Phytologist. Wiley. https://doi.org/10.1111/nph.17349 chicago: El Houari, I, C Van Beirs, HE Arents, Huibin Han, A Chanoca, D Opdenacker, J Pollier, et al. “Seedling Developmental Defects upon Blocking CINNAMATE-4-HYDROXYLASE Are Caused by Perturbations in Auxin Transport.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.17349. ieee: I. El Houari et al., “Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport,” New Phytologist, vol. 230, no. 6. Wiley, pp. 2275–2291, 2021. ista: El Houari I, Van Beirs C, Arents H, Han H, Chanoca A, Opdenacker D, Pollier J, Storme V, Steenackers W, Quareshy M, Napier R, Beeckman T, Friml J, De Rybel B, Boerjan W, Vanholme B. 2021. Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport. New Phytologist. 230(6), 2275–2291. mla: El Houari, I., et al. “Seedling Developmental Defects upon Blocking CINNAMATE-4-HYDROXYLASE Are Caused by Perturbations in Auxin Transport.” New Phytologist, vol. 230, no. 6, Wiley, 2021, pp. 2275–91, doi:10.1111/nph.17349. short: I. El Houari, C. Van Beirs, H. Arents, H. Han, A. Chanoca, D. Opdenacker, J. Pollier, V. Storme, W. Steenackers, M. Quareshy, R. Napier, T. Beeckman, J. Friml, B. De Rybel, W. Boerjan, B. Vanholme, New Phytologist 230 (2021) 2275–2291. date_created: 2021-03-26T12:09:01Z date_published: 2021-03-17T00:00:00Z date_updated: 2023-09-05T15:46:55Z day: '17' department: - _id: JiFr doi: 10.1111/nph.17349 external_id: isi: - '000639552400001' pmid: - '33728703' intvolume: ' 230' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://biblio.ugent.be/publication/8703799/file/8703800.pdf month: '03' oa: 1 oa_version: Published Version page: 2275-2291 pmid: 1 publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 230 year: '2021' ... --- _id: '8608' abstract: - lang: eng text: To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments. acknowledgement: This work was supported by the National Key Research andDevelopment Programme of China (2017YFA0506100), theNational Natural Science Foundation of China (31870170 and31701168), and the Fok Ying Tung Education Foundation(161027) to XC; NTU startup grant (M4081533) and NIM/01/2016 (NTU, Singapore) to YM. We thank Lei Shi andZhongquan Lin for microscopy assistance. article_processing_charge: No article_type: original author: - first_name: M full_name: Ke, M last_name: Ke - first_name: Z full_name: Ma, Z last_name: Ma - first_name: D full_name: Wang, D last_name: Wang - first_name: Y full_name: Sun, Y last_name: Sun - first_name: C full_name: Wen, C last_name: Wen - first_name: D full_name: Huang, D last_name: Huang - first_name: Z full_name: Chen, Z last_name: Chen - first_name: L full_name: Yang, L last_name: Yang - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: R full_name: Li, R last_name: Li - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Y full_name: Miao, Y last_name: Miao - first_name: X full_name: Chen, X last_name: Chen citation: ama: Ke M, Ma Z, Wang D, et al. Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana. New Phytologist. 2021;229(2):963-978. doi:10.1111/nph.16915 apa: Ke, M., Ma, Z., Wang, D., Sun, Y., Wen, C., Huang, D., … Chen, X. (2021). Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana. New Phytologist. Wiley. https://doi.org/10.1111/nph.16915 chicago: Ke, M, Z Ma, D Wang, Y Sun, C Wen, D Huang, Z Chen, et al. “Salicylic Acid Regulates PIN2 Auxin Transporter Hyper-Clustering and Root Gravitropic Growth via Remorin-Dependent Lipid Nanodomain Organization in Arabidopsis Thaliana.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.16915. ieee: M. Ke et al., “Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana,” New Phytologist, vol. 229, no. 2. Wiley, pp. 963–978, 2021. ista: Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R, Friml J, Miao Y, Chen X. 2021. Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana. New Phytologist. 229(2), 963–978. mla: Ke, M., et al. “Salicylic Acid Regulates PIN2 Auxin Transporter Hyper-Clustering and Root Gravitropic Growth via Remorin-Dependent Lipid Nanodomain Organization in Arabidopsis Thaliana.” New Phytologist, vol. 229, no. 2, Wiley, 2021, pp. 963–78, doi:10.1111/nph.16915. short: M. Ke, Z. Ma, D. Wang, Y. Sun, C. Wen, D. Huang, Z. Chen, L. Yang, S. Tan, R. Li, J. Friml, Y. Miao, X. Chen, New Phytologist 229 (2021) 963–978. date_created: 2020-10-05T12:45:36Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-09-05T16:06:24Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.16915 external_id: isi: - '000573568000001' pmid: - '32901934' file: - access_level: open_access checksum: d36b6a8c6fafab66264e0d27114dae63 content_type: application/pdf creator: dernst date_created: 2021-02-04T09:53:16Z date_updated: 2021-02-04T09:53:16Z file_id: '9085' file_name: 2021_NewPhytologist_Ke.pdf file_size: 3674502 relation: main_file success: 1 file_date_updated: 2021-02-04T09:53:16Z has_accepted_license: '1' intvolume: ' 229' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 963-978 pmid: 1 publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 229 year: '2021' ... --- _id: '9298' abstract: - lang: eng text: 'In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field. ' acknowledgement: This work was supported by the National Institute of General Medical Sciences [GM131919]. Due to space and other limitations, it is not possible to include all other sources of financial support. article_processing_charge: No article_type: review author: - first_name: Daniel J. full_name: Klionsky, Daniel J. last_name: Klionsky - first_name: Amal Kamal full_name: Abdel-Aziz, Amal Kamal last_name: Abdel-Aziz - first_name: Sara full_name: Abdelfatah, Sara last_name: Abdelfatah - first_name: Mahmoud full_name: Abdellatif, Mahmoud last_name: Abdellatif - first_name: Asghar full_name: Abdoli, Asghar last_name: Abdoli - first_name: Steffen full_name: Abel, Steffen last_name: Abel - first_name: Hagai full_name: Abeliovich, Hagai last_name: Abeliovich - first_name: Marie H. full_name: Abildgaard, Marie H. last_name: Abildgaard - first_name: Yakubu Princely full_name: Abudu, Yakubu Princely last_name: Abudu - first_name: Abraham full_name: Acevedo-Arozena, Abraham last_name: Acevedo-Arozena - first_name: Iannis E. full_name: Adamopoulos, Iannis E. last_name: Adamopoulos - first_name: Khosrow full_name: Adeli, Khosrow last_name: Adeli - first_name: Timon E. full_name: Adolph, Timon E. last_name: Adolph - first_name: Annagrazia full_name: Adornetto, Annagrazia last_name: Adornetto - first_name: Elma full_name: Aflaki, Elma last_name: Aflaki - first_name: Galila full_name: Agam, Galila last_name: Agam - first_name: Anupam full_name: Agarwal, Anupam last_name: Agarwal - first_name: Bharat B. full_name: Aggarwal, Bharat B. last_name: Aggarwal - first_name: Maria full_name: Agnello, Maria last_name: Agnello - first_name: Patrizia full_name: Agostinis, Patrizia last_name: Agostinis - first_name: Javed N. full_name: Agrewala, Javed N. last_name: Agrewala - first_name: Alexander full_name: Agrotis, Alexander last_name: Agrotis - first_name: Patricia V. full_name: Aguilar, Patricia V. last_name: Aguilar - first_name: S. Tariq full_name: Ahmad, S. Tariq last_name: Ahmad - first_name: Zubair M. full_name: Ahmed, Zubair M. last_name: Ahmed - first_name: Ulises full_name: Ahumada-Castro, Ulises last_name: Ahumada-Castro - first_name: Sonja full_name: Aits, Sonja last_name: Aits - first_name: Shu full_name: Aizawa, Shu last_name: Aizawa - first_name: Yunus full_name: Akkoc, Yunus last_name: Akkoc - first_name: Tonia full_name: Akoumianaki, Tonia last_name: Akoumianaki - first_name: Hafize Aysin full_name: Akpinar, Hafize Aysin last_name: Akpinar - first_name: Ahmed M. full_name: Al-Abd, Ahmed M. last_name: Al-Abd - first_name: Lina full_name: Al-Akra, Lina last_name: Al-Akra - first_name: Abeer full_name: Al-Gharaibeh, Abeer last_name: Al-Gharaibeh - first_name: Moulay A. full_name: Alaoui-Jamali, Moulay A. last_name: Alaoui-Jamali - first_name: Simon full_name: Alberti, Simon last_name: Alberti - first_name: Elísabet full_name: Alcocer-Gómez, Elísabet last_name: Alcocer-Gómez - first_name: Cristiano full_name: Alessandri, Cristiano last_name: Alessandri - first_name: Muhammad full_name: Ali, Muhammad last_name: Ali - first_name: M. Abdul full_name: Alim Al-Bari, M. Abdul last_name: Alim Al-Bari - first_name: Saeb full_name: Aliwaini, Saeb last_name: Aliwaini - first_name: Javad full_name: Alizadeh, Javad last_name: Alizadeh - first_name: Eugènia full_name: Almacellas, Eugènia last_name: Almacellas - first_name: Alexandru full_name: Almasan, Alexandru last_name: Almasan - first_name: Alicia full_name: Alonso, Alicia last_name: Alonso - first_name: Guillermo D. full_name: Alonso, Guillermo D. last_name: Alonso - first_name: Nihal full_name: Altan-Bonnet, Nihal last_name: Altan-Bonnet - first_name: Dario C. full_name: Altieri, Dario C. last_name: Altieri - first_name: Élida M.C. full_name: Álvarez, Élida M.C. last_name: Álvarez - first_name: Sara full_name: Alves, Sara last_name: Alves - first_name: Cristine full_name: Alves Da Costa, Cristine last_name: Alves Da Costa - first_name: Mazen M. full_name: Alzaharna, Mazen M. last_name: Alzaharna - first_name: Marialaura full_name: Amadio, Marialaura last_name: Amadio - first_name: Consuelo full_name: Amantini, Consuelo last_name: Amantini - first_name: Cristina full_name: Amaral, Cristina last_name: Amaral - first_name: Susanna full_name: Ambrosio, Susanna last_name: Ambrosio - first_name: Amal O. full_name: Amer, Amal O. last_name: Amer - first_name: Veena full_name: Ammanathan, Veena last_name: Ammanathan - first_name: Zhenyi full_name: An, Zhenyi last_name: An - first_name: Stig U. full_name: Andersen, Stig U. last_name: Andersen - first_name: Shaida A. full_name: Andrabi, Shaida A. last_name: Andrabi - first_name: Magaiver full_name: Andrade-Silva, Magaiver last_name: Andrade-Silva - first_name: Allen M. full_name: Andres, Allen M. last_name: Andres - first_name: Sabrina full_name: Angelini, Sabrina last_name: Angelini - first_name: David full_name: Ann, David last_name: Ann - first_name: Uche C. full_name: Anozie, Uche C. last_name: Anozie - first_name: Mohammad Y. full_name: Ansari, Mohammad Y. last_name: Ansari - first_name: Pedro full_name: Antas, Pedro last_name: Antas - first_name: Adam full_name: Antebi, Adam last_name: Antebi - first_name: Zuriñe full_name: Antón, Zuriñe last_name: Antón - first_name: Tahira full_name: Anwar, Tahira last_name: Anwar - first_name: Lionel full_name: Apetoh, Lionel last_name: Apetoh - first_name: Nadezda full_name: Apostolova, Nadezda last_name: Apostolova - first_name: Toshiyuki full_name: Araki, Toshiyuki last_name: Araki - first_name: Yasuhiro full_name: Araki, Yasuhiro last_name: Araki - first_name: Kohei full_name: Arasaki, Kohei last_name: Arasaki - first_name: Wagner L. full_name: Araújo, Wagner L. last_name: Araújo - first_name: Jun full_name: Araya, Jun last_name: Araya - first_name: Catherine full_name: Arden, Catherine last_name: Arden - first_name: Maria Angeles full_name: Arévalo, Maria Angeles last_name: Arévalo - first_name: Sandro full_name: Arguelles, Sandro last_name: Arguelles - first_name: Esperanza full_name: Arias, Esperanza last_name: Arias - first_name: Jyothi full_name: Arikkath, Jyothi last_name: Arikkath - first_name: Hirokazu full_name: Arimoto, Hirokazu last_name: Arimoto - first_name: Aileen R. full_name: Ariosa, Aileen R. last_name: Ariosa - first_name: Darius full_name: Armstrong-James, Darius last_name: Armstrong-James - first_name: Laetitia full_name: Arnauné-Pelloquin, Laetitia last_name: Arnauné-Pelloquin - first_name: Angeles full_name: Aroca, Angeles last_name: Aroca - first_name: Daniela S. full_name: Arroyo, Daniela S. last_name: Arroyo - first_name: Ivica full_name: Arsov, Ivica last_name: Arsov - first_name: Rubén full_name: Artero, Rubén last_name: Artero - first_name: Dalia Maria Lucia full_name: Asaro, Dalia Maria Lucia last_name: Asaro - first_name: Michael full_name: Aschner, Michael last_name: Aschner - first_name: Milad full_name: Ashrafizadeh, Milad last_name: Ashrafizadeh - first_name: Osnat full_name: Ashur-Fabian, Osnat last_name: Ashur-Fabian - first_name: Atanas G. full_name: Atanasov, Atanas G. last_name: Atanasov - first_name: Alicia K. full_name: Au, Alicia K. last_name: Au - first_name: Patrick full_name: Auberger, Patrick last_name: Auberger - first_name: Holger W. full_name: Auner, Holger W. last_name: Auner - first_name: Laure full_name: Aurelian, Laure last_name: Aurelian - first_name: Riccardo full_name: Autelli, Riccardo last_name: Autelli - first_name: Laura full_name: Avagliano, Laura last_name: Avagliano - first_name: Yenniffer full_name: Ávalos, Yenniffer last_name: Ávalos - first_name: Sanja full_name: Aveic, Sanja last_name: Aveic - first_name: Célia Alexandra full_name: Aveleira, Célia Alexandra last_name: Aveleira - first_name: Tamar full_name: Avin-Wittenberg, Tamar last_name: Avin-Wittenberg - first_name: Yucel full_name: Aydin, Yucel last_name: Aydin - first_name: Scott full_name: Ayton, Scott last_name: Ayton - first_name: Srinivas full_name: Ayyadevara, Srinivas last_name: Ayyadevara - first_name: Maria full_name: Azzopardi, Maria last_name: Azzopardi - first_name: Misuzu full_name: Baba, Misuzu last_name: Baba - first_name: Jonathan M. full_name: Backer, Jonathan M. last_name: Backer - first_name: Steven K. full_name: Backues, Steven K. last_name: Backues - first_name: Dong Hun full_name: Bae, Dong Hun last_name: Bae - first_name: Ok Nam full_name: Bae, Ok Nam last_name: Bae - first_name: Soo Han full_name: Bae, Soo Han last_name: Bae - first_name: Eric H. full_name: Baehrecke, Eric H. last_name: Baehrecke - first_name: Ahruem full_name: Baek, Ahruem last_name: Baek - first_name: Seung Hoon full_name: Baek, Seung Hoon last_name: Baek - first_name: Sung Hee full_name: Baek, Sung Hee last_name: Baek - first_name: Giacinto full_name: Bagetta, Giacinto last_name: Bagetta - first_name: Agnieszka full_name: Bagniewska-Zadworna, Agnieszka last_name: Bagniewska-Zadworna - first_name: Hua full_name: Bai, Hua last_name: Bai - first_name: Jie full_name: Bai, Jie last_name: Bai - first_name: Xiyuan full_name: Bai, Xiyuan last_name: Bai - first_name: Yidong full_name: Bai, Yidong last_name: Bai - first_name: Nandadulal full_name: Bairagi, Nandadulal last_name: Bairagi - first_name: Shounak full_name: Baksi, Shounak last_name: Baksi - first_name: Teresa full_name: Balbi, Teresa last_name: Balbi - first_name: Cosima T. full_name: Baldari, Cosima T. last_name: Baldari - first_name: Walter full_name: Balduini, Walter last_name: Balduini - first_name: Andrea full_name: Ballabio, Andrea last_name: Ballabio - first_name: Maria full_name: Ballester, Maria last_name: Ballester - first_name: Salma full_name: Balazadeh, Salma last_name: Balazadeh - first_name: Rena full_name: Balzan, Rena last_name: Balzan - first_name: Rina full_name: Bandopadhyay, Rina last_name: Bandopadhyay - first_name: Sreeparna full_name: Banerjee, Sreeparna last_name: Banerjee - first_name: Sulagna full_name: Banerjee, Sulagna last_name: Banerjee - first_name: Ágnes full_name: Bánréti, Ágnes last_name: Bánréti - first_name: Yan full_name: Bao, Yan last_name: Bao - first_name: Mauricio S. full_name: Baptista, Mauricio S. last_name: Baptista - first_name: Alessandra full_name: Baracca, Alessandra last_name: Baracca - first_name: Cristiana full_name: Barbati, Cristiana last_name: Barbati - first_name: Ariadna full_name: Bargiela, Ariadna last_name: Bargiela - first_name: Daniela full_name: Barilà, Daniela last_name: Barilà - first_name: Peter G. full_name: Barlow, Peter G. last_name: Barlow - first_name: Sami J. full_name: Barmada, Sami J. last_name: Barmada - first_name: Esther full_name: Barreiro, Esther last_name: Barreiro - first_name: George E. full_name: Barreto, George E. last_name: Barreto - first_name: Jiri full_name: Bartek, Jiri last_name: Bartek - first_name: Bonnie full_name: Bartel, Bonnie last_name: Bartel - first_name: Alberto full_name: Bartolome, Alberto last_name: Bartolome - first_name: Gaurav R. full_name: Barve, Gaurav R. last_name: Barve - first_name: Suresh H. full_name: Basagoudanavar, Suresh H. last_name: Basagoudanavar - first_name: Diane C. full_name: Bassham, Diane C. last_name: Bassham - first_name: Robert C. full_name: Bast, Robert C. last_name: Bast - first_name: Alakananda full_name: Basu, Alakananda last_name: Basu - first_name: Henri full_name: Batoko, Henri last_name: Batoko - first_name: Isabella full_name: Batten, Isabella last_name: Batten - first_name: Etienne E. full_name: Baulieu, Etienne E. last_name: Baulieu - first_name: Bradley L. full_name: Baumgarner, Bradley L. last_name: Baumgarner - first_name: Jagadeesh full_name: Bayry, Jagadeesh last_name: Bayry - first_name: Rupert full_name: Beale, Rupert last_name: Beale - first_name: Isabelle full_name: Beau, Isabelle last_name: Beau - first_name: Florian full_name: Beaumatin, Florian last_name: Beaumatin - first_name: Luiz R.G. full_name: Bechara, Luiz R.G. last_name: Bechara - first_name: George R. full_name: Beck, George R. last_name: Beck - first_name: Michael F. full_name: Beers, Michael F. last_name: Beers - first_name: Jakob full_name: Begun, Jakob last_name: Begun - first_name: Christian full_name: Behrends, Christian last_name: Behrends - first_name: Georg M.N. full_name: Behrens, Georg M.N. last_name: Behrens - first_name: Roberto full_name: Bei, Roberto last_name: Bei - first_name: Eloy full_name: Bejarano, Eloy last_name: Bejarano - first_name: Shai full_name: Bel, Shai last_name: Bel - first_name: Christian full_name: Behl, Christian last_name: Behl - first_name: Amine full_name: Belaid, Amine last_name: Belaid - first_name: Naïma full_name: Belgareh-Touzé, Naïma last_name: Belgareh-Touzé - first_name: Cristina full_name: Bellarosa, Cristina last_name: Bellarosa - first_name: Francesca full_name: Belleudi, Francesca last_name: Belleudi - first_name: Melissa full_name: Belló Pérez, Melissa last_name: Belló Pérez - first_name: Raquel full_name: Bello-Morales, Raquel last_name: Bello-Morales - first_name: Jackeline Soares De Oliveira full_name: Beltran, Jackeline Soares De Oliveira last_name: Beltran - first_name: Sebastián full_name: Beltran, Sebastián last_name: Beltran - first_name: Doris Mangiaracina full_name: Benbrook, Doris Mangiaracina last_name: Benbrook - first_name: Mykolas full_name: Bendorius, Mykolas last_name: Bendorius - first_name: Bruno A. full_name: Benitez, Bruno A. last_name: Benitez - first_name: Irene full_name: Benito-Cuesta, Irene last_name: Benito-Cuesta - first_name: Julien full_name: Bensalem, Julien last_name: Bensalem - first_name: Martin W. full_name: Berchtold, Martin W. last_name: Berchtold - first_name: Sabina full_name: Berezowska, Sabina last_name: Berezowska - first_name: Daniele full_name: Bergamaschi, Daniele last_name: Bergamaschi - first_name: Matteo full_name: Bergami, Matteo last_name: Bergami - first_name: Andreas full_name: Bergmann, Andreas last_name: Bergmann - first_name: Laura full_name: Berliocchi, Laura last_name: Berliocchi - first_name: Clarisse full_name: Berlioz-Torrent, Clarisse last_name: Berlioz-Torrent - first_name: Amélie full_name: Bernard, Amélie last_name: Bernard - first_name: Lionel full_name: Berthoux, Lionel last_name: Berthoux - first_name: Cagri G. full_name: Besirli, Cagri G. last_name: Besirli - first_name: Sebastien full_name: Besteiro, Sebastien last_name: Besteiro - first_name: Virginie M. full_name: Betin, Virginie M. last_name: Betin - first_name: Rudi full_name: Beyaert, Rudi last_name: Beyaert - first_name: Jelena S. full_name: Bezbradica, Jelena S. last_name: Bezbradica - first_name: Kiran full_name: Bhaskar, Kiran last_name: Bhaskar - first_name: Ingrid full_name: Bhatia-Kissova, Ingrid last_name: Bhatia-Kissova - first_name: Resham full_name: Bhattacharya, Resham last_name: Bhattacharya - first_name: Sujoy full_name: Bhattacharya, Sujoy last_name: Bhattacharya - first_name: Shalmoli full_name: Bhattacharyya, Shalmoli last_name: Bhattacharyya - first_name: Md Shenuarin full_name: Bhuiyan, Md Shenuarin last_name: Bhuiyan - first_name: Sujit Kumar full_name: Bhutia, Sujit Kumar last_name: Bhutia - first_name: Lanrong full_name: Bi, Lanrong last_name: Bi - first_name: Xiaolin full_name: Bi, Xiaolin last_name: Bi - first_name: Trevor J. full_name: Biden, Trevor J. last_name: Biden - first_name: Krikor full_name: Bijian, Krikor last_name: Bijian - first_name: Viktor A. full_name: Billes, Viktor A. last_name: Billes - first_name: Nadine full_name: Binart, Nadine last_name: Binart - first_name: Claudia full_name: Bincoletto, Claudia last_name: Bincoletto - first_name: Asa B. full_name: Birgisdottir, Asa B. last_name: Birgisdottir - first_name: Geir full_name: Bjorkoy, Geir last_name: Bjorkoy - first_name: Gonzalo full_name: Blanco, Gonzalo last_name: Blanco - first_name: Ana full_name: Blas-Garcia, Ana last_name: Blas-Garcia - first_name: Janusz full_name: Blasiak, Janusz last_name: Blasiak - first_name: Robert full_name: Blomgran, Robert last_name: Blomgran - first_name: Klas full_name: Blomgren, Klas last_name: Blomgren - first_name: Janice S. full_name: Blum, Janice S. last_name: Blum - first_name: Emilio full_name: Boada-Romero, Emilio last_name: Boada-Romero - first_name: Mirta full_name: Boban, Mirta last_name: Boban - first_name: Kathleen full_name: Boesze-Battaglia, Kathleen last_name: Boesze-Battaglia - first_name: Philippe full_name: Boeuf, Philippe last_name: Boeuf - first_name: Barry full_name: Boland, Barry last_name: Boland - first_name: Pascale full_name: Bomont, Pascale last_name: Bomont - first_name: Paolo full_name: Bonaldo, Paolo last_name: Bonaldo - first_name: Srinivasa Reddy full_name: Bonam, Srinivasa Reddy last_name: Bonam - first_name: Laura full_name: Bonfili, Laura last_name: Bonfili - first_name: Juan S. full_name: Bonifacino, Juan S. last_name: Bonifacino - first_name: Brian A. full_name: Boone, Brian A. last_name: Boone - first_name: Martin D. full_name: Bootman, Martin D. last_name: Bootman - first_name: Matteo full_name: Bordi, Matteo last_name: Bordi - first_name: Christoph full_name: Borner, Christoph last_name: Borner - first_name: Beat C. full_name: Bornhauser, Beat C. last_name: Bornhauser - first_name: Gautam full_name: Borthakur, Gautam last_name: Borthakur - first_name: Jürgen full_name: Bosch, Jürgen last_name: Bosch - first_name: Santanu full_name: Bose, Santanu last_name: Bose - first_name: Luis M. full_name: Botana, Luis M. last_name: Botana - first_name: Juan full_name: Botas, Juan last_name: Botas - first_name: Chantal M. full_name: Boulanger, Chantal M. last_name: Boulanger - first_name: Michael E. full_name: Boulton, Michael E. last_name: Boulton - first_name: Mathieu full_name: Bourdenx, Mathieu last_name: Bourdenx - first_name: Benjamin full_name: Bourgeois, Benjamin last_name: Bourgeois - first_name: Nollaig M. full_name: Bourke, Nollaig M. last_name: Bourke - first_name: Guilhem full_name: Bousquet, Guilhem last_name: Bousquet - first_name: Patricia full_name: Boya, Patricia last_name: Boya - first_name: Peter V. full_name: Bozhkov, Peter V. last_name: Bozhkov - first_name: Luiz H.M. full_name: Bozi, Luiz H.M. last_name: Bozi - first_name: Tolga O. full_name: Bozkurt, Tolga O. last_name: Bozkurt - first_name: Doug E. full_name: Brackney, Doug E. last_name: Brackney - first_name: Christian H. full_name: Brandts, Christian H. last_name: Brandts - first_name: Ralf J. full_name: Braun, Ralf J. last_name: Braun - first_name: Gerhard H. full_name: Braus, Gerhard H. last_name: Braus - first_name: Roberto full_name: Bravo-Sagua, Roberto last_name: Bravo-Sagua - first_name: José M. full_name: Bravo-San Pedro, José M. last_name: Bravo-San Pedro - first_name: Patrick full_name: Brest, Patrick last_name: Brest - first_name: Marie Agnès full_name: Bringer, Marie Agnès last_name: Bringer - first_name: Alfredo full_name: Briones-Herrera, Alfredo last_name: Briones-Herrera - first_name: V. Courtney full_name: Broaddus, V. Courtney last_name: Broaddus - first_name: Peter full_name: Brodersen, Peter last_name: Brodersen - first_name: Jeffrey L. full_name: Brodsky, Jeffrey L. last_name: Brodsky - first_name: Steven L. full_name: Brody, Steven L. last_name: Brody - first_name: Paola G. full_name: Bronson, Paola G. last_name: Bronson - first_name: Jeff M. full_name: Bronstein, Jeff M. last_name: Bronstein - first_name: Carolyn N. full_name: Brown, Carolyn N. last_name: Brown - first_name: Rhoderick E. full_name: Brown, Rhoderick E. last_name: Brown - first_name: Patricia C. full_name: Brum, Patricia C. last_name: Brum - first_name: John H. full_name: Brumell, John H. last_name: Brumell - first_name: Nicola full_name: Brunetti-Pierri, Nicola last_name: Brunetti-Pierri - first_name: Daniele full_name: Bruno, Daniele last_name: Bruno - first_name: Robert J. full_name: Bryson-Richardson, Robert J. last_name: Bryson-Richardson - first_name: Cecilia full_name: Bucci, Cecilia last_name: Bucci - first_name: Carmen full_name: Buchrieser, Carmen last_name: Buchrieser - first_name: Marta full_name: Bueno, Marta last_name: Bueno - first_name: Laura Elisa full_name: Buitrago-Molina, Laura Elisa last_name: Buitrago-Molina - first_name: Simone full_name: Buraschi, Simone last_name: Buraschi - first_name: Shilpa full_name: Buch, Shilpa last_name: Buch - first_name: J. Ross full_name: Buchan, J. Ross last_name: Buchan - first_name: Erin M. full_name: Buckingham, Erin M. last_name: Buckingham - first_name: Hikmet full_name: Budak, Hikmet last_name: Budak - first_name: Mauricio full_name: Budini, Mauricio last_name: Budini - first_name: Geert full_name: Bultynck, Geert last_name: Bultynck - first_name: Florin full_name: Burada, Florin last_name: Burada - first_name: Joseph R. full_name: Burgoyne, Joseph R. last_name: Burgoyne - first_name: M. Isabel full_name: Burón, M. Isabel last_name: Burón - first_name: Victor full_name: Bustos, Victor last_name: Bustos - first_name: Sabrina full_name: Büttner, Sabrina last_name: Büttner - first_name: Elena full_name: Butturini, Elena last_name: Butturini - first_name: Aaron full_name: Byrd, Aaron last_name: Byrd - first_name: Isabel full_name: Cabas, Isabel last_name: Cabas - first_name: Sandra full_name: Cabrera-Benitez, Sandra last_name: Cabrera-Benitez - first_name: Ken full_name: Cadwell, Ken last_name: Cadwell - first_name: Jingjing full_name: Cai, Jingjing last_name: Cai - first_name: Lu full_name: Cai, Lu last_name: Cai - first_name: Qian full_name: Cai, Qian last_name: Cai - first_name: Montserrat full_name: Cairó, Montserrat last_name: Cairó - first_name: Jose A. full_name: Calbet, Jose A. last_name: Calbet - first_name: Guy A. full_name: Caldwell, Guy A. last_name: Caldwell - first_name: Kim A. full_name: Caldwell, Kim A. last_name: Caldwell - first_name: Jarrod A. full_name: Call, Jarrod A. last_name: Call - first_name: Riccardo full_name: Calvani, Riccardo last_name: Calvani - first_name: Ana C. full_name: Calvo, Ana C. last_name: Calvo - first_name: Miguel full_name: Calvo-Rubio Barrera, Miguel last_name: Calvo-Rubio Barrera - first_name: Niels O.S. full_name: Camara, Niels O.S. last_name: Camara - first_name: Jacques H. full_name: Camonis, Jacques H. last_name: Camonis - first_name: Nadine full_name: Camougrand, Nadine last_name: Camougrand - first_name: Michelangelo full_name: Campanella, Michelangelo last_name: Campanella - first_name: Edward M. full_name: Campbell, Edward M. last_name: Campbell - first_name: François Xavier full_name: Campbell-Valois, François Xavier last_name: Campbell-Valois - first_name: Silvia full_name: Campello, Silvia last_name: Campello - first_name: Ilaria full_name: Campesi, Ilaria last_name: Campesi - first_name: Juliane C. full_name: Campos, Juliane C. last_name: Campos - first_name: Olivier full_name: Camuzard, Olivier last_name: Camuzard - first_name: Jorge full_name: Cancino, Jorge last_name: Cancino - first_name: Danilo full_name: Candido De Almeida, Danilo last_name: Candido De Almeida - first_name: Laura full_name: Canesi, Laura last_name: Canesi - first_name: Isabella full_name: Caniggia, Isabella last_name: Caniggia - first_name: Barbara full_name: Canonico, Barbara last_name: Canonico - first_name: Carles full_name: Cantí, Carles last_name: Cantí - first_name: Bin full_name: Cao, Bin last_name: Cao - first_name: Michele full_name: Caraglia, Michele last_name: Caraglia - first_name: Beatriz full_name: Caramés, Beatriz last_name: Caramés - first_name: Evie H. full_name: Carchman, Evie H. last_name: Carchman - first_name: Elena full_name: Cardenal-Muñoz, Elena last_name: Cardenal-Muñoz - first_name: Cesar full_name: Cardenas, Cesar last_name: Cardenas - first_name: Luis full_name: Cardenas, Luis last_name: Cardenas - first_name: Sandra M. full_name: Cardoso, Sandra M. last_name: Cardoso - first_name: Jennifer S. full_name: Carew, Jennifer S. last_name: Carew - first_name: Georges F. full_name: Carle, Georges F. last_name: Carle - first_name: Gillian full_name: Carleton, Gillian last_name: Carleton - first_name: Silvia full_name: Carloni, Silvia last_name: Carloni - first_name: Didac full_name: Carmona-Gutierrez, Didac last_name: Carmona-Gutierrez - first_name: Leticia A. full_name: Carneiro, Leticia A. last_name: Carneiro - first_name: Oliana full_name: Carnevali, Oliana last_name: Carnevali - first_name: Julian M. full_name: Carosi, Julian M. last_name: Carosi - first_name: Serena full_name: Carra, Serena last_name: Carra - first_name: Alice full_name: Carrier, Alice last_name: Carrier - first_name: Lucie full_name: Carrier, Lucie last_name: Carrier - first_name: Bernadette full_name: Carroll, Bernadette last_name: Carroll - first_name: A. Brent full_name: Carter, A. Brent last_name: Carter - first_name: Andreia Neves full_name: Carvalho, Andreia Neves last_name: Carvalho - first_name: Magali full_name: Casanova, Magali last_name: Casanova - first_name: Caty full_name: Casas, Caty last_name: Casas - first_name: Josefina full_name: Casas, Josefina last_name: Casas - first_name: Chiara full_name: Cassioli, Chiara last_name: Cassioli - first_name: Eliseo F. full_name: Castillo, Eliseo F. last_name: Castillo - first_name: Karen full_name: Castillo, Karen last_name: Castillo - first_name: Sonia full_name: Castillo-Lluva, Sonia last_name: Castillo-Lluva - first_name: Francesca full_name: Castoldi, Francesca last_name: Castoldi - first_name: Marco full_name: Castori, Marco last_name: Castori - first_name: Ariel F. full_name: Castro, Ariel F. last_name: Castro - first_name: Margarida full_name: Castro-Caldas, Margarida last_name: Castro-Caldas - first_name: Javier full_name: Castro-Hernandez, Javier last_name: Castro-Hernandez - first_name: Susana full_name: Castro-Obregon, Susana last_name: Castro-Obregon - first_name: Sergio D. full_name: Catz, Sergio D. last_name: Catz - first_name: Claudia full_name: Cavadas, Claudia last_name: Cavadas - first_name: Federica full_name: Cavaliere, Federica last_name: Cavaliere - first_name: Gabriella full_name: Cavallini, Gabriella last_name: Cavallini - first_name: Maria full_name: Cavinato, Maria last_name: Cavinato - first_name: Maria L. full_name: Cayuela, Maria L. last_name: Cayuela - first_name: Paula full_name: Cebollada Rica, Paula last_name: Cebollada Rica - first_name: Valentina full_name: Cecarini, Valentina last_name: Cecarini - first_name: Francesco full_name: Cecconi, Francesco last_name: Cecconi - first_name: Marzanna full_name: Cechowska-Pasko, Marzanna last_name: Cechowska-Pasko - first_name: Simone full_name: Cenci, Simone last_name: Cenci - first_name: Victòria full_name: Ceperuelo-Mallafré, Victòria last_name: Ceperuelo-Mallafré - first_name: João J. full_name: Cerqueira, João J. last_name: Cerqueira - first_name: Janete M. full_name: Cerutti, Janete M. last_name: Cerutti - first_name: Davide full_name: Cervia, Davide last_name: Cervia - first_name: Vildan Bozok full_name: Cetintas, Vildan Bozok last_name: Cetintas - first_name: Silvia full_name: Cetrullo, Silvia last_name: Cetrullo - first_name: Han Jung full_name: Chae, Han Jung last_name: Chae - first_name: Andrei S. full_name: Chagin, Andrei S. last_name: Chagin - first_name: Chee Yin full_name: Chai, Chee Yin last_name: Chai - first_name: Gopal full_name: Chakrabarti, Gopal last_name: Chakrabarti - first_name: Oishee full_name: Chakrabarti, Oishee last_name: Chakrabarti - first_name: Tapas full_name: Chakraborty, Tapas last_name: Chakraborty - first_name: Trinad full_name: Chakraborty, Trinad last_name: Chakraborty - first_name: Mounia full_name: Chami, Mounia last_name: Chami - first_name: Georgios full_name: Chamilos, Georgios last_name: Chamilos - first_name: David W. full_name: Chan, David W. last_name: Chan - first_name: Edmond Y.W. full_name: Chan, Edmond Y.W. last_name: Chan - first_name: Edward D. full_name: Chan, Edward D. last_name: Chan - first_name: H. Y.Edwin full_name: Chan, H. Y.Edwin last_name: Chan - first_name: Helen H. full_name: Chan, Helen H. last_name: Chan - first_name: Hung full_name: Chan, Hung last_name: Chan - first_name: Matthew T.V. full_name: Chan, Matthew T.V. last_name: Chan - first_name: Yau Sang full_name: Chan, Yau Sang last_name: Chan - first_name: Partha K. full_name: Chandra, Partha K. last_name: Chandra - first_name: Chih Peng full_name: Chang, Chih Peng last_name: Chang - first_name: Chunmei full_name: Chang, Chunmei last_name: Chang - first_name: Hao Chun full_name: Chang, Hao Chun last_name: Chang - first_name: Kai full_name: Chang, Kai last_name: Chang - first_name: Jie full_name: Chao, Jie last_name: Chao - first_name: Tracey full_name: Chapman, Tracey last_name: Chapman - first_name: Nicolas full_name: Charlet-Berguerand, Nicolas last_name: Charlet-Berguerand - first_name: Samrat full_name: Chatterjee, Samrat last_name: Chatterjee - first_name: Shail K. full_name: Chaube, Shail K. last_name: Chaube - first_name: Anu full_name: Chaudhary, Anu last_name: Chaudhary - first_name: Santosh full_name: Chauhan, Santosh last_name: Chauhan - first_name: Edward full_name: Chaum, Edward last_name: Chaum - first_name: Frédéric full_name: Checler, Frédéric last_name: Checler - first_name: Michael E. full_name: Cheetham, Michael E. last_name: Cheetham - first_name: Chang Shi full_name: Chen, Chang Shi last_name: Chen - first_name: Guang Chao full_name: Chen, Guang Chao last_name: Chen - first_name: Jian Fu full_name: Chen, Jian Fu last_name: Chen - first_name: Liam L. full_name: Chen, Liam L. last_name: Chen - first_name: Leilei full_name: Chen, Leilei last_name: Chen - first_name: Lin full_name: Chen, Lin last_name: Chen - first_name: Mingliang full_name: Chen, Mingliang last_name: Chen - first_name: Mu Kuan full_name: Chen, Mu Kuan last_name: Chen - first_name: Ning full_name: Chen, Ning last_name: Chen - first_name: Quan full_name: Chen, Quan last_name: Chen - first_name: Ruey Hwa full_name: Chen, Ruey Hwa last_name: Chen - first_name: Shi full_name: Chen, Shi last_name: Chen - first_name: Wei full_name: Chen, Wei last_name: Chen - first_name: Weiqiang full_name: Chen, Weiqiang last_name: Chen - first_name: Xin Ming full_name: Chen, Xin Ming last_name: Chen - first_name: Xiong Wen full_name: Chen, Xiong Wen last_name: Chen - first_name: Xu full_name: Chen, Xu id: 4E5ADCAA-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Yan full_name: Chen, Yan last_name: Chen - first_name: Ye Guang full_name: Chen, Ye Guang last_name: Chen - first_name: Yingyu full_name: Chen, Yingyu last_name: Chen - first_name: Yongqiang full_name: Chen, Yongqiang last_name: Chen - first_name: Yu Jen full_name: Chen, Yu Jen last_name: Chen - first_name: Yue Qin full_name: Chen, Yue Qin last_name: Chen - first_name: Zhefan Stephen full_name: Chen, Zhefan Stephen last_name: Chen - first_name: Zhi full_name: Chen, Zhi last_name: Chen - first_name: Zhi Hua full_name: Chen, Zhi Hua last_name: Chen - first_name: Zhijian J. full_name: Chen, Zhijian J. last_name: Chen - first_name: Zhixiang full_name: Chen, Zhixiang last_name: Chen - first_name: Hanhua full_name: Cheng, Hanhua last_name: Cheng - first_name: Jun full_name: Cheng, Jun last_name: Cheng - first_name: Shi Yuan full_name: Cheng, Shi Yuan last_name: Cheng - first_name: Wei full_name: Cheng, Wei last_name: Cheng - first_name: Xiaodong full_name: Cheng, Xiaodong last_name: Cheng - first_name: Xiu Tang full_name: Cheng, Xiu Tang last_name: Cheng - first_name: Yiyun full_name: Cheng, Yiyun last_name: Cheng - first_name: Zhiyong full_name: Cheng, Zhiyong last_name: Cheng - first_name: Zhong full_name: Chen, Zhong last_name: Chen - first_name: Heesun full_name: Cheong, Heesun last_name: Cheong - first_name: Jit Kong full_name: Cheong, Jit Kong last_name: Cheong - first_name: Boris V. full_name: Chernyak, Boris V. last_name: Chernyak - first_name: Sara full_name: Cherry, Sara last_name: Cherry - first_name: Chi Fai Randy full_name: Cheung, Chi Fai Randy last_name: Cheung - first_name: Chun Hei Antonio full_name: Cheung, Chun Hei Antonio last_name: Cheung - first_name: King Ho full_name: Cheung, King Ho last_name: Cheung - first_name: Eric full_name: Chevet, Eric last_name: Chevet - first_name: Richard J. full_name: Chi, Richard J. last_name: Chi - first_name: Alan Kwok Shing full_name: Chiang, Alan Kwok Shing last_name: Chiang - first_name: Ferdinando full_name: Chiaradonna, Ferdinando last_name: Chiaradonna - first_name: Roberto full_name: Chiarelli, Roberto last_name: Chiarelli - first_name: Mario full_name: Chiariello, Mario last_name: Chiariello - first_name: Nathalia full_name: Chica, Nathalia last_name: Chica - first_name: Susanna full_name: Chiocca, Susanna last_name: Chiocca - first_name: Mario full_name: Chiong, Mario last_name: Chiong - first_name: Shih Hwa full_name: Chiou, Shih Hwa last_name: Chiou - first_name: Abhilash I. full_name: Chiramel, Abhilash I. last_name: Chiramel - first_name: Valerio full_name: Chiurchiù, Valerio last_name: Chiurchiù - first_name: Dong Hyung full_name: Cho, Dong Hyung last_name: Cho - first_name: Seong Kyu full_name: Choe, Seong Kyu last_name: Choe - first_name: Augustine M.K. full_name: Choi, Augustine M.K. last_name: Choi - first_name: Mary E. full_name: Choi, Mary E. last_name: Choi - first_name: Kamalika Roy full_name: Choudhury, Kamalika Roy last_name: Choudhury - first_name: Norman S. full_name: Chow, Norman S. last_name: Chow - first_name: Charleen T. full_name: Chu, Charleen T. last_name: Chu - first_name: Jason P. full_name: Chua, Jason P. last_name: Chua - first_name: John Jia En full_name: Chua, John Jia En last_name: Chua - first_name: Hyewon full_name: Chung, Hyewon last_name: Chung - first_name: Kin Pan full_name: Chung, Kin Pan last_name: Chung - first_name: Seockhoon full_name: Chung, Seockhoon last_name: Chung - first_name: So Hyang full_name: Chung, So Hyang last_name: Chung - first_name: Yuen Li full_name: Chung, Yuen Li last_name: Chung - first_name: Valentina full_name: Cianfanelli, Valentina last_name: Cianfanelli - first_name: Iwona A. full_name: Ciechomska, Iwona A. last_name: Ciechomska - first_name: Mariana full_name: Cifuentes, Mariana last_name: Cifuentes - first_name: Laura full_name: Cinque, Laura last_name: Cinque - first_name: Sebahattin full_name: Cirak, Sebahattin last_name: Cirak - first_name: Mara full_name: Cirone, Mara last_name: Cirone - first_name: Michael J. full_name: Clague, Michael J. last_name: Clague - first_name: Robert full_name: Clarke, Robert last_name: Clarke - first_name: Emilio full_name: Clementi, Emilio last_name: Clementi - first_name: Eliana M. full_name: Coccia, Eliana M. last_name: Coccia - first_name: Patrice full_name: Codogno, Patrice last_name: Codogno - first_name: Ehud full_name: Cohen, Ehud last_name: Cohen - first_name: Mickael M. full_name: Cohen, Mickael M. last_name: Cohen - first_name: Tania full_name: Colasanti, Tania last_name: Colasanti - first_name: Fiorella full_name: Colasuonno, Fiorella last_name: Colasuonno - first_name: Robert A. full_name: Colbert, Robert A. last_name: Colbert - first_name: Anna full_name: Colell, Anna last_name: Colell - first_name: Miodrag full_name: Čolić, Miodrag last_name: Čolić - first_name: Nuria S. full_name: Coll, Nuria S. last_name: Coll - first_name: Mark O. full_name: Collins, Mark O. last_name: Collins - first_name: María I. full_name: Colombo, María I. last_name: Colombo - first_name: Daniel A. full_name: Colón-Ramos, Daniel A. last_name: Colón-Ramos - first_name: Lydie full_name: Combaret, Lydie last_name: Combaret - first_name: Sergio full_name: Comincini, Sergio last_name: Comincini - first_name: Márcia R. full_name: Cominetti, Márcia R. last_name: Cominetti - first_name: Antonella full_name: Consiglio, Antonella last_name: Consiglio - first_name: Andrea full_name: Conte, Andrea last_name: Conte - first_name: Fabrizio full_name: Conti, Fabrizio last_name: Conti - first_name: Viorica Raluca full_name: Contu, Viorica Raluca last_name: Contu - first_name: Mark R. full_name: Cookson, Mark R. last_name: Cookson - first_name: Kevin M. full_name: Coombs, Kevin M. last_name: Coombs - first_name: Isabelle full_name: Coppens, Isabelle last_name: Coppens - first_name: Maria Tiziana full_name: Corasaniti, Maria Tiziana last_name: Corasaniti - first_name: Dale P. full_name: Corkery, Dale P. last_name: Corkery - first_name: Nils full_name: Cordes, Nils last_name: Cordes - first_name: Katia full_name: Cortese, Katia last_name: Cortese - first_name: Maria Do Carmo full_name: Costa, Maria Do Carmo last_name: Costa - first_name: Sarah full_name: Costantino, Sarah last_name: Costantino - first_name: Paola full_name: Costelli, Paola last_name: Costelli - first_name: Ana full_name: Coto-Montes, Ana last_name: Coto-Montes - first_name: Peter J. full_name: Crack, Peter J. last_name: Crack - first_name: Jose L. full_name: Crespo, Jose L. last_name: Crespo - first_name: Alfredo full_name: Criollo, Alfredo last_name: Criollo - first_name: Valeria full_name: Crippa, Valeria last_name: Crippa - first_name: Riccardo full_name: Cristofani, Riccardo last_name: Cristofani - first_name: Tamas full_name: Csizmadia, Tamas last_name: Csizmadia - first_name: Antonio full_name: Cuadrado, Antonio last_name: Cuadrado - first_name: Bing full_name: Cui, Bing last_name: Cui - first_name: Jun full_name: Cui, Jun last_name: Cui - first_name: Yixian full_name: Cui, Yixian last_name: Cui - first_name: Yong full_name: Cui, Yong last_name: Cui - first_name: Emmanuel full_name: Culetto, Emmanuel last_name: Culetto - first_name: Andrea C. full_name: Cumino, Andrea C. last_name: Cumino - first_name: Andrey V. full_name: Cybulsky, Andrey V. last_name: Cybulsky - first_name: Mark J. full_name: Czaja, Mark J. last_name: Czaja - first_name: Stanislaw J. full_name: Czuczwar, Stanislaw J. last_name: Czuczwar - first_name: Stefania full_name: D’Adamo, Stefania last_name: D’Adamo - first_name: Marcello full_name: D’Amelio, Marcello last_name: D’Amelio - first_name: Daniela full_name: D’Arcangelo, Daniela last_name: D’Arcangelo - first_name: Andrew C. full_name: D’Lugos, Andrew C. last_name: D’Lugos - first_name: Gabriella full_name: D’Orazi, Gabriella last_name: D’Orazi - first_name: James A. full_name: Da Silva, James A. last_name: Da Silva - first_name: Hormos Salimi full_name: Dafsari, Hormos Salimi last_name: Dafsari - first_name: Ruben K. full_name: Dagda, Ruben K. last_name: Dagda - first_name: Yasin full_name: Dagdas, Yasin last_name: Dagdas - first_name: Maria full_name: Daglia, Maria last_name: Daglia - first_name: Xiaoxia full_name: Dai, Xiaoxia last_name: Dai - first_name: Yun full_name: Dai, Yun last_name: Dai - first_name: Yuyuan full_name: Dai, Yuyuan last_name: Dai - first_name: Jessica full_name: Dal Col, Jessica last_name: Dal Col - first_name: Paul full_name: Dalhaimer, Paul last_name: Dalhaimer - first_name: Luisa full_name: Dalla Valle, Luisa last_name: Dalla Valle - first_name: Tobias full_name: Dallenga, Tobias last_name: Dallenga - first_name: Guillaume full_name: Dalmasso, Guillaume last_name: Dalmasso - first_name: Markus full_name: Damme, Markus last_name: Damme - first_name: Ilaria full_name: Dando, Ilaria last_name: Dando - first_name: Nico P. full_name: Dantuma, Nico P. last_name: Dantuma - first_name: April L. full_name: Darling, April L. last_name: Darling - first_name: Hiranmoy full_name: Das, Hiranmoy last_name: Das - first_name: Srinivasan full_name: Dasarathy, Srinivasan last_name: Dasarathy - first_name: Santosh K. full_name: Dasari, Santosh K. last_name: Dasari - first_name: Srikanta full_name: Dash, Srikanta last_name: Dash - first_name: Oliver full_name: Daumke, Oliver last_name: Daumke - first_name: Adrian N. full_name: Dauphinee, Adrian N. last_name: Dauphinee - first_name: Jeffrey S. full_name: Davies, Jeffrey S. last_name: Davies - first_name: Valeria A. full_name: Dávila, Valeria A. last_name: Dávila - first_name: Roger J. full_name: Davis, Roger J. last_name: Davis - first_name: Tanja full_name: Davis, Tanja last_name: Davis - first_name: Sharadha full_name: Dayalan Naidu, Sharadha last_name: Dayalan Naidu - first_name: Francesca full_name: De Amicis, Francesca last_name: De Amicis - first_name: Karolien full_name: De Bosscher, Karolien last_name: De Bosscher - first_name: Francesca full_name: De Felice, Francesca last_name: De Felice - first_name: Lucia full_name: De Franceschi, Lucia last_name: De Franceschi - first_name: Chiara full_name: De Leonibus, Chiara last_name: De Leonibus - first_name: Mayara G. full_name: De Mattos Barbosa, Mayara G. last_name: De Mattos Barbosa - first_name: Guido R.Y. full_name: De Meyer, Guido R.Y. last_name: De Meyer - first_name: Angelo full_name: De Milito, Angelo last_name: De Milito - first_name: Cosimo full_name: De Nunzio, Cosimo last_name: De Nunzio - first_name: Clara full_name: De Palma, Clara last_name: De Palma - first_name: Mauro full_name: De Santi, Mauro last_name: De Santi - first_name: Claudio full_name: De Virgilio, Claudio last_name: De Virgilio - first_name: Daniela full_name: De Zio, Daniela last_name: De Zio - first_name: Jayanta full_name: Debnath, Jayanta last_name: Debnath - first_name: Brian J. full_name: Debosch, Brian J. last_name: Debosch - first_name: Jean Paul full_name: Decuypere, Jean Paul last_name: Decuypere - first_name: Mark A. full_name: Deehan, Mark A. last_name: Deehan - first_name: Gianluca full_name: Deflorian, Gianluca last_name: Deflorian - first_name: James full_name: Degregori, James last_name: Degregori - first_name: Benjamin full_name: Dehay, Benjamin last_name: Dehay - first_name: Gabriel full_name: Del Rio, Gabriel last_name: Del Rio - first_name: Joe R. full_name: Delaney, Joe R. last_name: Delaney - first_name: Lea M.D. full_name: Delbridge, Lea M.D. last_name: Delbridge - first_name: Elizabeth full_name: Delorme-Axford, Elizabeth last_name: Delorme-Axford - first_name: M. Victoria full_name: Delpino, M. Victoria last_name: Delpino - first_name: Francesca full_name: Demarchi, Francesca last_name: Demarchi - first_name: Vilma full_name: Dembitz, Vilma last_name: Dembitz - first_name: Nicholas D. full_name: Demers, Nicholas D. last_name: Demers - first_name: Hongbin full_name: Deng, Hongbin last_name: Deng - first_name: Zhiqiang full_name: Deng, Zhiqiang last_name: Deng - first_name: Joern full_name: Dengjel, Joern last_name: Dengjel - first_name: Paul full_name: Dent, Paul last_name: Dent - first_name: Donna full_name: Denton, Donna last_name: Denton - first_name: Melvin L. full_name: Depamphilis, Melvin L. last_name: Depamphilis - first_name: Channing J. full_name: Der, Channing J. last_name: Der - first_name: Vojo full_name: Deretic, Vojo last_name: Deretic - first_name: Albert full_name: Descoteaux, Albert last_name: Descoteaux - first_name: Laura full_name: Devis, Laura last_name: Devis - first_name: Sushil full_name: Devkota, Sushil last_name: Devkota - first_name: Olivier full_name: Devuyst, Olivier last_name: Devuyst - first_name: Grant full_name: Dewson, Grant last_name: Dewson - first_name: Mahendiran full_name: Dharmasivam, Mahendiran last_name: Dharmasivam - first_name: Rohan full_name: Dhiman, Rohan last_name: Dhiman - first_name: Diego full_name: Di Bernardo, Diego last_name: Di Bernardo - first_name: Manlio full_name: Di Cristina, Manlio last_name: Di Cristina - first_name: Fabio full_name: Di Domenico, Fabio last_name: Di Domenico - first_name: Pietro full_name: Di Fazio, Pietro last_name: Di Fazio - first_name: Alessio full_name: Di Fonzo, Alessio last_name: Di Fonzo - first_name: Giovanni full_name: Di Guardo, Giovanni last_name: Di Guardo - first_name: Gianni M. full_name: Di Guglielmo, Gianni M. last_name: Di Guglielmo - first_name: Luca full_name: Di Leo, Luca last_name: Di Leo - first_name: Chiara full_name: Di Malta, Chiara last_name: Di Malta - first_name: Alessia full_name: Di Nardo, Alessia last_name: Di Nardo - first_name: Martina full_name: Di Rienzo, Martina last_name: Di Rienzo - first_name: Federica full_name: Di Sano, Federica last_name: Di Sano - first_name: George full_name: Diallinas, George last_name: Diallinas - first_name: Jiajie full_name: Diao, Jiajie last_name: Diao - first_name: Guillermo full_name: Diaz-Araya, Guillermo last_name: Diaz-Araya - first_name: Inés full_name: Díaz-Laviada, Inés last_name: Díaz-Laviada - first_name: Jared M. full_name: Dickinson, Jared M. last_name: Dickinson - first_name: Marc full_name: Diederich, Marc last_name: Diederich - first_name: Mélanie full_name: Dieudé, Mélanie last_name: Dieudé - first_name: Ivan full_name: Dikic, Ivan last_name: Dikic - first_name: Shiping full_name: Ding, Shiping last_name: Ding - first_name: Wen Xing full_name: Ding, Wen Xing last_name: Ding - first_name: Luciana full_name: Dini, Luciana last_name: Dini - first_name: Jelena full_name: Dinić, Jelena last_name: Dinić - first_name: Miroslav full_name: Dinic, Miroslav last_name: Dinic - first_name: Albena T. full_name: Dinkova-Kostova, Albena T. last_name: Dinkova-Kostova - first_name: Marc S. full_name: Dionne, Marc S. last_name: Dionne - first_name: Jörg H.W. full_name: Distler, Jörg H.W. last_name: Distler - first_name: Abhinav full_name: Diwan, Abhinav last_name: Diwan - first_name: Ian M.C. full_name: Dixon, Ian M.C. last_name: Dixon - first_name: Mojgan full_name: Djavaheri-Mergny, Mojgan last_name: Djavaheri-Mergny - first_name: Ina full_name: Dobrinski, Ina last_name: Dobrinski - first_name: Oxana full_name: Dobrovinskaya, Oxana last_name: Dobrovinskaya - first_name: Radek full_name: Dobrowolski, Radek last_name: Dobrowolski - first_name: Renwick C.J. full_name: Dobson, Renwick C.J. last_name: Dobson - first_name: Jelena full_name: Đokić, Jelena last_name: Đokić - first_name: Serap full_name: Dokmeci Emre, Serap last_name: Dokmeci Emre - first_name: Massimo full_name: Donadelli, Massimo last_name: Donadelli - first_name: Bo full_name: Dong, Bo last_name: Dong - first_name: Xiaonan full_name: Dong, Xiaonan last_name: Dong - first_name: Zhiwu full_name: Dong, Zhiwu last_name: Dong - first_name: Gerald W. full_name: Dorn, Gerald W. last_name: Dorn - first_name: Volker full_name: Dotsch, Volker last_name: Dotsch - first_name: Huan full_name: Dou, Huan last_name: Dou - first_name: Juan full_name: Dou, Juan last_name: Dou - first_name: Moataz full_name: Dowaidar, Moataz last_name: Dowaidar - first_name: Sami full_name: Dridi, Sami last_name: Dridi - first_name: Liat full_name: Drucker, Liat last_name: Drucker - first_name: Ailian full_name: Du, Ailian last_name: Du - first_name: Caigan full_name: Du, Caigan last_name: Du - first_name: Guangwei full_name: Du, Guangwei last_name: Du - first_name: Hai Ning full_name: Du, Hai Ning last_name: Du - first_name: Li Lin full_name: Du, Li Lin last_name: Du - first_name: André full_name: Du Toit, André last_name: Du Toit - first_name: Shao Bin full_name: Duan, Shao Bin last_name: Duan - first_name: Xiaoqiong full_name: Duan, Xiaoqiong last_name: Duan - first_name: Sónia P. full_name: Duarte, Sónia P. last_name: Duarte - first_name: Anna full_name: Dubrovska, Anna last_name: Dubrovska - first_name: Elaine A. full_name: Dunlop, Elaine A. last_name: Dunlop - first_name: Nicolas full_name: Dupont, Nicolas last_name: Dupont - first_name: Raúl V. full_name: Durán, Raúl V. last_name: Durán - first_name: Bilikere S. full_name: Dwarakanath, Bilikere S. last_name: Dwarakanath - first_name: Sergey A. full_name: Dyshlovoy, Sergey A. last_name: Dyshlovoy - first_name: Darius full_name: Ebrahimi-Fakhari, Darius last_name: Ebrahimi-Fakhari - first_name: Leopold full_name: Eckhart, Leopold last_name: Eckhart - first_name: Charles L. full_name: Edelstein, Charles L. last_name: Edelstein - first_name: Thomas full_name: Efferth, Thomas last_name: Efferth - first_name: Eftekhar full_name: Eftekharpour, Eftekhar last_name: Eftekharpour - first_name: Ludwig full_name: Eichinger, Ludwig last_name: Eichinger - first_name: Nabil full_name: Eid, Nabil last_name: Eid - first_name: Tobias full_name: Eisenberg, Tobias last_name: Eisenberg - first_name: N. Tony full_name: Eissa, N. Tony last_name: Eissa - first_name: Sanaa full_name: Eissa, Sanaa last_name: Eissa - first_name: Miriam full_name: Ejarque, Miriam last_name: Ejarque - first_name: Abdeljabar full_name: El Andaloussi, Abdeljabar last_name: El Andaloussi - first_name: Nazira full_name: El-Hage, Nazira last_name: El-Hage - first_name: Shahenda full_name: El-Naggar, Shahenda last_name: El-Naggar - first_name: Anna Maria full_name: Eleuteri, Anna Maria last_name: Eleuteri - first_name: Eman S. full_name: El-Shafey, Eman S. last_name: El-Shafey - first_name: Mohamed full_name: Elgendy, Mohamed last_name: Elgendy - first_name: Aristides G. full_name: Eliopoulos, Aristides G. last_name: Eliopoulos - first_name: María M. full_name: Elizalde, María M. last_name: Elizalde - first_name: Philip M. full_name: Elks, Philip M. last_name: Elks - first_name: Hans Peter full_name: Elsasser, Hans Peter last_name: Elsasser - first_name: Eslam S. full_name: Elsherbiny, Eslam S. last_name: Elsherbiny - first_name: Brooke M. full_name: Emerling, Brooke M. last_name: Emerling - first_name: N. C.Tolga full_name: Emre, N. C.Tolga last_name: Emre - first_name: Christina H. full_name: Eng, Christina H. last_name: Eng - first_name: Nikolai full_name: Engedal, Nikolai last_name: Engedal - first_name: Anna Mart full_name: Engelbrecht, Anna Mart last_name: Engelbrecht - first_name: Agnete S.T. full_name: Engelsen, Agnete S.T. last_name: Engelsen - first_name: Jorrit M. full_name: Enserink, Jorrit M. last_name: Enserink - first_name: Ricardo full_name: Escalante, Ricardo last_name: Escalante - first_name: Audrey full_name: Esclatine, Audrey last_name: Esclatine - first_name: Mafalda full_name: Escobar-Henriques, Mafalda last_name: Escobar-Henriques - first_name: Eeva Liisa full_name: Eskelinen, Eeva Liisa last_name: Eskelinen - first_name: Lucile full_name: Espert, Lucile last_name: Espert - first_name: Makandjou Ola full_name: Eusebio, Makandjou Ola last_name: Eusebio - first_name: Gemma full_name: Fabrias, Gemma last_name: Fabrias - first_name: Cinzia full_name: Fabrizi, Cinzia last_name: Fabrizi - first_name: Antonio full_name: Facchiano, Antonio last_name: Facchiano - first_name: Francesco full_name: Facchiano, Francesco last_name: Facchiano - first_name: Bengt full_name: Fadeel, Bengt last_name: Fadeel - first_name: Claudio full_name: Fader, Claudio last_name: Fader - first_name: Alex C. full_name: Faesen, Alex C. last_name: Faesen - first_name: W. Douglas full_name: Fairlie, W. Douglas last_name: Fairlie - first_name: Alberto full_name: Falcó, Alberto last_name: Falcó - first_name: Bjorn H. full_name: Falkenburger, Bjorn H. last_name: Falkenburger - first_name: Daping full_name: Fan, Daping last_name: Fan - first_name: Jie full_name: Fan, Jie last_name: Fan - first_name: Yanbo full_name: Fan, Yanbo last_name: Fan - first_name: Evandro F. full_name: Fang, Evandro F. last_name: Fang - first_name: Yanshan full_name: Fang, Yanshan last_name: Fang - first_name: Yognqi full_name: Fang, Yognqi last_name: Fang - first_name: Manolis full_name: Fanto, Manolis last_name: Fanto - first_name: Tamar full_name: Farfel-Becker, Tamar last_name: Farfel-Becker - first_name: Mathias full_name: Faure, Mathias last_name: Faure - first_name: Gholamreza full_name: Fazeli, Gholamreza last_name: Fazeli - first_name: Anthony O. full_name: Fedele, Anthony O. last_name: Fedele - first_name: Arthur M. full_name: Feldman, Arthur M. last_name: Feldman - first_name: Du full_name: Feng, Du last_name: Feng - first_name: Jiachun full_name: Feng, Jiachun last_name: Feng - first_name: Lifeng full_name: Feng, Lifeng last_name: Feng - first_name: Yibin full_name: Feng, Yibin last_name: Feng - first_name: Yuchen full_name: Feng, Yuchen last_name: Feng - first_name: Wei full_name: Feng, Wei last_name: Feng - first_name: Thais full_name: Fenz Araujo, Thais last_name: Fenz Araujo - first_name: Thomas A. full_name: Ferguson, Thomas A. last_name: Ferguson - first_name: Álvaro F. full_name: Fernández, Álvaro F. last_name: Fernández - first_name: Jose C. full_name: Fernandez-Checa, Jose C. last_name: Fernandez-Checa - first_name: Sonia full_name: Fernández-Veledo, Sonia last_name: Fernández-Veledo - first_name: Alisdair R. full_name: Fernie, Alisdair R. last_name: Fernie - first_name: Anthony W. full_name: Ferrante, Anthony W. last_name: Ferrante - first_name: Alessandra full_name: Ferraresi, Alessandra last_name: Ferraresi - first_name: Merari F. full_name: Ferrari, Merari F. last_name: Ferrari - first_name: Julio C.B. full_name: Ferreira, Julio C.B. last_name: Ferreira - first_name: Susan full_name: Ferro-Novick, Susan last_name: Ferro-Novick - first_name: Antonio full_name: Figueras, Antonio last_name: Figueras - first_name: Riccardo full_name: Filadi, Riccardo last_name: Filadi - first_name: Nicoletta full_name: Filigheddu, Nicoletta last_name: Filigheddu - first_name: Eduardo full_name: Filippi-Chiela, Eduardo last_name: Filippi-Chiela - first_name: Giuseppe full_name: Filomeni, Giuseppe last_name: Filomeni - first_name: Gian Maria full_name: Fimia, Gian Maria last_name: Fimia - first_name: Vittorio full_name: Fineschi, Vittorio last_name: Fineschi - first_name: Francesca full_name: Finetti, Francesca last_name: Finetti - first_name: Steven full_name: Finkbeiner, Steven last_name: Finkbeiner - first_name: Edward A. full_name: Fisher, Edward A. last_name: Fisher - first_name: Paul B. full_name: Fisher, Paul B. last_name: Fisher - first_name: Flavio full_name: Flamigni, Flavio last_name: Flamigni - first_name: Steven J. full_name: Fliesler, Steven J. last_name: Fliesler - first_name: Trude H. full_name: Flo, Trude H. last_name: Flo - first_name: Ida full_name: Florance, Ida last_name: Florance - first_name: Oliver full_name: Florey, Oliver last_name: Florey - first_name: Tullio full_name: Florio, Tullio last_name: Florio - first_name: Erika full_name: Fodor, Erika last_name: Fodor - first_name: Carlo full_name: Follo, Carlo last_name: Follo - first_name: Edward A. full_name: Fon, Edward A. last_name: Fon - first_name: Antonella full_name: Forlino, Antonella last_name: Forlino - first_name: Francesco full_name: Fornai, Francesco last_name: Fornai - first_name: Paola full_name: Fortini, Paola last_name: Fortini - first_name: Anna full_name: Fracassi, Anna last_name: Fracassi - first_name: Alessandro full_name: Fraldi, Alessandro last_name: Fraldi - first_name: Brunella full_name: Franco, Brunella last_name: Franco - first_name: Rodrigo full_name: Franco, Rodrigo last_name: Franco - first_name: Flavia full_name: Franconi, Flavia last_name: Franconi - first_name: Lisa B. full_name: Frankel, Lisa B. last_name: Frankel - first_name: Scott L. full_name: Friedman, Scott L. last_name: Friedman - first_name: Leopold F. full_name: Fröhlich, Leopold F. last_name: Fröhlich - first_name: Gema full_name: Frühbeck, Gema last_name: Frühbeck - first_name: Jose M. full_name: Fuentes, Jose M. last_name: Fuentes - first_name: Yukio full_name: Fujiki, Yukio last_name: Fujiki - first_name: Naonobu full_name: Fujita, Naonobu last_name: Fujita - first_name: Yuuki full_name: Fujiwara, Yuuki last_name: Fujiwara - first_name: Mitsunori full_name: Fukuda, Mitsunori last_name: Fukuda - first_name: Simone full_name: Fulda, Simone last_name: Fulda - first_name: Luc full_name: Furic, Luc last_name: Furic - first_name: Norihiko full_name: Furuya, Norihiko last_name: Furuya - first_name: Carmela full_name: Fusco, Carmela last_name: Fusco - first_name: Michaela U. full_name: Gack, Michaela U. last_name: Gack - first_name: Lidia full_name: Gaffke, Lidia last_name: Gaffke - first_name: Sehamuddin full_name: Galadari, Sehamuddin last_name: Galadari - first_name: Alessia full_name: Galasso, Alessia last_name: Galasso - first_name: Maria F. full_name: Galindo, Maria F. last_name: Galindo - first_name: Sachith full_name: Gallolu Kankanamalage, Sachith last_name: Gallolu Kankanamalage - first_name: Lorenzo full_name: Galluzzi, Lorenzo last_name: Galluzzi - first_name: Vincent full_name: Galy, Vincent last_name: Galy - first_name: Noor full_name: Gammoh, Noor last_name: Gammoh - first_name: Boyi full_name: Gan, Boyi last_name: Gan - first_name: Ian G. full_name: Ganley, Ian G. last_name: Ganley - first_name: Feng full_name: Gao, Feng last_name: Gao - first_name: Hui full_name: Gao, Hui last_name: Gao - first_name: Minghui full_name: Gao, Minghui last_name: Gao - first_name: Ping full_name: Gao, Ping last_name: Gao - first_name: Shou Jiang full_name: Gao, Shou Jiang last_name: Gao - first_name: Wentao full_name: Gao, Wentao last_name: Gao - first_name: Xiaobo full_name: Gao, Xiaobo last_name: Gao - first_name: Ana full_name: Garcera, Ana last_name: Garcera - first_name: Maria Noé full_name: Garcia, Maria Noé last_name: Garcia - first_name: Verónica E. full_name: Garcia, Verónica E. last_name: Garcia - first_name: Francisco full_name: García-Del Portillo, Francisco last_name: García-Del Portillo - first_name: Vega full_name: Garcia-Escudero, Vega last_name: Garcia-Escudero - first_name: Aracely full_name: Garcia-Garcia, Aracely last_name: Garcia-Garcia - first_name: Marina full_name: Garcia-Macia, Marina last_name: Garcia-Macia - first_name: Diana full_name: García-Moreno, Diana last_name: García-Moreno - first_name: Carmen full_name: Garcia-Ruiz, Carmen last_name: Garcia-Ruiz - first_name: Patricia full_name: García-Sanz, Patricia last_name: García-Sanz - first_name: Abhishek D. full_name: Garg, Abhishek D. last_name: Garg - first_name: Ricardo full_name: Gargini, Ricardo last_name: Gargini - first_name: Tina full_name: Garofalo, Tina last_name: Garofalo - first_name: Robert F. full_name: Garry, Robert F. last_name: Garry - first_name: Nils C. full_name: Gassen, Nils C. last_name: Gassen - first_name: Damian full_name: Gatica, Damian last_name: Gatica - first_name: Liang full_name: Ge, Liang last_name: Ge - first_name: Wanzhong full_name: Ge, Wanzhong last_name: Ge - first_name: Ruth full_name: Geiss-Friedlander, Ruth last_name: Geiss-Friedlander - first_name: Cecilia full_name: Gelfi, Cecilia last_name: Gelfi - first_name: Pascal full_name: Genschik, Pascal last_name: Genschik - first_name: Ian E. full_name: Gentle, Ian E. last_name: Gentle - first_name: Valeria full_name: Gerbino, Valeria last_name: Gerbino - first_name: Christoph full_name: Gerhardt, Christoph last_name: Gerhardt - first_name: Kyla full_name: Germain, Kyla last_name: Germain - first_name: Marc full_name: Germain, Marc last_name: Germain - first_name: David A. full_name: Gewirtz, David A. last_name: Gewirtz - first_name: Elham full_name: Ghasemipour Afshar, Elham last_name: Ghasemipour Afshar - first_name: Saeid full_name: Ghavami, Saeid last_name: Ghavami - first_name: Alessandra full_name: Ghigo, Alessandra last_name: Ghigo - first_name: Manosij full_name: Ghosh, Manosij last_name: Ghosh - first_name: Georgios full_name: Giamas, Georgios last_name: Giamas - first_name: Claudia full_name: Giampietri, Claudia last_name: Giampietri - first_name: Alexandra full_name: Giatromanolaki, Alexandra last_name: Giatromanolaki - first_name: Gary E. full_name: Gibson, Gary E. last_name: Gibson - first_name: Spencer B. full_name: Gibson, Spencer B. last_name: Gibson - first_name: Vanessa full_name: Ginet, Vanessa last_name: Ginet - first_name: Edward full_name: Giniger, Edward last_name: Giniger - first_name: Carlotta full_name: Giorgi, Carlotta last_name: Giorgi - first_name: Henrique full_name: Girao, Henrique last_name: Girao - first_name: Stephen E. full_name: Girardin, Stephen E. last_name: Girardin - first_name: Mridhula full_name: Giridharan, Mridhula last_name: Giridharan - first_name: Sandy full_name: Giuliano, Sandy last_name: Giuliano - first_name: Cecilia full_name: Giulivi, Cecilia last_name: Giulivi - first_name: Sylvie full_name: Giuriato, Sylvie last_name: Giuriato - first_name: Julien full_name: Giustiniani, Julien last_name: Giustiniani - first_name: Alexander full_name: Gluschko, Alexander last_name: Gluschko - first_name: Veit full_name: Goder, Veit last_name: Goder - first_name: Alexander full_name: Goginashvili, Alexander last_name: Goginashvili - first_name: Jakub full_name: Golab, Jakub last_name: Golab - first_name: David C. full_name: Goldstone, David C. last_name: Goldstone - first_name: Anna full_name: Golebiewska, Anna last_name: Golebiewska - first_name: Luciana R. full_name: Gomes, Luciana R. last_name: Gomes - first_name: Rodrigo full_name: Gomez, Rodrigo last_name: Gomez - first_name: Rubén full_name: Gómez-Sánchez, Rubén last_name: Gómez-Sánchez - first_name: Maria Catalina full_name: Gomez-Puerto, Maria Catalina last_name: Gomez-Puerto - first_name: Raquel full_name: Gomez-Sintes, Raquel last_name: Gomez-Sintes - first_name: Qingqiu full_name: Gong, Qingqiu last_name: Gong - first_name: Felix M. full_name: Goni, Felix M. last_name: Goni - first_name: Javier full_name: González-Gallego, Javier last_name: González-Gallego - first_name: Tomas full_name: Gonzalez-Hernandez, Tomas last_name: Gonzalez-Hernandez - first_name: Rosa A. full_name: Gonzalez-Polo, Rosa A. last_name: Gonzalez-Polo - first_name: Jose A. full_name: Gonzalez-Reyes, Jose A. last_name: Gonzalez-Reyes - first_name: Patricia full_name: González-Rodríguez, Patricia last_name: González-Rodríguez - first_name: Ing Swie full_name: Goping, Ing Swie last_name: Goping - first_name: Marina S. full_name: Gorbatyuk, Marina S. last_name: Gorbatyuk - first_name: Nikolai V. full_name: Gorbunov, Nikolai V. last_name: Gorbunov - first_name: Kıvanç full_name: Görgülü, Kıvanç last_name: Görgülü - first_name: Roxana M. full_name: Gorojod, Roxana M. last_name: Gorojod - first_name: Sharon M. full_name: Gorski, Sharon M. last_name: Gorski - first_name: Sandro full_name: Goruppi, Sandro last_name: Goruppi - first_name: Cecilia full_name: Gotor, Cecilia last_name: Gotor - first_name: Roberta A. full_name: Gottlieb, Roberta A. last_name: Gottlieb - first_name: Illana full_name: Gozes, Illana last_name: Gozes - first_name: Devrim full_name: Gozuacik, Devrim last_name: Gozuacik - first_name: Martin full_name: Graef, Martin last_name: Graef - first_name: Markus H. full_name: Gräler, Markus H. last_name: Gräler - first_name: Veronica full_name: Granatiero, Veronica last_name: Granatiero - first_name: Daniel full_name: Grasso, Daniel last_name: Grasso - first_name: Joshua P. full_name: Gray, Joshua P. last_name: Gray - first_name: Douglas R. full_name: Green, Douglas R. last_name: Green - first_name: Alexander full_name: Greenhough, Alexander last_name: Greenhough - first_name: Stephen L. full_name: Gregory, Stephen L. last_name: Gregory - first_name: Edward F. full_name: Griffin, Edward F. last_name: Griffin - first_name: Mark W. full_name: Grinstaff, Mark W. last_name: Grinstaff - first_name: Frederic full_name: Gros, Frederic last_name: Gros - first_name: Charles full_name: Grose, Charles last_name: Grose - first_name: Angelina S. full_name: Gross, Angelina S. last_name: Gross - first_name: Florian full_name: Gruber, Florian last_name: Gruber - first_name: Paolo full_name: Grumati, Paolo last_name: Grumati - first_name: Tilman full_name: Grune, Tilman last_name: Grune - first_name: Xueyan full_name: Gu, Xueyan last_name: Gu - first_name: Jun Lin full_name: Guan, Jun Lin last_name: Guan - first_name: Carlos M. full_name: Guardia, Carlos M. last_name: Guardia - first_name: Kishore full_name: Guda, Kishore last_name: Guda - first_name: Flora full_name: Guerra, Flora last_name: Guerra - first_name: Consuelo full_name: Guerri, Consuelo last_name: Guerri - first_name: Prasun full_name: Guha, Prasun last_name: Guha - first_name: Carlos full_name: Guillén, Carlos last_name: Guillén - first_name: Shashi full_name: Gujar, Shashi last_name: Gujar - first_name: Anna full_name: Gukovskaya, Anna last_name: Gukovskaya - first_name: Ilya full_name: Gukovsky, Ilya last_name: Gukovsky - first_name: Jan full_name: Gunst, Jan last_name: Gunst - first_name: Andreas full_name: Günther, Andreas last_name: Günther - first_name: Anyonya R. full_name: Guntur, Anyonya R. last_name: Guntur - first_name: Chuanyong full_name: Guo, Chuanyong last_name: Guo - first_name: Chun full_name: Guo, Chun last_name: Guo - first_name: Hongqing full_name: Guo, Hongqing last_name: Guo - first_name: Lian Wang full_name: Guo, Lian Wang last_name: Guo - first_name: Ming full_name: Guo, Ming last_name: Guo - first_name: Pawan full_name: Gupta, Pawan last_name: Gupta - first_name: Shashi Kumar full_name: Gupta, Shashi Kumar last_name: Gupta - first_name: Swapnil full_name: Gupta, Swapnil last_name: Gupta - first_name: Veer Bala full_name: Gupta, Veer Bala last_name: Gupta - first_name: Vivek full_name: Gupta, Vivek last_name: Gupta - first_name: Asa B. full_name: Gustafsson, Asa B. last_name: Gustafsson - first_name: David D. full_name: Gutterman, David D. last_name: Gutterman - first_name: Ranjitha full_name: H.B, Ranjitha last_name: H.B - first_name: Annakaisa full_name: Haapasalo, Annakaisa last_name: Haapasalo - first_name: James E. full_name: Haber, James E. last_name: Haber - first_name: Aleksandra full_name: Hać, Aleksandra last_name: Hać - first_name: Shinji full_name: Hadano, Shinji last_name: Hadano - first_name: Anders J. full_name: Hafrén, Anders J. last_name: Hafrén - first_name: Mansour full_name: Haidar, Mansour last_name: Haidar - first_name: Belinda S. full_name: Hall, Belinda S. last_name: Hall - first_name: Gunnel full_name: Halldén, Gunnel last_name: Halldén - first_name: Anne full_name: Hamacher-Brady, Anne last_name: Hamacher-Brady - first_name: Andrea full_name: Hamann, Andrea last_name: Hamann - first_name: Maho full_name: Hamasaki, Maho last_name: Hamasaki - first_name: Weidong full_name: Han, Weidong last_name: Han - first_name: Malene full_name: Hansen, Malene last_name: Hansen - first_name: Phyllis I. . full_name: Hanson, Phyllis I. . last_name: Hanson - first_name: Zijian full_name: Hao, Zijian last_name: Hao - first_name: Masaru full_name: Harada, Masaru last_name: Harada - first_name: Ljubica full_name: Harhaji-Trajkovic, Ljubica last_name: Harhaji-Trajkovic - first_name: Nirmala full_name: Hariharan, Nirmala last_name: Hariharan - first_name: Nigil full_name: Haroon, Nigil last_name: Haroon - first_name: James full_name: Harris, James last_name: Harris - first_name: Takafumi full_name: Hasegawa, Takafumi last_name: Hasegawa - first_name: Noor full_name: Hasima Nagoor, Noor last_name: Hasima Nagoor - first_name: Jeffrey A. full_name: Haspel, Jeffrey A. last_name: Haspel - first_name: Volker full_name: Haucke, Volker last_name: Haucke - first_name: Wayne D. full_name: Hawkins, Wayne D. last_name: Hawkins - first_name: Bruce A. full_name: Hay, Bruce A. last_name: Hay - first_name: Cole M. full_name: Haynes, Cole M. last_name: Haynes - first_name: Soren B. full_name: Hayrabedyan, Soren B. last_name: Hayrabedyan - first_name: Thomas S. full_name: Hays, Thomas S. last_name: Hays - first_name: Congcong full_name: He, Congcong last_name: He - first_name: Qin full_name: He, Qin last_name: He - first_name: Rong Rong full_name: He, Rong Rong last_name: He - first_name: You Wen full_name: He, You Wen last_name: He - first_name: Yu Ying full_name: He, Yu Ying last_name: He - first_name: Yasser full_name: Heakal, Yasser last_name: Heakal - first_name: Alexander M. full_name: Heberle, Alexander M. last_name: Heberle - first_name: J. Fielding full_name: Hejtmancik, J. Fielding last_name: Hejtmancik - first_name: Gudmundur Vignir full_name: Helgason, Gudmundur Vignir last_name: Helgason - first_name: Vanessa full_name: Henkel, Vanessa last_name: Henkel - first_name: Marc full_name: Herb, Marc last_name: Herb - first_name: Alexander full_name: Hergovich, Alexander last_name: Hergovich - first_name: Anna full_name: Herman-Antosiewicz, Anna last_name: Herman-Antosiewicz - first_name: Agustín full_name: Hernández, Agustín last_name: Hernández - first_name: Carlos full_name: Hernandez, Carlos last_name: Hernandez - first_name: Sergio full_name: Hernandez-Diaz, Sergio last_name: Hernandez-Diaz - first_name: Virginia full_name: Hernandez-Gea, Virginia last_name: Hernandez-Gea - first_name: Amaury full_name: Herpin, Amaury last_name: Herpin - first_name: Judit full_name: Herreros, Judit last_name: Herreros - first_name: Javier H. full_name: Hervás, Javier H. last_name: Hervás - first_name: Daniel full_name: Hesselson, Daniel last_name: Hesselson - first_name: Claudio full_name: Hetz, Claudio last_name: Hetz - first_name: Volker T. full_name: Heussler, Volker T. last_name: Heussler - first_name: Yujiro full_name: Higuchi, Yujiro last_name: Higuchi - first_name: Sabine full_name: Hilfiker, Sabine last_name: Hilfiker - first_name: Joseph A. full_name: Hill, Joseph A. last_name: Hill - first_name: William S. full_name: Hlavacek, William S. last_name: Hlavacek - first_name: Emmanuel A. full_name: Ho, Emmanuel A. last_name: Ho - first_name: Idy H.T. full_name: Ho, Idy H.T. last_name: Ho - first_name: Philip Wing Lok full_name: Ho, Philip Wing Lok last_name: Ho - first_name: Shu Leong full_name: Ho, Shu Leong last_name: Ho - first_name: Wan Yun full_name: Ho, Wan Yun last_name: Ho - first_name: G. Aaron full_name: Hobbs, G. Aaron last_name: Hobbs - first_name: Mark full_name: Hochstrasser, Mark last_name: Hochstrasser - first_name: Peter H.M. full_name: Hoet, Peter H.M. last_name: Hoet - first_name: Daniel full_name: Hofius, Daniel last_name: Hofius - first_name: Paul full_name: Hofman, Paul last_name: Hofman - first_name: Annika full_name: Höhn, Annika last_name: Höhn - first_name: Carina I. full_name: Holmberg, Carina I. last_name: Holmberg - first_name: Jose R. full_name: Hombrebueno, Jose R. last_name: Hombrebueno - first_name: Chang Won Hong full_name: Yi-Ren Hong, Chang Won Hong last_name: Yi-Ren Hong - first_name: Lora V. full_name: Hooper, Lora V. last_name: Hooper - first_name: Thorsten full_name: Hoppe, Thorsten last_name: Hoppe - first_name: Rastislav full_name: Horos, Rastislav last_name: Horos - first_name: Yujin full_name: Hoshida, Yujin last_name: Hoshida - first_name: I. Lun full_name: Hsin, I. Lun last_name: Hsin - first_name: Hsin Yun full_name: Hsu, Hsin Yun last_name: Hsu - first_name: Bing full_name: Hu, Bing last_name: Hu - first_name: Dong full_name: Hu, Dong last_name: Hu - first_name: Li Fang full_name: Hu, Li Fang last_name: Hu - first_name: Ming Chang full_name: Hu, Ming Chang last_name: Hu - first_name: Ronggui full_name: Hu, Ronggui last_name: Hu - first_name: Wei full_name: Hu, Wei last_name: Hu - first_name: Yu Chen full_name: Hu, Yu Chen last_name: Hu - first_name: Zhuo Wei full_name: Hu, Zhuo Wei last_name: Hu - first_name: Fang full_name: Hua, Fang last_name: Hua - first_name: Jinlian full_name: Hua, Jinlian last_name: Hua - first_name: Yingqi full_name: Hua, Yingqi last_name: Hua - first_name: Chongmin full_name: Huan, Chongmin last_name: Huan - first_name: Canhua full_name: Huang, Canhua last_name: Huang - first_name: Chuanshu full_name: Huang, Chuanshu last_name: Huang - first_name: Chuanxin full_name: Huang, Chuanxin last_name: Huang - first_name: Chunling full_name: Huang, Chunling last_name: Huang - first_name: Haishan full_name: Huang, Haishan last_name: Huang - first_name: Kun full_name: Huang, Kun last_name: Huang - first_name: Michael L.H. full_name: Huang, Michael L.H. last_name: Huang - first_name: Rui full_name: Huang, Rui last_name: Huang - first_name: Shan full_name: Huang, Shan last_name: Huang - first_name: Tianzhi full_name: Huang, Tianzhi last_name: Huang - first_name: Xing full_name: Huang, Xing last_name: Huang - first_name: Yuxiang Jack full_name: Huang, Yuxiang Jack last_name: Huang - first_name: Tobias B. full_name: Huber, Tobias B. last_name: Huber - first_name: Virginie full_name: Hubert, Virginie last_name: Hubert - first_name: Christian A. full_name: Hubner, Christian A. last_name: Hubner - first_name: Stephanie M. full_name: Hughes, Stephanie M. last_name: Hughes - first_name: William E. full_name: Hughes, William E. last_name: Hughes - first_name: Magali full_name: Humbert, Magali last_name: Humbert - first_name: Gerhard full_name: Hummer, Gerhard last_name: Hummer - first_name: James H. full_name: Hurley, James H. last_name: Hurley - first_name: Sabah full_name: Hussain, Sabah last_name: Hussain - first_name: Salik full_name: Hussain, Salik last_name: Hussain - first_name: Patrick J. full_name: Hussey, Patrick J. last_name: Hussey - first_name: Martina full_name: Hutabarat, Martina last_name: Hutabarat - first_name: Hui Yun full_name: Hwang, Hui Yun last_name: Hwang - first_name: Seungmin full_name: Hwang, Seungmin last_name: Hwang - first_name: Antonio full_name: Ieni, Antonio last_name: Ieni - first_name: Fumiyo full_name: Ikeda, Fumiyo last_name: Ikeda - first_name: Yusuke full_name: Imagawa, Yusuke last_name: Imagawa - first_name: Yuzuru full_name: Imai, Yuzuru last_name: Imai - first_name: Carol full_name: Imbriano, Carol last_name: Imbriano - first_name: Masaya full_name: Imoto, Masaya last_name: Imoto - first_name: Denise M. full_name: Inman, Denise M. last_name: Inman - first_name: Ken full_name: Inoki, Ken last_name: Inoki - first_name: Juan full_name: Iovanna, Juan last_name: Iovanna - first_name: Renato V. full_name: Iozzo, Renato V. last_name: Iozzo - first_name: Giuseppe full_name: Ippolito, Giuseppe last_name: Ippolito - first_name: Javier E. full_name: Irazoqui, Javier E. last_name: Irazoqui - first_name: Pablo full_name: Iribarren, Pablo last_name: Iribarren - first_name: Mohd full_name: Ishaq, Mohd last_name: Ishaq - first_name: Makoto full_name: Ishikawa, Makoto last_name: Ishikawa - first_name: Nestor full_name: Ishimwe, Nestor last_name: Ishimwe - first_name: Ciro full_name: Isidoro, Ciro last_name: Isidoro - first_name: Nahed full_name: Ismail, Nahed last_name: Ismail - first_name: Shohreh full_name: Issazadeh-Navikas, Shohreh last_name: Issazadeh-Navikas - first_name: Eisuke full_name: Itakura, Eisuke last_name: Itakura - first_name: Daisuke full_name: Ito, Daisuke last_name: Ito - first_name: Davor full_name: Ivankovic, Davor last_name: Ivankovic - first_name: Saška full_name: Ivanova, Saška last_name: Ivanova - first_name: Anand Krishnan V. full_name: Iyer, Anand Krishnan V. last_name: Iyer - first_name: José M. full_name: Izquierdo, José M. last_name: Izquierdo - first_name: Masanori full_name: Izumi, Masanori last_name: Izumi - first_name: Marja full_name: Jäättelä, Marja last_name: Jäättelä - first_name: Majid Sakhi full_name: Jabir, Majid Sakhi last_name: Jabir - first_name: William T. full_name: Jackson, William T. last_name: Jackson - first_name: Nadia full_name: Jacobo-Herrera, Nadia last_name: Jacobo-Herrera - first_name: Anne Claire full_name: Jacomin, Anne Claire last_name: Jacomin - first_name: Elise full_name: Jacquin, Elise last_name: Jacquin - first_name: Pooja full_name: Jadiya, Pooja last_name: Jadiya - first_name: Hartmut full_name: Jaeschke, Hartmut last_name: Jaeschke - first_name: Chinnaswamy full_name: Jagannath, Chinnaswamy last_name: Jagannath - first_name: Arjen J. full_name: Jakobi, Arjen J. last_name: Jakobi - first_name: Johan full_name: Jakobsson, Johan last_name: Jakobsson - first_name: Bassam full_name: Janji, Bassam last_name: Janji - first_name: Pidder full_name: Jansen-Dürr, Pidder last_name: Jansen-Dürr - first_name: Patric J. full_name: Jansson, Patric J. last_name: Jansson - first_name: Jonathan full_name: Jantsch, Jonathan last_name: Jantsch - first_name: Sławomir full_name: Januszewski, Sławomir last_name: Januszewski - first_name: Alagie full_name: Jassey, Alagie last_name: Jassey - first_name: Steve full_name: Jean, Steve last_name: Jean - first_name: Hélène full_name: Jeltsch-David, Hélène last_name: Jeltsch-David - first_name: Pavla full_name: Jendelova, Pavla last_name: Jendelova - first_name: Andreas full_name: Jenny, Andreas last_name: Jenny - first_name: Thomas E. full_name: Jensen, Thomas E. last_name: Jensen - first_name: Niels full_name: Jessen, Niels last_name: Jessen - first_name: Jenna L. full_name: Jewell, Jenna L. last_name: Jewell - first_name: Jing full_name: Ji, Jing last_name: Ji - first_name: Lijun full_name: Jia, Lijun last_name: Jia - first_name: Rui full_name: Jia, Rui last_name: Jia - first_name: Liwen full_name: Jiang, Liwen last_name: Jiang - first_name: Qing full_name: Jiang, Qing last_name: Jiang - first_name: Richeng full_name: Jiang, Richeng last_name: Jiang - first_name: Teng full_name: Jiang, Teng last_name: Jiang - first_name: Xuejun full_name: Jiang, Xuejun last_name: Jiang - first_name: Yu full_name: Jiang, Yu last_name: Jiang - first_name: Maria full_name: Jimenez-Sanchez, Maria last_name: Jimenez-Sanchez - first_name: Eun Jung full_name: Jin, Eun Jung last_name: Jin - first_name: Fengyan full_name: Jin, Fengyan last_name: Jin - first_name: Hongchuan full_name: Jin, Hongchuan last_name: Jin - first_name: Li full_name: Jin, Li last_name: Jin - first_name: Luqi full_name: Jin, Luqi last_name: Jin - first_name: Meiyan full_name: Jin, Meiyan last_name: Jin - first_name: Si full_name: Jin, Si last_name: Jin - first_name: Eun Kyeong full_name: Jo, Eun Kyeong last_name: Jo - first_name: Carine full_name: Joffre, Carine last_name: Joffre - first_name: Terje full_name: Johansen, Terje last_name: Johansen - first_name: Gail V.W. full_name: Johnson, Gail V.W. last_name: Johnson - first_name: Simon A. full_name: Johnston, Simon A. last_name: Johnston - first_name: Eija full_name: Jokitalo, Eija last_name: Jokitalo - first_name: Mohit Kumar full_name: Jolly, Mohit Kumar last_name: Jolly - first_name: Leo A.B. full_name: Joosten, Leo A.B. last_name: Joosten - first_name: Joaquin full_name: Jordan, Joaquin last_name: Jordan - first_name: Bertrand full_name: Joseph, Bertrand last_name: Joseph - first_name: Dianwen full_name: Ju, Dianwen last_name: Ju - first_name: Jeong Sun full_name: Ju, Jeong Sun last_name: Ju - first_name: Jingfang full_name: Ju, Jingfang last_name: Ju - first_name: Esmeralda full_name: Juárez, Esmeralda last_name: Juárez - first_name: Delphine full_name: Judith, Delphine last_name: Judith - first_name: Gábor full_name: Juhász, Gábor last_name: Juhász - first_name: Youngsoo full_name: Jun, Youngsoo last_name: Jun - first_name: Chang Hwa full_name: Jung, Chang Hwa last_name: Jung - first_name: Sung Chul full_name: Jung, Sung Chul last_name: Jung - first_name: Yong Keun full_name: Jung, Yong Keun last_name: Jung - first_name: Heinz full_name: Jungbluth, Heinz last_name: Jungbluth - first_name: Johannes full_name: Jungverdorben, Johannes last_name: Jungverdorben - first_name: Steffen full_name: Just, Steffen last_name: Just - first_name: Kai full_name: Kaarniranta, Kai last_name: Kaarniranta - first_name: Allen full_name: Kaasik, Allen last_name: Kaasik - first_name: Tomohiro full_name: Kabuta, Tomohiro last_name: Kabuta - first_name: Daniel full_name: Kaganovich, Daniel last_name: Kaganovich - first_name: Alon full_name: Kahana, Alon last_name: Kahana - first_name: Renate full_name: Kain, Renate last_name: Kain - first_name: Shinjo full_name: Kajimura, Shinjo last_name: Kajimura - first_name: Maria full_name: Kalamvoki, Maria last_name: Kalamvoki - first_name: Manjula full_name: Kalia, Manjula last_name: Kalia - first_name: Danuta S. full_name: Kalinowski, Danuta S. last_name: Kalinowski - first_name: Nina full_name: Kaludercic, Nina last_name: Kaludercic - first_name: Ioanna full_name: Kalvari, Ioanna last_name: Kalvari - first_name: Joanna full_name: Kaminska, Joanna last_name: Kaminska - first_name: Vitaliy O. full_name: Kaminskyy, Vitaliy O. last_name: Kaminskyy - first_name: Hiromitsu full_name: Kanamori, Hiromitsu last_name: Kanamori - first_name: Keizo full_name: Kanasaki, Keizo last_name: Kanasaki - first_name: Chanhee full_name: Kang, Chanhee last_name: Kang - first_name: Rui full_name: Kang, Rui last_name: Kang - first_name: Sang Sun full_name: Kang, Sang Sun last_name: Kang - first_name: Senthilvelrajan full_name: Kaniyappan, Senthilvelrajan last_name: Kaniyappan - first_name: Tomotake full_name: Kanki, Tomotake last_name: Kanki - first_name: Thirumala Devi full_name: Kanneganti, Thirumala Devi last_name: Kanneganti - first_name: Anumantha G. full_name: Kanthasamy, Anumantha G. last_name: Kanthasamy - first_name: Arthi full_name: Kanthasamy, Arthi last_name: Kanthasamy - first_name: Marc full_name: Kantorow, Marc last_name: Kantorow - first_name: Orsolya full_name: Kapuy, Orsolya last_name: Kapuy - first_name: Michalis V. full_name: Karamouzis, Michalis V. last_name: Karamouzis - first_name: Md Razaul full_name: Karim, Md Razaul last_name: Karim - first_name: Parimal full_name: Karmakar, Parimal last_name: Karmakar - first_name: Rajesh G. full_name: Katare, Rajesh G. last_name: Katare - first_name: Masaru full_name: Kato, Masaru last_name: Kato - first_name: Stefan H.E. full_name: Kaufmann, Stefan H.E. last_name: Kaufmann - first_name: Anu full_name: Kauppinen, Anu last_name: Kauppinen - first_name: Gur P. full_name: Kaushal, Gur P. last_name: Kaushal - first_name: Susmita full_name: Kaushik, Susmita last_name: Kaushik - first_name: Kiyoshi full_name: Kawasaki, Kiyoshi last_name: Kawasaki - first_name: Kemal full_name: Kazan, Kemal last_name: Kazan - first_name: Po Yuan full_name: Ke, Po Yuan last_name: Ke - first_name: Damien J. full_name: Keating, Damien J. last_name: Keating - first_name: Ursula full_name: Keber, Ursula last_name: Keber - first_name: John H. full_name: Kehrl, John H. last_name: Kehrl - first_name: Kate E. full_name: Keller, Kate E. last_name: Keller - first_name: Christian W. full_name: Keller, Christian W. last_name: Keller - first_name: Jongsook Kim full_name: Kemper, Jongsook Kim last_name: Kemper - first_name: Candia M. full_name: Kenific, Candia M. last_name: Kenific - first_name: Oliver full_name: Kepp, Oliver last_name: Kepp - first_name: Stephanie full_name: Kermorgant, Stephanie last_name: Kermorgant - first_name: Andreas full_name: Kern, Andreas last_name: Kern - first_name: Robin full_name: Ketteler, Robin last_name: Ketteler - first_name: Tom G. full_name: Keulers, Tom G. last_name: Keulers - first_name: Boris full_name: Khalfin, Boris last_name: Khalfin - first_name: Hany full_name: Khalil, Hany last_name: Khalil - first_name: Bilon full_name: Khambu, Bilon last_name: Khambu - first_name: Shahid Y. full_name: Khan, Shahid Y. last_name: Khan - first_name: Vinoth Kumar Megraj full_name: Khandelwal, Vinoth Kumar Megraj last_name: Khandelwal - first_name: Rekha full_name: Khandia, Rekha last_name: Khandia - first_name: Widuri full_name: Kho, Widuri last_name: Kho - first_name: Noopur V. full_name: Khobrekar, Noopur V. last_name: Khobrekar - first_name: Sataree full_name: Khuansuwan, Sataree last_name: Khuansuwan - first_name: Mukhran full_name: Khundadze, Mukhran last_name: Khundadze - first_name: Samuel A. full_name: Killackey, Samuel A. last_name: Killackey - first_name: Dasol full_name: Kim, Dasol last_name: Kim - first_name: Deok Ryong full_name: Kim, Deok Ryong last_name: Kim - first_name: Do Hyung full_name: Kim, Do Hyung last_name: Kim - first_name: Dong Eun full_name: Kim, Dong Eun last_name: Kim - first_name: Eun Young full_name: Kim, Eun Young last_name: Kim - first_name: Eun Kyoung full_name: Kim, Eun Kyoung last_name: Kim - first_name: Hak Rim full_name: Kim, Hak Rim last_name: Kim - first_name: Hee Sik full_name: Kim, Hee Sik last_name: Kim - first_name: Unknown full_name: Hyung-Ryong Kim, Unknown last_name: Hyung-Ryong Kim - first_name: Jeong Hun full_name: Kim, Jeong Hun last_name: Kim - first_name: Jin Kyung full_name: Kim, Jin Kyung last_name: Kim - first_name: Jin Hoi full_name: Kim, Jin Hoi last_name: Kim - first_name: Joungmok full_name: Kim, Joungmok last_name: Kim - first_name: Ju Hwan full_name: Kim, Ju Hwan last_name: Kim - first_name: Keun Il full_name: Kim, Keun Il last_name: Kim - first_name: Peter K. full_name: Kim, Peter K. last_name: Kim - first_name: Seong Jun full_name: Kim, Seong Jun last_name: Kim - first_name: Scot R. full_name: Kimball, Scot R. last_name: Kimball - first_name: Adi full_name: Kimchi, Adi last_name: Kimchi - first_name: Alec C. full_name: Kimmelman, Alec C. last_name: Kimmelman - first_name: Tomonori full_name: Kimura, Tomonori last_name: Kimura - first_name: Matthew A. full_name: King, Matthew A. last_name: King - first_name: Kerri J. full_name: Kinghorn, Kerri J. last_name: Kinghorn - first_name: Conan G. full_name: Kinsey, Conan G. last_name: Kinsey - first_name: Vladimir full_name: Kirkin, Vladimir last_name: Kirkin - first_name: Lorrie A. full_name: Kirshenbaum, Lorrie A. last_name: Kirshenbaum - first_name: Sergey L. full_name: Kiselev, Sergey L. last_name: Kiselev - first_name: Shuji full_name: Kishi, Shuji last_name: Kishi - first_name: Katsuhiko full_name: Kitamoto, Katsuhiko last_name: Kitamoto - first_name: Yasushi full_name: Kitaoka, Yasushi last_name: Kitaoka - first_name: Kaio full_name: Kitazato, Kaio last_name: Kitazato - first_name: Richard N. full_name: Kitsis, Richard N. last_name: Kitsis - first_name: Josef T. full_name: Kittler, Josef T. last_name: Kittler - first_name: Ole full_name: Kjaerulff, Ole last_name: Kjaerulff - first_name: Peter S. full_name: Klein, Peter S. last_name: Klein - first_name: Thomas full_name: Klopstock, Thomas last_name: Klopstock - first_name: Jochen full_name: Klucken, Jochen last_name: Klucken - first_name: Helene full_name: Knævelsrud, Helene last_name: Knævelsrud - first_name: Roland L. full_name: Knorr, Roland L. last_name: Knorr - first_name: Ben C.B. full_name: Ko, Ben C.B. last_name: Ko - first_name: Fred full_name: Ko, Fred last_name: Ko - first_name: Jiunn Liang full_name: Ko, Jiunn Liang last_name: Ko - first_name: Hotaka full_name: Kobayashi, Hotaka last_name: Kobayashi - first_name: Satoru full_name: Kobayashi, Satoru last_name: Kobayashi - first_name: Ina full_name: Koch, Ina last_name: Koch - first_name: Jan C. full_name: Koch, Jan C. last_name: Koch - first_name: Ulrich full_name: Koenig, Ulrich last_name: Koenig - first_name: Donat full_name: Kögel, Donat last_name: Kögel - first_name: Young Ho full_name: Koh, Young Ho last_name: Koh - first_name: Masato full_name: Koike, Masato last_name: Koike - first_name: Sepp D. full_name: Kohlwein, Sepp D. last_name: Kohlwein - first_name: Nur M. full_name: Kocaturk, Nur M. last_name: Kocaturk - first_name: Masaaki full_name: Komatsu, Masaaki last_name: Komatsu - first_name: Jeannette full_name: König, Jeannette last_name: König - first_name: Toru full_name: Kono, Toru last_name: Kono - first_name: Benjamin T. full_name: Kopp, Benjamin T. last_name: Kopp - first_name: Tamas full_name: Korcsmaros, Tamas last_name: Korcsmaros - first_name: Gözde full_name: Korkmaz, Gözde last_name: Korkmaz - first_name: Viktor I. full_name: Korolchuk, Viktor I. last_name: Korolchuk - first_name: Mónica Suárez full_name: Korsnes, Mónica Suárez last_name: Korsnes - first_name: Ali full_name: Koskela, Ali last_name: Koskela - first_name: Janaiah full_name: Kota, Janaiah last_name: Kota - first_name: Yaichiro full_name: Kotake, Yaichiro last_name: Kotake - first_name: Monica L. full_name: Kotler, Monica L. last_name: Kotler - first_name: Yanjun full_name: Kou, Yanjun last_name: Kou - first_name: Michael I. full_name: Koukourakis, Michael I. last_name: Koukourakis - first_name: Evangelos full_name: Koustas, Evangelos last_name: Koustas - first_name: Attila L. full_name: Kovacs, Attila L. last_name: Kovacs - first_name: Tibor full_name: Kovács, Tibor last_name: Kovács - first_name: Daisuke full_name: Koya, Daisuke last_name: Koya - first_name: Tomohiro full_name: Kozako, Tomohiro last_name: Kozako - first_name: Claudine full_name: Kraft, Claudine last_name: Kraft - first_name: Dimitri full_name: Krainc, Dimitri last_name: Krainc - first_name: Helmut full_name: Krämer, Helmut last_name: Krämer - first_name: Anna D. full_name: Krasnodembskaya, Anna D. last_name: Krasnodembskaya - first_name: Carole full_name: Kretz-Remy, Carole last_name: Kretz-Remy - first_name: Guido full_name: Kroemer, Guido last_name: Kroemer - first_name: Nicholas T. full_name: Ktistakis, Nicholas T. last_name: Ktistakis - first_name: Kazuyuki full_name: Kuchitsu, Kazuyuki last_name: Kuchitsu - first_name: Sabine full_name: Kuenen, Sabine last_name: Kuenen - first_name: Lars full_name: Kuerschner, Lars last_name: Kuerschner - first_name: Thomas full_name: Kukar, Thomas last_name: Kukar - first_name: Ajay full_name: Kumar, Ajay last_name: Kumar - first_name: Ashok full_name: Kumar, Ashok last_name: Kumar - first_name: Deepak full_name: Kumar, Deepak last_name: Kumar - first_name: Dhiraj full_name: Kumar, Dhiraj last_name: Kumar - first_name: Sharad full_name: Kumar, Sharad last_name: Kumar - first_name: Shinji full_name: Kume, Shinji last_name: Kume - first_name: Caroline full_name: Kumsta, Caroline last_name: Kumsta - first_name: Chanakya N. full_name: Kundu, Chanakya N. last_name: Kundu - first_name: Mondira full_name: Kundu, Mondira last_name: Kundu - first_name: Ajaikumar B. full_name: Kunnumakkara, Ajaikumar B. last_name: Kunnumakkara - first_name: Lukasz full_name: Kurgan, Lukasz last_name: Kurgan - first_name: Tatiana G. full_name: Kutateladze, Tatiana G. last_name: Kutateladze - first_name: Ozlem full_name: Kutlu, Ozlem last_name: Kutlu - first_name: Seong Ae full_name: Kwak, Seong Ae last_name: Kwak - first_name: Ho Jeong full_name: Kwon, Ho Jeong last_name: Kwon - first_name: Taeg Kyu full_name: Kwon, Taeg Kyu last_name: Kwon - first_name: Yong Tae full_name: Kwon, Yong Tae last_name: Kwon - first_name: Irene full_name: Kyrmizi, Irene last_name: Kyrmizi - first_name: Albert full_name: La Spada, Albert last_name: La Spada - first_name: Patrick full_name: Labonté, Patrick last_name: Labonté - first_name: Sylvain full_name: Ladoire, Sylvain last_name: Ladoire - first_name: Ilaria full_name: Laface, Ilaria last_name: Laface - first_name: Frank full_name: Lafont, Frank last_name: Lafont - first_name: Diane C. full_name: Lagace, Diane C. last_name: Lagace - first_name: Vikramjit full_name: Lahiri, Vikramjit last_name: Lahiri - first_name: Zhibing full_name: Lai, Zhibing last_name: Lai - first_name: Angela S. full_name: Laird, Angela S. last_name: Laird - first_name: Aparna full_name: Lakkaraju, Aparna last_name: Lakkaraju - first_name: Trond full_name: Lamark, Trond last_name: Lamark - first_name: Sheng Hui full_name: Lan, Sheng Hui last_name: Lan - first_name: Ane full_name: Landajuela, Ane last_name: Landajuela - first_name: Darius J.R. full_name: Lane, Darius J.R. last_name: Lane - first_name: Jon D. full_name: Lane, Jon D. last_name: Lane - first_name: Charles H. full_name: Lang, Charles H. last_name: Lang - first_name: Carsten full_name: Lange, Carsten last_name: Lange - first_name: Ülo full_name: Langel, Ülo last_name: Langel - first_name: Rupert full_name: Langer, Rupert last_name: Langer - first_name: Pierre full_name: Lapaquette, Pierre last_name: Lapaquette - first_name: Jocelyn full_name: Laporte, Jocelyn last_name: Laporte - first_name: Nicholas F. full_name: Larusso, Nicholas F. last_name: Larusso - first_name: Isabel full_name: Lastres-Becker, Isabel last_name: Lastres-Becker - first_name: Wilson Chun Yu full_name: Lau, Wilson Chun Yu last_name: Lau - first_name: Gordon W. full_name: Laurie, Gordon W. last_name: Laurie - first_name: Sergio full_name: Lavandero, Sergio last_name: Lavandero - first_name: Betty Yuen Kwan full_name: Law, Betty Yuen Kwan last_name: Law - first_name: Helen Ka Wai full_name: Law, Helen Ka Wai last_name: Law - first_name: Rob full_name: Layfield, Rob last_name: Layfield - first_name: Weidong full_name: Le, Weidong last_name: Le - first_name: Herve full_name: Le Stunff, Herve last_name: Le Stunff - first_name: Alexandre Y. full_name: Leary, Alexandre Y. last_name: Leary - first_name: Jean Jacques full_name: Lebrun, Jean Jacques last_name: Lebrun - first_name: Lionel Y.W. full_name: Leck, Lionel Y.W. last_name: Leck - first_name: Jean Philippe full_name: Leduc-Gaudet, Jean Philippe last_name: Leduc-Gaudet - first_name: Changwook full_name: Lee, Changwook last_name: Lee - first_name: Chung Pei full_name: Lee, Chung Pei last_name: Lee - first_name: Da Hye full_name: Lee, Da Hye last_name: Lee - first_name: Edward B. full_name: Lee, Edward B. last_name: Lee - first_name: Erinna F. full_name: Lee, Erinna F. last_name: Lee - first_name: Gyun Min full_name: Lee, Gyun Min last_name: Lee - first_name: He Jin full_name: Lee, He Jin last_name: Lee - first_name: Heung Kyu full_name: Lee, Heung Kyu last_name: Lee - first_name: Jae Man full_name: Lee, Jae Man last_name: Lee - first_name: Jason S. full_name: Lee, Jason S. last_name: Lee - first_name: Jin A. full_name: Lee, Jin A. last_name: Lee - first_name: Joo Yong full_name: Lee, Joo Yong last_name: Lee - first_name: Jun Hee full_name: Lee, Jun Hee last_name: Lee - first_name: Michael full_name: Lee, Michael last_name: Lee - first_name: Min Goo full_name: Lee, Min Goo last_name: Lee - first_name: Min Jae full_name: Lee, Min Jae last_name: Lee - first_name: Myung Shik full_name: Lee, Myung Shik last_name: Lee - first_name: Sang Yoon full_name: Lee, Sang Yoon last_name: Lee - first_name: Seung Jae full_name: Lee, Seung Jae last_name: Lee - first_name: Stella Y. full_name: Lee, Stella Y. last_name: Lee - first_name: Sung Bae full_name: Lee, Sung Bae last_name: Lee - first_name: Won Hee full_name: Lee, Won Hee last_name: Lee - first_name: Ying Ray full_name: Lee, Ying Ray last_name: Lee - first_name: Yong Ho full_name: Lee, Yong Ho last_name: Lee - first_name: Youngil full_name: Lee, Youngil last_name: Lee - first_name: Christophe full_name: Lefebvre, Christophe last_name: Lefebvre - first_name: Renaud full_name: Legouis, Renaud last_name: Legouis - first_name: Yu L. full_name: Lei, Yu L. last_name: Lei - first_name: Yuchen full_name: Lei, Yuchen last_name: Lei - first_name: Sergey full_name: Leikin, Sergey last_name: Leikin - first_name: Gerd full_name: Leitinger, Gerd last_name: Leitinger - first_name: Leticia full_name: Lemus, Leticia last_name: Lemus - first_name: Shuilong full_name: Leng, Shuilong last_name: Leng - first_name: Olivia full_name: Lenoir, Olivia last_name: Lenoir - first_name: Guido full_name: Lenz, Guido last_name: Lenz - first_name: Heinz Josef full_name: Lenz, Heinz Josef last_name: Lenz - first_name: Paola full_name: Lenzi, Paola last_name: Lenzi - first_name: Yolanda full_name: León, Yolanda last_name: León - first_name: Andréia M. full_name: Leopoldino, Andréia M. last_name: Leopoldino - first_name: Christoph full_name: Leschczyk, Christoph last_name: Leschczyk - first_name: Stina full_name: Leskelä, Stina last_name: Leskelä - first_name: Elisabeth full_name: Letellier, Elisabeth last_name: Letellier - first_name: Chi Ting full_name: Leung, Chi Ting last_name: Leung - first_name: Po Sing full_name: Leung, Po Sing last_name: Leung - first_name: Jeremy S. full_name: Leventhal, Jeremy S. last_name: Leventhal - first_name: Beth full_name: Levine, Beth last_name: Levine - first_name: Patrick A. full_name: Lewis, Patrick A. last_name: Lewis - first_name: Klaus full_name: Ley, Klaus last_name: Ley - first_name: Bin full_name: Li, Bin last_name: Li - first_name: Da Qiang full_name: Li, Da Qiang last_name: Li - first_name: Jianming full_name: Li, Jianming last_name: Li - first_name: Jing full_name: Li, Jing last_name: Li - first_name: Jiong full_name: Li, Jiong last_name: Li - first_name: Ke full_name: Li, Ke last_name: Li - first_name: Liwu full_name: Li, Liwu last_name: Li - first_name: Mei full_name: Li, Mei last_name: Li - first_name: Min full_name: Li, Min last_name: Li - first_name: Min full_name: Li, Min last_name: Li - first_name: Ming full_name: Li, Ming last_name: Li - first_name: Mingchuan full_name: Li, Mingchuan last_name: Li - first_name: Pin Lan full_name: Li, Pin Lan last_name: Li - first_name: Ming Qing full_name: Li, Ming Qing last_name: Li - first_name: Qing full_name: Li, Qing last_name: Li - first_name: Sheng full_name: Li, Sheng last_name: Li - first_name: Tiangang full_name: Li, Tiangang last_name: Li - first_name: Wei full_name: Li, Wei last_name: Li - first_name: Wenming full_name: Li, Wenming last_name: Li - first_name: Xue full_name: Li, Xue last_name: Li - first_name: Yi Ping full_name: Li, Yi Ping last_name: Li - first_name: Yuan full_name: Li, Yuan last_name: Li - first_name: Zhiqiang full_name: Li, Zhiqiang last_name: Li - first_name: Zhiyong full_name: Li, Zhiyong last_name: Li - first_name: Zhiyuan full_name: Li, Zhiyuan last_name: Li - first_name: Jiqin full_name: Lian, Jiqin last_name: Lian - first_name: Chengyu full_name: Liang, Chengyu last_name: Liang - first_name: Qiangrong full_name: Liang, Qiangrong last_name: Liang - first_name: Weicheng full_name: Liang, Weicheng last_name: Liang - first_name: Yongheng full_name: Liang, Yongheng last_name: Liang - first_name: Yong Tian full_name: Liang, Yong Tian last_name: Liang - first_name: Guanghong full_name: Liao, Guanghong last_name: Liao - first_name: Lujian full_name: Liao, Lujian last_name: Liao - first_name: Mingzhi full_name: Liao, Mingzhi last_name: Liao - first_name: Yung Feng full_name: Liao, Yung Feng last_name: Liao - first_name: Mariangela full_name: Librizzi, Mariangela last_name: Librizzi - first_name: Pearl P.Y. full_name: Lie, Pearl P.Y. last_name: Lie - first_name: Mary A. full_name: Lilly, Mary A. last_name: Lilly - first_name: Hyunjung J. full_name: Lim, Hyunjung J. last_name: Lim - first_name: Thania R.R. full_name: Lima, Thania R.R. last_name: Lima - first_name: Federica full_name: Limana, Federica last_name: Limana - first_name: Chao full_name: Lin, Chao last_name: Lin - first_name: Chih Wen full_name: Lin, Chih Wen last_name: Lin - first_name: Dar Shong full_name: Lin, Dar Shong last_name: Lin - first_name: Fu Cheng full_name: Lin, Fu Cheng last_name: Lin - first_name: Jiandie D. full_name: Lin, Jiandie D. last_name: Lin - first_name: Kurt M. full_name: Lin, Kurt M. last_name: Lin - first_name: Kwang Huei full_name: Lin, Kwang Huei last_name: Lin - first_name: Liang Tzung full_name: Lin, Liang Tzung last_name: Lin - first_name: Pei Hui full_name: Lin, Pei Hui last_name: Lin - first_name: Qiong full_name: Lin, Qiong last_name: Lin - first_name: Shaofeng full_name: Lin, Shaofeng last_name: Lin - first_name: Su Ju full_name: Lin, Su Ju last_name: Lin - first_name: Wenyu full_name: Lin, Wenyu last_name: Lin - first_name: Xueying full_name: Lin, Xueying last_name: Lin - first_name: Yao Xin full_name: Lin, Yao Xin last_name: Lin - first_name: Yee Shin full_name: Lin, Yee Shin last_name: Lin - first_name: Rafael full_name: Linden, Rafael last_name: Linden - first_name: Paula full_name: Lindner, Paula last_name: Lindner - first_name: Shuo Chien full_name: Ling, Shuo Chien last_name: Ling - first_name: Paul full_name: Lingor, Paul last_name: Lingor - first_name: Amelia K. full_name: Linnemann, Amelia K. last_name: Linnemann - first_name: Yih Cherng full_name: Liou, Yih Cherng last_name: Liou - first_name: Marta M. full_name: Lipinski, Marta M. last_name: Lipinski - first_name: Saška full_name: Lipovšek, Saška last_name: Lipovšek - first_name: Vitor A. full_name: Lira, Vitor A. last_name: Lira - first_name: Natalia full_name: Lisiak, Natalia last_name: Lisiak - first_name: Paloma B. full_name: Liton, Paloma B. last_name: Liton - first_name: Chao full_name: Liu, Chao last_name: Liu - first_name: Ching Hsuan full_name: Liu, Ching Hsuan last_name: Liu - first_name: Chun Feng full_name: Liu, Chun Feng last_name: Liu - first_name: Cui Hua full_name: Liu, Cui Hua last_name: Liu - first_name: Fang full_name: Liu, Fang last_name: Liu - first_name: Hao full_name: Liu, Hao last_name: Liu - first_name: Hsiao Sheng full_name: Liu, Hsiao Sheng last_name: Liu - first_name: Hua Feng full_name: Liu, Hua Feng last_name: Liu - first_name: Huifang full_name: Liu, Huifang last_name: Liu - first_name: Jia full_name: Liu, Jia last_name: Liu - first_name: Jing full_name: Liu, Jing last_name: Liu - first_name: Julia full_name: Liu, Julia last_name: Liu - first_name: Leyuan full_name: Liu, Leyuan last_name: Liu - first_name: Longhua full_name: Liu, Longhua last_name: Liu - first_name: Meilian full_name: Liu, Meilian last_name: Liu - first_name: Qin full_name: Liu, Qin last_name: Liu - first_name: Wei full_name: Liu, Wei last_name: Liu - first_name: Wende full_name: Liu, Wende last_name: Liu - first_name: Xiao Hong full_name: Liu, Xiao Hong last_name: Liu - first_name: Xiaodong full_name: Liu, Xiaodong last_name: Liu - first_name: Xingguo full_name: Liu, Xingguo last_name: Liu - first_name: Xu full_name: Liu, Xu last_name: Liu - first_name: Xuedong full_name: Liu, Xuedong last_name: Liu - first_name: Yanfen full_name: Liu, Yanfen last_name: Liu - first_name: Yang full_name: Liu, Yang last_name: Liu - first_name: Yang full_name: Liu, Yang last_name: Liu - first_name: Yueyang full_name: Liu, Yueyang last_name: Liu - first_name: Yule full_name: Liu, Yule last_name: Liu - first_name: J. Andrew full_name: Livingston, J. Andrew last_name: Livingston - first_name: Gerard full_name: Lizard, Gerard last_name: Lizard - first_name: Jose M. full_name: Lizcano, Jose M. last_name: Lizcano - first_name: Senka full_name: Ljubojevic-Holzer, Senka last_name: Ljubojevic-Holzer - first_name: Matilde E. full_name: Lleonart, Matilde E. last_name: Lleonart - first_name: David full_name: Llobet-Navàs, David last_name: Llobet-Navàs - first_name: Alicia full_name: Llorente, Alicia last_name: Llorente - first_name: Chih Hung full_name: Lo, Chih Hung last_name: Lo - first_name: Damián full_name: Lobato-Márquez, Damián last_name: Lobato-Márquez - first_name: Qi full_name: Long, Qi last_name: Long - first_name: Yun Chau full_name: Long, Yun Chau last_name: Long - first_name: Ben full_name: Loos, Ben last_name: Loos - first_name: Julia A. full_name: Loos, Julia A. last_name: Loos - first_name: Manuela G. full_name: López, Manuela G. last_name: López - first_name: Guillermo full_name: López-Doménech, Guillermo last_name: López-Doménech - first_name: José Antonio full_name: López-Guerrero, José Antonio last_name: López-Guerrero - first_name: Ana T. full_name: López-Jiménez, Ana T. last_name: López-Jiménez - first_name: Óscar full_name: López-Pérez, Óscar last_name: López-Pérez - first_name: Israel full_name: López-Valero, Israel last_name: López-Valero - first_name: Magdalena J. full_name: Lorenowicz, Magdalena J. last_name: Lorenowicz - first_name: Mar full_name: Lorente, Mar last_name: Lorente - first_name: Peter full_name: Lorincz, Peter last_name: Lorincz - first_name: Laura full_name: Lossi, Laura last_name: Lossi - first_name: Sophie full_name: Lotersztajn, Sophie last_name: Lotersztajn - first_name: Penny E. full_name: Lovat, Penny E. last_name: Lovat - first_name: Jonathan F. full_name: Lovell, Jonathan F. last_name: Lovell - first_name: Alenka full_name: Lovy, Alenka last_name: Lovy - first_name: Péter full_name: Lőw, Péter last_name: Lőw - first_name: Guang full_name: Lu, Guang last_name: Lu - first_name: Haocheng full_name: Lu, Haocheng last_name: Lu - first_name: Jia Hong full_name: Lu, Jia Hong last_name: Lu - first_name: Jin Jian full_name: Lu, Jin Jian last_name: Lu - first_name: Mengji full_name: Lu, Mengji last_name: Lu - first_name: Shuyan full_name: Lu, Shuyan last_name: Lu - first_name: Alessandro full_name: Luciani, Alessandro last_name: Luciani - first_name: John M. full_name: Lucocq, John M. last_name: Lucocq - first_name: Paula full_name: Ludovico, Paula last_name: Ludovico - first_name: Micah A. full_name: Luftig, Micah A. last_name: Luftig - first_name: Morten full_name: Luhr, Morten last_name: Luhr - first_name: Diego full_name: Luis-Ravelo, Diego last_name: Luis-Ravelo - first_name: Julian J. full_name: Lum, Julian J. last_name: Lum - first_name: Liany full_name: Luna-Dulcey, Liany last_name: Luna-Dulcey - first_name: Anders H. full_name: Lund, Anders H. last_name: Lund - first_name: Viktor K. full_name: Lund, Viktor K. last_name: Lund - first_name: Jan D. full_name: Lünemann, Jan D. last_name: Lünemann - first_name: Patrick full_name: Lüningschrör, Patrick last_name: Lüningschrör - first_name: Honglin full_name: Luo, Honglin last_name: Luo - first_name: Rongcan full_name: Luo, Rongcan last_name: Luo - first_name: Shouqing full_name: Luo, Shouqing last_name: Luo - first_name: Zhi full_name: Luo, Zhi last_name: Luo - first_name: Claudio full_name: Luparello, Claudio last_name: Luparello - first_name: Bernhard full_name: Lüscher, Bernhard last_name: Lüscher - first_name: Luan full_name: Luu, Luan last_name: Luu - first_name: Alex full_name: Lyakhovich, Alex last_name: Lyakhovich - first_name: Konstantin G. full_name: Lyamzaev, Konstantin G. last_name: Lyamzaev - first_name: Alf Håkon full_name: Lystad, Alf Håkon last_name: Lystad - first_name: Lyubomyr full_name: Lytvynchuk, Lyubomyr last_name: Lytvynchuk - first_name: Alvin C. full_name: Ma, Alvin C. last_name: Ma - first_name: Changle full_name: Ma, Changle last_name: Ma - first_name: Mengxiao full_name: Ma, Mengxiao last_name: Ma - first_name: Ning Fang full_name: Ma, Ning Fang last_name: Ma - first_name: Quan Hong full_name: Ma, Quan Hong last_name: Ma - first_name: Xinliang full_name: Ma, Xinliang last_name: Ma - first_name: Yueyun full_name: Ma, Yueyun last_name: Ma - first_name: Zhenyi full_name: Ma, Zhenyi last_name: Ma - first_name: Ormond A. full_name: Macdougald, Ormond A. last_name: Macdougald - first_name: Fernando full_name: Macian, Fernando last_name: Macian - first_name: Gustavo C. full_name: Macintosh, Gustavo C. last_name: Macintosh - first_name: Jeffrey P. full_name: Mackeigan, Jeffrey P. last_name: Mackeigan - first_name: Kay F. full_name: Macleod, Kay F. last_name: Macleod - first_name: Sandra full_name: Maday, Sandra last_name: Maday - first_name: Frank full_name: Madeo, Frank last_name: Madeo - first_name: Muniswamy full_name: Madesh, Muniswamy last_name: Madesh - first_name: Tobias full_name: Madl, Tobias last_name: Madl - first_name: Julio full_name: Madrigal-Matute, Julio last_name: Madrigal-Matute - first_name: Akiko full_name: Maeda, Akiko last_name: Maeda - first_name: Yasuhiro full_name: Maejima, Yasuhiro last_name: Maejima - first_name: Marta full_name: Magarinos, Marta last_name: Magarinos - first_name: Poornima full_name: Mahavadi, Poornima last_name: Mahavadi - first_name: Emiliano full_name: Maiani, Emiliano last_name: Maiani - first_name: Kenneth full_name: Maiese, Kenneth last_name: Maiese - first_name: Panchanan full_name: Maiti, Panchanan last_name: Maiti - first_name: Maria Chiara full_name: Maiuri, Maria Chiara last_name: Maiuri - first_name: Barbara full_name: Majello, Barbara last_name: Majello - first_name: Michael B. full_name: Major, Michael B. last_name: Major - first_name: Elena full_name: Makareeva, Elena last_name: Makareeva - first_name: Fayaz full_name: Malik, Fayaz last_name: Malik - first_name: Karthik full_name: Mallilankaraman, Karthik last_name: Mallilankaraman - first_name: Walter full_name: Malorni, Walter last_name: Malorni - first_name: Alina full_name: Maloyan, Alina last_name: Maloyan - first_name: Najiba full_name: Mammadova, Najiba last_name: Mammadova - first_name: Gene Chi Wai full_name: Man, Gene Chi Wai last_name: Man - first_name: Federico full_name: Manai, Federico last_name: Manai - first_name: Joseph D. full_name: Mancias, Joseph D. last_name: Mancias - first_name: Eva Maria full_name: Mandelkow, Eva Maria last_name: Mandelkow - first_name: Michael A. full_name: Mandell, Michael A. last_name: Mandell - first_name: Angelo A. full_name: Manfredi, Angelo A. last_name: Manfredi - first_name: Masoud H. full_name: Manjili, Masoud H. last_name: Manjili - first_name: Ravi full_name: Manjithaya, Ravi last_name: Manjithaya - first_name: Patricio full_name: Manque, Patricio last_name: Manque - first_name: Bella B. full_name: Manshian, Bella B. last_name: Manshian - first_name: Raquel full_name: Manzano, Raquel last_name: Manzano - first_name: Claudia full_name: Manzoni, Claudia last_name: Manzoni - first_name: Kai full_name: Mao, Kai last_name: Mao - first_name: Cinzia full_name: Marchese, Cinzia last_name: Marchese - first_name: Sandrine full_name: Marchetti, Sandrine last_name: Marchetti - first_name: Anna Maria full_name: Marconi, Anna Maria last_name: Marconi - first_name: Fabrizio full_name: Marcucci, Fabrizio last_name: Marcucci - first_name: Stefania full_name: Mardente, Stefania last_name: Mardente - first_name: Olga A. full_name: Mareninova, Olga A. last_name: Mareninova - first_name: Marta full_name: Margeta, Marta last_name: Margeta - first_name: Muriel full_name: Mari, Muriel last_name: Mari - first_name: Sara full_name: Marinelli, Sara last_name: Marinelli - first_name: Oliviero full_name: Marinelli, Oliviero last_name: Marinelli - first_name: Guillermo full_name: Mariño, Guillermo last_name: Mariño - first_name: Sofia full_name: Mariotto, Sofia last_name: Mariotto - first_name: Richard S. full_name: Marshall, Richard S. last_name: Marshall - first_name: Mark R. full_name: Marten, Mark R. last_name: Marten - first_name: Sascha full_name: Martens, Sascha last_name: Martens - first_name: Alexandre P.J. full_name: Martin, Alexandre P.J. last_name: Martin - first_name: Katie R. full_name: Martin, Katie R. last_name: Martin - first_name: Sara full_name: Martin, Sara last_name: Martin - first_name: Shaun full_name: Martin, Shaun last_name: Martin - first_name: Adrián full_name: Martín-Segura, Adrián last_name: Martín-Segura - first_name: Miguel A. full_name: Martín-Acebes, Miguel A. last_name: Martín-Acebes - first_name: Inmaculada full_name: Martin-Burriel, Inmaculada last_name: Martin-Burriel - first_name: Marcos full_name: Martin-Rincon, Marcos last_name: Martin-Rincon - first_name: Paloma full_name: Martin-Sanz, Paloma last_name: Martin-Sanz - first_name: José A. full_name: Martina, José A. last_name: Martina - first_name: Wim full_name: Martinet, Wim last_name: Martinet - first_name: Aitor full_name: Martinez, Aitor last_name: Martinez - first_name: Ana full_name: Martinez, Ana last_name: Martinez - first_name: Jennifer full_name: Martinez, Jennifer last_name: Martinez - first_name: Moises full_name: Martinez Velazquez, Moises last_name: Martinez Velazquez - first_name: Nuria full_name: Martinez-Lopez, Nuria last_name: Martinez-Lopez - first_name: Marta full_name: Martinez-Vicente, Marta last_name: Martinez-Vicente - first_name: Daniel O. full_name: Martins, Daniel O. last_name: Martins - first_name: Joilson O. full_name: Martins, Joilson O. last_name: Martins - first_name: Waleska K. full_name: Martins, Waleska K. last_name: Martins - first_name: Tania full_name: Martins-Marques, Tania last_name: Martins-Marques - first_name: Emanuele full_name: Marzetti, Emanuele last_name: Marzetti - first_name: Shashank full_name: Masaldan, Shashank last_name: Masaldan - first_name: Celine full_name: Masclaux-Daubresse, Celine last_name: Masclaux-Daubresse - first_name: Douglas G. full_name: Mashek, Douglas G. last_name: Mashek - first_name: Valentina full_name: Massa, Valentina last_name: Massa - first_name: Lourdes full_name: Massieu, Lourdes last_name: Massieu - first_name: Glenn R. full_name: Masson, Glenn R. last_name: Masson - first_name: Laura full_name: Masuelli, Laura last_name: Masuelli - first_name: Anatoliy I. full_name: Masyuk, Anatoliy I. last_name: Masyuk - first_name: Tetyana V. full_name: Masyuk, Tetyana V. last_name: Masyuk - first_name: Paola full_name: Matarrese, Paola last_name: Matarrese - first_name: Ander full_name: Matheu, Ander last_name: Matheu - first_name: Satoaki full_name: Matoba, Satoaki last_name: Matoba - first_name: Sachiko full_name: Matsuzaki, Sachiko last_name: Matsuzaki - first_name: Pamela full_name: Mattar, Pamela last_name: Mattar - first_name: Alessandro full_name: Matte, Alessandro last_name: Matte - first_name: Domenico full_name: Mattoscio, Domenico last_name: Mattoscio - first_name: José L. full_name: Mauriz, José L. last_name: Mauriz - first_name: Mario full_name: Mauthe, Mario last_name: Mauthe - first_name: Caroline full_name: Mauvezin, Caroline last_name: Mauvezin - first_name: Emanual full_name: Maverakis, Emanual last_name: Maverakis - first_name: Paola full_name: Maycotte, Paola last_name: Maycotte - first_name: Johanna full_name: Mayer, Johanna last_name: Mayer - first_name: Gianluigi full_name: Mazzoccoli, Gianluigi last_name: Mazzoccoli - first_name: Cristina full_name: Mazzoni, Cristina last_name: Mazzoni - first_name: Joseph R. full_name: Mazzulli, Joseph R. last_name: Mazzulli - first_name: Nami full_name: Mccarty, Nami last_name: Mccarty - first_name: Christine full_name: Mcdonald, Christine last_name: Mcdonald - first_name: Mitchell R. full_name: Mcgill, Mitchell R. last_name: Mcgill - first_name: Sharon L. full_name: Mckenna, Sharon L. last_name: Mckenna - first_name: Beth Ann full_name: Mclaughlin, Beth Ann last_name: Mclaughlin - first_name: Fionn full_name: Mcloughlin, Fionn last_name: Mcloughlin - first_name: Mark A. full_name: Mcniven, Mark A. last_name: Mcniven - first_name: Thomas G. full_name: Mcwilliams, Thomas G. last_name: Mcwilliams - first_name: Fatima full_name: Mechta-Grigoriou, Fatima last_name: Mechta-Grigoriou - first_name: Tania Catarina full_name: Medeiros, Tania Catarina last_name: Medeiros - first_name: Diego L. full_name: Medina, Diego L. last_name: Medina - first_name: Lynn A. full_name: Megeney, Lynn A. last_name: Megeney - first_name: Klara full_name: Megyeri, Klara last_name: Megyeri - first_name: Maryam full_name: Mehrpour, Maryam last_name: Mehrpour - first_name: Jawahar L. full_name: Mehta, Jawahar L. last_name: Mehta - first_name: Alfred J. full_name: Meijer, Alfred J. last_name: Meijer - first_name: Annemarie H. full_name: Meijer, Annemarie H. last_name: Meijer - first_name: Jakob full_name: Mejlvang, Jakob last_name: Mejlvang - first_name: Alicia full_name: Meléndez, Alicia last_name: Meléndez - first_name: Annette full_name: Melk, Annette last_name: Melk - first_name: Gonen full_name: Memisoglu, Gonen last_name: Memisoglu - first_name: Alexandrina F. full_name: Mendes, Alexandrina F. last_name: Mendes - first_name: Delong full_name: Meng, Delong last_name: Meng - first_name: Fei full_name: Meng, Fei last_name: Meng - first_name: Tian full_name: Meng, Tian last_name: Meng - first_name: Rubem full_name: Menna-Barreto, Rubem last_name: Menna-Barreto - first_name: Manoj B. full_name: Menon, Manoj B. last_name: Menon - first_name: Carol full_name: Mercer, Carol last_name: Mercer - first_name: Anne E. full_name: Mercier, Anne E. last_name: Mercier - first_name: Jean Louis full_name: Mergny, Jean Louis last_name: Mergny - first_name: Adalberto full_name: Merighi, Adalberto last_name: Merighi - first_name: Seth D. full_name: Merkley, Seth D. last_name: Merkley - first_name: Giuseppe full_name: Merla, Giuseppe last_name: Merla - first_name: Volker full_name: Meske, Volker last_name: Meske - first_name: Ana Cecilia full_name: Mestre, Ana Cecilia last_name: Mestre - first_name: Shree Padma full_name: Metur, Shree Padma last_name: Metur - first_name: Christian full_name: Meyer, Christian last_name: Meyer - first_name: Hemmo full_name: Meyer, Hemmo last_name: Meyer - first_name: Wenyi full_name: Mi, Wenyi last_name: Mi - first_name: Jeanne full_name: Mialet-Perez, Jeanne last_name: Mialet-Perez - first_name: Junying full_name: Miao, Junying last_name: Miao - first_name: Lucia full_name: Micale, Lucia last_name: Micale - first_name: Yasuo full_name: Miki, Yasuo last_name: Miki - first_name: Enrico full_name: Milan, Enrico last_name: Milan - first_name: Małgorzata full_name: Milczarek, Małgorzata last_name: Milczarek - first_name: Dana L. full_name: Miller, Dana L. last_name: Miller - first_name: Samuel I. full_name: Miller, Samuel I. last_name: Miller - first_name: Silke full_name: Miller, Silke last_name: Miller - first_name: Steven W. full_name: Millward, Steven W. last_name: Millward - first_name: Ira full_name: Milosevic, Ira last_name: Milosevic - first_name: Elena A. full_name: Minina, Elena A. last_name: Minina - first_name: Hamed full_name: Mirzaei, Hamed last_name: Mirzaei - first_name: Hamid Reza full_name: Mirzaei, Hamid Reza last_name: Mirzaei - first_name: Mehdi full_name: Mirzaei, Mehdi last_name: Mirzaei - first_name: Amit full_name: Mishra, Amit last_name: Mishra - first_name: Nandita full_name: Mishra, Nandita last_name: Mishra - first_name: Paras Kumar full_name: Mishra, Paras Kumar last_name: Mishra - first_name: Maja full_name: Misirkic Marjanovic, Maja last_name: Misirkic Marjanovic - first_name: Roberta full_name: Misasi, Roberta last_name: Misasi - first_name: Amit full_name: Misra, Amit last_name: Misra - first_name: Gabriella full_name: Misso, Gabriella last_name: Misso - first_name: Claire full_name: Mitchell, Claire last_name: Mitchell - first_name: Geraldine full_name: Mitou, Geraldine last_name: Mitou - first_name: Tetsuji full_name: Miura, Tetsuji last_name: Miura - first_name: Shigeki full_name: Miyamoto, Shigeki last_name: Miyamoto - first_name: Makoto full_name: Miyazaki, Makoto last_name: Miyazaki - first_name: Mitsunori full_name: Miyazaki, Mitsunori last_name: Miyazaki - first_name: Taiga full_name: Miyazaki, Taiga last_name: Miyazaki - first_name: Keisuke full_name: Miyazawa, Keisuke last_name: Miyazawa - first_name: Noboru full_name: Mizushima, Noboru last_name: Mizushima - first_name: Trine H. full_name: Mogensen, Trine H. last_name: Mogensen - first_name: Baharia full_name: Mograbi, Baharia last_name: Mograbi - first_name: Reza full_name: Mohammadinejad, Reza last_name: Mohammadinejad - first_name: Yasir full_name: Mohamud, Yasir last_name: Mohamud - first_name: Abhishek full_name: Mohanty, Abhishek last_name: Mohanty - first_name: Sipra full_name: Mohapatra, Sipra last_name: Mohapatra - first_name: Torsten full_name: Möhlmann, Torsten last_name: Möhlmann - first_name: Asif full_name: Mohmmed, Asif last_name: Mohmmed - first_name: Anna full_name: Moles, Anna last_name: Moles - first_name: Kelle H. full_name: Moley, Kelle H. last_name: Moley - first_name: Maurizio full_name: Molinari, Maurizio last_name: Molinari - first_name: Vincenzo full_name: Mollace, Vincenzo last_name: Mollace - first_name: Andreas Buch full_name: Møller, Andreas Buch last_name: Møller - first_name: Bertrand full_name: Mollereau, Bertrand last_name: Mollereau - first_name: Faustino full_name: Mollinedo, Faustino last_name: Mollinedo - first_name: Costanza full_name: Montagna, Costanza last_name: Montagna - first_name: Mervyn J. full_name: Monteiro, Mervyn J. last_name: Monteiro - first_name: Andrea full_name: Montella, Andrea last_name: Montella - first_name: L. Ruth full_name: Montes, L. Ruth last_name: Montes - first_name: Barbara full_name: Montico, Barbara last_name: Montico - first_name: Vinod K. full_name: Mony, Vinod K. last_name: Mony - first_name: Giacomo full_name: Monzio Compagnoni, Giacomo last_name: Monzio Compagnoni - first_name: Michael N. full_name: Moore, Michael N. last_name: Moore - first_name: Mohammad A. full_name: Moosavi, Mohammad A. last_name: Moosavi - first_name: Ana L. full_name: Mora, Ana L. last_name: Mora - first_name: Marina full_name: Mora, Marina last_name: Mora - first_name: David full_name: Morales-Alamo, David last_name: Morales-Alamo - first_name: Rosario full_name: Moratalla, Rosario last_name: Moratalla - first_name: Paula I. full_name: Moreira, Paula I. last_name: Moreira - first_name: Elena full_name: Morelli, Elena last_name: Morelli - first_name: Sandra full_name: Moreno, Sandra last_name: Moreno - first_name: Daniel full_name: Moreno-Blas, Daniel last_name: Moreno-Blas - first_name: Viviana full_name: Moresi, Viviana last_name: Moresi - first_name: Benjamin full_name: Morga, Benjamin last_name: Morga - first_name: Alwena H. full_name: Morgan, Alwena H. last_name: Morgan - first_name: Fabrice full_name: Morin, Fabrice last_name: Morin - first_name: Hideaki full_name: Morishita, Hideaki last_name: Morishita - first_name: Orson L. full_name: Moritz, Orson L. last_name: Moritz - first_name: Mariko full_name: Moriyama, Mariko last_name: Moriyama - first_name: Yuji full_name: Moriyasu, Yuji last_name: Moriyasu - first_name: Manuela full_name: Morleo, Manuela last_name: Morleo - first_name: Eugenia full_name: Morselli, Eugenia last_name: Morselli - first_name: Jose F. full_name: Moruno-Manchon, Jose F. last_name: Moruno-Manchon - first_name: Jorge full_name: Moscat, Jorge last_name: Moscat - first_name: Serge full_name: Mostowy, Serge last_name: Mostowy - first_name: Elisa full_name: Motori, Elisa last_name: Motori - first_name: Andrea Felinto full_name: Moura, Andrea Felinto last_name: Moura - first_name: Naima full_name: Moustaid-Moussa, Naima last_name: Moustaid-Moussa - first_name: Maria full_name: Mrakovcic, Maria last_name: Mrakovcic - first_name: Gabriel full_name: Muciño-Hernández, Gabriel last_name: Muciño-Hernández - first_name: Anupam full_name: Mukherjee, Anupam last_name: Mukherjee - first_name: Subhadip full_name: Mukhopadhyay, Subhadip last_name: Mukhopadhyay - first_name: Jean M. full_name: Mulcahy Levy, Jean M. last_name: Mulcahy Levy - first_name: Victoriano full_name: Mulero, Victoriano last_name: Mulero - first_name: Sylviane full_name: Muller, Sylviane last_name: Muller - first_name: Christian full_name: Münch, Christian last_name: Münch - first_name: Ashok full_name: Munjal, Ashok last_name: Munjal - first_name: Pura full_name: Munoz-Canoves, Pura last_name: Munoz-Canoves - first_name: Teresa full_name: Muñoz-Galdeano, Teresa last_name: Muñoz-Galdeano - first_name: Christian full_name: Münz, Christian last_name: Münz - first_name: Tomokazu full_name: Murakawa, Tomokazu last_name: Murakawa - first_name: Claudia full_name: Muratori, Claudia last_name: Muratori - first_name: Brona M. full_name: Murphy, Brona M. last_name: Murphy - first_name: J. Patrick full_name: Murphy, J. Patrick last_name: Murphy - first_name: Aditya full_name: Murthy, Aditya last_name: Murthy - first_name: Timo T. full_name: Myöhänen, Timo T. last_name: Myöhänen - first_name: Indira U. full_name: Mysorekar, Indira U. last_name: Mysorekar - first_name: Jennifer full_name: Mytych, Jennifer last_name: Mytych - first_name: Seyed Mohammad full_name: Nabavi, Seyed Mohammad last_name: Nabavi - first_name: Massimo full_name: Nabissi, Massimo last_name: Nabissi - first_name: Péter full_name: Nagy, Péter last_name: Nagy - first_name: Jihoon full_name: Nah, Jihoon last_name: Nah - first_name: Aimable full_name: Nahimana, Aimable last_name: Nahimana - first_name: Ichiro full_name: Nakagawa, Ichiro last_name: Nakagawa - first_name: Ken full_name: Nakamura, Ken last_name: Nakamura - first_name: Hitoshi full_name: Nakatogawa, Hitoshi last_name: Nakatogawa - first_name: Shyam S. full_name: Nandi, Shyam S. last_name: Nandi - first_name: Meera full_name: Nanjundan, Meera last_name: Nanjundan - first_name: Monica full_name: Nanni, Monica last_name: Nanni - first_name: Gennaro full_name: Napolitano, Gennaro last_name: Napolitano - first_name: Roberta full_name: Nardacci, Roberta last_name: Nardacci - first_name: Masashi full_name: Narita, Masashi last_name: Narita - first_name: Melissa full_name: Nassif, Melissa last_name: Nassif - first_name: Ilana full_name: Nathan, Ilana last_name: Nathan - first_name: Manabu full_name: Natsumeda, Manabu last_name: Natsumeda - first_name: Ryno J. full_name: Naude, Ryno J. last_name: Naude - first_name: Christin full_name: Naumann, Christin last_name: Naumann - first_name: Olaia full_name: Naveiras, Olaia last_name: Naveiras - first_name: Fatemeh full_name: Navid, Fatemeh last_name: Navid - first_name: Steffan T. full_name: Nawrocki, Steffan T. last_name: Nawrocki - first_name: Taras Y. full_name: Nazarko, Taras Y. last_name: Nazarko - first_name: Francesca full_name: Nazio, Francesca last_name: Nazio - first_name: Florentina full_name: Negoita, Florentina last_name: Negoita - first_name: Thomas full_name: Neill, Thomas last_name: Neill - first_name: Amanda L. full_name: Neisch, Amanda L. last_name: Neisch - first_name: Luca M. full_name: Neri, Luca M. last_name: Neri - first_name: Mihai G. full_name: Netea, Mihai G. last_name: Netea - first_name: Patrick full_name: Neubert, Patrick last_name: Neubert - first_name: Thomas P. full_name: Neufeld, Thomas P. last_name: Neufeld - first_name: Dietbert full_name: Neumann, Dietbert last_name: Neumann - first_name: Albert full_name: Neutzner, Albert last_name: Neutzner - first_name: Phillip T. full_name: Newton, Phillip T. last_name: Newton - first_name: Paul A. full_name: Ney, Paul A. last_name: Ney - first_name: Ioannis P. full_name: Nezis, Ioannis P. last_name: Nezis - first_name: Charlene C.W. full_name: Ng, Charlene C.W. last_name: Ng - first_name: Tzi Bun full_name: Ng, Tzi Bun last_name: Ng - first_name: Hang T.T. full_name: Nguyen, Hang T.T. last_name: Nguyen - first_name: Long T. full_name: Nguyen, Long T. last_name: Nguyen - first_name: Hong Min full_name: Ni, Hong Min last_name: Ni - first_name: Clíona full_name: Ní Cheallaigh, Clíona last_name: Ní Cheallaigh - first_name: Zhenhong full_name: Ni, Zhenhong last_name: Ni - first_name: M. Celeste full_name: Nicolao, M. Celeste last_name: Nicolao - first_name: Francesco full_name: Nicoli, Francesco last_name: Nicoli - first_name: Manuel full_name: Nieto-Diaz, Manuel last_name: Nieto-Diaz - first_name: Per full_name: Nilsson, Per last_name: Nilsson - first_name: Shunbin full_name: Ning, Shunbin last_name: Ning - first_name: Rituraj full_name: Niranjan, Rituraj last_name: Niranjan - first_name: Hiroshi full_name: Nishimune, Hiroshi last_name: Nishimune - first_name: Mireia full_name: Niso-Santano, Mireia last_name: Niso-Santano - first_name: Ralph A. full_name: Nixon, Ralph A. last_name: Nixon - first_name: Annalisa full_name: Nobili, Annalisa last_name: Nobili - first_name: Clevio full_name: Nobrega, Clevio last_name: Nobrega - first_name: Takeshi full_name: Noda, Takeshi last_name: Noda - first_name: Uxía full_name: Nogueira-Recalde, Uxía last_name: Nogueira-Recalde - first_name: Trevor M. full_name: Nolan, Trevor M. last_name: Nolan - first_name: Ivan full_name: Nombela, Ivan last_name: Nombela - first_name: Ivana full_name: Novak, Ivana last_name: Novak - first_name: Beatriz full_name: Novoa, Beatriz last_name: Novoa - first_name: Takashi full_name: Nozawa, Takashi last_name: Nozawa - first_name: Nobuyuki full_name: Nukina, Nobuyuki last_name: Nukina - first_name: Carmen full_name: Nussbaum-Krammer, Carmen last_name: Nussbaum-Krammer - first_name: Jesper full_name: Nylandsted, Jesper last_name: Nylandsted - first_name: Tracey R. full_name: O’Donovan, Tracey R. last_name: O’Donovan - first_name: Seónadh M. full_name: O’Leary, Seónadh M. last_name: O’Leary - first_name: Eyleen J. full_name: O’Rourke, Eyleen J. last_name: O’Rourke - first_name: Mary P. full_name: O’Sullivan, Mary P. last_name: O’Sullivan - first_name: Timothy E. full_name: O’Sullivan, Timothy E. last_name: O’Sullivan - first_name: Salvatore full_name: Oddo, Salvatore last_name: Oddo - first_name: Ina full_name: Oehme, Ina last_name: Oehme - first_name: Michinaga full_name: Ogawa, Michinaga last_name: Ogawa - first_name: Eric full_name: Ogier-Denis, Eric last_name: Ogier-Denis - first_name: Margret H. full_name: Ogmundsdottir, Margret H. last_name: Ogmundsdottir - first_name: Besim full_name: Ogretmen, Besim last_name: Ogretmen - first_name: Goo Taeg full_name: Oh, Goo Taeg last_name: Oh - first_name: Seon Hee full_name: Oh, Seon Hee last_name: Oh - first_name: Young J. full_name: Oh, Young J. last_name: Oh - first_name: Takashi full_name: Ohama, Takashi last_name: Ohama - first_name: Yohei full_name: Ohashi, Yohei last_name: Ohashi - first_name: Masaki full_name: Ohmuraya, Masaki last_name: Ohmuraya - first_name: Vasileios full_name: Oikonomou, Vasileios last_name: Oikonomou - first_name: Rani full_name: Ojha, Rani last_name: Ojha - first_name: Koji full_name: Okamoto, Koji last_name: Okamoto - first_name: Hitoshi full_name: Okazawa, Hitoshi last_name: Okazawa - first_name: Masahide full_name: Oku, Masahide last_name: Oku - first_name: Sara full_name: Oliván, Sara last_name: Oliván - first_name: Jorge M.A. full_name: Oliveira, Jorge M.A. last_name: Oliveira - first_name: Michael full_name: Ollmann, Michael last_name: Ollmann - first_name: James A. full_name: Olzmann, James A. last_name: Olzmann - first_name: Shakib full_name: Omari, Shakib last_name: Omari - first_name: M. Bishr full_name: Omary, M. Bishr last_name: Omary - first_name: Gizem full_name: Önal, Gizem last_name: Önal - first_name: Martin full_name: Ondrej, Martin last_name: Ondrej - first_name: Sang Bing full_name: Ong, Sang Bing last_name: Ong - first_name: Sang Ging full_name: Ong, Sang Ging last_name: Ong - first_name: Anna full_name: Onnis, Anna last_name: Onnis - first_name: Juan A. full_name: Orellana, Juan A. last_name: Orellana - first_name: Sara full_name: Orellana-Muñoz, Sara last_name: Orellana-Muñoz - first_name: Maria Del Mar full_name: Ortega-Villaizan, Maria Del Mar last_name: Ortega-Villaizan - first_name: Xilma R. full_name: Ortiz-Gonzalez, Xilma R. last_name: Ortiz-Gonzalez - first_name: Elena full_name: Ortona, Elena last_name: Ortona - first_name: Heinz D. full_name: Osiewacz, Heinz D. last_name: Osiewacz - first_name: Abdel Hamid K. full_name: Osman, Abdel Hamid K. last_name: Osman - first_name: Rosario full_name: Osta, Rosario last_name: Osta - first_name: Marisa S. full_name: Otegui, Marisa S. last_name: Otegui - first_name: Kinya full_name: Otsu, Kinya last_name: Otsu - first_name: Christiane full_name: Ott, Christiane last_name: Ott - first_name: Luisa full_name: Ottobrini, Luisa last_name: Ottobrini - first_name: Jing Hsiung James full_name: Ou, Jing Hsiung James last_name: Ou - first_name: Tiago F. full_name: Outeiro, Tiago F. last_name: Outeiro - first_name: Inger full_name: Oynebraten, Inger last_name: Oynebraten - first_name: Melek full_name: Ozturk, Melek last_name: Ozturk - first_name: Gilles full_name: Pagès, Gilles last_name: Pagès - first_name: Susanta full_name: Pahari, Susanta last_name: Pahari - first_name: Marta full_name: Pajares, Marta last_name: Pajares - first_name: Utpal B. full_name: Pajvani, Utpal B. last_name: Pajvani - first_name: Rituraj full_name: Pal, Rituraj last_name: Pal - first_name: Simona full_name: Paladino, Simona last_name: Paladino - first_name: Nicolas full_name: Pallet, Nicolas last_name: Pallet - first_name: Michela full_name: Palmieri, Michela last_name: Palmieri - first_name: Giuseppe full_name: Palmisano, Giuseppe last_name: Palmisano - first_name: Camilla full_name: Palumbo, Camilla last_name: Palumbo - first_name: Francesco full_name: Pampaloni, Francesco last_name: Pampaloni - first_name: Lifeng full_name: Pan, Lifeng last_name: Pan - first_name: Qingjun full_name: Pan, Qingjun last_name: Pan - first_name: Wenliang full_name: Pan, Wenliang last_name: Pan - first_name: Xin full_name: Pan, Xin last_name: Pan - first_name: Ganna full_name: Panasyuk, Ganna last_name: Panasyuk - first_name: Rahul full_name: Pandey, Rahul last_name: Pandey - first_name: Udai B. full_name: Pandey, Udai B. last_name: Pandey - first_name: Vrajesh full_name: Pandya, Vrajesh last_name: Pandya - first_name: Francesco full_name: Paneni, Francesco last_name: Paneni - first_name: Shirley Y. full_name: Pang, Shirley Y. last_name: Pang - first_name: Elisa full_name: Panzarini, Elisa last_name: Panzarini - first_name: Daniela L. full_name: Papademetrio, Daniela L. last_name: Papademetrio - first_name: Elena full_name: Papaleo, Elena last_name: Papaleo - first_name: Daniel full_name: Papinski, Daniel last_name: Papinski - first_name: Diana full_name: Papp, Diana last_name: Papp - first_name: Eun Chan full_name: Park, Eun Chan last_name: Park - first_name: Hwan Tae full_name: Park, Hwan Tae last_name: Park - first_name: Ji Man full_name: Park, Ji Man last_name: Park - first_name: Jong In full_name: Park, Jong In last_name: Park - first_name: Joon Tae full_name: Park, Joon Tae last_name: Park - first_name: Junsoo full_name: Park, Junsoo last_name: Park - first_name: Sang Chul full_name: Park, Sang Chul last_name: Park - first_name: Sang Youel full_name: Park, Sang Youel last_name: Park - first_name: Abraham H. full_name: Parola, Abraham H. last_name: Parola - first_name: Jan B. full_name: Parys, Jan B. last_name: Parys - first_name: Adrien full_name: Pasquier, Adrien last_name: Pasquier - first_name: Benoit full_name: Pasquier, Benoit last_name: Pasquier - first_name: João F. full_name: Passos, João F. last_name: Passos - first_name: Nunzia full_name: Pastore, Nunzia last_name: Pastore - first_name: Hemal H. full_name: Patel, Hemal H. last_name: Patel - first_name: Daniel full_name: Patschan, Daniel last_name: Patschan - first_name: Sophie full_name: Pattingre, Sophie last_name: Pattingre - first_name: Gustavo full_name: Pedraza-Alva, Gustavo last_name: Pedraza-Alva - first_name: Jose full_name: Pedraza-Chaverri, Jose last_name: Pedraza-Chaverri - first_name: Zully full_name: Pedrozo, Zully last_name: Pedrozo - first_name: Gang full_name: Pei, Gang last_name: Pei - first_name: Jianming full_name: Pei, Jianming last_name: Pei - first_name: Hadas full_name: Peled-Zehavi, Hadas last_name: Peled-Zehavi - first_name: Joaquín M. full_name: Pellegrini, Joaquín M. last_name: Pellegrini - first_name: Joffrey full_name: Pelletier, Joffrey last_name: Pelletier - first_name: Miguel A. full_name: Peñalva, Miguel A. last_name: Peñalva - first_name: Di full_name: Peng, Di last_name: Peng - first_name: Ying full_name: Peng, Ying last_name: Peng - first_name: Fabio full_name: Penna, Fabio last_name: Penna - first_name: Maria full_name: Pennuto, Maria last_name: Pennuto - first_name: Francesca full_name: Pentimalli, Francesca last_name: Pentimalli - first_name: Cláudia M.F. full_name: Pereira, Cláudia M.F. last_name: Pereira - first_name: Gustavo J.S. full_name: Pereira, Gustavo J.S. last_name: Pereira - first_name: Lilian C. full_name: Pereira, Lilian C. last_name: Pereira - first_name: Luis full_name: Pereira De Almeida, Luis last_name: Pereira De Almeida - first_name: Nirma D. full_name: Perera, Nirma D. last_name: Perera - first_name: Ángel full_name: Pérez-Lara, Ángel last_name: Pérez-Lara - first_name: Ana B. full_name: Perez-Oliva, Ana B. last_name: Perez-Oliva - first_name: María Esther full_name: Pérez-Pérez, María Esther last_name: Pérez-Pérez - first_name: Palsamy full_name: Periyasamy, Palsamy last_name: Periyasamy - first_name: Andras full_name: Perl, Andras last_name: Perl - first_name: Cristiana full_name: Perrotta, Cristiana last_name: Perrotta - first_name: Ida full_name: Perrotta, Ida last_name: Perrotta - first_name: Richard G. full_name: Pestell, Richard G. last_name: Pestell - first_name: Morten full_name: Petersen, Morten last_name: Petersen - first_name: Irina full_name: Petrache, Irina last_name: Petrache - first_name: Goran full_name: Petrovski, Goran last_name: Petrovski - first_name: Thorsten full_name: Pfirrmann, Thorsten last_name: Pfirrmann - first_name: Astrid S. full_name: Pfister, Astrid S. last_name: Pfister - first_name: Jennifer A. full_name: Philips, Jennifer A. last_name: Philips - first_name: Huifeng full_name: Pi, Huifeng last_name: Pi - first_name: Anna full_name: Picca, Anna last_name: Picca - first_name: Alicia M. full_name: Pickrell, Alicia M. last_name: Pickrell - first_name: Sandy full_name: Picot, Sandy last_name: Picot - first_name: Giovanna M. full_name: Pierantoni, Giovanna M. last_name: Pierantoni - first_name: Marina full_name: Pierdominici, Marina last_name: Pierdominici - first_name: Philippe full_name: Pierre, Philippe last_name: Pierre - first_name: Valérie full_name: Pierrefite-Carle, Valérie last_name: Pierrefite-Carle - first_name: Karolina full_name: Pierzynowska, Karolina last_name: Pierzynowska - first_name: Federico full_name: Pietrocola, Federico last_name: Pietrocola - first_name: Miroslawa full_name: Pietruczuk, Miroslawa last_name: Pietruczuk - first_name: Claudio full_name: Pignata, Claudio last_name: Pignata - first_name: Felipe X. full_name: Pimentel-Muiños, Felipe X. last_name: Pimentel-Muiños - first_name: Mario full_name: Pinar, Mario last_name: Pinar - first_name: Roberta O. full_name: Pinheiro, Roberta O. last_name: Pinheiro - first_name: Ronit full_name: Pinkas-Kramarski, Ronit last_name: Pinkas-Kramarski - first_name: Paolo full_name: Pinton, Paolo last_name: Pinton - first_name: Karolina full_name: Pircs, Karolina last_name: Pircs - first_name: Sujan full_name: Piya, Sujan last_name: Piya - first_name: Paola full_name: Pizzo, Paola last_name: Pizzo - first_name: Theo S. full_name: Plantinga, Theo S. last_name: Plantinga - first_name: Harald W. full_name: Platta, Harald W. last_name: Platta - first_name: Ainhoa full_name: Plaza-Zabala, Ainhoa last_name: Plaza-Zabala - first_name: Markus full_name: Plomann, Markus last_name: Plomann - first_name: Egor Y. full_name: Plotnikov, Egor Y. last_name: Plotnikov - first_name: Helene full_name: Plun-Favreau, Helene last_name: Plun-Favreau - first_name: Ryszard full_name: Pluta, Ryszard last_name: Pluta - first_name: Roger full_name: Pocock, Roger last_name: Pocock - first_name: Stefanie full_name: Pöggeler, Stefanie last_name: Pöggeler - first_name: Christian full_name: Pohl, Christian last_name: Pohl - first_name: Marc full_name: Poirot, Marc last_name: Poirot - first_name: Angelo full_name: Poletti, Angelo last_name: Poletti - first_name: Marisa full_name: Ponpuak, Marisa last_name: Ponpuak - first_name: Hana full_name: Popelka, Hana last_name: Popelka - first_name: Blagovesta full_name: Popova, Blagovesta last_name: Popova - first_name: Helena full_name: Porta, Helena last_name: Porta - first_name: Soledad full_name: Porte Alcon, Soledad last_name: Porte Alcon - first_name: Eliana full_name: Portilla-Fernandez, Eliana last_name: Portilla-Fernandez - first_name: Martin full_name: Post, Martin last_name: Post - first_name: Malia B. full_name: Potts, Malia B. last_name: Potts - first_name: Joanna full_name: Poulton, Joanna last_name: Poulton - first_name: Ted full_name: Powers, Ted last_name: Powers - first_name: Veena full_name: Prahlad, Veena last_name: Prahlad - first_name: Tomasz K. full_name: Prajsnar, Tomasz K. last_name: Prajsnar - first_name: Domenico full_name: Praticò, Domenico last_name: Praticò - first_name: Rosaria full_name: Prencipe, Rosaria last_name: Prencipe - first_name: Muriel full_name: Priault, Muriel last_name: Priault - first_name: Tassula full_name: Proikas-Cezanne, Tassula last_name: Proikas-Cezanne - first_name: Vasilis J. full_name: Promponas, Vasilis J. last_name: Promponas - first_name: Christopher G. full_name: Proud, Christopher G. last_name: Proud - first_name: Rosa full_name: Puertollano, Rosa last_name: Puertollano - first_name: Luigi full_name: Puglielli, Luigi last_name: Puglielli - first_name: Thomas full_name: Pulinilkunnil, Thomas last_name: Pulinilkunnil - first_name: Deepika full_name: Puri, Deepika last_name: Puri - first_name: Rajat full_name: Puri, Rajat last_name: Puri - first_name: Julien full_name: Puyal, Julien last_name: Puyal - first_name: Xiaopeng full_name: Qi, Xiaopeng last_name: Qi - first_name: Yongmei full_name: Qi, Yongmei last_name: Qi - first_name: Wenbin full_name: Qian, Wenbin last_name: Qian - first_name: Lei full_name: Qiang, Lei last_name: Qiang - first_name: Yu full_name: Qiu, Yu last_name: Qiu - first_name: Joe full_name: Quadrilatero, Joe last_name: Quadrilatero - first_name: Jorge full_name: Quarleri, Jorge last_name: Quarleri - first_name: Nina full_name: Raben, Nina last_name: Raben - first_name: Hannah full_name: Rabinowich, Hannah last_name: Rabinowich - first_name: Debora full_name: Ragona, Debora last_name: Ragona - first_name: Michael J. full_name: Ragusa, Michael J. last_name: Ragusa - first_name: Nader full_name: Rahimi, Nader last_name: Rahimi - first_name: Marveh full_name: Rahmati, Marveh last_name: Rahmati - first_name: Valeria full_name: Raia, Valeria last_name: Raia - first_name: Nuno full_name: Raimundo, Nuno last_name: Raimundo - first_name: Namakkal Soorappan full_name: Rajasekaran, Namakkal Soorappan last_name: Rajasekaran - first_name: Sriganesh full_name: Ramachandra Rao, Sriganesh last_name: Ramachandra Rao - first_name: Abdelhaq full_name: Rami, Abdelhaq last_name: Rami - first_name: Ignacio full_name: Ramírez-Pardo, Ignacio last_name: Ramírez-Pardo - first_name: David B. full_name: Ramsden, David B. last_name: Ramsden - first_name: Felix full_name: Randow, Felix last_name: Randow - first_name: Pundi N. full_name: Rangarajan, Pundi N. last_name: Rangarajan - first_name: Danilo full_name: Ranieri, Danilo last_name: Ranieri - first_name: Hai full_name: Rao, Hai last_name: Rao - first_name: Lang full_name: Rao, Lang last_name: Rao - first_name: Rekha full_name: Rao, Rekha last_name: Rao - first_name: Sumit full_name: Rathore, Sumit last_name: Rathore - first_name: J. Arjuna full_name: Ratnayaka, J. Arjuna last_name: Ratnayaka - first_name: Edward A. full_name: Ratovitski, Edward A. last_name: Ratovitski - first_name: Palaniyandi full_name: Ravanan, Palaniyandi last_name: Ravanan - first_name: Gloria full_name: Ravegnini, Gloria last_name: Ravegnini - first_name: Swapan K. full_name: Ray, Swapan K. last_name: Ray - first_name: Babak full_name: Razani, Babak last_name: Razani - first_name: Vito full_name: Rebecca, Vito last_name: Rebecca - first_name: Fulvio full_name: Reggiori, Fulvio last_name: Reggiori - first_name: Anne full_name: Régnier-Vigouroux, Anne last_name: Régnier-Vigouroux - first_name: Andreas S. full_name: Reichert, Andreas S. last_name: Reichert - first_name: David full_name: Reigada, David last_name: Reigada - first_name: Jan H. full_name: Reiling, Jan H. last_name: Reiling - first_name: Theo full_name: Rein, Theo last_name: Rein - first_name: Siegfried full_name: Reipert, Siegfried last_name: Reipert - first_name: Rokeya Sultana full_name: Rekha, Rokeya Sultana last_name: Rekha - first_name: Hongmei full_name: Ren, Hongmei last_name: Ren - first_name: Jun full_name: Ren, Jun last_name: Ren - first_name: Weichao full_name: Ren, Weichao last_name: Ren - first_name: Tristan full_name: Renault, Tristan last_name: Renault - first_name: Giorgia full_name: Renga, Giorgia last_name: Renga - first_name: Karen full_name: Reue, Karen last_name: Reue - first_name: Kim full_name: Rewitz, Kim last_name: Rewitz - first_name: Bruna full_name: Ribeiro De Andrade Ramos, Bruna last_name: Ribeiro De Andrade Ramos - first_name: S. Amer full_name: Riazuddin, S. Amer last_name: Riazuddin - first_name: Teresa M. full_name: Ribeiro-Rodrigues, Teresa M. last_name: Ribeiro-Rodrigues - first_name: Jean Ehrland full_name: Ricci, Jean Ehrland last_name: Ricci - first_name: Romeo full_name: Ricci, Romeo last_name: Ricci - first_name: Victoria full_name: Riccio, Victoria last_name: Riccio - first_name: Des R. full_name: Richardson, Des R. last_name: Richardson - first_name: Yasuko full_name: Rikihisa, Yasuko last_name: Rikihisa - first_name: Makarand V. full_name: Risbud, Makarand V. last_name: Risbud - first_name: Ruth M. full_name: Risueño, Ruth M. last_name: Risueño - first_name: Konstantinos full_name: Ritis, Konstantinos last_name: Ritis - first_name: Salvatore full_name: Rizza, Salvatore last_name: Rizza - first_name: Rosario full_name: Rizzuto, Rosario last_name: Rizzuto - first_name: Helen C. full_name: Roberts, Helen C. last_name: Roberts - first_name: Luke D. full_name: Roberts, Luke D. last_name: Roberts - first_name: Katherine J. full_name: Robinson, Katherine J. last_name: Robinson - first_name: Maria Carmela full_name: Roccheri, Maria Carmela last_name: Roccheri - first_name: Stephane full_name: Rocchi, Stephane last_name: Rocchi - first_name: George G. full_name: Rodney, George G. last_name: Rodney - first_name: Tiago full_name: Rodrigues, Tiago last_name: Rodrigues - first_name: Vagner Ramon full_name: Rodrigues Silva, Vagner Ramon last_name: Rodrigues Silva - first_name: Amaia full_name: Rodriguez, Amaia last_name: Rodriguez - first_name: Ruth full_name: Rodriguez-Barrueco, Ruth last_name: Rodriguez-Barrueco - first_name: Nieves full_name: Rodriguez-Henche, Nieves last_name: Rodriguez-Henche - first_name: Humberto full_name: Rodriguez-Rocha, Humberto last_name: Rodriguez-Rocha - first_name: Jeroen full_name: Roelofs, Jeroen last_name: Roelofs - first_name: Robert S. full_name: Rogers, Robert S. last_name: Rogers - first_name: Vladimir V. full_name: Rogov, Vladimir V. last_name: Rogov - first_name: Ana I. full_name: Rojo, Ana I. last_name: Rojo - first_name: Krzysztof full_name: Rolka, Krzysztof last_name: Rolka - first_name: Vanina full_name: Romanello, Vanina last_name: Romanello - first_name: Luigina full_name: Romani, Luigina last_name: Romani - first_name: Alessandra full_name: Romano, Alessandra last_name: Romano - first_name: Patricia S. full_name: Romano, Patricia S. last_name: Romano - first_name: David full_name: Romeo-Guitart, David last_name: Romeo-Guitart - first_name: Luis C. full_name: Romero, Luis C. last_name: Romero - first_name: Montserrat full_name: Romero, Montserrat last_name: Romero - first_name: Joseph C. full_name: Roney, Joseph C. last_name: Roney - first_name: Christopher full_name: Rongo, Christopher last_name: Rongo - first_name: Sante full_name: Roperto, Sante last_name: Roperto - first_name: Mathias T. full_name: Rosenfeldt, Mathias T. last_name: Rosenfeldt - first_name: Philip full_name: Rosenstiel, Philip last_name: Rosenstiel - first_name: Anne G. full_name: Rosenwald, Anne G. last_name: Rosenwald - first_name: Kevin A. full_name: Roth, Kevin A. last_name: Roth - first_name: Lynn full_name: Roth, Lynn last_name: Roth - first_name: Steven full_name: Roth, Steven last_name: Roth - first_name: Kasper M.A. full_name: Rouschop, Kasper M.A. last_name: Rouschop - first_name: Benoit D. full_name: Roussel, Benoit D. last_name: Roussel - first_name: Sophie full_name: Roux, Sophie last_name: Roux - first_name: Patrizia full_name: Rovere-Querini, Patrizia last_name: Rovere-Querini - first_name: Ajit full_name: Roy, Ajit last_name: Roy - first_name: Aurore full_name: Rozieres, Aurore last_name: Rozieres - first_name: Diego full_name: Ruano, Diego last_name: Ruano - first_name: David C. full_name: Rubinsztein, David C. last_name: Rubinsztein - first_name: Maria P. full_name: Rubtsova, Maria P. last_name: Rubtsova - first_name: Klaus full_name: Ruckdeschel, Klaus last_name: Ruckdeschel - first_name: Christoph full_name: Ruckenstuhl, Christoph last_name: Ruckenstuhl - first_name: Emil full_name: Rudolf, Emil last_name: Rudolf - first_name: Rüdiger full_name: Rudolf, Rüdiger last_name: Rudolf - first_name: Alessandra full_name: Ruggieri, Alessandra last_name: Ruggieri - first_name: Avnika Ashok full_name: Ruparelia, Avnika Ashok last_name: Ruparelia - first_name: Paola full_name: Rusmini, Paola last_name: Rusmini - first_name: Ryan R. full_name: Russell, Ryan R. last_name: Russell - first_name: Gian Luigi full_name: Russo, Gian Luigi last_name: Russo - first_name: Maria full_name: Russo, Maria last_name: Russo - first_name: Rossella full_name: Russo, Rossella last_name: Russo - first_name: Oxana O. full_name: Ryabaya, Oxana O. last_name: Ryabaya - first_name: Kevin M. full_name: Ryan, Kevin M. last_name: Ryan - first_name: Kwon Yul full_name: Ryu, Kwon Yul last_name: Ryu - first_name: Maria full_name: Sabater-Arcis, Maria last_name: Sabater-Arcis - first_name: Ulka full_name: Sachdev, Ulka last_name: Sachdev - first_name: Michael full_name: Sacher, Michael last_name: Sacher - first_name: Carsten full_name: Sachse, Carsten last_name: Sachse - first_name: Abhishek full_name: Sadhu, Abhishek last_name: Sadhu - first_name: Junichi full_name: Sadoshima, Junichi last_name: Sadoshima - first_name: Nathaniel full_name: Safren, Nathaniel last_name: Safren - first_name: Paul full_name: Saftig, Paul last_name: Saftig - first_name: Antonia P. full_name: Sagona, Antonia P. last_name: Sagona - first_name: Gaurav full_name: Sahay, Gaurav last_name: Sahay - first_name: Amirhossein full_name: Sahebkar, Amirhossein last_name: Sahebkar - first_name: Mustafa full_name: Sahin, Mustafa last_name: Sahin - first_name: Ozgur full_name: Sahin, Ozgur last_name: Sahin - first_name: Sumit full_name: Sahni, Sumit last_name: Sahni - first_name: Nayuta full_name: Saito, Nayuta last_name: Saito - first_name: Shigeru full_name: Saito, Shigeru last_name: Saito - first_name: Tsunenori full_name: Saito, Tsunenori last_name: Saito - first_name: Ryohei full_name: Sakai, Ryohei last_name: Sakai - first_name: Yasuyoshi full_name: Sakai, Yasuyoshi last_name: Sakai - first_name: Jun Ichi full_name: Sakamaki, Jun Ichi last_name: Sakamaki - first_name: Kalle full_name: Saksela, Kalle last_name: Saksela - first_name: Gloria full_name: Salazar, Gloria last_name: Salazar - first_name: Anna full_name: Salazar-Degracia, Anna last_name: Salazar-Degracia - first_name: Ghasem H. full_name: Salekdeh, Ghasem H. last_name: Salekdeh - first_name: Ashok K. full_name: Saluja, Ashok K. last_name: Saluja - first_name: Belém full_name: Sampaio-Marques, Belém last_name: Sampaio-Marques - first_name: Maria Cecilia full_name: Sanchez, Maria Cecilia last_name: Sanchez - first_name: Jose A. full_name: Sanchez-Alcazar, Jose A. last_name: Sanchez-Alcazar - first_name: Victoria full_name: Sanchez-Vera, Victoria last_name: Sanchez-Vera - first_name: Vanessa full_name: Sancho-Shimizu, Vanessa last_name: Sancho-Shimizu - first_name: J. Thomas full_name: Sanderson, J. Thomas last_name: Sanderson - first_name: Marco full_name: Sandri, Marco last_name: Sandri - first_name: Stefano full_name: Santaguida, Stefano last_name: Santaguida - first_name: Laura full_name: Santambrogio, Laura last_name: Santambrogio - first_name: Magda M. full_name: Santana, Magda M. last_name: Santana - first_name: Giorgio full_name: Santoni, Giorgio last_name: Santoni - first_name: Alberto full_name: Sanz, Alberto last_name: Sanz - first_name: Pascual full_name: Sanz, Pascual last_name: Sanz - first_name: Shweta full_name: Saran, Shweta last_name: Saran - first_name: Marco full_name: Sardiello, Marco last_name: Sardiello - first_name: Timothy J. full_name: Sargeant, Timothy J. last_name: Sargeant - first_name: Apurva full_name: Sarin, Apurva last_name: Sarin - first_name: Chinmoy full_name: Sarkar, Chinmoy last_name: Sarkar - first_name: Sovan full_name: Sarkar, Sovan last_name: Sarkar - first_name: Maria Rosa full_name: Sarrias, Maria Rosa last_name: Sarrias - first_name: Surajit full_name: Sarkar, Surajit last_name: Sarkar - first_name: Dipanka Tanu full_name: Sarmah, Dipanka Tanu last_name: Sarmah - first_name: Jaakko full_name: Sarparanta, Jaakko last_name: Sarparanta - first_name: Aishwarya full_name: Sathyanarayan, Aishwarya last_name: Sathyanarayan - first_name: Ranganayaki full_name: Sathyanarayanan, Ranganayaki last_name: Sathyanarayanan - first_name: K. Matthew full_name: Scaglione, K. Matthew last_name: Scaglione - first_name: Francesca full_name: Scatozza, Francesca last_name: Scatozza - first_name: Liliana full_name: Schaefer, Liliana last_name: Schaefer - first_name: Zachary T. full_name: Schafer, Zachary T. last_name: Schafer - first_name: Ulrich E. full_name: Schaible, Ulrich E. last_name: Schaible - first_name: Anthony H.V. full_name: Schapira, Anthony H.V. last_name: Schapira - first_name: Michael full_name: Scharl, Michael last_name: Scharl - first_name: Hermann M. full_name: Schatzl, Hermann M. last_name: Schatzl - first_name: Catherine H. full_name: Schein, Catherine H. last_name: Schein - first_name: Wiep full_name: Scheper, Wiep last_name: Scheper - first_name: David full_name: Scheuring, David last_name: Scheuring - first_name: Maria Vittoria full_name: Schiaffino, Maria Vittoria last_name: Schiaffino - first_name: Monica full_name: Schiappacassi, Monica last_name: Schiappacassi - first_name: Rainer full_name: Schindl, Rainer last_name: Schindl - first_name: Uwe full_name: Schlattner, Uwe last_name: Schlattner - first_name: Oliver full_name: Schmidt, Oliver last_name: Schmidt - first_name: Roland full_name: Schmitt, Roland last_name: Schmitt - first_name: Stephen D. full_name: Schmidt, Stephen D. last_name: Schmidt - first_name: Ingo full_name: Schmitz, Ingo last_name: Schmitz - first_name: Eran full_name: Schmukler, Eran last_name: Schmukler - first_name: Anja full_name: Schneider, Anja last_name: Schneider - first_name: Bianca E. full_name: Schneider, Bianca E. last_name: Schneider - first_name: Romana full_name: Schober, Romana last_name: Schober - first_name: Alejandra C. full_name: Schoijet, Alejandra C. last_name: Schoijet - first_name: Micah B. full_name: Schott, Micah B. last_name: Schott - first_name: Michael full_name: Schramm, Michael last_name: Schramm - first_name: Bernd full_name: Schröder, Bernd last_name: Schröder - first_name: Kai full_name: Schuh, Kai last_name: Schuh - first_name: Christoph full_name: Schüller, Christoph last_name: Schüller - first_name: Ryan J. full_name: Schulze, Ryan J. last_name: Schulze - first_name: Lea full_name: Schürmanns, Lea last_name: Schürmanns - first_name: Jens C. full_name: Schwamborn, Jens C. last_name: Schwamborn - first_name: Melanie full_name: Schwarten, Melanie last_name: Schwarten - first_name: Filippo full_name: Scialo, Filippo last_name: Scialo - first_name: Sebastiano full_name: Sciarretta, Sebastiano last_name: Sciarretta - first_name: Melanie J. full_name: Scott, Melanie J. last_name: Scott - first_name: Kathleen W. full_name: Scotto, Kathleen W. last_name: Scotto - first_name: A. Ivana full_name: Scovassi, A. Ivana last_name: Scovassi - first_name: Andrea full_name: Scrima, Andrea last_name: Scrima - first_name: Aurora full_name: Scrivo, Aurora last_name: Scrivo - first_name: David full_name: Sebastian, David last_name: Sebastian - first_name: Salwa full_name: Sebti, Salwa last_name: Sebti - first_name: Simon full_name: Sedej, Simon last_name: Sedej - first_name: Laura full_name: Segatori, Laura last_name: Segatori - first_name: Nava full_name: Segev, Nava last_name: Segev - first_name: Per O. full_name: Seglen, Per O. last_name: Seglen - first_name: Iban full_name: Seiliez, Iban last_name: Seiliez - first_name: Ekihiro full_name: Seki, Ekihiro last_name: Seki - first_name: Scott B. full_name: Selleck, Scott B. last_name: Selleck - first_name: Frank W. full_name: Sellke, Frank W. last_name: Sellke - first_name: Joshua T. full_name: Selsby, Joshua T. last_name: Selsby - first_name: Michael full_name: Sendtner, Michael last_name: Sendtner - first_name: Serif full_name: Senturk, Serif last_name: Senturk - first_name: Elena full_name: Seranova, Elena last_name: Seranova - first_name: Consolato full_name: Sergi, Consolato last_name: Sergi - first_name: Ruth full_name: Serra-Moreno, Ruth last_name: Serra-Moreno - first_name: Hiromi full_name: Sesaki, Hiromi last_name: Sesaki - first_name: Carmine full_name: Settembre, Carmine last_name: Settembre - first_name: Subba Rao Gangi full_name: Setty, Subba Rao Gangi last_name: Setty - first_name: Gianluca full_name: Sgarbi, Gianluca last_name: Sgarbi - first_name: Ou full_name: Sha, Ou last_name: Sha - first_name: John J. full_name: Shacka, John J. last_name: Shacka - first_name: Javeed A. full_name: Shah, Javeed A. last_name: Shah - first_name: Dantong full_name: Shang, Dantong last_name: Shang - first_name: Changshun full_name: Shao, Changshun last_name: Shao - first_name: Feng full_name: Shao, Feng last_name: Shao - first_name: Soroush full_name: Sharbati, Soroush last_name: Sharbati - first_name: Lisa M. full_name: Sharkey, Lisa M. last_name: Sharkey - first_name: Dipali full_name: Sharma, Dipali last_name: Sharma - first_name: Gaurav full_name: Sharma, Gaurav last_name: Sharma - first_name: Kulbhushan full_name: Sharma, Kulbhushan last_name: Sharma - first_name: Pawan full_name: Sharma, Pawan last_name: Sharma - first_name: Surendra full_name: Sharma, Surendra last_name: Sharma - first_name: Han Ming full_name: Shen, Han Ming last_name: Shen - first_name: Hongtao full_name: Shen, Hongtao last_name: Shen - first_name: Jiangang full_name: Shen, Jiangang last_name: Shen - first_name: Ming full_name: Shen, Ming last_name: Shen - first_name: Weili full_name: Shen, Weili last_name: Shen - first_name: Zheni full_name: Shen, Zheni last_name: Shen - first_name: Rui full_name: Sheng, Rui last_name: Sheng - first_name: Zhi full_name: Sheng, Zhi last_name: Sheng - first_name: Zu Hang full_name: Sheng, Zu Hang last_name: Sheng - first_name: Jianjian full_name: Shi, Jianjian last_name: Shi - first_name: Xiaobing full_name: Shi, Xiaobing last_name: Shi - first_name: Ying Hong full_name: Shi, Ying Hong last_name: Shi - first_name: Kahori full_name: Shiba-Fukushima, Kahori last_name: Shiba-Fukushima - first_name: Jeng Jer full_name: Shieh, Jeng Jer last_name: Shieh - first_name: Yohta full_name: Shimada, Yohta last_name: Shimada - first_name: Shigeomi full_name: Shimizu, Shigeomi last_name: Shimizu - first_name: Makoto full_name: Shimozawa, Makoto last_name: Shimozawa - first_name: Takahiro full_name: Shintani, Takahiro last_name: Shintani - first_name: Christopher J. full_name: Shoemaker, Christopher J. last_name: Shoemaker - first_name: Shahla full_name: Shojaei, Shahla last_name: Shojaei - first_name: Ikuo full_name: Shoji, Ikuo last_name: Shoji - first_name: Bhupendra V. full_name: Shravage, Bhupendra V. last_name: Shravage - first_name: Viji full_name: Shridhar, Viji last_name: Shridhar - first_name: Chih Wen full_name: Shu, Chih Wen last_name: Shu - first_name: Hong Bing full_name: Shu, Hong Bing last_name: Shu - first_name: Ke full_name: Shui, Ke last_name: Shui - first_name: Arvind K. full_name: Shukla, Arvind K. last_name: Shukla - first_name: Timothy E. full_name: Shutt, Timothy E. last_name: Shutt - first_name: Valentina full_name: Sica, Valentina last_name: Sica - first_name: Aleem full_name: Siddiqui, Aleem last_name: Siddiqui - first_name: Amanda full_name: Sierra, Amanda last_name: Sierra - first_name: Virginia full_name: Sierra-Torre, Virginia last_name: Sierra-Torre - first_name: Santiago full_name: Signorelli, Santiago last_name: Signorelli - first_name: Payel full_name: Sil, Payel last_name: Sil - first_name: Bruno J.De Andrade full_name: Silva, Bruno J.De Andrade last_name: Silva - first_name: Johnatas D. full_name: Silva, Johnatas D. last_name: Silva - first_name: Eduardo full_name: Silva-Pavez, Eduardo last_name: Silva-Pavez - first_name: Sandrine full_name: Silvente-Poirot, Sandrine last_name: Silvente-Poirot - first_name: Rachel E. full_name: Simmonds, Rachel E. last_name: Simmonds - first_name: Anna Katharina full_name: Simon, Anna Katharina last_name: Simon - first_name: Hans Uwe full_name: Simon, Hans Uwe last_name: Simon - first_name: Matias full_name: Simons, Matias last_name: Simons - first_name: Anurag full_name: Singh, Anurag last_name: Singh - first_name: Lalit P. full_name: Singh, Lalit P. last_name: Singh - first_name: Rajat full_name: Singh, Rajat last_name: Singh - first_name: Shivendra V. full_name: Singh, Shivendra V. last_name: Singh - first_name: Shrawan K. full_name: Singh, Shrawan K. last_name: Singh - first_name: Sudha B. full_name: Singh, Sudha B. last_name: Singh - first_name: Sunaina full_name: Singh, Sunaina last_name: Singh - first_name: Surinder Pal full_name: Singh, Surinder Pal last_name: Singh - first_name: Debasish full_name: Sinha, Debasish last_name: Sinha - first_name: Rohit Anthony full_name: Sinha, Rohit Anthony last_name: Sinha - first_name: Sangita full_name: Sinha, Sangita last_name: Sinha - first_name: Agnieszka full_name: Sirko, Agnieszka last_name: Sirko - first_name: Kapil full_name: Sirohi, Kapil last_name: Sirohi - first_name: Efthimios L. full_name: Sivridis, Efthimios L. last_name: Sivridis - first_name: Panagiotis full_name: Skendros, Panagiotis last_name: Skendros - first_name: Aleksandra full_name: Skirycz, Aleksandra last_name: Skirycz - first_name: Iva full_name: Slaninová, Iva last_name: Slaninová - first_name: Soraya S. full_name: Smaili, Soraya S. last_name: Smaili - first_name: Andrei full_name: Smertenko, Andrei last_name: Smertenko - first_name: Matthew D. full_name: Smith, Matthew D. last_name: Smith - first_name: Stefaan J. full_name: Soenen, Stefaan J. last_name: Soenen - first_name: Eun Jung full_name: Sohn, Eun Jung last_name: Sohn - first_name: Sophia P.M. full_name: Sok, Sophia P.M. last_name: Sok - first_name: Giancarlo full_name: Solaini, Giancarlo last_name: Solaini - first_name: Thierry full_name: Soldati, Thierry last_name: Soldati - first_name: Scott A. full_name: Soleimanpour, Scott A. last_name: Soleimanpour - first_name: Rosa M. full_name: Soler, Rosa M. last_name: Soler - first_name: Alexei full_name: Solovchenko, Alexei last_name: Solovchenko - first_name: Jason A. full_name: Somarelli, Jason A. last_name: Somarelli - first_name: Avinash full_name: Sonawane, Avinash last_name: Sonawane - first_name: Fuyong full_name: Song, Fuyong last_name: Song - first_name: Hyun Kyu full_name: Song, Hyun Kyu last_name: Song - first_name: Ju Xian full_name: Song, Ju Xian last_name: Song - first_name: Kunhua full_name: Song, Kunhua last_name: Song - first_name: Zhiyin full_name: Song, Zhiyin last_name: Song - first_name: Leandro R. full_name: Soria, Leandro R. last_name: Soria - first_name: Maurizio full_name: Sorice, Maurizio last_name: Sorice - first_name: Alexander A. full_name: Soukas, Alexander A. last_name: Soukas - first_name: Sandra Fausia full_name: Soukup, Sandra Fausia last_name: Soukup - first_name: Diana full_name: Sousa, Diana last_name: Sousa - first_name: Nadia full_name: Sousa, Nadia last_name: Sousa - first_name: Paul A. full_name: Spagnuolo, Paul A. last_name: Spagnuolo - first_name: Stephen A. full_name: Spector, Stephen A. last_name: Spector - first_name: M. M. full_name: Srinivas Bharath, M. M. last_name: Srinivas Bharath - first_name: Daret full_name: St. Clair, Daret last_name: St. Clair - first_name: Venturina full_name: Stagni, Venturina last_name: Stagni - first_name: Leopoldo full_name: Staiano, Leopoldo last_name: Staiano - first_name: Clint A. full_name: Stalnecker, Clint A. last_name: Stalnecker - first_name: Metodi V. full_name: Stankov, Metodi V. last_name: Stankov - first_name: Peter B. full_name: Stathopulos, Peter B. last_name: Stathopulos - first_name: Katja full_name: Stefan, Katja last_name: Stefan - first_name: Sven Marcel full_name: Stefan, Sven Marcel last_name: Stefan - first_name: Leonidas full_name: Stefanis, Leonidas last_name: Stefanis - first_name: Joan S. full_name: Steffan, Joan S. last_name: Steffan - first_name: Alexander full_name: Steinkasserer, Alexander last_name: Steinkasserer - first_name: Harald full_name: Stenmark, Harald last_name: Stenmark - first_name: Jared full_name: Sterneckert, Jared last_name: Sterneckert - first_name: Craig full_name: Stevens, Craig last_name: Stevens - first_name: Veronika full_name: Stoka, Veronika last_name: Stoka - first_name: Stephan full_name: Storch, Stephan last_name: Storch - first_name: Björn full_name: Stork, Björn last_name: Stork - first_name: Flavie full_name: Strappazzon, Flavie last_name: Strappazzon - first_name: Anne Marie full_name: Strohecker, Anne Marie last_name: Strohecker - first_name: Dwayne G. full_name: Stupack, Dwayne G. last_name: Stupack - first_name: Huanxing full_name: Su, Huanxing last_name: Su - first_name: Ling Yan full_name: Su, Ling Yan last_name: Su - first_name: Longxiang full_name: Su, Longxiang last_name: Su - first_name: Ana M. full_name: Suarez-Fontes, Ana M. last_name: Suarez-Fontes - first_name: Carlos S. full_name: Subauste, Carlos S. last_name: Subauste - first_name: Selvakumar full_name: Subbian, Selvakumar last_name: Subbian - first_name: Paula V. full_name: Subirada, Paula V. last_name: Subirada - first_name: Ganapasam full_name: Sudhandiran, Ganapasam last_name: Sudhandiran - first_name: Carolyn M. full_name: Sue, Carolyn M. last_name: Sue - first_name: Xinbing full_name: Sui, Xinbing last_name: Sui - first_name: Corey full_name: Summers, Corey last_name: Summers - first_name: Guangchao full_name: Sun, Guangchao last_name: Sun - first_name: Jun full_name: Sun, Jun last_name: Sun - first_name: Kang full_name: Sun, Kang last_name: Sun - first_name: Meng Xiang full_name: Sun, Meng Xiang last_name: Sun - first_name: Qiming full_name: Sun, Qiming last_name: Sun - first_name: Yi full_name: Sun, Yi last_name: Sun - first_name: Zhongjie full_name: Sun, Zhongjie last_name: Sun - first_name: Karen K.S. full_name: Sunahara, Karen K.S. last_name: Sunahara - first_name: Eva full_name: Sundberg, Eva last_name: Sundberg - first_name: Katalin full_name: Susztak, Katalin last_name: Susztak - first_name: Peter full_name: Sutovsky, Peter last_name: Sutovsky - first_name: Hidekazu full_name: Suzuki, Hidekazu last_name: Suzuki - first_name: Gary full_name: Sweeney, Gary last_name: Sweeney - first_name: J. David full_name: Symons, J. David last_name: Symons - first_name: Stephen Cho Wing full_name: Sze, Stephen Cho Wing last_name: Sze - first_name: Nathaniel J. full_name: Szewczyk, Nathaniel J. last_name: Szewczyk - first_name: Anna full_name: Tabęcka-Łonczynska, Anna last_name: Tabęcka-Łonczynska - first_name: Claudio full_name: Tabolacci, Claudio last_name: Tabolacci - first_name: Frank full_name: Tacke, Frank last_name: Tacke - first_name: Heinrich full_name: Taegtmeyer, Heinrich last_name: Taegtmeyer - first_name: Marco full_name: Tafani, Marco last_name: Tafani - first_name: Mitsuo full_name: Tagaya, Mitsuo last_name: Tagaya - first_name: Haoran full_name: Tai, Haoran last_name: Tai - first_name: Stephen W.G. full_name: Tait, Stephen W.G. last_name: Tait - first_name: Yoshinori full_name: Takahashi, Yoshinori last_name: Takahashi - first_name: Szabolcs full_name: Takats, Szabolcs last_name: Takats - first_name: Priti full_name: Talwar, Priti last_name: Talwar - first_name: Chit full_name: Tam, Chit last_name: Tam - first_name: Shing Yau full_name: Tam, Shing Yau last_name: Tam - first_name: Davide full_name: Tampellini, Davide last_name: Tampellini - first_name: Atsushi full_name: Tamura, Atsushi last_name: Tamura - first_name: Chong Teik full_name: Tan, Chong Teik last_name: Tan - first_name: Eng King full_name: Tan, Eng King last_name: Tan - first_name: Ya Qin full_name: Tan, Ya Qin last_name: Tan - first_name: Masaki full_name: Tanaka, Masaki last_name: Tanaka - first_name: Motomasa full_name: Tanaka, Motomasa last_name: Tanaka - first_name: Daolin full_name: Tang, Daolin last_name: Tang - first_name: Jingfeng full_name: Tang, Jingfeng last_name: Tang - first_name: Tie Shan full_name: Tang, Tie Shan last_name: Tang - first_name: Isei full_name: Tanida, Isei last_name: Tanida - first_name: Zhipeng full_name: Tao, Zhipeng last_name: Tao - first_name: Mohammed full_name: Taouis, Mohammed last_name: Taouis - first_name: Lars full_name: Tatenhorst, Lars last_name: Tatenhorst - first_name: Nektarios full_name: Tavernarakis, Nektarios last_name: Tavernarakis - first_name: Allen full_name: Taylor, Allen last_name: Taylor - first_name: Gregory A. full_name: Taylor, Gregory A. last_name: Taylor - first_name: Joan M. full_name: Taylor, Joan M. last_name: Taylor - first_name: Elena full_name: Tchetina, Elena last_name: Tchetina - first_name: Andrew R. full_name: Tee, Andrew R. last_name: Tee - first_name: Irmgard full_name: Tegeder, Irmgard last_name: Tegeder - first_name: David full_name: Teis, David last_name: Teis - first_name: Natercia full_name: Teixeira, Natercia last_name: Teixeira - first_name: Fatima full_name: Teixeira-Clerc, Fatima last_name: Teixeira-Clerc - first_name: Kumsal A. full_name: Tekirdag, Kumsal A. last_name: Tekirdag - first_name: Tewin full_name: Tencomnao, Tewin last_name: Tencomnao - first_name: Sandra full_name: Tenreiro, Sandra last_name: Tenreiro - first_name: Alexei V. full_name: Tepikin, Alexei V. last_name: Tepikin - first_name: Pilar S. full_name: Testillano, Pilar S. last_name: Testillano - first_name: Gianluca full_name: Tettamanti, Gianluca last_name: Tettamanti - first_name: Pierre Louis full_name: Tharaux, Pierre Louis last_name: Tharaux - first_name: Kathrin full_name: Thedieck, Kathrin last_name: Thedieck - first_name: Arvind A. full_name: Thekkinghat, Arvind A. last_name: Thekkinghat - first_name: Stefano full_name: Thellung, Stefano last_name: Thellung - first_name: Josephine W. full_name: Thinwa, Josephine W. last_name: Thinwa - first_name: V. P. full_name: Thirumalaikumar, V. P. last_name: Thirumalaikumar - first_name: Sufi Mary full_name: Thomas, Sufi Mary last_name: Thomas - first_name: Paul G. full_name: Thomes, Paul G. last_name: Thomes - first_name: Andrew full_name: Thorburn, Andrew last_name: Thorburn - first_name: Lipi full_name: Thukral, Lipi last_name: Thukral - first_name: Thomas full_name: Thum, Thomas last_name: Thum - first_name: Michael full_name: Thumm, Michael last_name: Thumm - first_name: Ling full_name: Tian, Ling last_name: Tian - first_name: Ales full_name: Tichy, Ales last_name: Tichy - first_name: Andreas full_name: Till, Andreas last_name: Till - first_name: Vincent full_name: Timmerman, Vincent last_name: Timmerman - first_name: Vladimir I. full_name: Titorenko, Vladimir I. last_name: Titorenko - first_name: Sokol V. full_name: Todi, Sokol V. last_name: Todi - first_name: Krassimira full_name: Todorova, Krassimira last_name: Todorova - first_name: Janne M. full_name: Toivonen, Janne M. last_name: Toivonen - first_name: Luana full_name: Tomaipitinca, Luana last_name: Tomaipitinca - first_name: Dhanendra full_name: Tomar, Dhanendra last_name: Tomar - first_name: Cristina full_name: Tomas-Zapico, Cristina last_name: Tomas-Zapico - first_name: Sergej full_name: Tomić, Sergej last_name: Tomić - first_name: Benjamin Chun Kit full_name: Tong, Benjamin Chun Kit last_name: Tong - first_name: Chao full_name: Tong, Chao last_name: Tong - first_name: Xin full_name: Tong, Xin id: 50F65CDC-AA30-11E9-A72B-8A12E6697425 last_name: Tong - first_name: Sharon A. full_name: Tooze, Sharon A. last_name: Tooze - first_name: Maria L. full_name: Torgersen, Maria L. last_name: Torgersen - first_name: Satoru full_name: Torii, Satoru last_name: Torii - first_name: Liliana full_name: Torres-López, Liliana last_name: Torres-López - first_name: Alicia full_name: Torriglia, Alicia last_name: Torriglia - first_name: Christina G. full_name: Towers, Christina G. last_name: Towers - first_name: Roberto full_name: Towns, Roberto last_name: Towns - first_name: Shinya full_name: Toyokuni, Shinya last_name: Toyokuni - first_name: Vladimir full_name: Trajkovic, Vladimir last_name: Trajkovic - first_name: Donatella full_name: Tramontano, Donatella last_name: Tramontano - first_name: Quynh Giao full_name: Tran, Quynh Giao last_name: Tran - first_name: Leonardo H. full_name: Travassos, Leonardo H. last_name: Travassos - first_name: Charles B. full_name: Trelford, Charles B. last_name: Trelford - first_name: Shirley full_name: Tremel, Shirley last_name: Tremel - first_name: Ioannis P. full_name: Trougakos, Ioannis P. last_name: Trougakos - first_name: Betty P. full_name: Tsao, Betty P. last_name: Tsao - first_name: Mario P. full_name: Tschan, Mario P. last_name: Tschan - first_name: Hung Fat full_name: Tse, Hung Fat last_name: Tse - first_name: Tak Fu full_name: Tse, Tak Fu last_name: Tse - first_name: Hitoshi full_name: Tsugawa, Hitoshi last_name: Tsugawa - first_name: Andrey S. full_name: Tsvetkov, Andrey S. last_name: Tsvetkov - first_name: David A. full_name: Tumbarello, David A. last_name: Tumbarello - first_name: Yasin full_name: Tumtas, Yasin last_name: Tumtas - first_name: María J. full_name: Tuñón, María J. last_name: Tuñón - first_name: Sandra full_name: Turcotte, Sandra last_name: Turcotte - first_name: Boris full_name: Turk, Boris last_name: Turk - first_name: Vito full_name: Turk, Vito last_name: Turk - first_name: Bradley J. full_name: Turner, Bradley J. last_name: Turner - first_name: Richard I. full_name: Tuxworth, Richard I. last_name: Tuxworth - first_name: Jessica K. full_name: Tyler, Jessica K. last_name: Tyler - first_name: Elena V. full_name: Tyutereva, Elena V. last_name: Tyutereva - first_name: Yasuo full_name: Uchiyama, Yasuo last_name: Uchiyama - first_name: Aslihan full_name: Ugun-Klusek, Aslihan last_name: Ugun-Klusek - first_name: Holm H. full_name: Uhlig, Holm H. last_name: Uhlig - first_name: Marzena full_name: Ułamek-Kozioł, Marzena last_name: Ułamek-Kozioł - first_name: Ilya V. full_name: Ulasov, Ilya V. last_name: Ulasov - first_name: Midori full_name: Umekawa, Midori last_name: Umekawa - first_name: Christian full_name: Ungermann, Christian last_name: Ungermann - first_name: Rei full_name: Unno, Rei last_name: Unno - first_name: Sylvie full_name: Urbe, Sylvie last_name: Urbe - first_name: Elisabet full_name: Uribe-Carretero, Elisabet last_name: Uribe-Carretero - first_name: Suayib full_name: Üstün, Suayib last_name: Üstün - first_name: Vladimir N. full_name: Uversky, Vladimir N. last_name: Uversky - first_name: Thomas full_name: Vaccari, Thomas last_name: Vaccari - first_name: Maria I. full_name: Vaccaro, Maria I. last_name: Vaccaro - first_name: Björn F. full_name: Vahsen, Björn F. last_name: Vahsen - first_name: Helin full_name: Vakifahmetoglu-Norberg, Helin last_name: Vakifahmetoglu-Norberg - first_name: Rut full_name: Valdor, Rut last_name: Valdor - first_name: Maria J. full_name: Valente, Maria J. last_name: Valente - first_name: Ayelén full_name: Valko, Ayelén last_name: Valko - first_name: Richard B. full_name: Vallee, Richard B. last_name: Vallee - first_name: Angela M. full_name: Valverde, Angela M. last_name: Valverde - first_name: Greet full_name: Van Den Berghe, Greet last_name: Van Den Berghe - first_name: Stijn full_name: Van Der Veen, Stijn last_name: Van Der Veen - first_name: Luc full_name: Van Kaer, Luc last_name: Van Kaer - first_name: Jorg full_name: Van Loosdregt, Jorg last_name: Van Loosdregt - first_name: Sjoerd J.L. full_name: Van Wijk, Sjoerd J.L. last_name: Van Wijk - first_name: Wim full_name: Vandenberghe, Wim last_name: Vandenberghe - first_name: Ilse full_name: Vanhorebeek, Ilse last_name: Vanhorebeek - first_name: Marcos A. full_name: Vannier-Santos, Marcos A. last_name: Vannier-Santos - first_name: Nicola full_name: Vannini, Nicola last_name: Vannini - first_name: M. Cristina full_name: Vanrell, M. Cristina last_name: Vanrell - first_name: Chiara full_name: Vantaggiato, Chiara last_name: Vantaggiato - first_name: Gabriele full_name: Varano, Gabriele last_name: Varano - first_name: Isabel full_name: Varela-Nieto, Isabel last_name: Varela-Nieto - first_name: Máté full_name: Varga, Máté last_name: Varga - first_name: M. Helena full_name: Vasconcelos, M. Helena last_name: Vasconcelos - first_name: Somya full_name: Vats, Somya last_name: Vats - first_name: Demetrios G. full_name: Vavvas, Demetrios G. last_name: Vavvas - first_name: Ignacio full_name: Vega-Naredo, Ignacio last_name: Vega-Naredo - first_name: Silvia full_name: Vega-Rubin-De-Celis, Silvia last_name: Vega-Rubin-De-Celis - first_name: Guillermo full_name: Velasco, Guillermo last_name: Velasco - first_name: Ariadna P. full_name: Velázquez, Ariadna P. last_name: Velázquez - first_name: Tibor full_name: Vellai, Tibor last_name: Vellai - first_name: Edo full_name: Vellenga, Edo last_name: Vellenga - first_name: Francesca full_name: Velotti, Francesca last_name: Velotti - first_name: Mireille full_name: Verdier, Mireille last_name: Verdier - first_name: Panayotis full_name: Verginis, Panayotis last_name: Verginis - first_name: Isabelle full_name: Vergne, Isabelle last_name: Vergne - first_name: Paul full_name: Verkade, Paul last_name: Verkade - first_name: Manish full_name: Verma, Manish last_name: Verma - first_name: Patrik full_name: Verstreken, Patrik last_name: Verstreken - first_name: Tim full_name: Vervliet, Tim last_name: Vervliet - first_name: Jörg full_name: Vervoorts, Jörg last_name: Vervoorts - first_name: Alexandre T. full_name: Vessoni, Alexandre T. last_name: Vessoni - first_name: Victor M. full_name: Victor, Victor M. last_name: Victor - first_name: Michel full_name: Vidal, Michel last_name: Vidal - first_name: Chiara full_name: Vidoni, Chiara last_name: Vidoni - first_name: Otilia V. full_name: Vieira, Otilia V. last_name: Vieira - first_name: Richard D. full_name: Vierstra, Richard D. last_name: Vierstra - first_name: Sonia full_name: Viganó, Sonia last_name: Viganó - first_name: Helena full_name: Vihinen, Helena last_name: Vihinen - first_name: Vinoy full_name: Vijayan, Vinoy last_name: Vijayan - first_name: Miquel full_name: Vila, Miquel last_name: Vila - first_name: Marçal full_name: Vilar, Marçal last_name: Vilar - first_name: José M. full_name: Villalba, José M. last_name: Villalba - first_name: Antonio full_name: Villalobo, Antonio last_name: Villalobo - first_name: Beatriz full_name: Villarejo-Zori, Beatriz last_name: Villarejo-Zori - first_name: Francesc full_name: Villarroya, Francesc last_name: Villarroya - first_name: Joan full_name: Villarroya, Joan last_name: Villarroya - first_name: Olivier full_name: Vincent, Olivier last_name: Vincent - first_name: Cecile full_name: Vindis, Cecile last_name: Vindis - first_name: Christophe full_name: Viret, Christophe last_name: Viret - first_name: Maria Teresa full_name: Viscomi, Maria Teresa last_name: Viscomi - first_name: Dora full_name: Visnjic, Dora last_name: Visnjic - first_name: Ilio full_name: Vitale, Ilio last_name: Vitale - first_name: David J. full_name: Vocadlo, David J. last_name: Vocadlo - first_name: Olga V. full_name: Voitsekhovskaja, Olga V. last_name: Voitsekhovskaja - first_name: Cinzia full_name: Volonté, Cinzia last_name: Volonté - first_name: Mattia full_name: Volta, Mattia last_name: Volta - first_name: Marta full_name: Vomero, Marta last_name: Vomero - first_name: Clarissa full_name: Von Haefen, Clarissa last_name: Von Haefen - first_name: Marc A. full_name: Vooijs, Marc A. last_name: Vooijs - first_name: Wolfgang full_name: Voos, Wolfgang last_name: Voos - first_name: Ljubica full_name: Vucicevic, Ljubica last_name: Vucicevic - first_name: Richard full_name: Wade-Martins, Richard last_name: Wade-Martins - first_name: Satoshi full_name: Waguri, Satoshi last_name: Waguri - first_name: Kenrick A. full_name: Waite, Kenrick A. last_name: Waite - first_name: Shuji full_name: Wakatsuki, Shuji last_name: Wakatsuki - first_name: David W. full_name: Walker, David W. last_name: Walker - first_name: Mark J. full_name: Walker, Mark J. last_name: Walker - first_name: Simon A. full_name: Walker, Simon A. last_name: Walker - first_name: Jochen full_name: Walter, Jochen last_name: Walter - first_name: Francisco G. full_name: Wandosell, Francisco G. last_name: Wandosell - first_name: Bo full_name: Wang, Bo last_name: Wang - first_name: Chao Yung full_name: Wang, Chao Yung last_name: Wang - first_name: Chen full_name: Wang, Chen last_name: Wang - first_name: Chenran full_name: Wang, Chenran last_name: Wang - first_name: Chenwei full_name: Wang, Chenwei last_name: Wang - first_name: Cun Yu full_name: Wang, Cun Yu last_name: Wang - first_name: Dong full_name: Wang, Dong last_name: Wang - first_name: Fangyang full_name: Wang, Fangyang last_name: Wang - first_name: Feng full_name: Wang, Feng last_name: Wang - first_name: Fengming full_name: Wang, Fengming last_name: Wang - first_name: Guansong full_name: Wang, Guansong last_name: Wang - first_name: Han full_name: Wang, Han last_name: Wang - first_name: Hao full_name: Wang, Hao last_name: Wang - first_name: Hexiang full_name: Wang, Hexiang last_name: Wang - first_name: Hong Gang full_name: Wang, Hong Gang last_name: Wang - first_name: Jianrong full_name: Wang, Jianrong last_name: Wang - first_name: Jigang full_name: Wang, Jigang last_name: Wang - first_name: Jiou full_name: Wang, Jiou last_name: Wang - first_name: Jundong full_name: Wang, Jundong last_name: Wang - first_name: Kui full_name: Wang, Kui last_name: Wang - first_name: Lianrong full_name: Wang, Lianrong last_name: Wang - first_name: Liming full_name: Wang, Liming last_name: Wang - first_name: Maggie Haitian full_name: Wang, Maggie Haitian last_name: Wang - first_name: Meiqing full_name: Wang, Meiqing last_name: Wang - first_name: Nanbu full_name: Wang, Nanbu last_name: Wang - first_name: Pengwei full_name: Wang, Pengwei last_name: Wang - first_name: Peipei full_name: Wang, Peipei last_name: Wang - first_name: Ping full_name: Wang, Ping last_name: Wang - first_name: Ping full_name: Wang, Ping last_name: Wang - first_name: Qing Jun full_name: Wang, Qing Jun last_name: Wang - first_name: Qing full_name: Wang, Qing last_name: Wang - first_name: Qing Kenneth full_name: Wang, Qing Kenneth last_name: Wang - first_name: Qiong A. full_name: Wang, Qiong A. last_name: Wang - first_name: Wen Tao full_name: Wang, Wen Tao last_name: Wang - first_name: Wuyang full_name: Wang, Wuyang last_name: Wang - first_name: Xinnan full_name: Wang, Xinnan last_name: Wang - first_name: Xuejun full_name: Wang, Xuejun last_name: Wang - first_name: Yan full_name: Wang, Yan last_name: Wang - first_name: Yanchang full_name: Wang, Yanchang last_name: Wang - first_name: Yanzhuang full_name: Wang, Yanzhuang last_name: Wang - first_name: Yen Yun full_name: Wang, Yen Yun last_name: Wang - first_name: Yihua full_name: Wang, Yihua last_name: Wang - first_name: Yipeng full_name: Wang, Yipeng last_name: Wang - first_name: Yu full_name: Wang, Yu last_name: Wang - first_name: Yuqi full_name: Wang, Yuqi last_name: Wang - first_name: Zhe full_name: Wang, Zhe last_name: Wang - first_name: Zhenyu full_name: Wang, Zhenyu last_name: Wang - first_name: Zhouguang full_name: Wang, Zhouguang last_name: Wang - first_name: Gary full_name: Warnes, Gary last_name: Warnes - first_name: Verena full_name: Warnsmann, Verena last_name: Warnsmann - first_name: Hirotaka full_name: Watada, Hirotaka last_name: Watada - first_name: Eizo full_name: Watanabe, Eizo last_name: Watanabe - first_name: Maxinne full_name: Watchon, Maxinne last_name: Watchon - first_name: Anna full_name: Wawrzyńska, Anna last_name: Wawrzyńska - first_name: Timothy E. full_name: Weaver, Timothy E. last_name: Weaver - first_name: Grzegorz full_name: Wegrzyn, Grzegorz last_name: Wegrzyn - first_name: Ann M. full_name: Wehman, Ann M. last_name: Wehman - first_name: Huafeng full_name: Wei, Huafeng last_name: Wei - first_name: Lei full_name: Wei, Lei last_name: Wei - first_name: Taotao full_name: Wei, Taotao last_name: Wei - first_name: Yongjie full_name: Wei, Yongjie last_name: Wei - first_name: Oliver H. full_name: Weiergräber, Oliver H. last_name: Weiergräber - first_name: Conrad C. full_name: Weihl, Conrad C. last_name: Weihl - first_name: Günther full_name: Weindl, Günther last_name: Weindl - first_name: Ralf full_name: Weiskirchen, Ralf last_name: Weiskirchen - first_name: Alan full_name: Wells, Alan last_name: Wells - first_name: Runxia H. full_name: Wen, Runxia H. last_name: Wen - first_name: Xin full_name: Wen, Xin last_name: Wen - first_name: Antonia full_name: Werner, Antonia last_name: Werner - first_name: Beatrice full_name: Weykopf, Beatrice last_name: Weykopf - first_name: Sally P. full_name: Wheatley, Sally P. last_name: Wheatley - first_name: J. Lindsay full_name: Whitton, J. Lindsay last_name: Whitton - first_name: Alexander J. full_name: Whitworth, Alexander J. last_name: Whitworth - first_name: Katarzyna full_name: Wiktorska, Katarzyna last_name: Wiktorska - first_name: Manon E. full_name: Wildenberg, Manon E. last_name: Wildenberg - first_name: Tom full_name: Wileman, Tom last_name: Wileman - first_name: Simon full_name: Wilkinson, Simon last_name: Wilkinson - first_name: Dieter full_name: Willbold, Dieter last_name: Willbold - first_name: Brett full_name: Williams, Brett last_name: Williams - first_name: Robin S.B. full_name: Williams, Robin S.B. last_name: Williams - first_name: Roger L. full_name: Williams, Roger L. last_name: Williams - first_name: Peter R. full_name: Williamson, Peter R. last_name: Williamson - first_name: Richard A. full_name: Wilson, Richard A. last_name: Wilson - first_name: Beate full_name: Winner, Beate last_name: Winner - first_name: Nathaniel J. full_name: Winsor, Nathaniel J. last_name: Winsor - first_name: Steven S. full_name: Witkin, Steven S. last_name: Witkin - first_name: Harald full_name: Wodrich, Harald last_name: Wodrich - first_name: Ute full_name: Woehlbier, Ute last_name: Woehlbier - first_name: Thomas full_name: Wollert, Thomas last_name: Wollert - first_name: Esther full_name: Wong, Esther last_name: Wong - first_name: Jack Ho full_name: Wong, Jack Ho last_name: Wong - first_name: Richard W. full_name: Wong, Richard W. last_name: Wong - first_name: Vincent Kam Wai full_name: Wong, Vincent Kam Wai last_name: Wong - first_name: W. Wei Lynn full_name: Wong, W. Wei Lynn last_name: Wong - first_name: An Guo full_name: Wu, An Guo last_name: Wu - first_name: Chengbiao full_name: Wu, Chengbiao last_name: Wu - first_name: Jian full_name: Wu, Jian last_name: Wu - first_name: Junfang full_name: Wu, Junfang last_name: Wu - first_name: Kenneth K. full_name: Wu, Kenneth K. last_name: Wu - first_name: Min full_name: Wu, Min last_name: Wu - first_name: Shan Ying full_name: Wu, Shan Ying last_name: Wu - first_name: Shengzhou full_name: Wu, Shengzhou last_name: Wu - first_name: Shu Yan full_name: Wu, Shu Yan last_name: Wu - first_name: Shufang full_name: Wu, Shufang last_name: Wu - first_name: William K.K. full_name: Wu, William K.K. last_name: Wu - first_name: Xiaohong full_name: Wu, Xiaohong last_name: Wu - first_name: Xiaoqing full_name: Wu, Xiaoqing last_name: Wu - first_name: Yao Wen full_name: Wu, Yao Wen last_name: Wu - first_name: Yihua full_name: Wu, Yihua last_name: Wu - first_name: Ramnik J. full_name: Xavier, Ramnik J. last_name: Xavier - first_name: Hongguang full_name: Xia, Hongguang last_name: Xia - first_name: Lixin full_name: Xia, Lixin last_name: Xia - first_name: Zhengyuan full_name: Xia, Zhengyuan last_name: Xia - first_name: Ge full_name: Xiang, Ge last_name: Xiang - first_name: Jin full_name: Xiang, Jin last_name: Xiang - first_name: Mingliang full_name: Xiang, Mingliang last_name: Xiang - first_name: Wei full_name: Xiang, Wei last_name: Xiang - first_name: Bin full_name: Xiao, Bin last_name: Xiao - first_name: Guozhi full_name: Xiao, Guozhi last_name: Xiao - first_name: Hengyi full_name: Xiao, Hengyi last_name: Xiao - first_name: Hong Tao full_name: Xiao, Hong Tao last_name: Xiao - first_name: Jian full_name: Xiao, Jian last_name: Xiao - first_name: Lan full_name: Xiao, Lan last_name: Xiao - first_name: Shi full_name: Xiao, Shi last_name: Xiao - first_name: Yin full_name: Xiao, Yin last_name: Xiao - first_name: Baoming full_name: Xie, Baoming last_name: Xie - first_name: Chuan Ming full_name: Xie, Chuan Ming last_name: Xie - first_name: Min full_name: Xie, Min last_name: Xie - first_name: Yuxiang full_name: Xie, Yuxiang last_name: Xie - first_name: Zhiping full_name: Xie, Zhiping last_name: Xie - first_name: Zhonglin full_name: Xie, Zhonglin last_name: Xie - first_name: Maria full_name: Xilouri, Maria last_name: Xilouri - first_name: Congfeng full_name: Xu, Congfeng last_name: Xu - first_name: En full_name: Xu, En last_name: Xu - first_name: Haoxing full_name: Xu, Haoxing last_name: Xu - first_name: Jing full_name: Xu, Jing last_name: Xu - first_name: Jin Rong full_name: Xu, Jin Rong last_name: Xu - first_name: Liang full_name: Xu, Liang last_name: Xu - first_name: Wen Wen full_name: Xu, Wen Wen last_name: Xu - first_name: Xiulong full_name: Xu, Xiulong last_name: Xu - first_name: Yu full_name: Xue, Yu last_name: Xue - first_name: Sokhna M.S. full_name: Yakhine-Diop, Sokhna M.S. last_name: Yakhine-Diop - first_name: Masamitsu full_name: Yamaguchi, Masamitsu last_name: Yamaguchi - first_name: Osamu full_name: Yamaguchi, Osamu last_name: Yamaguchi - first_name: Ai full_name: Yamamoto, Ai last_name: Yamamoto - first_name: Shunhei full_name: Yamashina, Shunhei last_name: Yamashina - first_name: Shengmin full_name: Yan, Shengmin last_name: Yan - first_name: Shian Jang full_name: Yan, Shian Jang last_name: Yan - first_name: Zhen full_name: Yan, Zhen last_name: Yan - first_name: Yasuo full_name: Yanagi, Yasuo last_name: Yanagi - first_name: Chuanbin full_name: Yang, Chuanbin last_name: Yang - first_name: Dun Sheng full_name: Yang, Dun Sheng last_name: Yang - first_name: Huan full_name: Yang, Huan last_name: Yang - first_name: Huang Tian full_name: Yang, Huang Tian last_name: Yang - first_name: Hui full_name: Yang, Hui last_name: Yang - first_name: Jin Ming full_name: Yang, Jin Ming last_name: Yang - first_name: Jing full_name: Yang, Jing last_name: Yang - first_name: Jingyu full_name: Yang, Jingyu last_name: Yang - first_name: Ling full_name: Yang, Ling last_name: Yang - first_name: Liu full_name: Yang, Liu last_name: Yang - first_name: Ming full_name: Yang, Ming last_name: Yang - first_name: Pei Ming full_name: Yang, Pei Ming last_name: Yang - first_name: Qian full_name: Yang, Qian last_name: Yang - first_name: Seungwon full_name: Yang, Seungwon last_name: Yang - first_name: Shu full_name: Yang, Shu last_name: Yang - first_name: Shun Fa full_name: Yang, Shun Fa last_name: Yang - first_name: Wannian full_name: Yang, Wannian last_name: Yang - first_name: Wei Yuan full_name: Yang, Wei Yuan last_name: Yang - first_name: Xiaoyong full_name: Yang, Xiaoyong last_name: Yang - first_name: Xuesong full_name: Yang, Xuesong last_name: Yang - first_name: Yi full_name: Yang, Yi last_name: Yang - first_name: Ying full_name: Yang, Ying last_name: Yang - first_name: Honghong full_name: Yao, Honghong last_name: Yao - first_name: Shenggen full_name: Yao, Shenggen last_name: Yao - first_name: Xiaoqiang full_name: Yao, Xiaoqiang last_name: Yao - first_name: Yong Gang full_name: Yao, Yong Gang last_name: Yao - first_name: Yong Ming full_name: Yao, Yong Ming last_name: Yao - first_name: Takahiro full_name: Yasui, Takahiro last_name: Yasui - first_name: Meysam full_name: Yazdankhah, Meysam last_name: Yazdankhah - first_name: Paul M. full_name: Yen, Paul M. last_name: Yen - first_name: Cong full_name: Yi, Cong last_name: Yi - first_name: Xiao Ming full_name: Yin, Xiao Ming last_name: Yin - first_name: Yanhai full_name: Yin, Yanhai last_name: Yin - first_name: Zhangyuan full_name: Yin, Zhangyuan last_name: Yin - first_name: Ziyi full_name: Yin, Ziyi last_name: Yin - first_name: Meidan full_name: Ying, Meidan last_name: Ying - first_name: Zheng full_name: Ying, Zheng last_name: Ying - first_name: Calvin K. full_name: Yip, Calvin K. last_name: Yip - first_name: Stephanie Pei Tung full_name: Yiu, Stephanie Pei Tung last_name: Yiu - first_name: Young H. full_name: Yoo, Young H. last_name: Yoo - first_name: Kiyotsugu full_name: Yoshida, Kiyotsugu last_name: Yoshida - first_name: Saori R. full_name: Yoshii, Saori R. last_name: Yoshii - first_name: Tamotsu full_name: Yoshimori, Tamotsu last_name: Yoshimori - first_name: Bahman full_name: Yousefi, Bahman last_name: Yousefi - first_name: Boxuan full_name: Yu, Boxuan last_name: Yu - first_name: Haiyang full_name: Yu, Haiyang last_name: Yu - first_name: Jun full_name: Yu, Jun last_name: Yu - first_name: Jun full_name: Yu, Jun last_name: Yu - first_name: Li full_name: Yu, Li last_name: Yu - first_name: Ming Lung full_name: Yu, Ming Lung last_name: Yu - first_name: Seong Woon full_name: Yu, Seong Woon last_name: Yu - first_name: Victor C. full_name: Yu, Victor C. last_name: Yu - first_name: W. Haung full_name: Yu, W. Haung last_name: Yu - first_name: Zhengping full_name: Yu, Zhengping last_name: Yu - first_name: Zhou full_name: Yu, Zhou last_name: Yu - first_name: Junying full_name: Yuan, Junying last_name: Yuan - first_name: Ling Qing full_name: Yuan, Ling Qing last_name: Yuan - first_name: Shilin full_name: Yuan, Shilin last_name: Yuan - first_name: Shyng Shiou F. full_name: Yuan, Shyng Shiou F. last_name: Yuan - first_name: Yanggang full_name: Yuan, Yanggang last_name: Yuan - first_name: Zengqiang full_name: Yuan, Zengqiang last_name: Yuan - first_name: Jianbo full_name: Yue, Jianbo last_name: Yue - first_name: Zhenyu full_name: Yue, Zhenyu last_name: Yue - first_name: Jeanho full_name: Yun, Jeanho last_name: Yun - first_name: Raymond L. full_name: Yung, Raymond L. last_name: Yung - first_name: David N. full_name: Zacks, David N. last_name: Zacks - first_name: Gabriele full_name: Zaffagnini, Gabriele last_name: Zaffagnini - first_name: Vanessa O. full_name: Zambelli, Vanessa O. last_name: Zambelli - first_name: Isabella full_name: Zanella, Isabella last_name: Zanella - first_name: Qun S. full_name: Zang, Qun S. last_name: Zang - first_name: Sara full_name: Zanivan, Sara last_name: Zanivan - first_name: Silvia full_name: Zappavigna, Silvia last_name: Zappavigna - first_name: Pilar full_name: Zaragoza, Pilar last_name: Zaragoza - first_name: Konstantinos S. full_name: Zarbalis, Konstantinos S. last_name: Zarbalis - first_name: Amir full_name: Zarebkohan, Amir last_name: Zarebkohan - first_name: Amira full_name: Zarrouk, Amira last_name: Zarrouk - first_name: Scott O. full_name: Zeitlin, Scott O. last_name: Zeitlin - first_name: Jialiu full_name: Zeng, Jialiu last_name: Zeng - first_name: Ju Deng full_name: Zeng, Ju Deng last_name: Zeng - first_name: Eva full_name: Žerovnik, Eva last_name: Žerovnik - first_name: Lixuan full_name: Zhan, Lixuan last_name: Zhan - first_name: Bin full_name: Zhang, Bin last_name: Zhang - first_name: Donna D. full_name: Zhang, Donna D. last_name: Zhang - first_name: Hanlin full_name: Zhang, Hanlin last_name: Zhang - first_name: Hong full_name: Zhang, Hong last_name: Zhang - first_name: Hong full_name: Zhang, Hong last_name: Zhang - first_name: Honghe full_name: Zhang, Honghe last_name: Zhang - first_name: Huafeng full_name: Zhang, Huafeng last_name: Zhang - first_name: Huaye full_name: Zhang, Huaye last_name: Zhang - first_name: Hui full_name: Zhang, Hui last_name: Zhang - first_name: Hui Ling full_name: Zhang, Hui Ling last_name: Zhang - first_name: Jianbin full_name: Zhang, Jianbin last_name: Zhang - first_name: Jianhua full_name: Zhang, Jianhua last_name: Zhang - first_name: Jing Pu full_name: Zhang, Jing Pu last_name: Zhang - first_name: Kalin Y.B. full_name: Zhang, Kalin Y.B. last_name: Zhang - first_name: Leshuai W. full_name: Zhang, Leshuai W. last_name: Zhang - first_name: Lin full_name: Zhang, Lin last_name: Zhang - first_name: Lisheng full_name: Zhang, Lisheng last_name: Zhang - first_name: Lu full_name: Zhang, Lu last_name: Zhang - first_name: Luoying full_name: Zhang, Luoying last_name: Zhang - first_name: Menghuan full_name: Zhang, Menghuan last_name: Zhang - first_name: Peng full_name: Zhang, Peng last_name: Zhang - first_name: Sheng full_name: Zhang, Sheng last_name: Zhang - first_name: Wei full_name: Zhang, Wei last_name: Zhang - first_name: Xiangnan full_name: Zhang, Xiangnan last_name: Zhang - first_name: Xiao Wei full_name: Zhang, Xiao Wei last_name: Zhang - first_name: Xiaolei full_name: Zhang, Xiaolei last_name: Zhang - first_name: Xiaoyan full_name: Zhang, Xiaoyan last_name: Zhang - first_name: Xin full_name: Zhang, Xin last_name: Zhang - first_name: Xinxin full_name: Zhang, Xinxin last_name: Zhang - first_name: Xu Dong full_name: Zhang, Xu Dong last_name: Zhang - first_name: Yang full_name: Zhang, Yang last_name: Zhang - first_name: Yanjin full_name: Zhang, Yanjin last_name: Zhang - first_name: Yi full_name: Zhang, Yi last_name: Zhang - first_name: Ying Dong full_name: Zhang, Ying Dong last_name: Zhang - first_name: Yingmei full_name: Zhang, Yingmei last_name: Zhang - first_name: Yuan Yuan full_name: Zhang, Yuan Yuan last_name: Zhang - first_name: Yuchen full_name: Zhang, Yuchen last_name: Zhang - first_name: Zhe full_name: Zhang, Zhe last_name: Zhang - first_name: Zhengguang full_name: Zhang, Zhengguang last_name: Zhang - first_name: Zhibing full_name: Zhang, Zhibing last_name: Zhang - first_name: Zhihai full_name: Zhang, Zhihai last_name: Zhang - first_name: Zhiyong full_name: Zhang, Zhiyong last_name: Zhang - first_name: Zili full_name: Zhang, Zili last_name: Zhang - first_name: Haobin full_name: Zhao, Haobin last_name: Zhao - first_name: Lei full_name: Zhao, Lei last_name: Zhao - first_name: Shuang full_name: Zhao, Shuang last_name: Zhao - first_name: Tongbiao full_name: Zhao, Tongbiao last_name: Zhao - first_name: Xiao Fan full_name: Zhao, Xiao Fan last_name: Zhao - first_name: Ying full_name: Zhao, Ying last_name: Zhao - first_name: Yongchao full_name: Zhao, Yongchao last_name: Zhao - first_name: Yongliang full_name: Zhao, Yongliang last_name: Zhao - first_name: Yuting full_name: Zhao, Yuting last_name: Zhao - first_name: Guoping full_name: Zheng, Guoping last_name: Zheng - first_name: Kai full_name: Zheng, Kai last_name: Zheng - first_name: Ling full_name: Zheng, Ling last_name: Zheng - first_name: Shizhong full_name: Zheng, Shizhong last_name: Zheng - first_name: Xi Long full_name: Zheng, Xi Long last_name: Zheng - first_name: Yi full_name: Zheng, Yi last_name: Zheng - first_name: Zu Guo full_name: Zheng, Zu Guo last_name: Zheng - first_name: Boris full_name: Zhivotovsky, Boris last_name: Zhivotovsky - first_name: Qing full_name: Zhong, Qing last_name: Zhong - first_name: Ao full_name: Zhou, Ao last_name: Zhou - first_name: Ben full_name: Zhou, Ben last_name: Zhou - first_name: Cefan full_name: Zhou, Cefan last_name: Zhou - first_name: Gang full_name: Zhou, Gang last_name: Zhou - first_name: Hao full_name: Zhou, Hao last_name: Zhou - first_name: Hong full_name: Zhou, Hong last_name: Zhou - first_name: Hongbo full_name: Zhou, Hongbo last_name: Zhou - first_name: Jie full_name: Zhou, Jie last_name: Zhou - first_name: Jing full_name: Zhou, Jing last_name: Zhou - first_name: Jing full_name: Zhou, Jing last_name: Zhou - first_name: Jiyong full_name: Zhou, Jiyong last_name: Zhou - first_name: Kailiang full_name: Zhou, Kailiang last_name: Zhou - first_name: Rongjia full_name: Zhou, Rongjia last_name: Zhou - first_name: Xu Jie full_name: Zhou, Xu Jie last_name: Zhou - first_name: Yanshuang full_name: Zhou, Yanshuang last_name: Zhou - first_name: Yinghong full_name: Zhou, Yinghong last_name: Zhou - first_name: Yubin full_name: Zhou, Yubin last_name: Zhou - first_name: Zheng Yu full_name: Zhou, Zheng Yu last_name: Zhou - first_name: Zhou full_name: Zhou, Zhou last_name: Zhou - first_name: Binglin full_name: Zhu, Binglin last_name: Zhu - first_name: Changlian full_name: Zhu, Changlian last_name: Zhu - first_name: Guo Qing full_name: Zhu, Guo Qing last_name: Zhu - first_name: Haining full_name: Zhu, Haining last_name: Zhu - first_name: Hongxin full_name: Zhu, Hongxin last_name: Zhu - first_name: Hua full_name: Zhu, Hua last_name: Zhu - first_name: Wei Guo full_name: Zhu, Wei Guo last_name: Zhu - first_name: Yanping full_name: Zhu, Yanping last_name: Zhu - first_name: Yushan full_name: Zhu, Yushan last_name: Zhu - first_name: Haixia full_name: Zhuang, Haixia last_name: Zhuang - first_name: Xiaohong full_name: Zhuang, Xiaohong last_name: Zhuang - first_name: Katarzyna full_name: Zientara-Rytter, Katarzyna last_name: Zientara-Rytter - first_name: Christine M. full_name: Zimmermann, Christine M. last_name: Zimmermann - first_name: Elena full_name: Ziviani, Elena last_name: Ziviani - first_name: Teresa full_name: Zoladek, Teresa last_name: Zoladek - first_name: Wei Xing full_name: Zong, Wei Xing last_name: Zong - first_name: Dmitry B. full_name: Zorov, Dmitry B. last_name: Zorov - first_name: Antonio full_name: Zorzano, Antonio last_name: Zorzano - first_name: Weiping full_name: Zou, Weiping last_name: Zou - first_name: Zhen full_name: Zou, Zhen last_name: Zou - first_name: Zhengzhi full_name: Zou, Zhengzhi last_name: Zou - first_name: Steven full_name: Zuryn, Steven last_name: Zuryn - first_name: Werner full_name: Zwerschke, Werner last_name: Zwerschke - first_name: Beate full_name: Brand-Saberi, Beate last_name: Brand-Saberi - first_name: X. Charlie full_name: Dong, X. Charlie last_name: Dong - first_name: Chandra Shekar full_name: Kenchappa, Chandra Shekar last_name: Kenchappa - first_name: Zuguo full_name: Li, Zuguo last_name: Li - first_name: Yong full_name: Lin, Yong last_name: Lin - first_name: Shigeru full_name: Oshima, Shigeru last_name: Oshima - first_name: Yueguang full_name: Rong, Yueguang last_name: Rong - first_name: Judith C. full_name: Sluimer, Judith C. last_name: Sluimer - first_name: Christina L. full_name: Stallings, Christina L. last_name: Stallings - first_name: Chun Kit full_name: Tong, Chun Kit last_name: Tong citation: ama: Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021;17(1):1-382. doi:10.1080/15548627.2020.1797280 apa: Klionsky, D. J., Abdel-Aziz, A. K., Abdelfatah, S., Abdellatif, M., Abdoli, A., Abel, S., … Tong, C. K. (2021). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. Taylor & Francis. https://doi.org/10.1080/15548627.2020.1797280 chicago: Klionsky, Daniel J., Amal Kamal Abdel-Aziz, Sara Abdelfatah, Mahmoud Abdellatif, Asghar Abdoli, Steffen Abel, Hagai Abeliovich, et al. “Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th Edition).” Autophagy. Taylor & Francis, 2021. https://doi.org/10.1080/15548627.2020.1797280. ieee: D. J. Klionsky et al., “Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition),” Autophagy, vol. 17, no. 1. Taylor & Francis, pp. 1–382, 2021. ista: Klionsky DJ et al. 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 17(1), 1–382. mla: Klionsky, Daniel J., et al. “Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (4th Edition).” Autophagy, vol. 17, no. 1, Taylor & Francis, 2021, pp. 1–382, doi:10.1080/15548627.2020.1797280. short: D.J. Klionsky, A.K. Abdel-Aziz, S. Abdelfatah, M. Abdellatif, A. Abdoli, S. Abel, H. Abeliovich, M.H. Abildgaard, Y.P. Abudu, A. Acevedo-Arozena, I.E. Adamopoulos, K. Adeli, T.E. Adolph, A. Adornetto, E. Aflaki, G. Agam, A. Agarwal, B.B. Aggarwal, M. Agnello, P. Agostinis, J.N. Agrewala, A. Agrotis, P.V. Aguilar, S.T. Ahmad, Z.M. Ahmed, U. Ahumada-Castro, S. Aits, S. Aizawa, Y. Akkoc, T. Akoumianaki, H.A. Akpinar, A.M. Al-Abd, L. Al-Akra, A. Al-Gharaibeh, M.A. Alaoui-Jamali, S. Alberti, E. Alcocer-Gómez, C. Alessandri, M. Ali, M.A. Alim Al-Bari, S. Aliwaini, J. Alizadeh, E. Almacellas, A. Almasan, A. Alonso, G.D. Alonso, N. Altan-Bonnet, D.C. Altieri, É.M.C. Álvarez, S. Alves, C. Alves Da Costa, M.M. Alzaharna, M. Amadio, C. Amantini, C. Amaral, S. Ambrosio, A.O. Amer, V. Ammanathan, Z. An, S.U. Andersen, S.A. Andrabi, M. Andrade-Silva, A.M. Andres, S. Angelini, D. Ann, U.C. Anozie, M.Y. Ansari, P. Antas, A. Antebi, Z. Antón, T. Anwar, L. Apetoh, N. Apostolova, T. Araki, Y. Araki, K. Arasaki, W.L. Araújo, J. Araya, C. Arden, M.A. Arévalo, S. Arguelles, E. Arias, J. Arikkath, H. Arimoto, A.R. Ariosa, D. Armstrong-James, L. Arnauné-Pelloquin, A. Aroca, D.S. Arroyo, I. Arsov, R. Artero, D.M.L. Asaro, M. Aschner, M. Ashrafizadeh, O. Ashur-Fabian, A.G. Atanasov, A.K. Au, P. Auberger, H.W. Auner, L. Aurelian, R. Autelli, L. Avagliano, Y. Ávalos, S. Aveic, C.A. Aveleira, T. Avin-Wittenberg, Y. Aydin, S. Ayton, S. Ayyadevara, M. Azzopardi, M. Baba, J.M. Backer, S.K. Backues, D.H. Bae, O.N. Bae, S.H. Bae, E.H. Baehrecke, A. Baek, S.H. Baek, S.H. Baek, G. Bagetta, A. Bagniewska-Zadworna, H. Bai, J. Bai, X. Bai, Y. Bai, N. Bairagi, S. Baksi, T. Balbi, C.T. Baldari, W. Balduini, A. Ballabio, M. Ballester, S. Balazadeh, R. Balzan, R. Bandopadhyay, S. Banerjee, S. Banerjee, Á. Bánréti, Y. Bao, M.S. Baptista, A. Baracca, C. Barbati, A. Bargiela, D. Barilà, P.G. Barlow, S.J. Barmada, E. Barreiro, G.E. Barreto, J. Bartek, B. Bartel, A. Bartolome, G.R. Barve, S.H. Basagoudanavar, D.C. Bassham, R.C. Bast, A. Basu, H. Batoko, I. Batten, E.E. Baulieu, B.L. Baumgarner, J. Bayry, R. Beale, I. Beau, F. Beaumatin, L.R.G. Bechara, G.R. Beck, M.F. Beers, J. Begun, C. Behrends, G.M.N. Behrens, R. Bei, E. Bejarano, S. Bel, C. Behl, A. Belaid, N. Belgareh-Touzé, C. Bellarosa, F. Belleudi, M. Belló Pérez, R. Bello-Morales, J.S.D.O. Beltran, S. Beltran, D.M. Benbrook, M. Bendorius, B.A. Benitez, I. Benito-Cuesta, J. Bensalem, M.W. Berchtold, S. Berezowska, D. Bergamaschi, M. Bergami, A. Bergmann, L. Berliocchi, C. Berlioz-Torrent, A. Bernard, L. Berthoux, C.G. Besirli, S. Besteiro, V.M. Betin, R. Beyaert, J.S. Bezbradica, K. Bhaskar, I. Bhatia-Kissova, R. Bhattacharya, S. Bhattacharya, S. Bhattacharyya, M.S. Bhuiyan, S.K. Bhutia, L. Bi, X. Bi, T.J. Biden, K. Bijian, V.A. Billes, N. Binart, C. Bincoletto, A.B. Birgisdottir, G. Bjorkoy, G. Blanco, A. Blas-Garcia, J. Blasiak, R. Blomgran, K. Blomgren, J.S. Blum, E. Boada-Romero, M. Boban, K. Boesze-Battaglia, P. Boeuf, B. Boland, P. Bomont, P. Bonaldo, S.R. Bonam, L. Bonfili, J.S. Bonifacino, B.A. Boone, M.D. Bootman, M. Bordi, C. Borner, B.C. Bornhauser, G. Borthakur, J. Bosch, S. Bose, L.M. Botana, J. Botas, C.M. Boulanger, M.E. Boulton, M. Bourdenx, B. Bourgeois, N.M. Bourke, G. Bousquet, P. Boya, P.V. Bozhkov, L.H.M. Bozi, T.O. Bozkurt, D.E. Brackney, C.H. Brandts, R.J. Braun, G.H. Braus, R. Bravo-Sagua, J.M. Bravo-San Pedro, P. Brest, M.A. Bringer, A. Briones-Herrera, V.C. Broaddus, P. Brodersen, J.L. Brodsky, S.L. Brody, P.G. Bronson, J.M. Bronstein, C.N. Brown, R.E. Brown, P.C. Brum, J.H. Brumell, N. Brunetti-Pierri, D. Bruno, R.J. Bryson-Richardson, C. Bucci, C. Buchrieser, M. Bueno, L.E. Buitrago-Molina, S. Buraschi, S. Buch, J.R. Buchan, E.M. Buckingham, H. Budak, M. Budini, G. Bultynck, F. Burada, J.R. Burgoyne, M.I. Burón, V. Bustos, S. Büttner, E. Butturini, A. Byrd, I. Cabas, S. Cabrera-Benitez, K. Cadwell, J. Cai, L. Cai, Q. Cai, M. Cairó, J.A. Calbet, G.A. Caldwell, K.A. Caldwell, J.A. Call, R. Calvani, A.C. Calvo, M. Calvo-Rubio Barrera, N.O.S. Camara, J.H. Camonis, N. Camougrand, M. Campanella, E.M. Campbell, F.X. Campbell-Valois, S. Campello, I. Campesi, J.C. Campos, O. Camuzard, J. Cancino, D. Candido De Almeida, L. Canesi, I. Caniggia, B. Canonico, C. Cantí, B. Cao, M. Caraglia, B. Caramés, E.H. Carchman, E. Cardenal-Muñoz, C. Cardenas, L. Cardenas, S.M. Cardoso, J.S. Carew, G.F. Carle, G. Carleton, S. Carloni, D. Carmona-Gutierrez, L.A. Carneiro, O. Carnevali, J.M. Carosi, S. Carra, A. Carrier, L. Carrier, B. Carroll, A.B. Carter, A.N. Carvalho, M. Casanova, C. Casas, J. Casas, C. Cassioli, E.F. Castillo, K. Castillo, S. Castillo-Lluva, F. Castoldi, M. Castori, A.F. Castro, M. Castro-Caldas, J. Castro-Hernandez, S. Castro-Obregon, S.D. Catz, C. Cavadas, F. Cavaliere, G. Cavallini, M. Cavinato, M.L. Cayuela, P. Cebollada Rica, V. Cecarini, F. Cecconi, M. Cechowska-Pasko, S. Cenci, V. Ceperuelo-Mallafré, J.J. Cerqueira, J.M. Cerutti, D. Cervia, V.B. Cetintas, S. Cetrullo, H.J. Chae, A.S. Chagin, C.Y. Chai, G. Chakrabarti, O. Chakrabarti, T. Chakraborty, T. Chakraborty, M. Chami, G. Chamilos, D.W. Chan, E.Y.W. Chan, E.D. Chan, H.Y.E. Chan, H.H. Chan, H. Chan, M.T.V. Chan, Y.S. Chan, P.K. Chandra, C.P. Chang, C. Chang, H.C. Chang, K. Chang, J. Chao, T. Chapman, N. Charlet-Berguerand, S. Chatterjee, S.K. Chaube, A. Chaudhary, S. Chauhan, E. Chaum, F. Checler, M.E. Cheetham, C.S. Chen, G.C. Chen, J.F. Chen, L.L. Chen, L. Chen, L. Chen, M. Chen, M.K. Chen, N. Chen, Q. Chen, R.H. Chen, S. Chen, W. Chen, W. Chen, X.M. Chen, X.W. Chen, X. Chen, Y. Chen, Y.G. Chen, Y. Chen, Y. Chen, Y.J. Chen, Y.Q. Chen, Z.S. Chen, Z. Chen, Z.H. Chen, Z.J. Chen, Z. Chen, H. Cheng, J. Cheng, S.Y. Cheng, W. Cheng, X. Cheng, X.T. Cheng, Y. Cheng, Z. Cheng, Z. Chen, H. Cheong, J.K. Cheong, B.V. Chernyak, S. Cherry, C.F.R. Cheung, C.H.A. Cheung, K.H. Cheung, E. Chevet, R.J. Chi, A.K.S. Chiang, F. Chiaradonna, R. Chiarelli, M. Chiariello, N. Chica, S. Chiocca, M. Chiong, S.H. Chiou, A.I. Chiramel, V. Chiurchiù, D.H. Cho, S.K. Choe, A.M.K. Choi, M.E. Choi, K.R. Choudhury, N.S. Chow, C.T. Chu, J.P. Chua, J.J.E. Chua, H. Chung, K.P. Chung, S. Chung, S.H. Chung, Y.L. Chung, V. Cianfanelli, I.A. Ciechomska, M. Cifuentes, L. Cinque, S. Cirak, M. Cirone, M.J. Clague, R. Clarke, E. Clementi, E.M. Coccia, P. Codogno, E. Cohen, M.M. Cohen, T. Colasanti, F. Colasuonno, R.A. Colbert, A. Colell, M. Čolić, N.S. Coll, M.O. Collins, M.I. Colombo, D.A. Colón-Ramos, L. Combaret, S. Comincini, M.R. Cominetti, A. Consiglio, A. Conte, F. Conti, V.R. Contu, M.R. Cookson, K.M. Coombs, I. Coppens, M.T. Corasaniti, D.P. Corkery, N. Cordes, K. Cortese, M.D.C. Costa, S. Costantino, P. Costelli, A. Coto-Montes, P.J. Crack, J.L. Crespo, A. Criollo, V. Crippa, R. Cristofani, T. Csizmadia, A. Cuadrado, B. Cui, J. Cui, Y. Cui, Y. Cui, E. Culetto, A.C. Cumino, A.V. Cybulsky, M.J. Czaja, S.J. Czuczwar, S. D’Adamo, M. D’Amelio, D. D’Arcangelo, A.C. D’Lugos, G. D’Orazi, J.A. Da Silva, H.S. Dafsari, R.K. Dagda, Y. Dagdas, M. Daglia, X. Dai, Y. Dai, Y. Dai, J. Dal Col, P. Dalhaimer, L. Dalla Valle, T. Dallenga, G. Dalmasso, M. Damme, I. Dando, N.P. Dantuma, A.L. Darling, H. Das, S. Dasarathy, S.K. Dasari, S. Dash, O. Daumke, A.N. Dauphinee, J.S. Davies, V.A. Dávila, R.J. Davis, T. Davis, S. Dayalan Naidu, F. De Amicis, K. De Bosscher, F. De Felice, L. De Franceschi, C. De Leonibus, M.G. De Mattos Barbosa, G.R.Y. De Meyer, A. De Milito, C. De Nunzio, C. De Palma, M. De Santi, C. De Virgilio, D. De Zio, J. Debnath, B.J. Debosch, J.P. Decuypere, M.A. Deehan, G. Deflorian, J. Degregori, B. Dehay, G. Del Rio, J.R. Delaney, L.M.D. Delbridge, E. Delorme-Axford, M.V. Delpino, F. Demarchi, V. Dembitz, N.D. Demers, H. Deng, Z. Deng, J. Dengjel, P. Dent, D. Denton, M.L. Depamphilis, C.J. Der, V. Deretic, A. Descoteaux, L. Devis, S. Devkota, O. Devuyst, G. Dewson, M. Dharmasivam, R. Dhiman, D. Di Bernardo, M. Di Cristina, F. Di Domenico, P. Di Fazio, A. Di Fonzo, G. Di Guardo, G.M. Di Guglielmo, L. Di Leo, C. Di Malta, A. Di Nardo, M. Di Rienzo, F. Di Sano, G. Diallinas, J. Diao, G. Diaz-Araya, I. Díaz-Laviada, J.M. Dickinson, M. Diederich, M. Dieudé, I. Dikic, S. Ding, W.X. Ding, L. Dini, J. Dinić, M. Dinic, A.T. Dinkova-Kostova, M.S. Dionne, J.H.W. Distler, A. Diwan, I.M.C. Dixon, M. Djavaheri-Mergny, I. Dobrinski, O. Dobrovinskaya, R. Dobrowolski, R.C.J. Dobson, J. Đokić, S. Dokmeci Emre, M. Donadelli, B. Dong, X. Dong, Z. Dong, G.W. Dorn, V. Dotsch, H. Dou, J. Dou, M. Dowaidar, S. Dridi, L. Drucker, A. Du, C. Du, G. Du, H.N. Du, L.L. Du, A. Du Toit, S.B. Duan, X. Duan, S.P. Duarte, A. Dubrovska, E.A. Dunlop, N. Dupont, R.V. Durán, B.S. Dwarakanath, S.A. Dyshlovoy, D. Ebrahimi-Fakhari, L. Eckhart, C.L. Edelstein, T. Efferth, E. Eftekharpour, L. Eichinger, N. Eid, T. Eisenberg, N.T. Eissa, S. Eissa, M. Ejarque, A. El Andaloussi, N. El-Hage, S. El-Naggar, A.M. Eleuteri, E.S. El-Shafey, M. Elgendy, A.G. Eliopoulos, M.M. Elizalde, P.M. Elks, H.P. Elsasser, E.S. Elsherbiny, B.M. Emerling, N.C.T. Emre, C.H. Eng, N. Engedal, A.M. Engelbrecht, A.S.T. Engelsen, J.M. Enserink, R. Escalante, A. Esclatine, M. Escobar-Henriques, E.L. Eskelinen, L. Espert, M.O. Eusebio, G. Fabrias, C. Fabrizi, A. Facchiano, F. Facchiano, B. Fadeel, C. Fader, A.C. Faesen, W.D. Fairlie, A. Falcó, B.H. Falkenburger, D. Fan, J. Fan, Y. Fan, E.F. Fang, Y. Fang, Y. Fang, M. Fanto, T. Farfel-Becker, M. Faure, G. Fazeli, A.O. Fedele, A.M. Feldman, D. Feng, J. Feng, L. Feng, Y. Feng, Y. Feng, W. Feng, T. Fenz Araujo, T.A. Ferguson, Á.F. Fernández, J.C. Fernandez-Checa, S. Fernández-Veledo, A.R. Fernie, A.W. Ferrante, A. Ferraresi, M.F. Ferrari, J.C.B. Ferreira, S. Ferro-Novick, A. Figueras, R. Filadi, N. Filigheddu, E. Filippi-Chiela, G. Filomeni, G.M. Fimia, V. Fineschi, F. Finetti, S. Finkbeiner, E.A. Fisher, P.B. Fisher, F. Flamigni, S.J. Fliesler, T.H. Flo, I. Florance, O. Florey, T. Florio, E. Fodor, C. Follo, E.A. Fon, A. Forlino, F. Fornai, P. Fortini, A. Fracassi, A. Fraldi, B. Franco, R. Franco, F. Franconi, L.B. Frankel, S.L. Friedman, L.F. Fröhlich, G. Frühbeck, J.M. Fuentes, Y. Fujiki, N. Fujita, Y. Fujiwara, M. Fukuda, S. Fulda, L. Furic, N. Furuya, C. Fusco, M.U. Gack, L. Gaffke, S. Galadari, A. Galasso, M.F. Galindo, S. Gallolu Kankanamalage, L. Galluzzi, V. Galy, N. Gammoh, B. Gan, I.G. Ganley, F. Gao, H. Gao, M. Gao, P. Gao, S.J. Gao, W. Gao, X. Gao, A. Garcera, M.N. Garcia, V.E. Garcia, F. García-Del Portillo, V. Garcia-Escudero, A. Garcia-Garcia, M. Garcia-Macia, D. García-Moreno, C. Garcia-Ruiz, P. García-Sanz, A.D. Garg, R. Gargini, T. Garofalo, R.F. Garry, N.C. Gassen, D. Gatica, L. Ge, W. Ge, R. Geiss-Friedlander, C. Gelfi, P. Genschik, I.E. Gentle, V. Gerbino, C. Gerhardt, K. Germain, M. Germain, D.A. Gewirtz, E. Ghasemipour Afshar, S. Ghavami, A. Ghigo, M. Ghosh, G. Giamas, C. Giampietri, A. Giatromanolaki, G.E. Gibson, S.B. Gibson, V. Ginet, E. Giniger, C. Giorgi, H. Girao, S.E. Girardin, M. Giridharan, S. Giuliano, C. Giulivi, S. Giuriato, J. Giustiniani, A. Gluschko, V. Goder, A. Goginashvili, J. Golab, D.C. Goldstone, A. Golebiewska, L.R. Gomes, R. Gomez, R. Gómez-Sánchez, M.C. Gomez-Puerto, R. Gomez-Sintes, Q. Gong, F.M. Goni, J. González-Gallego, T. Gonzalez-Hernandez, R.A. Gonzalez-Polo, J.A. Gonzalez-Reyes, P. González-Rodríguez, I.S. Goping, M.S. Gorbatyuk, N.V. Gorbunov, K. Görgülü, R.M. Gorojod, S.M. Gorski, S. Goruppi, C. Gotor, R.A. Gottlieb, I. Gozes, D. Gozuacik, M. Graef, M.H. Gräler, V. Granatiero, D. Grasso, J.P. Gray, D.R. Green, A. Greenhough, S.L. Gregory, E.F. Griffin, M.W. Grinstaff, F. Gros, C. Grose, A.S. Gross, F. Gruber, P. Grumati, T. Grune, X. Gu, J.L. Guan, C.M. Guardia, K. Guda, F. Guerra, C. Guerri, P. Guha, C. Guillén, S. Gujar, A. Gukovskaya, I. Gukovsky, J. Gunst, A. Günther, A.R. Guntur, C. Guo, C. Guo, H. Guo, L.W. Guo, M. Guo, P. Gupta, S.K. Gupta, S. Gupta, V.B. Gupta, V. Gupta, A.B. Gustafsson, D.D. Gutterman, R. H.B, A. Haapasalo, J.E. Haber, A. Hać, S. Hadano, A.J. Hafrén, M. Haidar, B.S. Hall, G. Halldén, A. Hamacher-Brady, A. Hamann, M. Hamasaki, W. Han, M. Hansen, P.I.. Hanson, Z. Hao, M. Harada, L. Harhaji-Trajkovic, N. Hariharan, N. Haroon, J. Harris, T. Hasegawa, N. Hasima Nagoor, J.A. Haspel, V. Haucke, W.D. Hawkins, B.A. Hay, C.M. Haynes, S.B. Hayrabedyan, T.S. Hays, C. He, Q. He, R.R. He, Y.W. He, Y.Y. He, Y. Heakal, A.M. Heberle, J.F. Hejtmancik, G.V. Helgason, V. Henkel, M. Herb, A. Hergovich, A. Herman-Antosiewicz, A. Hernández, C. Hernandez, S. Hernandez-Diaz, V. Hernandez-Gea, A. Herpin, J. Herreros, J.H. Hervás, D. Hesselson, C. Hetz, V.T. Heussler, Y. Higuchi, S. Hilfiker, J.A. Hill, W.S. Hlavacek, E.A. Ho, I.H.T. Ho, P.W.L. Ho, S.L. Ho, W.Y. Ho, G.A. Hobbs, M. Hochstrasser, P.H.M. Hoet, D. Hofius, P. Hofman, A. Höhn, C.I. Holmberg, J.R. Hombrebueno, C.W.H. Yi-Ren Hong, L.V. Hooper, T. Hoppe, R. Horos, Y. Hoshida, I.L. Hsin, H.Y. Hsu, B. Hu, D. Hu, L.F. Hu, M.C. Hu, R. Hu, W. Hu, Y.C. Hu, Z.W. Hu, F. Hua, J. Hua, Y. Hua, C. Huan, C. Huang, C. Huang, C. Huang, C. Huang, H. Huang, K. Huang, M.L.H. Huang, R. Huang, S. Huang, T. Huang, X. Huang, Y.J. Huang, T.B. Huber, V. Hubert, C.A. Hubner, S.M. Hughes, W.E. Hughes, M. Humbert, G. Hummer, J.H. Hurley, S. Hussain, S. Hussain, P.J. Hussey, M. Hutabarat, H.Y. Hwang, S. Hwang, A. Ieni, F. Ikeda, Y. Imagawa, Y. Imai, C. Imbriano, M. Imoto, D.M. Inman, K. Inoki, J. Iovanna, R.V. Iozzo, G. Ippolito, J.E. Irazoqui, P. Iribarren, M. Ishaq, M. Ishikawa, N. Ishimwe, C. Isidoro, N. Ismail, S. Issazadeh-Navikas, E. Itakura, D. Ito, D. Ivankovic, S. Ivanova, A.K.V. Iyer, J.M. Izquierdo, M. Izumi, M. Jäättelä, M.S. Jabir, W.T. Jackson, N. Jacobo-Herrera, A.C. Jacomin, E. Jacquin, P. Jadiya, H. Jaeschke, C. Jagannath, A.J. Jakobi, J. Jakobsson, B. Janji, P. Jansen-Dürr, P.J. Jansson, J. Jantsch, S. Januszewski, A. Jassey, S. Jean, H. Jeltsch-David, P. Jendelova, A. Jenny, T.E. Jensen, N. Jessen, J.L. Jewell, J. Ji, L. Jia, R. Jia, L. Jiang, Q. Jiang, R. Jiang, T. Jiang, X. Jiang, Y. Jiang, M. Jimenez-Sanchez, E.J. Jin, F. Jin, H. Jin, L. Jin, L. Jin, M. Jin, S. Jin, E.K. Jo, C. Joffre, T. Johansen, G.V.W. Johnson, S.A. Johnston, E. Jokitalo, M.K. Jolly, L.A.B. Joosten, J. Jordan, B. Joseph, D. Ju, J.S. Ju, J. Ju, E. Juárez, D. Judith, G. Juhász, Y. Jun, C.H. Jung, S.C. Jung, Y.K. Jung, H. Jungbluth, J. Jungverdorben, S. Just, K. Kaarniranta, A. Kaasik, T. Kabuta, D. Kaganovich, A. Kahana, R. Kain, S. Kajimura, M. Kalamvoki, M. Kalia, D.S. Kalinowski, N. Kaludercic, I. Kalvari, J. Kaminska, V.O. Kaminskyy, H. Kanamori, K. Kanasaki, C. Kang, R. Kang, S.S. Kang, S. Kaniyappan, T. Kanki, T.D. Kanneganti, A.G. Kanthasamy, A. Kanthasamy, M. Kantorow, O. Kapuy, M.V. Karamouzis, M.R. Karim, P. Karmakar, R.G. Katare, M. Kato, S.H.E. Kaufmann, A. Kauppinen, G.P. Kaushal, S. Kaushik, K. Kawasaki, K. Kazan, P.Y. Ke, D.J. Keating, U. Keber, J.H. Kehrl, K.E. Keller, C.W. Keller, J.K. Kemper, C.M. Kenific, O. Kepp, S. Kermorgant, A. Kern, R. Ketteler, T.G. Keulers, B. Khalfin, H. Khalil, B. Khambu, S.Y. Khan, V.K.M. Khandelwal, R. Khandia, W. Kho, N.V. Khobrekar, S. Khuansuwan, M. Khundadze, S.A. Killackey, D. Kim, D.R. Kim, D.H. Kim, D.E. Kim, E.Y. Kim, E.K. Kim, H.R. Kim, H.S. Kim, U. Hyung-Ryong Kim, J.H. Kim, J.K. Kim, J.H. Kim, J. Kim, J.H. Kim, K.I. Kim, P.K. Kim, S.J. Kim, S.R. Kimball, A. Kimchi, A.C. Kimmelman, T. Kimura, M.A. King, K.J. Kinghorn, C.G. Kinsey, V. Kirkin, L.A. Kirshenbaum, S.L. Kiselev, S. Kishi, K. Kitamoto, Y. Kitaoka, K. Kitazato, R.N. Kitsis, J.T. Kittler, O. Kjaerulff, P.S. Klein, T. Klopstock, J. Klucken, H. Knævelsrud, R.L. Knorr, B.C.B. Ko, F. Ko, J.L. Ko, H. Kobayashi, S. Kobayashi, I. Koch, J.C. Koch, U. Koenig, D. Kögel, Y.H. Koh, M. Koike, S.D. Kohlwein, N.M. Kocaturk, M. Komatsu, J. König, T. Kono, B.T. Kopp, T. Korcsmaros, G. Korkmaz, V.I. Korolchuk, M.S. Korsnes, A. Koskela, J. Kota, Y. Kotake, M.L. Kotler, Y. Kou, M.I. Koukourakis, E. Koustas, A.L. Kovacs, T. Kovács, D. Koya, T. Kozako, C. Kraft, D. Krainc, H. Krämer, A.D. Krasnodembskaya, C. Kretz-Remy, G. Kroemer, N.T. Ktistakis, K. Kuchitsu, S. Kuenen, L. Kuerschner, T. Kukar, A. Kumar, A. Kumar, D. Kumar, D. Kumar, S. Kumar, S. Kume, C. Kumsta, C.N. Kundu, M. Kundu, A.B. Kunnumakkara, L. Kurgan, T.G. Kutateladze, O. Kutlu, S.A. Kwak, H.J. Kwon, T.K. Kwon, Y.T. Kwon, I. Kyrmizi, A. La Spada, P. Labonté, S. Ladoire, I. Laface, F. Lafont, D.C. Lagace, V. Lahiri, Z. Lai, A.S. Laird, A. Lakkaraju, T. Lamark, S.H. Lan, A. Landajuela, D.J.R. Lane, J.D. Lane, C.H. Lang, C. Lange, Ü. Langel, R. Langer, P. Lapaquette, J. Laporte, N.F. Larusso, I. Lastres-Becker, W.C.Y. Lau, G.W. Laurie, S. Lavandero, B.Y.K. Law, H.K.W. Law, R. Layfield, W. Le, H. Le Stunff, A.Y. Leary, J.J. Lebrun, L.Y.W. Leck, J.P. Leduc-Gaudet, C. Lee, C.P. Lee, D.H. Lee, E.B. Lee, E.F. Lee, G.M. Lee, H.J. Lee, H.K. Lee, J.M. Lee, J.S. Lee, J.A. Lee, J.Y. Lee, J.H. Lee, M. Lee, M.G. Lee, M.J. Lee, M.S. Lee, S.Y. Lee, S.J. Lee, S.Y. Lee, S.B. Lee, W.H. Lee, Y.R. Lee, Y.H. Lee, Y. Lee, C. Lefebvre, R. Legouis, Y.L. Lei, Y. Lei, S. Leikin, G. Leitinger, L. Lemus, S. Leng, O. Lenoir, G. Lenz, H.J. Lenz, P. Lenzi, Y. León, A.M. Leopoldino, C. Leschczyk, S. Leskelä, E. Letellier, C.T. Leung, P.S. Leung, J.S. Leventhal, B. Levine, P.A. Lewis, K. Ley, B. Li, D.Q. Li, J. Li, J. Li, J. Li, K. Li, L. Li, M. Li, M. Li, M. Li, M. Li, M. Li, P.L. Li, M.Q. Li, Q. Li, S. Li, T. Li, W. Li, W. Li, X. Li, Y.P. Li, Y. Li, Z. Li, Z. Li, Z. Li, J. Lian, C. Liang, Q. Liang, W. Liang, Y. Liang, Y.T. Liang, G. Liao, L. Liao, M. Liao, Y.F. Liao, M. Librizzi, P.P.Y. Lie, M.A. Lilly, H.J. Lim, T.R.R. Lima, F. Limana, C. Lin, C.W. Lin, D.S. Lin, F.C. Lin, J.D. Lin, K.M. Lin, K.H. Lin, L.T. Lin, P.H. Lin, Q. Lin, S. Lin, S.J. Lin, W. Lin, X. Lin, Y.X. Lin, Y.S. Lin, R. Linden, P. Lindner, S.C. Ling, P. Lingor, A.K. Linnemann, Y.C. Liou, M.M. Lipinski, S. Lipovšek, V.A. Lira, N. Lisiak, P.B. Liton, C. Liu, C.H. Liu, C.F. Liu, C.H. Liu, F. Liu, H. Liu, H.S. Liu, H.F. Liu, H. Liu, J. Liu, J. Liu, J. Liu, L. Liu, L. Liu, M. Liu, Q. Liu, W. Liu, W. Liu, X.H. Liu, X. Liu, X. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. Liu, Y. Liu, Y. Liu, J.A. Livingston, G. Lizard, J.M. Lizcano, S. Ljubojevic-Holzer, M.E. Lleonart, D. Llobet-Navàs, A. Llorente, C.H. Lo, D. Lobato-Márquez, Q. Long, Y.C. Long, B. Loos, J.A. Loos, M.G. López, G. López-Doménech, J.A. López-Guerrero, A.T. López-Jiménez, Ó. López-Pérez, I. López-Valero, M.J. Lorenowicz, M. Lorente, P. Lorincz, L. Lossi, S. Lotersztajn, P.E. Lovat, J.F. Lovell, A. Lovy, P. Lőw, G. Lu, H. Lu, J.H. Lu, J.J. Lu, M. Lu, S. Lu, A. Luciani, J.M. Lucocq, P. Ludovico, M.A. Luftig, M. Luhr, D. Luis-Ravelo, J.J. Lum, L. Luna-Dulcey, A.H. Lund, V.K. Lund, J.D. Lünemann, P. Lüningschrör, H. Luo, R. Luo, S. Luo, Z. Luo, C. Luparello, B. Lüscher, L. Luu, A. Lyakhovich, K.G. Lyamzaev, A.H. Lystad, L. Lytvynchuk, A.C. Ma, C. Ma, M. Ma, N.F. Ma, Q.H. Ma, X. Ma, Y. Ma, Z. Ma, O.A. Macdougald, F. Macian, G.C. Macintosh, J.P. Mackeigan, K.F. Macleod, S. Maday, F. Madeo, M. Madesh, T. Madl, J. Madrigal-Matute, A. Maeda, Y. Maejima, M. Magarinos, P. Mahavadi, E. Maiani, K. Maiese, P. Maiti, M.C. Maiuri, B. Majello, M.B. Major, E. Makareeva, F. Malik, K. Mallilankaraman, W. Malorni, A. Maloyan, N. Mammadova, G.C.W. Man, F. Manai, J.D. Mancias, E.M. Mandelkow, M.A. Mandell, A.A. Manfredi, M.H. Manjili, R. Manjithaya, P. Manque, B.B. Manshian, R. Manzano, C. Manzoni, K. Mao, C. Marchese, S. Marchetti, A.M. Marconi, F. Marcucci, S. Mardente, O.A. Mareninova, M. Margeta, M. Mari, S. Marinelli, O. Marinelli, G. Mariño, S. Mariotto, R.S. Marshall, M.R. Marten, S. Martens, A.P.J. Martin, K.R. Martin, S. Martin, S. Martin, A. Martín-Segura, M.A. Martín-Acebes, I. Martin-Burriel, M. Martin-Rincon, P. Martin-Sanz, J.A. Martina, W. Martinet, A. Martinez, A. Martinez, J. Martinez, M. Martinez Velazquez, N. Martinez-Lopez, M. Martinez-Vicente, D.O. Martins, J.O. Martins, W.K. Martins, T. Martins-Marques, E. Marzetti, S. Masaldan, C. Masclaux-Daubresse, D.G. Mashek, V. Massa, L. Massieu, G.R. Masson, L. Masuelli, A.I. Masyuk, T.V. Masyuk, P. Matarrese, A. Matheu, S. Matoba, S. Matsuzaki, P. Mattar, A. Matte, D. Mattoscio, J.L. Mauriz, M. Mauthe, C. Mauvezin, E. Maverakis, P. Maycotte, J. Mayer, G. Mazzoccoli, C. Mazzoni, J.R. Mazzulli, N. Mccarty, C. Mcdonald, M.R. Mcgill, S.L. Mckenna, B.A. Mclaughlin, F. Mcloughlin, M.A. Mcniven, T.G. Mcwilliams, F. Mechta-Grigoriou, T.C. Medeiros, D.L. Medina, L.A. Megeney, K. Megyeri, M. Mehrpour, J.L. Mehta, A.J. Meijer, A.H. Meijer, J. Mejlvang, A. Meléndez, A. Melk, G. Memisoglu, A.F. Mendes, D. Meng, F. Meng, T. Meng, R. Menna-Barreto, M.B. Menon, C. Mercer, A.E. Mercier, J.L. Mergny, A. Merighi, S.D. Merkley, G. Merla, V. Meske, A.C. Mestre, S.P. Metur, C. Meyer, H. Meyer, W. Mi, J. Mialet-Perez, J. Miao, L. Micale, Y. Miki, E. Milan, M. Milczarek, D.L. Miller, S.I. Miller, S. Miller, S.W. Millward, I. Milosevic, E.A. Minina, H. Mirzaei, H.R. Mirzaei, M. Mirzaei, A. Mishra, N. Mishra, P.K. Mishra, M. Misirkic Marjanovic, R. Misasi, A. Misra, G. Misso, C. Mitchell, G. Mitou, T. Miura, S. Miyamoto, M. Miyazaki, M. Miyazaki, T. Miyazaki, K. Miyazawa, N. Mizushima, T.H. Mogensen, B. Mograbi, R. Mohammadinejad, Y. Mohamud, A. Mohanty, S. Mohapatra, T. Möhlmann, A. Mohmmed, A. Moles, K.H. Moley, M. Molinari, V. Mollace, A.B. Møller, B. Mollereau, F. Mollinedo, C. Montagna, M.J. Monteiro, A. Montella, L.R. Montes, B. Montico, V.K. Mony, G. Monzio Compagnoni, M.N. Moore, M.A. Moosavi, A.L. Mora, M. Mora, D. Morales-Alamo, R. Moratalla, P.I. Moreira, E. Morelli, S. Moreno, D. Moreno-Blas, V. Moresi, B. Morga, A.H. Morgan, F. Morin, H. Morishita, O.L. Moritz, M. Moriyama, Y. Moriyasu, M. Morleo, E. Morselli, J.F. Moruno-Manchon, J. Moscat, S. Mostowy, E. Motori, A.F. Moura, N. Moustaid-Moussa, M. Mrakovcic, G. Muciño-Hernández, A. Mukherjee, S. Mukhopadhyay, J.M. Mulcahy Levy, V. Mulero, S. Muller, C. Münch, A. Munjal, P. Munoz-Canoves, T. Muñoz-Galdeano, C. Münz, T. Murakawa, C. Muratori, B.M. Murphy, J.P. Murphy, A. Murthy, T.T. Myöhänen, I.U. Mysorekar, J. Mytych, S.M. Nabavi, M. Nabissi, P. Nagy, J. Nah, A. Nahimana, I. Nakagawa, K. Nakamura, H. Nakatogawa, S.S. Nandi, M. Nanjundan, M. Nanni, G. Napolitano, R. Nardacci, M. Narita, M. Nassif, I. Nathan, M. Natsumeda, R.J. Naude, C. Naumann, O. Naveiras, F. Navid, S.T. Nawrocki, T.Y. Nazarko, F. Nazio, F. Negoita, T. Neill, A.L. Neisch, L.M. Neri, M.G. Netea, P. Neubert, T.P. Neufeld, D. Neumann, A. Neutzner, P.T. Newton, P.A. Ney, I.P. Nezis, C.C.W. Ng, T.B. Ng, H.T.T. Nguyen, L.T. Nguyen, H.M. Ni, C. Ní Cheallaigh, Z. Ni, M.C. Nicolao, F. Nicoli, M. Nieto-Diaz, P. Nilsson, S. Ning, R. Niranjan, H. Nishimune, M. Niso-Santano, R.A. Nixon, A. Nobili, C. Nobrega, T. Noda, U. Nogueira-Recalde, T.M. Nolan, I. Nombela, I. Novak, B. Novoa, T. Nozawa, N. Nukina, C. Nussbaum-Krammer, J. Nylandsted, T.R. O’Donovan, S.M. O’Leary, E.J. O’Rourke, M.P. O’Sullivan, T.E. O’Sullivan, S. Oddo, I. Oehme, M. Ogawa, E. Ogier-Denis, M.H. Ogmundsdottir, B. Ogretmen, G.T. Oh, S.H. Oh, Y.J. Oh, T. Ohama, Y. Ohashi, M. Ohmuraya, V. Oikonomou, R. Ojha, K. Okamoto, H. Okazawa, M. Oku, S. Oliván, J.M.A. Oliveira, M. Ollmann, J.A. Olzmann, S. Omari, M.B. Omary, G. Önal, M. Ondrej, S.B. Ong, S.G. Ong, A. Onnis, J.A. Orellana, S. Orellana-Muñoz, M.D.M. Ortega-Villaizan, X.R. Ortiz-Gonzalez, E. Ortona, H.D. Osiewacz, A.H.K. Osman, R. Osta, M.S. Otegui, K. Otsu, C. Ott, L. Ottobrini, J.H.J. Ou, T.F. Outeiro, I. Oynebraten, M. Ozturk, G. Pagès, S. Pahari, M. Pajares, U.B. Pajvani, R. Pal, S. Paladino, N. Pallet, M. Palmieri, G. Palmisano, C. Palumbo, F. Pampaloni, L. Pan, Q. Pan, W. Pan, X. Pan, G. Panasyuk, R. Pandey, U.B. Pandey, V. Pandya, F. Paneni, S.Y. Pang, E. Panzarini, D.L. Papademetrio, E. Papaleo, D. Papinski, D. Papp, E.C. Park, H.T. Park, J.M. Park, J.I. Park, J.T. Park, J. Park, S.C. Park, S.Y. Park, A.H. Parola, J.B. Parys, A. Pasquier, B. Pasquier, J.F. Passos, N. Pastore, H.H. Patel, D. Patschan, S. Pattingre, G. Pedraza-Alva, J. Pedraza-Chaverri, Z. Pedrozo, G. Pei, J. Pei, H. Peled-Zehavi, J.M. Pellegrini, J. Pelletier, M.A. Peñalva, D. Peng, Y. Peng, F. Penna, M. Pennuto, F. Pentimalli, C.M.F. Pereira, G.J.S. Pereira, L.C. Pereira, L. Pereira De Almeida, N.D. Perera, Á. Pérez-Lara, A.B. Perez-Oliva, M.E. Pérez-Pérez, P. Periyasamy, A. Perl, C. Perrotta, I. Perrotta, R.G. Pestell, M. Petersen, I. Petrache, G. Petrovski, T. Pfirrmann, A.S. Pfister, J.A. Philips, H. Pi, A. Picca, A.M. Pickrell, S. Picot, G.M. Pierantoni, M. Pierdominici, P. Pierre, V. Pierrefite-Carle, K. Pierzynowska, F. Pietrocola, M. Pietruczuk, C. Pignata, F.X. Pimentel-Muiños, M. Pinar, R.O. Pinheiro, R. Pinkas-Kramarski, P. Pinton, K. Pircs, S. Piya, P. Pizzo, T.S. Plantinga, H.W. Platta, A. Plaza-Zabala, M. Plomann, E.Y. Plotnikov, H. Plun-Favreau, R. Pluta, R. Pocock, S. Pöggeler, C. Pohl, M. Poirot, A. Poletti, M. Ponpuak, H. Popelka, B. Popova, H. Porta, S. Porte Alcon, E. Portilla-Fernandez, M. Post, M.B. Potts, J. Poulton, T. Powers, V. Prahlad, T.K. Prajsnar, D. Praticò, R. Prencipe, M. Priault, T. Proikas-Cezanne, V.J. Promponas, C.G. Proud, R. Puertollano, L. Puglielli, T. Pulinilkunnil, D. Puri, R. Puri, J. Puyal, X. Qi, Y. Qi, W. Qian, L. Qiang, Y. Qiu, J. Quadrilatero, J. Quarleri, N. Raben, H. Rabinowich, D. Ragona, M.J. Ragusa, N. Rahimi, M. Rahmati, V. Raia, N. Raimundo, N.S. Rajasekaran, S. Ramachandra Rao, A. Rami, I. Ramírez-Pardo, D.B. Ramsden, F. Randow, P.N. Rangarajan, D. Ranieri, H. Rao, L. Rao, R. Rao, S. Rathore, J.A. Ratnayaka, E.A. Ratovitski, P. Ravanan, G. Ravegnini, S.K. Ray, B. Razani, V. Rebecca, F. Reggiori, A. Régnier-Vigouroux, A.S. Reichert, D. Reigada, J.H. Reiling, T. Rein, S. Reipert, R.S. Rekha, H. Ren, J. Ren, W. Ren, T. Renault, G. Renga, K. Reue, K. Rewitz, B. Ribeiro De Andrade Ramos, S.A. Riazuddin, T.M. Ribeiro-Rodrigues, J.E. Ricci, R. Ricci, V. Riccio, D.R. Richardson, Y. Rikihisa, M.V. Risbud, R.M. Risueño, K. Ritis, S. Rizza, R. Rizzuto, H.C. Roberts, L.D. Roberts, K.J. Robinson, M.C. Roccheri, S. Rocchi, G.G. Rodney, T. Rodrigues, V.R. Rodrigues Silva, A. Rodriguez, R. Rodriguez-Barrueco, N. Rodriguez-Henche, H. Rodriguez-Rocha, J. Roelofs, R.S. Rogers, V.V. Rogov, A.I. Rojo, K. Rolka, V. Romanello, L. Romani, A. Romano, P.S. Romano, D. Romeo-Guitart, L.C. Romero, M. Romero, J.C. Roney, C. Rongo, S. Roperto, M.T. Rosenfeldt, P. Rosenstiel, A.G. Rosenwald, K.A. Roth, L. Roth, S. Roth, K.M.A. Rouschop, B.D. Roussel, S. Roux, P. Rovere-Querini, A. Roy, A. Rozieres, D. Ruano, D.C. Rubinsztein, M.P. Rubtsova, K. Ruckdeschel, C. Ruckenstuhl, E. Rudolf, R. Rudolf, A. Ruggieri, A.A. Ruparelia, P. Rusmini, R.R. Russell, G.L. Russo, M. Russo, R. Russo, O.O. Ryabaya, K.M. Ryan, K.Y. Ryu, M. Sabater-Arcis, U. Sachdev, M. Sacher, C. Sachse, A. Sadhu, J. Sadoshima, N. Safren, P. Saftig, A.P. Sagona, G. Sahay, A. Sahebkar, M. Sahin, O. Sahin, S. Sahni, N. Saito, S. Saito, T. Saito, R. Sakai, Y. Sakai, J.I. Sakamaki, K. Saksela, G. Salazar, A. Salazar-Degracia, G.H. Salekdeh, A.K. Saluja, B. Sampaio-Marques, M.C. Sanchez, J.A. Sanchez-Alcazar, V. Sanchez-Vera, V. Sancho-Shimizu, J.T. Sanderson, M. Sandri, S. Santaguida, L. Santambrogio, M.M. Santana, G. Santoni, A. Sanz, P. Sanz, S. Saran, M. Sardiello, T.J. Sargeant, A. Sarin, C. Sarkar, S. Sarkar, M.R. Sarrias, S. Sarkar, D.T. Sarmah, J. Sarparanta, A. Sathyanarayan, R. Sathyanarayanan, K.M. Scaglione, F. Scatozza, L. Schaefer, Z.T. Schafer, U.E. Schaible, A.H.V. Schapira, M. Scharl, H.M. Schatzl, C.H. Schein, W. Scheper, D. Scheuring, M.V. Schiaffino, M. Schiappacassi, R. Schindl, U. Schlattner, O. Schmidt, R. Schmitt, S.D. Schmidt, I. Schmitz, E. Schmukler, A. Schneider, B.E. Schneider, R. Schober, A.C. Schoijet, M.B. Schott, M. Schramm, B. Schröder, K. Schuh, C. Schüller, R.J. Schulze, L. Schürmanns, J.C. Schwamborn, M. Schwarten, F. Scialo, S. Sciarretta, M.J. Scott, K.W. Scotto, A.I. Scovassi, A. Scrima, A. Scrivo, D. Sebastian, S. Sebti, S. Sedej, L. Segatori, N. Segev, P.O. Seglen, I. Seiliez, E. Seki, S.B. Selleck, F.W. Sellke, J.T. Selsby, M. Sendtner, S. Senturk, E. Seranova, C. Sergi, R. Serra-Moreno, H. Sesaki, C. Settembre, S.R.G. Setty, G. Sgarbi, O. Sha, J.J. Shacka, J.A. Shah, D. Shang, C. Shao, F. Shao, S. Sharbati, L.M. Sharkey, D. Sharma, G. Sharma, K. Sharma, P. Sharma, S. Sharma, H.M. Shen, H. Shen, J. Shen, M. Shen, W. Shen, Z. Shen, R. Sheng, Z. Sheng, Z.H. Sheng, J. Shi, X. Shi, Y.H. Shi, K. Shiba-Fukushima, J.J. Shieh, Y. Shimada, S. Shimizu, M. Shimozawa, T. Shintani, C.J. Shoemaker, S. Shojaei, I. Shoji, B.V. Shravage, V. Shridhar, C.W. Shu, H.B. Shu, K. Shui, A.K. Shukla, T.E. Shutt, V. Sica, A. Siddiqui, A. Sierra, V. Sierra-Torre, S. Signorelli, P. Sil, B.J.D.A. Silva, J.D. Silva, E. Silva-Pavez, S. Silvente-Poirot, R.E. Simmonds, A.K. Simon, H.U. Simon, M. Simons, A. Singh, L.P. Singh, R. Singh, S.V. Singh, S.K. Singh, S.B. Singh, S. Singh, S.P. Singh, D. Sinha, R.A. Sinha, S. Sinha, A. Sirko, K. Sirohi, E.L. Sivridis, P. Skendros, A. Skirycz, I. Slaninová, S.S. Smaili, A. Smertenko, M.D. Smith, S.J. Soenen, E.J. Sohn, S.P.M. Sok, G. Solaini, T. Soldati, S.A. Soleimanpour, R.M. Soler, A. Solovchenko, J.A. Somarelli, A. Sonawane, F. Song, H.K. Song, J.X. Song, K. Song, Z. Song, L.R. Soria, M. Sorice, A.A. Soukas, S.F. Soukup, D. Sousa, N. Sousa, P.A. Spagnuolo, S.A. Spector, M.M. Srinivas Bharath, D. St. Clair, V. Stagni, L. Staiano, C.A. Stalnecker, M.V. Stankov, P.B. Stathopulos, K. Stefan, S.M. Stefan, L. Stefanis, J.S. Steffan, A. Steinkasserer, H. Stenmark, J. Sterneckert, C. Stevens, V. Stoka, S. Storch, B. Stork, F. Strappazzon, A.M. Strohecker, D.G. Stupack, H. Su, L.Y. Su, L. Su, A.M. Suarez-Fontes, C.S. Subauste, S. Subbian, P.V. Subirada, G. Sudhandiran, C.M. Sue, X. Sui, C. Summers, G. Sun, J. Sun, K. Sun, M.X. Sun, Q. Sun, Y. Sun, Z. Sun, K.K.S. Sunahara, E. Sundberg, K. Susztak, P. Sutovsky, H. Suzuki, G. Sweeney, J.D. Symons, S.C.W. Sze, N.J. Szewczyk, A. Tabęcka-Łonczynska, C. Tabolacci, F. Tacke, H. Taegtmeyer, M. Tafani, M. Tagaya, H. Tai, S.W.G. Tait, Y. Takahashi, S. Takats, P. Talwar, C. Tam, S.Y. Tam, D. Tampellini, A. Tamura, C.T. Tan, E.K. Tan, Y.Q. Tan, M. Tanaka, M. Tanaka, D. Tang, J. Tang, T.S. Tang, I. Tanida, Z. Tao, M. Taouis, L. Tatenhorst, N. Tavernarakis, A. Taylor, G.A. Taylor, J.M. Taylor, E. Tchetina, A.R. Tee, I. Tegeder, D. Teis, N. Teixeira, F. Teixeira-Clerc, K.A. Tekirdag, T. Tencomnao, S. Tenreiro, A.V. Tepikin, P.S. Testillano, G. Tettamanti, P.L. Tharaux, K. Thedieck, A.A. Thekkinghat, S. Thellung, J.W. Thinwa, V.P. Thirumalaikumar, S.M. Thomas, P.G. Thomes, A. Thorburn, L. Thukral, T. Thum, M. Thumm, L. Tian, A. Tichy, A. Till, V. Timmerman, V.I. Titorenko, S.V. Todi, K. Todorova, J.M. Toivonen, L. Tomaipitinca, D. Tomar, C. Tomas-Zapico, S. Tomić, B.C.K. Tong, C. Tong, X. Tong, S.A. Tooze, M.L. Torgersen, S. Torii, L. Torres-López, A. Torriglia, C.G. Towers, R. Towns, S. Toyokuni, V. Trajkovic, D. Tramontano, Q.G. Tran, L.H. Travassos, C.B. Trelford, S. Tremel, I.P. Trougakos, B.P. Tsao, M.P. Tschan, H.F. Tse, T.F. Tse, H. Tsugawa, A.S. Tsvetkov, D.A. Tumbarello, Y. Tumtas, M.J. Tuñón, S. Turcotte, B. Turk, V. Turk, B.J. Turner, R.I. Tuxworth, J.K. Tyler, E.V. Tyutereva, Y. Uchiyama, A. Ugun-Klusek, H.H. Uhlig, M. Ułamek-Kozioł, I.V. Ulasov, M. Umekawa, C. Ungermann, R. Unno, S. Urbe, E. Uribe-Carretero, S. Üstün, V.N. Uversky, T. Vaccari, M.I. Vaccaro, B.F. Vahsen, H. Vakifahmetoglu-Norberg, R. Valdor, M.J. Valente, A. Valko, R.B. Vallee, A.M. Valverde, G. Van Den Berghe, S. Van Der Veen, L. Van Kaer, J. Van Loosdregt, S.J.L. Van Wijk, W. Vandenberghe, I. Vanhorebeek, M.A. Vannier-Santos, N. Vannini, M.C. Vanrell, C. Vantaggiato, G. Varano, I. Varela-Nieto, M. Varga, M.H. Vasconcelos, S. Vats, D.G. Vavvas, I. Vega-Naredo, S. Vega-Rubin-De-Celis, G. Velasco, A.P. Velázquez, T. Vellai, E. Vellenga, F. Velotti, M. Verdier, P. Verginis, I. Vergne, P. Verkade, M. Verma, P. Verstreken, T. Vervliet, J. Vervoorts, A.T. Vessoni, V.M. Victor, M. Vidal, C. Vidoni, O.V. Vieira, R.D. Vierstra, S. Viganó, H. Vihinen, V. Vijayan, M. Vila, M. Vilar, J.M. Villalba, A. Villalobo, B. Villarejo-Zori, F. Villarroya, J. Villarroya, O. Vincent, C. Vindis, C. Viret, M.T. Viscomi, D. Visnjic, I. Vitale, D.J. Vocadlo, O.V. Voitsekhovskaja, C. Volonté, M. Volta, M. Vomero, C. Von Haefen, M.A. Vooijs, W. Voos, L. Vucicevic, R. Wade-Martins, S. Waguri, K.A. Waite, S. Wakatsuki, D.W. Walker, M.J. Walker, S.A. Walker, J. Walter, F.G. Wandosell, B. Wang, C.Y. Wang, C. Wang, C. Wang, C. Wang, C.Y. Wang, D. Wang, F. Wang, F. Wang, F. Wang, G. Wang, H. Wang, H. Wang, H. Wang, H.G. Wang, J. Wang, J. Wang, J. Wang, J. Wang, K. Wang, L. Wang, L. Wang, M.H. Wang, M. Wang, N. Wang, P. Wang, P. Wang, P. Wang, P. Wang, Q.J. Wang, Q. Wang, Q.K. Wang, Q.A. Wang, W.T. Wang, W. Wang, X. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y.Y. Wang, Y. Wang, Y. Wang, Y. Wang, Y. Wang, Z. Wang, Z. Wang, Z. Wang, G. Warnes, V. Warnsmann, H. Watada, E. Watanabe, M. Watchon, A. Wawrzyńska, T.E. Weaver, G. Wegrzyn, A.M. Wehman, H. Wei, L. Wei, T. Wei, Y. Wei, O.H. Weiergräber, C.C. Weihl, G. Weindl, R. Weiskirchen, A. Wells, R.H. Wen, X. Wen, A. Werner, B. Weykopf, S.P. Wheatley, J.L. Whitton, A.J. Whitworth, K. Wiktorska, M.E. Wildenberg, T. Wileman, S. Wilkinson, D. Willbold, B. Williams, R.S.B. Williams, R.L. Williams, P.R. Williamson, R.A. Wilson, B. Winner, N.J. Winsor, S.S. Witkin, H. Wodrich, U. Woehlbier, T. Wollert, E. Wong, J.H. Wong, R.W. Wong, V.K.W. Wong, W.W.L. Wong, A.G. Wu, C. Wu, J. Wu, J. Wu, K.K. Wu, M. Wu, S.Y. Wu, S. Wu, S.Y. Wu, S. Wu, W.K.K. Wu, X. Wu, X. Wu, Y.W. Wu, Y. Wu, R.J. Xavier, H. Xia, L. Xia, Z. Xia, G. Xiang, J. Xiang, M. Xiang, W. Xiang, B. Xiao, G. Xiao, H. Xiao, H.T. Xiao, J. Xiao, L. Xiao, S. Xiao, Y. Xiao, B. Xie, C.M. Xie, M. Xie, Y. Xie, Z. Xie, Z. Xie, M. Xilouri, C. Xu, E. Xu, H. Xu, J. Xu, J.R. Xu, L. Xu, W.W. Xu, X. Xu, Y. Xue, S.M.S. Yakhine-Diop, M. Yamaguchi, O. Yamaguchi, A. Yamamoto, S. Yamashina, S. Yan, S.J. Yan, Z. Yan, Y. Yanagi, C. Yang, D.S. Yang, H. Yang, H.T. Yang, H. Yang, J.M. Yang, J. Yang, J. Yang, L. Yang, L. Yang, M. Yang, P.M. Yang, Q. Yang, S. Yang, S. Yang, S.F. Yang, W. Yang, W.Y. Yang, X. Yang, X. Yang, Y. Yang, Y. Yang, H. Yao, S. Yao, X. Yao, Y.G. Yao, Y.M. Yao, T. Yasui, M. Yazdankhah, P.M. Yen, C. Yi, X.M. Yin, Y. Yin, Z. Yin, Z. Yin, M. Ying, Z. Ying, C.K. Yip, S.P.T. Yiu, Y.H. Yoo, K. Yoshida, S.R. Yoshii, T. Yoshimori, B. Yousefi, B. Yu, H. Yu, J. Yu, J. Yu, L. Yu, M.L. Yu, S.W. Yu, V.C. Yu, W.H. Yu, Z. Yu, Z. Yu, J. Yuan, L.Q. Yuan, S. Yuan, S.S.F. Yuan, Y. Yuan, Z. Yuan, J. Yue, Z. Yue, J. Yun, R.L. Yung, D.N. Zacks, G. Zaffagnini, V.O. Zambelli, I. Zanella, Q.S. Zang, S. Zanivan, S. Zappavigna, P. Zaragoza, K.S. Zarbalis, A. Zarebkohan, A. Zarrouk, S.O. Zeitlin, J. Zeng, J.D. Zeng, E. Žerovnik, L. Zhan, B. Zhang, D.D. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, H. Zhang, H.L. Zhang, J. Zhang, J. Zhang, J.P. Zhang, K.Y.B. Zhang, L.W. Zhang, L. Zhang, L. Zhang, L. Zhang, L. Zhang, M. Zhang, P. Zhang, S. Zhang, W. Zhang, X. Zhang, X.W. Zhang, X. Zhang, X. Zhang, X. Zhang, X. Zhang, X.D. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y.D. Zhang, Y. Zhang, Y.Y. Zhang, Y. Zhang, Z. Zhang, Z. Zhang, Z. Zhang, Z. Zhang, Z. Zhang, Z. Zhang, H. Zhao, L. Zhao, S. Zhao, T. Zhao, X.F. Zhao, Y. Zhao, Y. Zhao, Y. Zhao, Y. Zhao, G. Zheng, K. Zheng, L. Zheng, S. Zheng, X.L. Zheng, Y. Zheng, Z.G. Zheng, B. Zhivotovsky, Q. Zhong, A. Zhou, B. Zhou, C. Zhou, G. Zhou, H. Zhou, H. Zhou, H. Zhou, J. Zhou, J. Zhou, J. Zhou, J. Zhou, K. Zhou, R. Zhou, X.J. Zhou, Y. Zhou, Y. Zhou, Y. Zhou, Z.Y. Zhou, Z. Zhou, B. Zhu, C. Zhu, G.Q. Zhu, H. Zhu, H. Zhu, H. Zhu, W.G. Zhu, Y. Zhu, Y. Zhu, H. Zhuang, X. Zhuang, K. Zientara-Rytter, C.M. Zimmermann, E. Ziviani, T. Zoladek, W.X. Zong, D.B. Zorov, A. Zorzano, W. Zou, Z. Zou, Z. Zou, S. Zuryn, W. Zwerschke, B. Brand-Saberi, X.C. Dong, C.S. Kenchappa, Z. Li, Y. Lin, S. Oshima, Y. Rong, J.C. Sluimer, C.L. Stallings, C.K. Tong, Autophagy 17 (2021) 1–382. date_created: 2021-03-28T22:01:44Z date_published: 2021-02-08T00:00:00Z date_updated: 2023-10-16T09:43:56Z day: '08' department: - _id: JiFr - _id: CaHe doi: 10.1080/15548627.2020.1797280 external_id: isi: - '000636121800001' pmid: - '33634751' intvolume: ' 17' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1080/15548627.2020.1797280 month: '02' oa: 1 oa_version: Published Version page: 1-382 pmid: 1 publication: Autophagy publication_identifier: eissn: - 1554-8635 issn: - 1554-8627 publication_status: published publisher: Taylor & Francis quality_controlled: '1' scopus_import: '1' status: public title: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2021' ... --- _id: '10223' abstract: - lang: eng text: Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments. acknowledged_ssus: - _id: LifeSc - _id: M-Shop - _id: Bio acknowledgement: We thank N. Gnyliukh and L. Hörmayer for technical assistance and N. Paris for sharing PM-Cyto seeds. We gratefully acknowledge the Life Science, Machine Shop and Bioimaging Facilities of IST Austria. This project has received funding from the European Research Council Advanced Grant (ETAP-742985) and the Austrian Science Fund (FWF) under I 3630-B25 to J.F., the National Institutes of Health (GM067203) to W.M.G., the Netherlands Organization for Scientific Research (NWO; VIDI-864.13.001), Research Foundation-Flanders (FWO; Odysseus II G0D0515N) and a European Research Council Starting Grant (TORPEDO-714055) to W.S. and B.D.R., the VICI grant (865.14.001) from the Netherlands Organization for Scientific Research to M.R. and D.W., the Australian Research Council and China National Distinguished Expert Project (WQ20174400441) to S.S., the MEXT/JSPS KAKENHI to K.T. (20K06685) and T.K. (20H05687 and 20H05910), the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 665385 and the DOC Fellowship of the Austrian Academy of Sciences to L.L., and the China Scholarship Council to J.C. article_processing_charge: No article_type: original author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Mark full_name: Roosjen, Mark last_name: Roosjen - first_name: Koji full_name: Takahashi, Koji last_name: Takahashi - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Jian full_name: Chen, Jian last_name: Chen - first_name: Lana full_name: Shabala, Lana last_name: Shabala - first_name: Wouter full_name: Smet, Wouter last_name: Smet - first_name: Hong full_name: Ren, Hong last_name: Ren - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Sergey full_name: Shabala, Sergey last_name: Shabala - first_name: Bert full_name: De Rybel, Bert last_name: De Rybel - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Toshinori full_name: Kinoshita, Toshinori last_name: Kinoshita - first_name: William M. full_name: Gray, William M. last_name: Gray - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li L, Verstraeten I, Roosjen M, et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature. 2021;599(7884):273-277. doi:10.1038/s41586-021-04037-6 apa: Li, L., Verstraeten, I., Roosjen, M., Takahashi, K., Rodriguez Solovey, L., Merrin, J., … Friml, J. (2021). Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature. Springer Nature. https://doi.org/10.1038/s41586-021-04037-6 chicago: Li, Lanxin, Inge Verstraeten, Mark Roosjen, Koji Takahashi, Lesia Rodriguez Solovey, Jack Merrin, Jian Chen, et al. “Cell Surface and Intracellular Auxin Signalling for H+ Fluxes in Root Growth.” Nature. Springer Nature, 2021. https://doi.org/10.1038/s41586-021-04037-6. ieee: L. Li et al., “Cell surface and intracellular auxin signalling for H+ fluxes in root growth,” Nature, vol. 599, no. 7884. Springer Nature, pp. 273–277, 2021. ista: Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez Solovey L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J. 2021. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature. 599(7884), 273–277. mla: Li, Lanxin, et al. “Cell Surface and Intracellular Auxin Signalling for H+ Fluxes in Root Growth.” Nature, vol. 599, no. 7884, Springer Nature, 2021, pp. 273–77, doi:10.1038/s41586-021-04037-6. short: L. Li, I. Verstraeten, M. Roosjen, K. Takahashi, L. Rodriguez Solovey, J. Merrin, J. Chen, L. Shabala, W. Smet, H. Ren, S. Vanneste, S. Shabala, B. De Rybel, D. Weijers, T. Kinoshita, W.M. Gray, J. Friml, Nature 599 (2021) 273–277. date_created: 2021-11-07T23:01:25Z date_published: 2021-11-11T00:00:00Z date_updated: 2023-10-18T08:30:53Z day: '11' department: - _id: JiFr - _id: NanoFab doi: 10.1038/s41586-021-04037-6 ec_funded: 1 external_id: isi: - '000713338100006' pmid: - '34707283' intvolume: ' 599' isi: 1 issue: '7884' keyword: - Multidisciplinary language: - iso: eng main_file_link: - open_access: '1' url: https://www.doi.org/10.21203/rs.3.rs-266395/v3 month: '11' oa: 1 oa_version: Preprint page: 273-277 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Nature publication_identifier: eissn: - '14764687' issn: - '00280836' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Webpage relation: press_release url: https://ist.ac.at/en/news/stop-and-grow/ record: - id: '10095' relation: earlier_version status: public scopus_import: '1' status: public title: Cell surface and intracellular auxin signalling for H+ fluxes in root growth type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 599 year: '2021' ... --- _id: '9189' abstract: - lang: eng text: Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin‐responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with high and auxin‐mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin‐responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1‐mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis‐based insertion of the INDITTO2 transposon into the DRO1 promoter of the non‐adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses. article_processing_charge: No article_type: original author: - first_name: Y full_name: Zhao, Y last_name: Zhao - first_name: L full_name: Wu, L last_name: Wu - first_name: Q full_name: Fu, Q last_name: Fu - first_name: D full_name: Wang, D last_name: Wang - first_name: J full_name: Li, J last_name: Li - first_name: B full_name: Yao, B last_name: Yao - first_name: S full_name: Yu, S last_name: Yu - first_name: L full_name: Jiang, L last_name: Jiang - first_name: J full_name: Qian, J last_name: Qian - first_name: X full_name: Zhou, X last_name: Zhou - first_name: L full_name: Han, L last_name: Han - first_name: S full_name: Zhao, S last_name: Zhao - first_name: C full_name: Ma, C last_name: Ma - first_name: Y full_name: Zhang, Y last_name: Zhang - first_name: C full_name: Luo, C last_name: Luo - first_name: Q full_name: Dong, Q last_name: Dong - first_name: S full_name: Li, S last_name: Li - first_name: L full_name: Zhang, L last_name: Zhang - first_name: X full_name: Jiang, X last_name: Jiang - first_name: Y full_name: Li, Y last_name: Li - first_name: H full_name: Luo, H last_name: Luo - first_name: K full_name: Li, K last_name: Li - first_name: J full_name: Yang, J last_name: Yang - first_name: Q full_name: Luo, Q last_name: Luo - first_name: L full_name: Li, L last_name: Li - first_name: S full_name: Peng, S last_name: Peng - first_name: H full_name: Huang, H last_name: Huang - first_name: Z full_name: Zuo, Z last_name: Zuo - first_name: C full_name: Liu, C last_name: Liu - first_name: L full_name: Wang, L last_name: Wang - first_name: C full_name: Li, C last_name: Li - first_name: X full_name: He, X last_name: He - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Y full_name: Du, Y last_name: Du citation: ama: Zhao Y, Wu L, Fu Q, et al. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant, Cell & Environment. 2021;44(6):1846-1857. doi:10.1111/pce.14029 apa: Zhao, Y., Wu, L., Fu, Q., Wang, D., Li, J., Yao, B., … Du, Y. (2021). INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant, Cell & Environment. Wiley. https://doi.org/10.1111/pce.14029 chicago: Zhao, Y, L Wu, Q Fu, D Wang, J Li, B Yao, S Yu, et al. “INDITTO2 Transposon Conveys Auxin-Mediated DRO1 Transcription for Rice Drought Avoidance.” Plant, Cell & Environment. Wiley, 2021. https://doi.org/10.1111/pce.14029. ieee: Y. Zhao et al., “INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance,” Plant, Cell & Environment, vol. 44, no. 6. Wiley, pp. 1846–1857, 2021. ista: Zhao Y, Wu L, Fu Q, Wang D, Li J, Yao B, Yu S, Jiang L, Qian J, Zhou X, Han L, Zhao S, Ma C, Zhang Y, Luo C, Dong Q, Li S, Zhang L, Jiang X, Li Y, Luo H, Li K, Yang J, Luo Q, Li L, Peng S, Huang H, Zuo Z, Liu C, Wang L, Li C, He X, Friml J, Du Y. 2021. INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance. Plant, Cell & Environment. 44(6), 1846–1857. mla: Zhao, Y., et al. “INDITTO2 Transposon Conveys Auxin-Mediated DRO1 Transcription for Rice Drought Avoidance.” Plant, Cell & Environment, vol. 44, no. 6, Wiley, 2021, pp. 1846–57, doi:10.1111/pce.14029. short: Y. Zhao, L. Wu, Q. Fu, D. Wang, J. Li, B. Yao, S. Yu, L. Jiang, J. Qian, X. Zhou, L. Han, S. Zhao, C. Ma, Y. Zhang, C. Luo, Q. Dong, S. Li, L. Zhang, X. Jiang, Y. Li, H. Luo, K. Li, J. Yang, Q. Luo, L. Li, S. Peng, H. Huang, Z. Zuo, C. Liu, L. Wang, C. Li, X. He, J. Friml, Y. Du, Plant, Cell & Environment 44 (2021) 1846–1857. date_created: 2021-02-24T10:07:21Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-11-07T08:18:36Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/pce.14029 external_id: isi: - '000625398600001' pmid: - '33576018' file: - access_level: open_access checksum: a812418fede076741c9c4dc07f317068 content_type: application/pdf creator: amally date_created: 2023-11-02T17:02:11Z date_updated: 2023-11-02T17:02:11Z file_id: '14481' file_name: Zhao PlantCellEnv 2021_accepted.pdf file_size: 8437528 relation: main_file success: 1 file_date_updated: 2023-11-02T17:02:11Z has_accepted_license: '1' intvolume: ' 44' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 1846-1857 pmid: 1 publication: Plant, Cell & Environment publication_identifier: eissn: - 1365-3040 issn: - 0140-7791 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 44 year: '2021' ... --- _id: '9887' abstract: - lang: eng text: Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin–mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio acknowledgement: 'We gratefully thank Julie Neveu and Dr. Amanda Barranco of the Grégory Vert laboratory for help preparing plants in France, Dr. Zuzana Gelova for help and advice with protoplast generation, Dr. Stéphane Vassilopoulos and Dr. Florian Schur for advice regarding EM tomography, Alejandro Marquiegui Alvaro for help with material generation, and Dr. Lukasz Kowalski for generously gifting us the mWasabi protein. This research was supported by the Scientific Service Units of Institute of Science and Technology Austria (IST Austria) through resources provided by the Electron Microscopy Facility, Lab Support Facility (particularly Dorota Jaworska), and the Bioimaging Facility. We acknowledge the Advanced Microscopy Facility of the Vienna BioCenter Core Facilities for use of the 3D SIM. For the mass spectrometry analysis of proteins, we acknowledge the University of Natural Resources and Life Sciences (BOKU) Core Facility Mass Spectrometry. This work was supported by the following funds: A.J. is supported by funding from the Austrian Science Fund I3630B25 to J.F. P.M. and E.B. are supported by Agence Nationale de la Recherche ANR-11-EQPX-0029 Morphoscope2 and ANR-10-INBS-04 France BioImaging. S.Y.B. is supported by the NSF No. 1121998 and 1614915. J.W. and D.V.D. are supported by the European Research Council Grant 682436 (to D.V.D.), a China Scholarship Council Grant 201508440249 (to J.W.), and by a Ghent University Special Research Co-funding Grant ST01511051 (to J.W.).' article_number: e2113046118 article_processing_charge: No article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Dana A full_name: Dahhan, Dana A last_name: Dahhan - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Vanessa full_name: Zheden, Vanessa id: 39C5A68A-F248-11E8-B48F-1D18A9856A87 last_name: Zheden orcid: 0000-0002-9438-4783 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Pierre full_name: Mahou, Pierre last_name: Mahou - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Jie full_name: Wang, Jie last_name: Wang - first_name: Juan L full_name: Aguilera Servin, Juan L id: 2A67C376-F248-11E8-B48F-1D18A9856A87 last_name: Aguilera Servin orcid: 0000-0002-2862-8372 - first_name: Daniël full_name: van Damme, Daniël last_name: van Damme - first_name: Emmanuel full_name: Beaurepaire, Emmanuel last_name: Beaurepaire - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Sebastian Y full_name: Bednarek, Sebastian Y last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Dahhan DA, Gnyliukh N, et al. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 2021;118(51). doi:10.1073/pnas.2113046118 apa: Johnson, A. J., Dahhan, D. A., Gnyliukh, N., Kaufmann, W., Zheden, V., Costanzo, T., … Friml, J. (2021). The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. National Academy of Sciences. https://doi.org/10.1073/pnas.2113046118 chicago: Johnson, Alexander J, Dana A Dahhan, Nataliia Gnyliukh, Walter Kaufmann, Vanessa Zheden, Tommaso Costanzo, Pierre Mahou, et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2113046118. ieee: A. J. Johnson et al., “The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis,” Proceedings of the National Academy of Sciences, vol. 118, no. 51. National Academy of Sciences, 2021. ista: Johnson AJ, Dahhan DA, Gnyliukh N, Kaufmann W, Zheden V, Costanzo T, Mahou P, Hrtyan M, Wang J, Aguilera Servin JL, van Damme D, Beaurepaire E, Loose M, Bednarek SY, Friml J. 2021. The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences. 118(51), e2113046118. mla: Johnson, Alexander J., et al. “The TPLATE Complex Mediates Membrane Bending during Plant Clathrin-Mediated Endocytosis.” Proceedings of the National Academy of Sciences, vol. 118, no. 51, e2113046118, National Academy of Sciences, 2021, doi:10.1073/pnas.2113046118. short: A.J. Johnson, D.A. Dahhan, N. Gnyliukh, W. Kaufmann, V. Zheden, T. Costanzo, P. Mahou, M. Hrtyan, J. Wang, J.L. Aguilera Servin, D. van Damme, E. Beaurepaire, M. Loose, S.Y. Bednarek, J. Friml, Proceedings of the National Academy of Sciences 118 (2021). date_created: 2021-08-11T14:11:43Z date_published: 2021-12-14T00:00:00Z date_updated: 2024-02-19T11:06:09Z day: '14' ddc: - '580' department: - _id: JiFr - _id: MaLo - _id: EvBe - _id: EM-Fac - _id: NanoFab doi: 10.1073/pnas.2113046118 external_id: isi: - '000736417600043' pmid: - '34907016' file: - access_level: open_access checksum: 8d01e72e22c4fb1584e72d8601947069 content_type: application/pdf creator: cchlebak date_created: 2021-12-15T08:59:40Z date_updated: 2021-12-15T08:59:40Z file_id: '10546' file_name: 2021_PNAS_Johnson.pdf file_size: 2757340 relation: main_file success: 1 file_date_updated: 2021-12-15T08:59:40Z has_accepted_license: '1' intvolume: ' 118' isi: 1 issue: '51' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: earlier_version url: https://doi.org/10.1101/2021.04.26.441441 record: - id: '14510' relation: dissertation_contains status: public - id: '14988' relation: research_data status: public status: public title: The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '14988' abstract: - lang: eng text: Raw data generated from the publication - The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis by Johnson et al., 2021 In PNAS article_processing_charge: No author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 citation: ama: Johnson AJ. Raw data from Johnson et al, PNAS, 2021. 2021. doi:10.5281/ZENODO.5747100 apa: Johnson, A. J. (2021). Raw data from Johnson et al, PNAS, 2021. Zenodo. https://doi.org/10.5281/ZENODO.5747100 chicago: Johnson, Alexander J. “Raw Data from Johnson et Al, PNAS, 2021.” Zenodo, 2021. https://doi.org/10.5281/ZENODO.5747100. ieee: A. J. Johnson, “Raw data from Johnson et al, PNAS, 2021.” Zenodo, 2021. ista: Johnson AJ. 2021. Raw data from Johnson et al, PNAS, 2021, Zenodo, 10.5281/ZENODO.5747100. mla: Johnson, Alexander J. Raw Data from Johnson et Al, PNAS, 2021. Zenodo, 2021, doi:10.5281/ZENODO.5747100. short: A.J. Johnson, (2021). date_created: 2024-02-14T14:13:48Z date_published: 2021-12-01T00:00:00Z date_updated: 2024-02-19T11:06:09Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.5281/ZENODO.5747100 has_accepted_license: '1' main_file_link: - open_access: '1' url: https://doi.org/10.5281/zenodo.5747100 month: '12' oa: 1 oa_version: Published Version publisher: Zenodo related_material: record: - id: '9887' relation: used_in_publication status: public status: public title: Raw data from Johnson et al, PNAS, 2021 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '9992' abstract: - lang: eng text: "Blood – this is what animals use to heal wounds fast and efficient. Plants do not have blood circulation and their cells cannot move. However, plants have evolved remarkable capacities to regenerate tissues and organs preventing further damage. In my PhD research, I studied the wound healing in the Arabidopsis root. I used a UV laser to ablate single cells in the root tip and observed the consequent wound healing. Interestingly, the inner adjacent cells induced a\r\ndivision plane switch and subsequently adopted the cell type of the killed cell to replace it. We termed this form of wound healing “restorative divisions”. This initial observation triggered the questions of my PhD studies: How and why do cells orient their division planes, how do they feel the wound and why does this happen only in inner adjacent cells.\r\nFor answering these questions, I used a quite simple experimental setup: 5 day - old seedlings were stained with propidium iodide to visualize cell walls and dead cells; ablation was carried out using a special laser cutter and a confocal microscope. Adaptation of the novel vertical microscope system made it possible to observe wounds in real time. This revealed that restorative divisions occur at increased frequency compared to normal divisions. Additionally,\r\nthe major plant hormone auxin accumulates in wound adjacent cells and drives the expression of the wound-stress responsive transcription factor ERF115. Using this as a marker gene for wound responses, we found that an important part of wound signalling is the sensing of the collapse of the ablated cell. The collapse causes a radical pressure drop, which results in strong tissue deformations. These deformations manifest in an invasion of the now free spot specifically by the inner adjacent cells within seconds, probably because of higher pressure of the inner tissues. Long-term imaging revealed that those deformed cells continuously expand towards the wound hole and that this is crucial for the restorative division. These wound-expanding cells exhibit an abnormal, biphasic polarity of microtubule arrays\r\nbefore the division. Experiments inhibiting cell expansion suggest that it is the biphasic stretching that induces those MT arrays. Adapting the micromanipulator aspiration system from animal scientists at our institute confirmed the hypothesis that stretching influences microtubule stability. In conclusion, this shows that microtubules react to tissue deformation\r\nand this facilitates the observed division plane switch. This puts mechanical cues and tensions at the most prominent position for explaining the growth and wound healing properties of plants. Hence, it shines light onto the importance of understanding mechanical signal transduction. " acknowledged_ssus: - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 citation: ama: Hörmayer L. Wound healing in the Arabidopsis root meristem. 2021. doi:10.15479/at:ista:9992 apa: Hörmayer, L. (2021). Wound healing in the Arabidopsis root meristem. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:9992 chicago: Hörmayer, Lukas. “Wound Healing in the Arabidopsis Root Meristem.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:9992. ieee: L. Hörmayer, “Wound healing in the Arabidopsis root meristem,” Institute of Science and Technology Austria, 2021. ista: Hörmayer L. 2021. Wound healing in the Arabidopsis root meristem. Institute of Science and Technology Austria. mla: Hörmayer, Lukas. Wound Healing in the Arabidopsis Root Meristem. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:9992. short: L. Hörmayer, Wound Healing in the Arabidopsis Root Meristem, Institute of Science and Technology Austria, 2021. date_created: 2021-09-09T07:37:20Z date_published: 2021-09-13T00:00:00Z date_updated: 2023-09-07T13:38:33Z day: '13' ddc: - '575' degree_awarded: PhD department: - _id: GradSch - _id: JiFr doi: 10.15479/at:ista:9992 ec_funded: 1 file: - access_level: closed checksum: c763064adaa720e16066c1a4f9682bbb content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: lhoermaye date_created: 2021-09-09T07:29:48Z date_updated: 2021-09-15T22:30:26Z embargo_to: open_access file_id: '9993' file_name: Thesis_vupload.docx file_size: 25179004 relation: source_file - access_level: open_access checksum: 53911b06e93d7cdbbf4c7f4c162fa70f content_type: application/pdf creator: lhoermaye date_created: 2021-09-09T14:25:08Z date_updated: 2021-09-15T22:30:26Z embargo: 2021-09-09 file_id: '9996' file_name: Thesis_vfinal_pdfa.pdf file_size: 6246900 relation: main_file file_date_updated: 2021-09-15T22:30:26Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '168' project: - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '6351' relation: part_of_dissertation status: public - id: '6943' relation: part_of_dissertation status: public - id: '8002' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Wound healing in the Arabidopsis root meristem tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '9010' abstract: - lang: eng text: Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments. acknowledged_ssus: - _id: Bio acknowledgement: 'We acknowledge Gergely Molnar for critical reading of the manuscript, Alexander Johnson for language editing and Yulija Salanenka for technical assistance. Work in the Benkova laboratory was supported by the Austrian Science Fund (FWF01_I1774S) to KO, RA and EB. Work in the Benkova laboratory was supported by the Austrian Science Fund (FWF01_I1774S) to KO, RA and EB and by the DOC Fellowship Programme of the AustrianAcademy of Sciences (25008) to C.A. Work in the Wabnik laboratory was supported by the Programa de Atraccion de Talento 2017 (Comunidad deMadrid, 2017-T1/BIO-5654 to K.W.), Severo Ochoa Programme for Centres of Excellence in R&D from the Agencia Estatal de Investigacion of Spain (grantSEV-2016-0672 (2017-2021) to K.W. via the CBGP) and Programa Estatal de Generacion del Conocimiento y Fortalecimiento Científico y Tecnologico del Sistema de I+D+I 2019 (PGC2018-093387-A-I00) from MICIU (to K.W.). M.M.was supported by a postdoctoral contract associated to SEV-2016-0672.We acknowledge the Bioimaging Facility in IST-Austria and the Advanced Microscopy Facility of the Vienna Bio Center Core Facilities, member of the Vienna Bio Center Austria, for use of the OMX v43D SIM microscope. AJ was supported by the Austrian Science Fund (FWF): I03630 to J.F' article_number: e106862 article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Krisztina full_name: Ötvös, Krisztina id: 29B901B0-F248-11E8-B48F-1D18A9856A87 last_name: Ötvös orcid: 0000-0002-5503-4983 - first_name: Marco full_name: Marconi, Marco last_name: Marconi - first_name: Andrea full_name: Vega, Andrea last_name: Vega - first_name: Jose full_name: O’Brien, Jose last_name: O’Brien - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Rashed full_name: Abualia, Rashed id: 4827E134-F248-11E8-B48F-1D18A9856A87 last_name: Abualia orcid: 0000-0002-9357-9415 - first_name: Livio full_name: Antonielli, Livio last_name: Antonielli - first_name: Juan C full_name: Montesinos López, Juan C id: 310A8E3E-F248-11E8-B48F-1D18A9856A87 last_name: Montesinos López orcid: 0000-0001-9179-6099 - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Candela full_name: Cuesta, Candela id: 33A3C818-F248-11E8-B48F-1D18A9856A87 last_name: Cuesta orcid: 0000-0003-1923-2410 - first_name: Christina full_name: Artner, Christina id: 45DF286A-F248-11E8-B48F-1D18A9856A87 last_name: Artner - first_name: Eleonore full_name: Bouguyon, Eleonore last_name: Bouguyon - first_name: Alain full_name: Gojon, Alain last_name: Gojon - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Rodrigo A. full_name: Gutiérrez, Rodrigo A. last_name: Gutiérrez - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Ötvös K, Marconi M, Vega A, et al. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO Journal. 2021;40(3). doi:10.15252/embj.2020106862 apa: Ötvös, K., Marconi, M., Vega, A., O’Brien, J., Johnson, A. J., Abualia, R., … Benková, E. (2021). Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO Journal. Embo Press. https://doi.org/10.15252/embj.2020106862 chicago: Ötvös, Krisztina, Marco Marconi, Andrea Vega, Jose O’Brien, Alexander J Johnson, Rashed Abualia, Livio Antonielli, et al. “Modulation of Plant Root Growth by Nitrogen Source-Defined Regulation of Polar Auxin Transport.” EMBO Journal. Embo Press, 2021. https://doi.org/10.15252/embj.2020106862. ieee: K. Ötvös et al., “Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport,” EMBO Journal, vol. 40, no. 3. Embo Press, 2021. ista: Ötvös K, Marconi M, Vega A, O’Brien J, Johnson AJ, Abualia R, Antonielli L, Montesinos López JC, Zhang Y, Tan S, Cuesta C, Artner C, Bouguyon E, Gojon A, Friml J, Gutiérrez RA, Wabnik KT, Benková E. 2021. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO Journal. 40(3), e106862. mla: Ötvös, Krisztina, et al. “Modulation of Plant Root Growth by Nitrogen Source-Defined Regulation of Polar Auxin Transport.” EMBO Journal, vol. 40, no. 3, e106862, Embo Press, 2021, doi:10.15252/embj.2020106862. short: K. Ötvös, M. Marconi, A. Vega, J. O’Brien, A.J. Johnson, R. Abualia, L. Antonielli, J.C. Montesinos López, Y. Zhang, S. Tan, C. Cuesta, C. Artner, E. Bouguyon, A. Gojon, J. Friml, R.A. Gutiérrez, K.T. Wabnik, E. Benková, EMBO Journal 40 (2021). date_created: 2021-01-17T23:01:12Z date_published: 2021-02-01T00:00:00Z date_updated: 2024-03-27T23:30:39Z day: '01' ddc: - '580' department: - _id: JiFr - _id: EvBe doi: 10.15252/embj.2020106862 external_id: isi: - '000604645600001' pmid: - ' 33399250' file: - access_level: open_access checksum: dc55c900f3b061d6c2790b8813d759a3 content_type: application/pdf creator: dernst date_created: 2021-02-11T12:28:29Z date_updated: 2021-02-11T12:28:29Z file_id: '9110' file_name: 2021_Embo_Otvos.pdf file_size: 2358617 relation: main_file success: 1 file_date_updated: 2021-02-11T12:28:29Z has_accepted_license: '1' intvolume: ' 40' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development - _id: 2685A872-B435-11E9-9278-68D0E5697425 name: Hormonal regulation of plant adaptive responses to environmental signals - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: EMBO Journal publication_identifier: eissn: - '14602075' issn: - '02614189' publication_status: published publisher: Embo Press quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/a-plants-way-to-its-favorite-food/ record: - id: '10303' relation: dissertation_contains status: public scopus_import: '1' status: public title: Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 40 year: '2021' ... --- _id: '8931' abstract: - lang: eng text: "Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear.\r\nHere we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation.\r\nThe gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy." acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: We would like to acknowledge Bioimaging and Life Science Facilities at IST Austria for continuous support and also the Plant Sciences Core Facility of CEITEC Masaryk University for their support with obtaining a part of the scientific data. We gratefully acknowledge Lindy Abas for help with ABP1::GFP-ABP1 construct design. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program [grant agreement no. 742985] and Austrian Science Fund (FWF) [I 3630-B25] to J.F.; DOC Fellowship of the Austrian Academy of Sciences to L.L.; the European Structural and Investment Funds, Operational Programme Research, Development and Education - Project „MSCAfellow@MUNI“ [CZ.02.2.69/0.0/0.0/17_050/0008496] to M.P.. This project was also supported by the Czech Science Foundation [GA 20-20860Y] to M.Z and MEYS CR [project no.CZ.02.1.01/0.0/0.0/16_019/0000738] to M. Č. article_number: '110750' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Markéta full_name: Pernisová, Markéta last_name: Pernisová - first_name: Géraldine full_name: Brunoud, Géraldine last_name: Brunoud - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Jaroslav full_name: Michalko, Jaroslav id: 483727CA-F248-11E8-B48F-1D18A9856A87 last_name: Michalko - first_name: Zlata full_name: Pavlovicova, Zlata last_name: Pavlovicova - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Milada full_name: Čovanová, Milada last_name: Čovanová - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Tongda full_name: Xu, Tongda last_name: Xu - first_name: Teva full_name: Vernoux, Teva last_name: Vernoux - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Gelová Z, Gallei MC, Pernisová M, et al. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Science. 2021;303. doi:10.1016/j.plantsci.2020.110750 apa: Gelová, Z., Gallei, M. C., Pernisová, M., Brunoud, G., Zhang, X., Glanc, M., … Friml, J. (2021). Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Science. Elsevier. https://doi.org/10.1016/j.plantsci.2020.110750 chicago: Gelová, Zuzana, Michelle C Gallei, Markéta Pernisová, Géraldine Brunoud, Xixi Zhang, Matous Glanc, Lanxin Li, et al. “Developmental Roles of Auxin Binding Protein 1 in Arabidopsis Thaliana.” Plant Science. Elsevier, 2021. https://doi.org/10.1016/j.plantsci.2020.110750. ieee: Z. Gelová et al., “Developmental roles of auxin binding protein 1 in Arabidopsis thaliana,” Plant Science, vol. 303. Elsevier, 2021. ista: Gelová Z, Gallei MC, Pernisová M, Brunoud G, Zhang X, Glanc M, Li L, Michalko J, Pavlovicova Z, Verstraeten I, Han H, Hajny J, Hauschild R, Čovanová M, Zwiewka M, Hörmayer L, Fendrych M, Xu T, Vernoux T, Friml J. 2021. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Science. 303, 110750. mla: Gelová, Zuzana, et al. “Developmental Roles of Auxin Binding Protein 1 in Arabidopsis Thaliana.” Plant Science, vol. 303, 110750, Elsevier, 2021, doi:10.1016/j.plantsci.2020.110750. short: Z. Gelová, M.C. Gallei, M. Pernisová, G. Brunoud, X. Zhang, M. Glanc, L. Li, J. Michalko, Z. Pavlovicova, I. Verstraeten, H. Han, J. Hajny, R. Hauschild, M. Čovanová, M. Zwiewka, L. Hörmayer, M. Fendrych, T. Xu, T. Vernoux, J. Friml, Plant Science 303 (2021). date_created: 2020-12-09T14:48:28Z date_published: 2021-02-01T00:00:00Z date_updated: 2024-03-27T23:30:43Z day: '01' ddc: - '580' department: - _id: JiFr - _id: Bio doi: 10.1016/j.plantsci.2020.110750 ec_funded: 1 external_id: isi: - '000614154500001' pmid: - '33487339' file: - access_level: open_access checksum: a7f2562bdca62d67dfa88e271b62a629 content_type: application/pdf creator: dernst date_created: 2021-02-04T07:49:25Z date_updated: 2021-02-04T07:49:25Z file_id: '9083' file_name: 2021_PlantScience_Gelova.pdf file_size: 12563728 relation: main_file success: 1 file_date_updated: 2021-02-04T07:49:25Z has_accepted_license: '1' intvolume: ' 303' isi: 1 keyword: - Agronomy and Crop Science - Plant Science - Genetics - General Medicine language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Plant Science publication_identifier: issn: - 0168-9452 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public - id: '10083' relation: dissertation_contains status: public scopus_import: '1' status: public title: Developmental roles of auxin binding protein 1 in Arabidopsis thaliana tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 303 year: '2021' ... --- _id: '9287' abstract: - lang: eng text: "The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the\r\nauxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural (IAA) and synthetic (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network (EE/TGN), rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using Total Internal Reflection Fluorescence (TIRF) microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus contributing to its\r\npolarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments. " acknowledged_ssus: - _id: M-Shop - _id: Bio acknowledgement: 'We thank Ivan Kulik for developing the Chip’n’Dale apparatus with Lanxin Li; the IST machine shop and the Bioimaging facility for their excellent support; Matouš Glanc and Matyáš Fendrych for their valuable discussions and help; Barbara Casillas-Perez for her help with statistics. This project has received funding from the European Research Council (ERC) under the European Union''s Horizon 2020 research and innovation program (grant agreement No 742985). A.J. is supported by funding from the Austrian Science Fund (FWF): I3630B25 to J.F. ' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: E full_name: Himschoot, E last_name: Himschoot - first_name: R full_name: Wang, R last_name: Wang - first_name: S full_name: Vanneste, S last_name: Vanneste - first_name: J full_name: Sánchez-Simarro, J last_name: Sánchez-Simarro - first_name: F full_name: Aniento, F last_name: Aniento - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Narasimhan M, Gallei MC, Tan S, et al. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiology. 2021;186(2):1122–1142. doi:10.1093/plphys/kiab134 apa: Narasimhan, M., Gallei, M. C., Tan, S., Johnson, A. J., Verstraeten, I., Li, L., … Friml, J. (2021). Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiology. Oxford University Press. https://doi.org/10.1093/plphys/kiab134 chicago: Narasimhan, Madhumitha, Michelle C Gallei, Shutang Tan, Alexander J Johnson, Inge Verstraeten, Lanxin Li, Lesia Rodriguez Solovey, et al. “Systematic Analysis of Specific and Nonspecific Auxin Effects on Endocytosis and Trafficking.” Plant Physiology. Oxford University Press, 2021. https://doi.org/10.1093/plphys/kiab134. ieee: M. Narasimhan et al., “Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking,” Plant Physiology, vol. 186, no. 2. Oxford University Press, pp. 1122–1142, 2021. ista: Narasimhan M, Gallei MC, Tan S, Johnson AJ, Verstraeten I, Li L, Rodriguez Solovey L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. 2021. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiology. 186(2), 1122–1142. mla: Narasimhan, Madhumitha, et al. “Systematic Analysis of Specific and Nonspecific Auxin Effects on Endocytosis and Trafficking.” Plant Physiology, vol. 186, no. 2, Oxford University Press, 2021, pp. 1122–1142, doi:10.1093/plphys/kiab134. short: M. Narasimhan, M.C. Gallei, S. Tan, A.J. Johnson, I. Verstraeten, L. Li, L. Rodriguez Solovey, H. Han, E. Himschoot, R. Wang, S. Vanneste, J. Sánchez-Simarro, F. Aniento, M. Adamowski, J. Friml, Plant Physiology 186 (2021) 1122–1142. date_created: 2021-03-26T12:08:38Z date_published: 2021-06-01T00:00:00Z date_updated: 2024-03-27T23:30:43Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/plphys/kiab134 ec_funded: 1 external_id: isi: - '000671555900031' pmid: - '33734402' file: - access_level: open_access checksum: 532bb9469d3b665907f06df8c383eade content_type: application/pdf creator: cziletti date_created: 2021-11-11T15:07:51Z date_updated: 2021-11-11T15:07:51Z file_id: '10273' file_name: 2021_PlantPhysio_Narasimhan.pdf file_size: 2289127 relation: main_file success: 1 file_date_updated: 2021-11-11T15:07:51Z has_accepted_license: '1' intvolume: ' 186' isi: 1 issue: '2' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1122–1142 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: Oxford University Press quality_controlled: '1' related_material: link: - relation: erratum url: 10.1093/plphys/kiab380 record: - id: '11626' relation: dissertation_contains status: public - id: '10083' relation: dissertation_contains status: public status: public title: Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 186 year: '2021' ... --- _id: '10083' abstract: - lang: eng text: "Plant motions occur across a wide spectrum of timescales, ranging from seed dispersal through bursting (milliseconds) and stomatal opening (minutes) to long-term adaptation of gross architecture. Relatively fast motions include water-driven growth as exemplified by root cell expansion under abiotic/biotic stresses or during gravitropism. A showcase is a root growth inhibition in 30 seconds triggered by the phytohormone auxin. However, the cellular and molecular mechanisms are still largely unknown. This thesis covers the studies about this topic as follows. By taking advantage of microfluidics combined with live imaging, pharmaceutical tools, and transgenic lines, we examined the kinetics of and causal relationship among various auxininduced rapid cellular changes in root growth, apoplastic pH, cytosolic Ca2+, cortical microtubule (CMT) orientation, and vacuolar morphology. We revealed that CMT reorientation and vacuolar constriction are the consequence of growth itself instead of responding directly to auxin. In contrast, auxin induces apoplast alkalinization to rapidly inhibit root growth in 30 seconds. This auxin-triggered apoplast alkalinization results from rapid H+- influx that is contributed by Ca2+ inward channel CYCLIC NUCLEOTIDE-GATED CHANNEL 14 (CNGC14)-dependent Ca2+ signaling. To dissect which auxin signaling mediates the rapid apoplast alkalinization, we\r\ncombined microfluidics and genetic engineering to verify that TIR1/AFB receptors conduct a non-transcriptional regulation on Ca2+ and H+ -influx. This non-canonical pathway is mostly mediated by the cytosolic portion of TIR1/AFB. On the other hand, we uncovered, using biochemical and phospho-proteomic analysis, that auxin cell surface signaling component TRANSMEMBRANE KINASE 1 (TMK1) plays a negative role during auxin-trigger apoplast\r\nalkalinization and root growth inhibition through directly activating PM H+ -ATPases. Therefore, we discovered that PM H+ -ATPases counteract instead of mediate the auxintriggered rapid H+ -influx, and that TIR1/AFB and TMK1 regulate root growth antagonistically. This opposite effect of TIR1/AFB and TMK1 is consistent during auxin-induced hypocotyl elongation, leading us to explore the relation of two signaling pathways. Assisted with biochemistry and fluorescent imaging, we verified for the first time that TIR1/AFB and TMK1 can interact with each other. The ability of TIR1/AFB binding to membrane lipid provides a basis for the interaction of plasma membrane- and cytosol-localized proteins.\r\nBesides, transgenic analysis combined with genetic engineering and biochemistry showed that vi\r\nthey do function in the same pathway. Particularly, auxin-induced TMK1 increase is TIR1/AFB dependent, suggesting TIR1/AFB regulation on TMK1. Conversely, TMK1 also regulates TIR1/AFB protein levels and thus auxin canonical signaling. To follow the study of rapid growth regulation, we analyzed another rapid growth regulator, signaling peptide RALF1. We showed that RALF1 also triggers a rapid and reversible growth inhibition caused by H + influx, highly resembling but not dependent on auxin. Besides, RALF1 promotes auxin biosynthesis by increasing expression of auxin biosynthesis enzyme YUCCAs and thus induces auxin signaling in ca. 1 hour, contributing to the sustained RALF1-triggered growth inhibition. These studies collectively contribute to understanding rapid regulation on plant cell\r\ngrowth, novel auxin signaling pathway as well as auxin-peptide crosstalk. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Lanxin full_name: Li, Lanxin last_name: Li citation: ama: Li L. Rapid cell growth regulation in Arabidopsis. 2021. doi:10.15479/at:ista:10083 apa: Li, L. (2021). Rapid cell growth regulation in Arabidopsis. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:10083 chicago: Li, Lanxin. “Rapid Cell Growth Regulation in Arabidopsis.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:10083. ieee: L. Li, “Rapid cell growth regulation in Arabidopsis,” Institute of Science and Technology Austria, 2021. ista: Li L. 2021. Rapid cell growth regulation in Arabidopsis. Institute of Science and Technology Austria. mla: Li, Lanxin. Rapid Cell Growth Regulation in Arabidopsis. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:10083. short: L. Li, Rapid Cell Growth Regulation in Arabidopsis, Institute of Science and Technology Austria, 2021. date_created: 2021-10-04T13:33:10Z date_published: 2021-10-06T00:00:00Z date_updated: 2023-10-31T19:30:02Z day: '06' ddc: - '575' degree_awarded: PhD department: - _id: GradSch - _id: JiFr doi: 10.15479/at:ista:10083 ec_funded: 1 file: - access_level: open_access checksum: 3b2f55b3b8ae05337a0dcc1cd8595b10 content_type: application/pdf creator: cchlebak date_created: 2021-10-14T08:00:07Z date_updated: 2022-12-20T23:30:03Z embargo: 2022-10-14 file_id: '10138' file_name: 0._IST_Austria_Thesis_Lanxin_Li_1014_pdftron.pdf file_size: 8616142 relation: main_file - access_level: closed checksum: f23ed258ca894f6aabf58b0c128bf242 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: cchlebak date_created: 2021-10-14T08:00:13Z date_updated: 2022-12-20T23:30:03Z embargo_to: open_access file_id: '10139' file_name: 0._IST_Austria_Thesis_Lanxin_Li_1014.docx file_size: 15058499 relation: source_file file_date_updated: 2022-12-20T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '442' relation: part_of_dissertation status: public - id: '8931' relation: part_of_dissertation status: public - id: '9287' relation: part_of_dissertation status: public - id: '8283' relation: part_of_dissertation status: public - id: '8986' relation: part_of_dissertation status: public - id: '6627' relation: part_of_dissertation status: public - id: '10095' relation: part_of_dissertation status: public - id: '10015' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Rapid cell growth regulation in Arabidopsis tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '10015' abstract: - lang: eng text: "Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxincontrolled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2\r\nThr31 phosphorylation site for growth regulation in the Arabidopsis root tip." acknowledgement: We thank the Nottingham Stock Centre for seeds, Frank Van Breusegem for the phb3 mutant, and Herman Höfte for the the1 mutant. Open Access Funding by the Austrian Science Fund (FWF). alternative_title: - Protein Phosphorylation and Cell Signaling in Plants article_number: '1665 ' article_processing_charge: Yes article_type: original author: - first_name: N full_name: Nikonorova, N last_name: Nikonorova - first_name: E full_name: Murphy, E last_name: Murphy - first_name: CF full_name: Fonseca de Lima, CF last_name: Fonseca de Lima - first_name: S full_name: Zhu, S last_name: Zhu - first_name: B full_name: van de Cotte, B last_name: van de Cotte - first_name: LD full_name: Vu, LD last_name: Vu - first_name: D full_name: Balcerowicz, D last_name: Balcerowicz - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: X full_name: Kong, X last_name: Kong - first_name: G full_name: De Rop, G last_name: De Rop - first_name: T full_name: Beeckman, T last_name: Beeckman - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: K full_name: Vissenberg, K last_name: Vissenberg - first_name: PC full_name: Morris, PC last_name: Morris - first_name: Z full_name: Ding, Z last_name: Ding - first_name: I full_name: De Smet, I last_name: De Smet citation: ama: Nikonorova N, Murphy E, Fonseca de Lima C, et al. The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators. Cells. 2021;10. doi:10.3390/cells10071665 apa: Nikonorova, N., Murphy, E., Fonseca de Lima, C., Zhu, S., van de Cotte, B., Vu, L., … De Smet, I. (2021). The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators. Cells. MDPI. https://doi.org/10.3390/cells10071665 chicago: Nikonorova, N, E Murphy, CF Fonseca de Lima, S Zhu, B van de Cotte, LD Vu, D Balcerowicz, et al. “The Arabidopsis Root Tip (Phospho)Proteomes at Growth-Promoting versus Growth-Repressing Conditions Reveal Novel Root Growth Regulators.” Cells. MDPI, 2021. https://doi.org/10.3390/cells10071665. ieee: N. Nikonorova et al., “The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators,” Cells, vol. 10. MDPI, 2021. ista: Nikonorova N, Murphy E, Fonseca de Lima C, Zhu S, van de Cotte B, Vu L, Balcerowicz D, Li L, Kong X, De Rop G, Beeckman T, Friml J, Vissenberg K, Morris P, Ding Z, De Smet I. 2021. The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators. Cells. 10, 1665. mla: Nikonorova, N., et al. “The Arabidopsis Root Tip (Phospho)Proteomes at Growth-Promoting versus Growth-Repressing Conditions Reveal Novel Root Growth Regulators.” Cells, vol. 10, 1665, MDPI, 2021, doi:10.3390/cells10071665. short: N. Nikonorova, E. Murphy, C. Fonseca de Lima, S. Zhu, B. van de Cotte, L. Vu, D. Balcerowicz, L. Li, X. Kong, G. De Rop, T. Beeckman, J. Friml, K. Vissenberg, P. Morris, Z. Ding, I. De Smet, Cells 10 (2021). date_created: 2021-09-14T11:36:20Z date_published: 2021-07-02T00:00:00Z date_updated: 2024-03-27T23:30:43Z day: '02' ddc: - '575' department: - _id: JiFr doi: 10.3390/cells10071665 ec_funded: 1 external_id: isi: - '000676604700001' pmid: - '34359847' file: - access_level: open_access checksum: 2a9f534b9c2200e72e2cde95afaf4eed content_type: application/pdf creator: cchlebak date_created: 2021-09-16T09:07:06Z date_updated: 2021-09-16T09:07:06Z file_id: '10021' file_name: 2021_Cells_Nikonorova.pdf file_size: 2667848 relation: main_file success: 1 file_date_updated: 2021-09-16T09:07:06Z has_accepted_license: '1' intvolume: ' 10' isi: 1 keyword: - primary root - (phospho)proteomics - auxin - (receptor) kinase language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 3AC91DDA-15DF-11EA-824D-93A3E7B544D1 call_identifier: FWF name: FWF Open Access Fund publication: Cells publication_identifier: issn: - 2073-4409 publication_status: published publisher: MDPI quality_controlled: '1' related_material: record: - id: '10083' relation: dissertation_contains status: public status: public title: The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 10 year: '2021' ... --- _id: '10095' abstract: - lang: eng text: Growth regulation tailors plant development to its environment. A showcase is response to gravity, where shoots bend up and roots down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots, while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phospho-proteomics in Arabidopsis thaliana, we advance our understanding how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on the rapid regulation of the apoplastic pH, a causative growth determinant. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+-influx, causing apoplast alkalinisation. The simultaneous activation of these two counteracting mechanisms poises the root for a rapid, fine-tuned growth modulation while navigating complex soil environment. acknowledged_ssus: - _id: LifeSc - _id: M-Shop - _id: Bio acknowledgement: We thank Nataliia Gnyliukh and Lukas Hörmayer for technical assistance and Nadine Paris for sharing PM-Cyto seeds. We gratefully acknowledge Life Science, Machine Shop and Bioimaging Facilities of IST Austria. This project has received funding from the European Research Council Advanced Grant (ETAP-742985) and the Austrian Science Fund (FWF) I 3630-B25 to J.F., the National Institutes of Health (GM067203) to W.M.G., the Netherlands Organization for Scientific Research (NWO; VIDI-864.13.001.), the Research Foundation-Flanders (FWO; Odysseus II G0D0515N) and a European Research Council Starting Grant (TORPEDO-714055) to W.S. and B.D.R., the VICI grant (865.14.001) from the Netherlands Organization for Scientific Research to M.R and D.W., the Australian Research Council and China National Distinguished Expert Project (WQ20174400441) to S.S., the MEXT/JSPS KAKENHI to K.T. (20K06685) and T.K. (20H05687 and 20H05910), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385 and the DOC Fellowship of the Austrian Academy of Sciences to L.L., the China Scholarship Council to J.C. article_number: '266395' article_processing_charge: No author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Mark full_name: Roosjen, Mark last_name: Roosjen - first_name: Koji full_name: Takahashi, Koji last_name: Takahashi - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Jian full_name: Chen, Jian last_name: Chen - first_name: Lana full_name: Shabala, Lana last_name: Shabala - first_name: Wouter full_name: Smet, Wouter last_name: Smet - first_name: Hong full_name: Ren, Hong last_name: Ren - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Sergey full_name: Shabala, Sergey last_name: Shabala - first_name: Bert full_name: De Rybel, Bert last_name: De Rybel - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Toshinori full_name: Kinoshita, Toshinori last_name: Kinoshita - first_name: William M. full_name: Gray, William M. last_name: Gray - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li L, Verstraeten I, Roosjen M, et al. Cell surface and intracellular auxin signalling for H+-fluxes in root growth. Research Square. doi:10.21203/rs.3.rs-266395/v3 apa: Li, L., Verstraeten, I., Roosjen, M., Takahashi, K., Rodriguez Solovey, L., Merrin, J., … Friml, J. (n.d.). Cell surface and intracellular auxin signalling for H+-fluxes in root growth. Research Square. https://doi.org/10.21203/rs.3.rs-266395/v3 chicago: Li, Lanxin, Inge Verstraeten, Mark Roosjen, Koji Takahashi, Lesia Rodriguez Solovey, Jack Merrin, Jian Chen, et al. “Cell Surface and Intracellular Auxin Signalling for H+-Fluxes in Root Growth.” Research Square, n.d. https://doi.org/10.21203/rs.3.rs-266395/v3. ieee: L. Li et al., “Cell surface and intracellular auxin signalling for H+-fluxes in root growth,” Research Square. . ista: Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez Solovey L, Merrin J, Chen J, Shabala L, Smet W, Ren H, Vanneste S, Shabala S, De Rybel B, Weijers D, Kinoshita T, Gray WM, Friml J. Cell surface and intracellular auxin signalling for H+-fluxes in root growth. Research Square, 266395. mla: Li, Lanxin, et al. “Cell Surface and Intracellular Auxin Signalling for H+-Fluxes in Root Growth.” Research Square, 266395, doi:10.21203/rs.3.rs-266395/v3. short: L. Li, I. Verstraeten, M. Roosjen, K. Takahashi, L. Rodriguez Solovey, J. Merrin, J. Chen, L. Shabala, W. Smet, H. Ren, S. Vanneste, S. Shabala, B. De Rybel, D. Weijers, T. Kinoshita, W.M. Gray, J. Friml, Research Square (n.d.). date_created: 2021-10-06T08:56:22Z date_published: 2021-09-09T00:00:00Z date_updated: 2024-03-27T23:30:43Z day: '09' department: - _id: JiFr - _id: NanoFab doi: 10.21203/rs.3.rs-266395/v3 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.doi.org/10.21203/rs.3.rs-266395/v3 month: '09' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Research Square publication_identifier: issn: - 2693-5015 publication_status: accepted related_material: record: - id: '10223' relation: later_version status: public - id: '10083' relation: dissertation_contains status: public status: public title: Cell surface and intracellular auxin signalling for H+-fluxes in root growth tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '7601' abstract: - lang: eng text: Plasmodesmata (PD) are crucial structures for intercellular communication in multicellular plants with remorins being their crucial plant-specific structural and functional constituents. The PD biogenesis is an intriguing but poorly understood process. By expressing an Arabidopsis remorin protein in mammalian cells, we have reconstituted a PD-like filamentous structure, termed remorin filament (RF), connecting neighboring cells physically and physiologically. Notably, RFs are capable of transporting macromolecules intercellularly, in a way similar to plant PD. With further super-resolution microscopic analysis and biochemical characterization, we found that RFs are also composed of actin filaments, forming the core skeleton structure, aligned with the remorin protein. This unique heterologous filamentous structure might explain the molecular mechanism for remorin function as well as PD construction. Furthermore, remorin protein exhibits a specific distribution manner in the plasma membrane in mammalian cells, representing a lipid nanodomain, depending on its lipid modification status. Our studies not only provide crucial insights into the mechanism of PD biogenesis, but also uncovers unsuspected fundamental mechanistic and evolutionary links between intercellular communication systems of plants and animals. article_processing_charge: No author: - first_name: Zhuang full_name: Wei, Zhuang last_name: Wei - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Tao full_name: Liu, Tao last_name: Liu - first_name: Yuan full_name: Wu, Yuan last_name: Wu - first_name: Ji-Gang full_name: Lei, Ji-Gang last_name: Lei - first_name: ZhengJun full_name: Chen, ZhengJun last_name: Chen - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Hong-Wei full_name: Xue, Hong-Wei last_name: Xue - first_name: Kan full_name: Liao, Kan last_name: Liao citation: ama: Wei Z, Tan S, Liu T, et al. Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv. 2020. doi:10.1101/791137 apa: Wei, Z., Tan, S., Liu, T., Wu, Y., Lei, J.-G., Chen, Z., … Liao, K. (2020). Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/791137 chicago: Wei, Zhuang, Shutang Tan, Tao Liu, Yuan Wu, Ji-Gang Lei, ZhengJun Chen, Jiří Friml, Hong-Wei Xue, and Kan Liao. “Plasmodesmata-like Intercellular Connections by Plant Remorin in Animal Cells.” BioRxiv. Cold Spring Harbor Laboratory, 2020. https://doi.org/10.1101/791137. ieee: Z. Wei et al., “Plasmodesmata-like intercellular connections by plant remorin in animal cells,” bioRxiv. Cold Spring Harbor Laboratory, 2020. ista: Wei Z, Tan S, Liu T, Wu Y, Lei J-G, Chen Z, Friml J, Xue H-W, Liao K. 2020. Plasmodesmata-like intercellular connections by plant remorin in animal cells. bioRxiv, 10.1101/791137. mla: Wei, Zhuang, et al. “Plasmodesmata-like Intercellular Connections by Plant Remorin in Animal Cells.” BioRxiv, Cold Spring Harbor Laboratory, 2020, doi:10.1101/791137. short: Z. Wei, S. Tan, T. Liu, Y. Wu, J.-G. Lei, Z. Chen, J. Friml, H.-W. Xue, K. Liao, BioRxiv (2020). date_created: 2020-03-21T16:34:42Z date_published: 2020-02-19T00:00:00Z date_updated: 2021-01-12T08:14:26Z day: '19' department: - _id: JiFr doi: 10.1101/791137 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/791137 month: '02' oa: 1 oa_version: Preprint page: '22' publication: bioRxiv publication_status: published publisher: Cold Spring Harbor Laboratory status: public title: Plasmodesmata-like intercellular connections by plant remorin in animal cells type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2020' ... --- _id: '6997' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang Y, Friml J. Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. 2020;225(3):1049-1052. doi:10.1111/nph.16203 apa: Zhang, Y., & Friml, J. (2020). Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. Wiley. https://doi.org/10.1111/nph.16203 chicago: Zhang, Yuzhou, and Jiří Friml. “Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth.” New Phytologist. Wiley, 2020. https://doi.org/10.1111/nph.16203. ieee: Y. Zhang and J. Friml, “Auxin guides roots to avoid obstacles during gravitropic growth,” New Phytologist, vol. 225, no. 3. Wiley, pp. 1049–1052, 2020. ista: Zhang Y, Friml J. 2020. Auxin guides roots to avoid obstacles during gravitropic growth. New Phytologist. 225(3), 1049–1052. mla: Zhang, Yuzhou, and Jiří Friml. “Auxin Guides Roots to Avoid Obstacles during Gravitropic Growth.” New Phytologist, vol. 225, no. 3, Wiley, 2020, pp. 1049–52, doi:10.1111/nph.16203. short: Y. Zhang, J. Friml, New Phytologist 225 (2020) 1049–1052. date_created: 2019-11-12T11:41:32Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:01:49Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.16203 ec_funded: 1 external_id: isi: - '000489638800001' pmid: - '31603260' file: - access_level: open_access checksum: cd42ffdb381fd52812b9583d4d407139 content_type: application/pdf creator: dernst date_created: 2020-11-18T16:42:48Z date_updated: 2020-11-18T16:42:48Z file_id: '8772' file_name: 2020_NewPhytologist_Zhang.pdf file_size: 717345 relation: main_file success: 1 file_date_updated: 2020-11-18T16:42:48Z has_accepted_license: '1' intvolume: ' 225' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 1049-1052 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Auxin guides roots to avoid obstacles during gravitropic growth tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 225 year: '2020' ... --- _id: '7204' abstract: - lang: eng text: Plant root architecture dynamically adapts to various environmental conditions, such as salt‐containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor‐protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs‐protein phosphatase 2C (PP2C) mechanism is identified. The PYLs‐PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase‐mediated phosphorylation of PIN‐FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross‐talk between the stress hormone ABA and the versatile developmental regulator auxin. article_number: '1901455' article_processing_charge: No article_type: original author: - first_name: Yang full_name: Li, Yang last_name: Li - first_name: Yaping full_name: Wang, Yaping last_name: Wang - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Zhen full_name: Li, Zhen last_name: Li - first_name: Zhi full_name: Yuan, Zhi last_name: Yuan - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: David full_name: Domjan, David id: C684CD7A-257E-11EA-9B6F-D8588B4F947F last_name: Domjan orcid: 0000-0003-2267-106X - first_name: Kai full_name: Wang, Kai last_name: Wang - first_name: Wei full_name: Xuan, Wei last_name: Xuan - first_name: Yan full_name: Guo, Yan last_name: Guo - first_name: Zhizhong full_name: Gong, Zhizhong last_name: Gong - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jing full_name: Zhang, Jing last_name: Zhang citation: ama: Li Y, Wang Y, Tan S, et al. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. 2020;7(3). doi:10.1002/advs.201901455 apa: Li, Y., Wang, Y., Tan, S., Li, Z., Yuan, Z., Glanc, M., … Zhang, J. (2020). Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. Wiley. https://doi.org/10.1002/advs.201901455 chicago: Li, Yang, Yaping Wang, Shutang Tan, Zhen Li, Zhi Yuan, Matous Glanc, David Domjan, et al. “Root Growth Adaptation Is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex.” Advanced Science. Wiley, 2020. https://doi.org/10.1002/advs.201901455. ieee: Y. Li et al., “Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex,” Advanced Science, vol. 7, no. 3. Wiley, 2020. ista: Li Y, Wang Y, Tan S, Li Z, Yuan Z, Glanc M, Domjan D, Wang K, Xuan W, Guo Y, Gong Z, Friml J, Zhang J. 2020. Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex. Advanced Science. 7(3), 1901455. mla: Li, Yang, et al. “Root Growth Adaptation Is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex.” Advanced Science, vol. 7, no. 3, 1901455, Wiley, 2020, doi:10.1002/advs.201901455. short: Y. Li, Y. Wang, S. Tan, Z. Li, Z. Yuan, M. Glanc, D. Domjan, K. Wang, W. Xuan, Y. Guo, Z. Gong, J. Friml, J. Zhang, Advanced Science 7 (2020). date_created: 2019-12-22T23:00:43Z date_published: 2020-02-05T00:00:00Z date_updated: 2023-08-17T14:13:17Z day: '05' ddc: - '580' department: - _id: JiFr doi: 10.1002/advs.201901455 external_id: isi: - '000501912800001' pmid: - '32042554' file: - access_level: open_access checksum: 016eeab5860860af038e2da95ffe75c3 content_type: application/pdf creator: dernst date_created: 2020-02-24T14:29:54Z date_updated: 2020-07-14T12:47:53Z file_id: '7519' file_name: 2020_AdvScience_Li.pdf file_size: 3586924 relation: main_file file_date_updated: 2020-07-14T12:47:53Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Advanced Science publication_identifier: eissn: - 2198-3844 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 7 year: '2020' ... --- _id: '7142' abstract: - lang: eng text: The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin. acknowledgement: Research in J.F. laboratory is funded by the European Union's Horizon 2020 program (ERC grant agreement n° 742985); C.L. is supported by the Austrian Science Fund (FWF grant P 31493). article_processing_charge: No article_type: original author: - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Gallei MC, Luschnig C, Friml J. Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. 2020;53(2):43-49. doi:10.1016/j.pbi.2019.10.003' apa: 'Gallei, M. C., Luschnig, C., & Friml, J. (2020). Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2019.10.003' chicago: 'Gallei, Michelle C, Christian Luschnig, and Jiří Friml. “Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag.” Current Opinion in Plant Biology. Elsevier, 2020. https://doi.org/10.1016/j.pbi.2019.10.003.' ieee: 'M. C. Gallei, C. Luschnig, and J. Friml, “Auxin signalling in growth: Schrödinger’s cat out of the bag,” Current Opinion in Plant Biology, vol. 53, no. 2. Elsevier, pp. 43–49, 2020.' ista: 'Gallei MC, Luschnig C, Friml J. 2020. Auxin signalling in growth: Schrödinger’s cat out of the bag. Current Opinion in Plant Biology. 53(2), 43–49.' mla: 'Gallei, Michelle C., et al. “Auxin Signalling in Growth: Schrödinger’s Cat out of the Bag.” Current Opinion in Plant Biology, vol. 53, no. 2, Elsevier, 2020, pp. 43–49, doi:10.1016/j.pbi.2019.10.003.' short: M.C. Gallei, C. Luschnig, J. Friml, Current Opinion in Plant Biology 53 (2020) 43–49. date_created: 2019-12-02T12:05:26Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:07:22Z day: '01' department: - _id: JiFr doi: 10.1016/j.pbi.2019.10.003 ec_funded: 1 external_id: isi: - '000521120600007' pmid: - '31760231' intvolume: ' 53' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: 43-49 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Current Opinion in Plant Biology publication_identifier: eissn: - 1879-0356 issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Auxin signalling in growth: Schrödinger''s cat out of the bag' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 53 year: '2020' ... --- _id: '7219' abstract: - lang: eng text: Root system architecture (RSA), governed by the phytohormone auxin, endows plants with an adaptive advantage in particular environments. Using geographically representative arabidopsis (Arabidopsis thaliana) accessions as a resource for GWA mapping, Waidmann et al. and Ogura et al. recently identified two novel components involved in modulating auxin-mediated RSA and conferring plant fitness in particular habitats. article_processing_charge: No article_type: original author: - first_name: Guanghui full_name: Xiao, Guanghui last_name: Xiao - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 citation: ama: 'Xiao G, Zhang Y. Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science. 2020;25(2):P121-123. doi:10.1016/j.tplants.2019.12.001' apa: 'Xiao, G., & Zhang, Y. (2020). Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science. Elsevier. https://doi.org/10.1016/j.tplants.2019.12.001' chicago: 'Xiao, Guanghui, and Yuzhou Zhang. “Adaptive Growth: Shaping Auxin-Mediated Root System Architecture.” Trends in Plant Science. Elsevier, 2020. https://doi.org/10.1016/j.tplants.2019.12.001.' ieee: 'G. Xiao and Y. Zhang, “Adaptive growth: Shaping auxin-mediated root system architecture,” Trends in Plant Science, vol. 25, no. 2. Elsevier, pp. P121-123, 2020.' ista: 'Xiao G, Zhang Y. 2020. Adaptive growth: Shaping auxin-mediated root system architecture. Trends in Plant Science. 25(2), P121-123.' mla: 'Xiao, Guanghui, and Yuzhou Zhang. “Adaptive Growth: Shaping Auxin-Mediated Root System Architecture.” Trends in Plant Science, vol. 25, no. 2, Elsevier, 2020, pp. P121-123, doi:10.1016/j.tplants.2019.12.001.' short: G. Xiao, Y. Zhang, Trends in Plant Science 25 (2020) P121-123. date_created: 2019-12-29T23:00:48Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-17T14:14:50Z day: '01' department: - _id: JiFr doi: 10.1016/j.tplants.2019.12.001 external_id: isi: - '000508637500001' pmid: - '31843370' intvolume: ' 25' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: P121-123 pmid: 1 publication: Trends in Plant Science publication_identifier: issn: - '13601385' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Adaptive growth: Shaping auxin-mediated root system architecture' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 25 year: '2020' ... --- _id: '7465' abstract: - lang: eng text: The flexible development of plants is characterized by a high capacity for post-embryonic organ formation and tissue regeneration, processes, which require tightly regulated intercellular communication and coordinated tissue (re-)polarization. The phytohormone auxin, the main driver for these processes, is able to establish polarized auxin transport channels, which are characterized by the expression and polar, subcellular localization of the PIN1 auxin transport proteins. These channels are demarcating the position of future vascular strands necessary for organ formation and tissue regeneration. Major progress has been made in the last years to understand how PINs can change their polarity in different contexts and thus guide auxin flow through the plant. However, it still remains elusive how auxin mediates the establishment of auxin conducting channels and the formation of vascular tissue and which cellular processes are involved. By the means of sophisticated regeneration experiments combined with local auxin applications in Arabidopsis thaliana inflorescence stems we show that (i) PIN subcellular dynamics, (ii) PIN internalization by clathrin-mediated trafficking and (iii) an intact actin cytoskeleton required for post-endocytic trafficking are indispensable for auxin channel formation, de novo vascular formation and vascular regeneration after wounding. These observations provide novel insights into cellular mechanism of coordinated tissue polarization during auxin canalization. article_number: '110414' article_processing_charge: No article_type: original author: - first_name: Ewa full_name: Mazur, Ewa last_name: Mazur - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Hélène S. full_name: Robert, Hélène S. last_name: Robert - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Mazur E, Gallei MC, Adamowski M, Han H, Robert HS, Friml J. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Science. 2020;293(4). doi:10.1016/j.plantsci.2020.110414 apa: Mazur, E., Gallei, M. C., Adamowski, M., Han, H., Robert, H. S., & Friml, J. (2020). Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Science. Elsevier. https://doi.org/10.1016/j.plantsci.2020.110414 chicago: Mazur, Ewa, Michelle C Gallei, Maciek Adamowski, Huibin Han, Hélène S. Robert, and Jiří Friml. “Clathrin-Mediated Trafficking and PIN Trafficking Are Required for Auxin Canalization and Vascular Tissue Formation in Arabidopsis.” Plant Science. Elsevier, 2020. https://doi.org/10.1016/j.plantsci.2020.110414. ieee: E. Mazur, M. C. Gallei, M. Adamowski, H. Han, H. S. Robert, and J. Friml, “Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis,” Plant Science, vol. 293, no. 4. Elsevier, 2020. ista: Mazur E, Gallei MC, Adamowski M, Han H, Robert HS, Friml J. 2020. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Science. 293(4), 110414. mla: Mazur, Ewa, et al. “Clathrin-Mediated Trafficking and PIN Trafficking Are Required for Auxin Canalization and Vascular Tissue Formation in Arabidopsis.” Plant Science, vol. 293, no. 4, 110414, Elsevier, 2020, doi:10.1016/j.plantsci.2020.110414. short: E. Mazur, M.C. Gallei, M. Adamowski, H. Han, H.S. Robert, J. Friml, Plant Science 293 (2020). date_created: 2020-02-09T23:00:50Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-17T14:37:32Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.plantsci.2020.110414 ec_funded: 1 external_id: isi: - '000520609800009' file: - access_level: open_access checksum: f7f27c6a8fea985ceb9279be2204461c content_type: application/pdf creator: dernst date_created: 2020-02-10T08:59:36Z date_updated: 2020-07-14T12:47:59Z file_id: '7471' file_name: 2020_PlantScience_Mazur.pdf file_size: 3499069 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 293' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Science publication_identifier: eissn: - '18732259' issn: - '01689452' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public scopus_import: '1' status: public title: Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 293 year: '2020' ... --- _id: '7490' abstract: - lang: eng text: In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes. acknowledged_ssus: - _id: LifeSc - _id: Bio - _id: EM-Fac article_number: e52067 article_processing_charge: No article_type: original author: - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Barbara E full_name: Casillas Perez, Barbara E id: 351ED2AA-F248-11E8-B48F-1D18A9856A87 last_name: Casillas Perez - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Narasimhan M, Johnson AJ, Prizak R, et al. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 2020;9. doi:10.7554/eLife.52067 apa: Narasimhan, M., Johnson, A. J., Prizak, R., Kaufmann, W., Tan, S., Casillas Perez, B. E., & Friml, J. (2020). Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.52067 chicago: Narasimhan, Madhumitha, Alexander J Johnson, Roshan Prizak, Walter Kaufmann, Shutang Tan, Barbara E Casillas Perez, and Jiří Friml. “Evolutionarily Unique Mechanistic Framework of Clathrin-Mediated Endocytosis in Plants.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/eLife.52067. ieee: M. Narasimhan et al., “Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Narasimhan M, Johnson AJ, Prizak R, Kaufmann W, Tan S, Casillas Perez BE, Friml J. 2020. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 9, e52067. mla: Narasimhan, Madhumitha, et al. “Evolutionarily Unique Mechanistic Framework of Clathrin-Mediated Endocytosis in Plants.” ELife, vol. 9, e52067, eLife Sciences Publications, 2020, doi:10.7554/eLife.52067. short: M. Narasimhan, A.J. Johnson, R. Prizak, W. Kaufmann, S. Tan, B.E. Casillas Perez, J. Friml, ELife 9 (2020). date_created: 2020-02-16T23:00:50Z date_published: 2020-01-23T00:00:00Z date_updated: 2023-08-18T06:33:07Z day: '23' ddc: - '570' - '580' department: - _id: JiFr - _id: GaTk - _id: EM-Fac - _id: SyCr doi: 10.7554/eLife.52067 ec_funded: 1 external_id: isi: - '000514104100001' pmid: - '31971511' file: - access_level: open_access checksum: 2052daa4be5019534f3a42f200a09f32 content_type: application/pdf creator: dernst date_created: 2020-02-18T07:21:16Z date_updated: 2020-07-14T12:47:59Z file_id: '7494' file_name: 2020_eLife_Narasimhan.pdf file_size: 7247468 relation: main_file file_date_updated: 2020-07-14T12:47:59Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '7497' abstract: - lang: eng text: Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng, enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole‐3‐acetic acid (IAA) and jasmonic acid (JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate (MeJA) (2 to 15 μM) and 1‐naphthalenacetic acid (NAA) (10 to 20 μM). Moreover, the roots of the JA signalling‐defective coi1‐18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild‐type Nipponbare and miR393b‐overexpressing lines, and the colonization was rescued by MeJA but not by NAA. It suggests that the cross‐talk between JA signalling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants. acknowledgement: We thank Professor Jianqiang Wu (Kunming Institute of Botany, Chinese Academy of Sciences) for providing generous support with the IAA and JA measurements. We thank Professor Guohua Xu (Nanjing Agricultural University) for generously providing the Nipponbare rice expressing DR5::GUS. We thank Professor Muyuan Zhu (Zhejiang University) for generously providing a rice line expressing 35S::miR393b. We thank Professor Yinong Yang (Pennsylvania State University) for generously providing the rice line coi1-18. This work was supported by grants from the National Natural Science Foundation of China (31660501, 31460453, 31860064 and 31470382), the Major Special Program for Scientific Research, Education Department of Yunnan Province (ZD2015005), the Project sponsored by SRF for ROCS, SEM ([2013] 1792), the Major Science and Technique Programs in Yunnan Province (2016ZF001), the Key Projects of the Applied Basic Research Plan of Yunnan Province (2017FA018), the National Key R&D Program of China (2018YFD0201100) and the China Agriculture Research System (CARS-21). article_processing_charge: No article_type: original author: - first_name: L full_name: Han, L last_name: Han - first_name: X full_name: Zhou, X last_name: Zhou - first_name: Y full_name: Zhao, Y last_name: Zhao - first_name: S full_name: Zhu, S last_name: Zhu - first_name: L full_name: Wu, L last_name: Wu - first_name: Y full_name: He, Y last_name: He - first_name: X full_name: Ping, X last_name: Ping - first_name: X full_name: Lu, X last_name: Lu - first_name: W full_name: Huang, W last_name: Huang - first_name: J full_name: Qian, J last_name: Qian - first_name: L full_name: Zhang, L last_name: Zhang - first_name: X full_name: Jiang, X last_name: Jiang - first_name: D full_name: Zhu, D last_name: Zhu - first_name: C full_name: Luo, C last_name: Luo - first_name: S full_name: Li, S last_name: Li - first_name: Q full_name: Dong, Q last_name: Dong - first_name: Q full_name: Fu, Q last_name: Fu - first_name: K full_name: Deng, K last_name: Deng - first_name: X full_name: Wang, X last_name: Wang - first_name: L full_name: Wang, L last_name: Wang - first_name: S full_name: Peng, S last_name: Peng - first_name: J full_name: Wu, J last_name: Wu - first_name: W full_name: Li, W last_name: Li - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Y full_name: Zhu, Y last_name: Zhu - first_name: X full_name: He, X last_name: He - first_name: Y full_name: Du, Y last_name: Du citation: ama: Han L, Zhou X, Zhao Y, et al. Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. Journal of Integrative Plant Biology. 2020;62(9):1433-1451. doi:10.1111/jipb.12905 apa: Han, L., Zhou, X., Zhao, Y., Zhu, S., Wu, L., He, Y., … Du, Y. (2020). Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. Journal of Integrative Plant Biology. Wiley. https://doi.org/10.1111/jipb.12905 chicago: Han, L, X Zhou, Y Zhao, S Zhu, L Wu, Y He, X Ping, et al. “Colonization of Endophyte Acremonium Sp. D212 in Panax Notoginseng and Rice Mediated by Auxin and Jasmonic Acid.” Journal of Integrative Plant Biology. Wiley, 2020. https://doi.org/10.1111/jipb.12905. ieee: L. Han et al., “Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid,” Journal of Integrative Plant Biology, vol. 62, no. 9. Wiley, pp. 1433–1451, 2020. ista: Han L, Zhou X, Zhao Y, Zhu S, Wu L, He Y, Ping X, Lu X, Huang W, Qian J, Zhang L, Jiang X, Zhu D, Luo C, Li S, Dong Q, Fu Q, Deng K, Wang X, Wang L, Peng S, Wu J, Li W, Friml J, Zhu Y, He X, Du Y. 2020. Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid. Journal of Integrative Plant Biology. 62(9), 1433–1451. mla: Han, L., et al. “Colonization of Endophyte Acremonium Sp. D212 in Panax Notoginseng and Rice Mediated by Auxin and Jasmonic Acid.” Journal of Integrative Plant Biology, vol. 62, no. 9, Wiley, 2020, pp. 1433–51, doi:10.1111/jipb.12905. short: L. Han, X. Zhou, Y. Zhao, S. Zhu, L. Wu, Y. He, X. Ping, X. Lu, W. Huang, J. Qian, L. Zhang, X. Jiang, D. Zhu, C. Luo, S. Li, Q. Dong, Q. Fu, K. Deng, X. Wang, L. Wang, S. Peng, J. Wu, W. Li, J. Friml, Y. Zhu, X. He, Y. Du, Journal of Integrative Plant Biology 62 (2020) 1433–1451. date_created: 2020-02-18T10:02:25Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-08-18T06:44:16Z day: '01' department: - _id: JiFr doi: 10.1111/jipb.12905 external_id: isi: - '000515803000001' pmid: - '31912615' intvolume: ' 62' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/jipb.12905 month: '09' oa: 1 oa_version: Published Version page: 1433-1451 pmid: 1 publication: Journal of Integrative Plant Biology publication_identifier: eissn: - 1744-7909 issn: - 1672-9072 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 62 year: '2020' ... --- _id: '7540' abstract: - lang: eng text: ' In vitro propagation of the ornamentally interesting species Wikstroemia gemmata is limited by the recalcitrance to form adventitious roots. In this article, two strategies to improve the rooting capacity of in vitro microcuttings are presented. Firstly, the effect of exogenous auxin was evaluated in both light and dark cultivated stem segments and also the sucrose-content of the medium was varied in order to determine better rooting conditions. Secondly, different spectral lights were evaluated and the effect on shoot growth and root induction demonstrated that the exact spectral composition of light is important for successful in vitro growth and development of Wikstroemia gemmata. We show that exogenous auxin cannot compensate for the poor rooting under unfavorable light conditions. Adapting the culture conditions is therefore paramount for successful industrial propagation of Wikstroemia gemmata. ' article_processing_charge: No article_type: original author: - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: H. full_name: Buyle, H. last_name: Buyle - first_name: S. full_name: Werbrouck, S. last_name: Werbrouck - first_name: M.C. full_name: Van Labeke, M.C. last_name: Van Labeke - first_name: D. full_name: Geelen, D. last_name: Geelen citation: ama: Verstraeten I, Buyle H, Werbrouck S, Van Labeke MC, Geelen D. In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality. Israel Journal of Plant Sciences. 2020;67(1-2):16-26. doi:10.1163/22238980-20191110 apa: Verstraeten, I., Buyle, H., Werbrouck, S., Van Labeke, M. C., & Geelen, D. (2020). In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality. Israel Journal of Plant Sciences. Brill. https://doi.org/10.1163/22238980-20191110 chicago: Verstraeten, Inge, H. Buyle, S. Werbrouck, M.C. Van Labeke, and D. Geelen. “In Vitro Shoot Growth and Adventitious Rooting of Wikstroemia Gemmata Depends on Light Quality.” Israel Journal of Plant Sciences. Brill, 2020. https://doi.org/10.1163/22238980-20191110. ieee: I. Verstraeten, H. Buyle, S. Werbrouck, M. C. Van Labeke, and D. Geelen, “In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality,” Israel Journal of Plant Sciences, vol. 67, no. 1–2. Brill, pp. 16–26, 2020. ista: Verstraeten I, Buyle H, Werbrouck S, Van Labeke MC, Geelen D. 2020. In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality. Israel Journal of Plant Sciences. 67(1–2), 16–26. mla: Verstraeten, Inge, et al. “In Vitro Shoot Growth and Adventitious Rooting of Wikstroemia Gemmata Depends on Light Quality.” Israel Journal of Plant Sciences, vol. 67, no. 1–2, Brill, 2020, pp. 16–26, doi:10.1163/22238980-20191110. short: I. Verstraeten, H. Buyle, S. Werbrouck, M.C. Van Labeke, D. Geelen, Israel Journal of Plant Sciences 67 (2020) 16–26. date_created: 2020-02-28T09:18:01Z date_published: 2020-02-01T00:00:00Z date_updated: 2023-08-18T06:45:15Z day: '01' department: - _id: JiFr doi: 10.1163/22238980-20191110 external_id: isi: - '000525343300004' intvolume: ' 67' isi: 1 issue: 1-2 language: - iso: eng month: '02' oa_version: None page: 16-26 publication: Israel Journal of Plant Sciences publication_identifier: eissn: - 2223-8980 issn: - 0792-9978 publication_status: published publisher: Brill quality_controlled: '1' scopus_import: '1' status: public title: In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 67 year: '2020' ... --- _id: '7582' abstract: - lang: eng text: Small RNAs (smRNA, 19–25 nucleotides long), which are transcribed by RNA polymerase II, regulate the expression of genes involved in a multitude of processes in eukaryotes. miRNA biogenesis and the proteins involved in the biogenesis pathway differ across plant and animal lineages. The major proteins constituting the biogenesis pathway, namely, the Dicers (DCL/DCR) and Argonautes (AGOs), have been extensively studied. However, the accessory proteins (DAWDLE (DDL), SERRATE (SE), and TOUGH (TGH)) of the pathway that differs across the two lineages remain largely uncharacterized. We present the first detailed report on the molecular evolution and divergence of these proteins across eukaryotes. Although DDL is present in eukaryotes and prokaryotes, SE and TGH appear to be specific to eukaryotes. The addition/deletion of specific domains and/or domain-specific sequence divergence in the three proteins points to the observed functional divergence of these proteins across the two lineages, which correlates with the differences in miRNA length across the two lineages. Our data enhance the current understanding of the structure–function relationship of these proteins and reveals previous unexplored crucial residues in the three proteins that can be used as a basis for further functional characterization. The data presented here on the number of miRNAs in crown eukaryotic lineages are consistent with the notion of the expansion of the number of miRNA-coding genes in animal and plant lineages correlating with organismal complexity. Whether this difference in functionally correlates with the diversification (or presence/absence) of the three proteins studied here or the miRNA signaling in the plant and animal lineages is unclear. Based on our results of the three proteins studied here and previously available data concerning the evolution of miRNA genes in the plant and animal lineages, we believe that miRNAs probably evolved once in the ancestor to crown eukaryotes and have diversified independently in the eukaryotes. article_number: '299' article_processing_charge: No article_type: original author: - first_name: Taraka Ramji full_name: Moturu, Taraka Ramji last_name: Moturu - first_name: Sansrity full_name: Sinha, Sansrity last_name: Sinha - first_name: Hymavathi full_name: Salava, Hymavathi last_name: Salava - first_name: Sravankumar full_name: Thula, Sravankumar last_name: Thula - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Radka Svobodová full_name: Vařeková, Radka Svobodová last_name: Vařeková - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 citation: ama: Moturu TR, Sinha S, Salava H, et al. Molecular evolution and diversification of proteins involved in miRNA maturation pathway. Plants. 2020;9(3). doi:10.3390/plants9030299 apa: Moturu, T. R., Sinha, S., Salava, H., Thula, S., Nodzyński, T., Vařeková, R. S., … Simon, S. (2020). Molecular evolution and diversification of proteins involved in miRNA maturation pathway. Plants. MDPI. https://doi.org/10.3390/plants9030299 chicago: Moturu, Taraka Ramji, Sansrity Sinha, Hymavathi Salava, Sravankumar Thula, Tomasz Nodzyński, Radka Svobodová Vařeková, Jiří Friml, and Sibu Simon. “Molecular Evolution and Diversification of Proteins Involved in MiRNA Maturation Pathway.” Plants. MDPI, 2020. https://doi.org/10.3390/plants9030299. ieee: T. R. Moturu et al., “Molecular evolution and diversification of proteins involved in miRNA maturation pathway,” Plants, vol. 9, no. 3. MDPI, 2020. ista: Moturu TR, Sinha S, Salava H, Thula S, Nodzyński T, Vařeková RS, Friml J, Simon S. 2020. Molecular evolution and diversification of proteins involved in miRNA maturation pathway. Plants. 9(3), 299. mla: Moturu, Taraka Ramji, et al. “Molecular Evolution and Diversification of Proteins Involved in MiRNA Maturation Pathway.” Plants, vol. 9, no. 3, 299, MDPI, 2020, doi:10.3390/plants9030299. short: T.R. Moturu, S. Sinha, H. Salava, S. Thula, T. Nodzyński, R.S. Vařeková, J. Friml, S. Simon, Plants 9 (2020). date_created: 2020-03-15T23:00:52Z date_published: 2020-03-01T00:00:00Z date_updated: 2023-08-18T07:07:08Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.3390/plants9030299 ec_funded: 1 external_id: isi: - '000525315000035' pmid: - '32121542' file: - access_level: open_access checksum: 6d5af3e17266a48996b4af4e67e88a85 content_type: application/pdf creator: dernst date_created: 2020-03-23T13:37:00Z date_updated: 2020-07-14T12:48:00Z file_id: '7614' file_name: 2020_Plants_Moturu.pdf file_size: 2373484 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Plants publication_identifier: eissn: - '22237747' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Molecular evolution and diversification of proteins involved in miRNA maturation pathway tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '7600' abstract: - lang: eng text: Directional intercellular transport of the phytohormone auxin mediated by PIN FORMED (PIN) efflux carriers plays essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. Multilevel regulations of PIN activity under internal and external cues are complicated; however, the underlying molecular mechanism remains elusive. Here we demonstrate that 3’-Phosphoinositide-Dependent Protein Kinase1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub integrating the upstream lipid signalling and the downstream substrate activity through phosphorylation. Genetic analysis uncovers that loss-of-function Arabidopsis mutant pdk1.1 pdk1.2 exhibits a plethora of abnormalities in organogenesis and growth, due to the defective PIN-dependent auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 Protein Kinase to facilitate its activity towards PIN proteins. Our studies establish a lipid-dependent phosphorylation cascade connecting membrane composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes. acknowledged_ssus: - _id: Bio - _id: LifeSc article_processing_charge: No article_type: original author: - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Wei full_name: Kong, Wei last_name: Kong - first_name: Xiao-Li full_name: Yang, Xiao-Li last_name: Yang - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Zuzana full_name: Vondráková, Zuzana last_name: Vondráková - first_name: Roberta full_name: Filepová, Roberta last_name: Filepová - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Hong-Wei full_name: Xue, Hong-Wei last_name: Xue citation: ama: Tan S, Zhang X, Kong W, et al. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants. 2020;6:556-569. doi:10.1038/s41477-020-0648-9 apa: Tan, S., Zhang, X., Kong, W., Yang, X.-L., Molnar, G., Vondráková, Z., … Xue, H.-W. (2020). The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-020-0648-9 chicago: Tan, Shutang, Xixi Zhang, Wei Kong, Xiao-Li Yang, Gergely Molnar, Zuzana Vondráková, Roberta Filepová, Jan Petrášek, Jiří Friml, and Hong-Wei Xue. “The Lipid Code-Dependent Phosphoswitch PDK1–D6PK Activates PIN-Mediated Auxin Efflux in Arabidopsis.” Nature Plants. Springer Nature, 2020. https://doi.org/10.1038/s41477-020-0648-9. ieee: S. Tan et al., “The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis,” Nature Plants, vol. 6. Springer Nature, pp. 556–569, 2020. ista: Tan S, Zhang X, Kong W, Yang X-L, Molnar G, Vondráková Z, Filepová R, Petrášek J, Friml J, Xue H-W. 2020. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nature Plants. 6, 556–569. mla: Tan, Shutang, et al. “The Lipid Code-Dependent Phosphoswitch PDK1–D6PK Activates PIN-Mediated Auxin Efflux in Arabidopsis.” Nature Plants, vol. 6, Springer Nature, 2020, pp. 556–69, doi:10.1038/s41477-020-0648-9. short: S. Tan, X. Zhang, W. Kong, X.-L. Yang, G. Molnar, Z. Vondráková, R. Filepová, J. Petrášek, J. Friml, H.-W. Xue, Nature Plants 6 (2020) 556–569. date_created: 2020-03-21T16:34:16Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-08-18T07:05:57Z day: '01' department: - _id: JiFr doi: 10.1038/s41477-020-0648-9 ec_funded: 1 external_id: isi: - '000531787500006' pmid: - '32393881' intvolume: ' 6' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/755504 month: '05' oa: 1 oa_version: Preprint page: 556-569 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship publication: Nature Plants publication_identifier: eissn: - '20550278' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41477-020-0719-y scopus_import: '1' status: public title: The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2020' ... --- _id: '7646' abstract: - lang: eng text: In plant cells, environmental stressors promote changes in connectivity between the cortical ER and the PM. Although this process is tightly regulated in space and time, the molecular signals and structural components mediating these changes in inter-organelle communication are only starting to be characterized. In this report, we confirm the presence of a putative tethering complex containing the synaptotagmins 1 and 5 (SYT1 and SYT5) and the Ca2+ and lipid binding protein 1 (CLB1/SYT7). This complex is enriched at ER-PM contact sites (EPCS), have slow responses to changes in extracellular Ca2+, and display severe cytoskeleton-dependent rearrangements in response to the trivalent lanthanum (La3+) and gadolinium (Gd3+) rare earth elements (REEs). Although REEs are generally used as non-selective cation channel blockers at the PM, here we show that the slow internalization of REEs into the cytosol underlies the activation of the Ca2+/Calmodulin intracellular signaling, the accumulation of phosphatidylinositol-4-phosphate (PI4P) at the PM, and the cytoskeleton-dependent rearrangement of the SYT1/SYT5 EPCS complexes. We propose that the observed EPCS rearrangements act as a slow adaptive response to sustained stress conditions, and that this process involves the accumulation of stress-specific phosphoinositides species at the PM. article_processing_charge: No article_type: original author: - first_name: E full_name: Lee, E last_name: Lee - first_name: B full_name: Vila Nova Santana, B last_name: Vila Nova Santana - first_name: E full_name: Samuels, E last_name: Samuels - first_name: F full_name: Benitez-Fuente, F last_name: Benitez-Fuente - first_name: E full_name: Corsi, E last_name: Corsi - first_name: MA full_name: Botella, MA last_name: Botella - first_name: J full_name: Perez-Sancho, J last_name: Perez-Sancho - first_name: S full_name: Vanneste, S last_name: Vanneste - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: A full_name: Macho, A last_name: Macho - first_name: A full_name: Alves Azevedo, A last_name: Alves Azevedo - first_name: A full_name: Rosado, A last_name: Rosado citation: ama: Lee E, Vila Nova Santana B, Samuels E, et al. Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes in Arabidopsis. Journal of Experimental Botany. 2020;71(14):3986–3998. doi:10.1093/jxb/eraa138 apa: Lee, E., Vila Nova Santana, B., Samuels, E., Benitez-Fuente, F., Corsi, E., Botella, M., … Rosado, A. (2020). Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes in Arabidopsis. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/eraa138 chicago: Lee, E, B Vila Nova Santana, E Samuels, F Benitez-Fuente, E Corsi, MA Botella, J Perez-Sancho, et al. “Rare Earth Elements Induce Cytoskeleton-Dependent and PI4P-Associated Rearrangement of SYT1/SYT5 ER-PM Contact Site Complexes in Arabidopsis.” Journal of Experimental Botany. Oxford University Press, 2020. https://doi.org/10.1093/jxb/eraa138. ieee: E. Lee et al., “Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes in Arabidopsis,” Journal of Experimental Botany, vol. 71, no. 14. Oxford University Press, pp. 3986–3998, 2020. ista: Lee E, Vila Nova Santana B, Samuels E, Benitez-Fuente F, Corsi E, Botella M, Perez-Sancho J, Vanneste S, Friml J, Macho A, Alves Azevedo A, Rosado A. 2020. Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes in Arabidopsis. Journal of Experimental Botany. 71(14), 3986–3998. mla: Lee, E., et al. “Rare Earth Elements Induce Cytoskeleton-Dependent and PI4P-Associated Rearrangement of SYT1/SYT5 ER-PM Contact Site Complexes in Arabidopsis.” Journal of Experimental Botany, vol. 71, no. 14, Oxford University Press, 2020, pp. 3986–3998, doi:10.1093/jxb/eraa138. short: E. Lee, B. Vila Nova Santana, E. Samuels, F. Benitez-Fuente, E. Corsi, M. Botella, J. Perez-Sancho, S. Vanneste, J. Friml, A. Macho, A. Alves Azevedo, A. Rosado, Journal of Experimental Botany 71 (2020) 3986–3998. date_created: 2020-04-06T10:57:08Z date_published: 2020-07-06T00:00:00Z date_updated: 2023-08-18T10:27:52Z day: '06' ddc: - '580' department: - _id: JiFr doi: 10.1093/jxb/eraa138 external_id: isi: - '000553125400007' pmid: - '32179893' file: - access_level: open_access checksum: b06aaaa93dc41896da805fe4b75cf3a1 content_type: application/pdf creator: dernst date_created: 2020-10-06T07:41:35Z date_updated: 2020-10-06T07:41:35Z file_id: '8613' file_name: 2020_JourExperimBotany_Lee.pdf file_size: 1916031 relation: main_file success: 1 file_date_updated: 2020-10-06T07:41:35Z has_accepted_license: '1' intvolume: ' 71' isi: 1 issue: '14' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 3986–3998 pmid: 1 publication: Journal of Experimental Botany publication_identifier: eissn: - 1460-2431 issn: - 0022-0957 publication_status: published publisher: Oxford University Press quality_controlled: '1' status: public title: Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 71 year: '2020' ... --- _id: '7686' abstract: - lang: eng text: 'The agricultural green revolution spectacularly enhanced crop yield and lodging resistance with modified DELLA-mediated gibberellin signaling. However, this was achieved at the expense of reduced nitrogen-use efficiency (NUE). Recently, Wu et al. revealed novel gibberellin signaling that provides a blueprint for improving tillering and NUE in Green Revolution varieties (GRVs). ' article_processing_charge: No article_type: original author: - first_name: Huidan full_name: Xue, Huidan last_name: Xue - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Guanghui full_name: Xiao, Guanghui last_name: Xiao citation: ama: 'Xue H, Zhang Y, Xiao G. Neo-gibberellin signaling: Guiding the next generation of the green revolution. Trends in Plant Science. 2020;25(6):520-522. doi:10.1016/j.tplants.2020.04.001' apa: 'Xue, H., Zhang, Y., & Xiao, G. (2020). Neo-gibberellin signaling: Guiding the next generation of the green revolution. Trends in Plant Science. Elsevier. https://doi.org/10.1016/j.tplants.2020.04.001' chicago: 'Xue, Huidan, Yuzhou Zhang, and Guanghui Xiao. “Neo-Gibberellin Signaling: Guiding the next Generation of the Green Revolution.” Trends in Plant Science. Elsevier, 2020. https://doi.org/10.1016/j.tplants.2020.04.001.' ieee: 'H. Xue, Y. Zhang, and G. Xiao, “Neo-gibberellin signaling: Guiding the next generation of the green revolution,” Trends in Plant Science, vol. 25, no. 6. Elsevier, pp. 520–522, 2020.' ista: 'Xue H, Zhang Y, Xiao G. 2020. Neo-gibberellin signaling: Guiding the next generation of the green revolution. Trends in Plant Science. 25(6), 520–522.' mla: 'Xue, Huidan, et al. “Neo-Gibberellin Signaling: Guiding the next Generation of the Green Revolution.” Trends in Plant Science, vol. 25, no. 6, Elsevier, 2020, pp. 520–22, doi:10.1016/j.tplants.2020.04.001.' short: H. Xue, Y. Zhang, G. Xiao, Trends in Plant Science 25 (2020) 520–522. date_created: 2020-04-26T22:00:46Z date_published: 2020-06-01T00:00:00Z date_updated: 2023-08-21T06:16:01Z day: '01' department: - _id: JiFr doi: 10.1016/j.tplants.2020.04.001 external_id: isi: - '000533518400003' pmid: - '32407691' intvolume: ' 25' isi: 1 issue: '6' language: - iso: eng month: '06' oa_version: None page: 520-522 pmid: 1 publication: Trends in Plant Science publication_identifier: issn: - 1360-1385 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Neo-gibberellin signaling: Guiding the next generation of the green revolution' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 25 year: '2020' ... --- _id: '7793' abstract: - lang: eng text: Hormonal signalling in animals often involves direct transcription factor-hormone interactions that modulate gene expression. In contrast, plant hormone signalling is most commonly based on de-repression via the degradation of transcriptional repressors. Recently, we uncovered a non-canonical signalling mechanism for the plant hormone auxin whereby auxin directly affects the activity of the atypical auxin response factor (ARF), ETTIN towards target genes without the requirement for protein degradation. Here we show that ETTIN directly binds auxin, leading to dissociation from co-repressor proteins of the TOPLESS/TOPLESS-RELATED family followed by histone acetylation and induction of gene expression. This mechanism is reminiscent of animal hormone signalling as it affects the activity towards regulation of target genes and provides the first example of a DNA-bound hormone receptor in plants. Whilst auxin affects canonical ARFs indirectly by facilitating degradation of Aux/IAA repressors, direct ETTIN-auxin interactions allow switching between repressive and de-repressive chromatin states in an instantly-reversible manner. article_number: e51787 article_processing_charge: No article_type: original author: - first_name: André full_name: Kuhn, André last_name: Kuhn - first_name: Sigurd full_name: Ramans Harborough, Sigurd last_name: Ramans Harborough - first_name: Heather M full_name: McLaughlin, Heather M last_name: McLaughlin - first_name: Bhavani full_name: Natarajan, Bhavani last_name: Natarajan - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Stefan full_name: Kepinski, Stefan last_name: Kepinski - first_name: Lars full_name: Østergaard, Lars last_name: Østergaard citation: ama: Kuhn A, Ramans Harborough S, McLaughlin HM, et al. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife. 2020;9. doi:10.7554/elife.51787 apa: Kuhn, A., Ramans Harborough, S., McLaughlin, H. M., Natarajan, B., Verstraeten, I., Friml, J., … Østergaard, L. (2020). Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.51787 chicago: Kuhn, André, Sigurd Ramans Harborough, Heather M McLaughlin, Bhavani Natarajan, Inge Verstraeten, Jiří Friml, Stefan Kepinski, and Lars Østergaard. “Direct ETTIN-Auxin Interaction Controls Chromatin States in Gynoecium Development.” ELife. eLife Sciences Publications, 2020. https://doi.org/10.7554/elife.51787. ieee: A. Kuhn et al., “Direct ETTIN-auxin interaction controls chromatin states in gynoecium development,” eLife, vol. 9. eLife Sciences Publications, 2020. ista: Kuhn A, Ramans Harborough S, McLaughlin HM, Natarajan B, Verstraeten I, Friml J, Kepinski S, Østergaard L. 2020. Direct ETTIN-auxin interaction controls chromatin states in gynoecium development. eLife. 9, e51787. mla: Kuhn, André, et al. “Direct ETTIN-Auxin Interaction Controls Chromatin States in Gynoecium Development.” ELife, vol. 9, e51787, eLife Sciences Publications, 2020, doi:10.7554/elife.51787. short: A. Kuhn, S. Ramans Harborough, H.M. McLaughlin, B. Natarajan, I. Verstraeten, J. Friml, S. Kepinski, L. Østergaard, ELife 9 (2020). date_created: 2020-05-04T08:50:47Z date_published: 2020-04-08T00:00:00Z date_updated: 2023-08-21T06:17:12Z day: '08' ddc: - '580' department: - _id: JiFr doi: 10.7554/elife.51787 external_id: isi: - '000527752200001' pmid: - '32267233' file: - access_level: open_access checksum: 15d740de1a741fdcc6ec128c48eed017 content_type: application/pdf creator: dernst date_created: 2020-05-04T09:06:43Z date_updated: 2020-07-14T12:48:03Z file_id: '7794' file_name: 2020_eLife_Kuhn.pdf file_size: 2893082 relation: main_file file_date_updated: 2020-07-14T12:48:03Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_identifier: issn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: Direct ETTIN-auxin interaction controls chromatin states in gynoecium development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2020' ... --- _id: '8138' abstract: - lang: eng text: Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration. acknowledgement: We are grateful to David Nelson for providing published materials and extremely helpful comments, and Elizabeth Dun and Christine Beveridge for helpful discussions. The research leading to these results has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (742985). This work was also supported by the Beijing Municipal Natural Science Foundation (5192011), Beijing Outstanding University Discipline Program, the National Natural Science Foundation of China (31370309), CEITEC 2020 (LQ1601) project with financial contribution made by the Ministry of Education, Youth and Sports of the Czech Republic within special support paid from the National Program of Sustainability II funds, Australian Research Council (FT180100081), and China Postdoctoral Science Foundation (2019M660864). article_processing_charge: No article_type: original author: - first_name: J full_name: Zhang, J last_name: Zhang - first_name: E full_name: Mazur, E last_name: Mazur - first_name: J full_name: Balla, J last_name: Balla - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: P full_name: Kalousek, P last_name: Kalousek - first_name: Z full_name: Medveďová, Z last_name: Medveďová - first_name: Y full_name: Li, Y last_name: Li - first_name: Y full_name: Wang, Y last_name: Wang - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat - first_name: Mina K full_name: Vasileva, Mina K id: 3407EB18-F248-11E8-B48F-1D18A9856A87 last_name: Vasileva - first_name: V full_name: Reinöhl, V last_name: Reinöhl - first_name: S full_name: Procházka, S last_name: Procházka - first_name: R full_name: Halouzka, R last_name: Halouzka - first_name: P full_name: Tarkowski, P last_name: Tarkowski - first_name: C full_name: Luschnig, C last_name: Luschnig - first_name: PB full_name: Brewer, PB last_name: Brewer - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang J, Mazur E, Balla J, et al. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nature Communications. 2020;11(1):3508. doi:10.1038/s41467-020-17252-y apa: Zhang, J., Mazur, E., Balla, J., Gallei, M. C., Kalousek, P., Medveďová, Z., … Friml, J. (2020). Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-17252-y chicago: Zhang, J, E Mazur, J Balla, Michelle C Gallei, P Kalousek, Z Medveďová, Y Li, et al. “Strigolactones Inhibit Auxin Feedback on PIN-Dependent Auxin Transport Canalization.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-17252-y. ieee: J. Zhang et al., “Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization,” Nature Communications, vol. 11, no. 1. Springer Nature, p. 3508, 2020. ista: Zhang J, Mazur E, Balla J, Gallei MC, Kalousek P, Medveďová Z, Li Y, Wang Y, Prat T, Vasileva MK, Reinöhl V, Procházka S, Halouzka R, Tarkowski P, Luschnig C, Brewer P, Friml J. 2020. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nature Communications. 11(1), 3508. mla: Zhang, J., et al. “Strigolactones Inhibit Auxin Feedback on PIN-Dependent Auxin Transport Canalization.” Nature Communications, vol. 11, no. 1, Springer Nature, 2020, p. 3508, doi:10.1038/s41467-020-17252-y. short: J. Zhang, E. Mazur, J. Balla, M.C. Gallei, P. Kalousek, Z. Medveďová, Y. Li, Y. Wang, T. Prat, M.K. Vasileva, V. Reinöhl, S. Procházka, R. Halouzka, P. Tarkowski, C. Luschnig, P. Brewer, J. Friml, Nature Communications 11 (2020) 3508. date_created: 2020-07-21T08:58:07Z date_published: 2020-07-14T00:00:00Z date_updated: 2023-08-22T08:13:44Z day: '14' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-020-17252-y ec_funded: 1 external_id: isi: - '000550062200004' pmid: - '32665554' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2020-07-22T08:32:55Z date_updated: 2020-07-22T08:32:55Z file_id: '8148' file_name: 2020_NatureComm_Zhang.pdf file_size: 1759490 relation: main_file success: 1 file_date_updated: 2020-07-22T08:32:55Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '3508' pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public scopus_import: '1' status: public title: Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8271' acknowledgement: We thank Dr. Gai Huang for his comments and help. We apologize to authors whose work could not be cited due to space limitation. No conflict of interest declared. article_processing_charge: No article_type: original author: - first_name: Peng full_name: He, Peng last_name: He - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Guanghui full_name: Xiao, Guanghui last_name: Xiao citation: ama: He P, Zhang Y, Xiao G. Origin of a subgenome and genome evolution of allotetraploid cotton species. Molecular Plant. 2020;13(9):1238-1240. doi:10.1016/j.molp.2020.07.006 apa: He, P., Zhang, Y., & Xiao, G. (2020). Origin of a subgenome and genome evolution of allotetraploid cotton species. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2020.07.006 chicago: He, Peng, Yuzhou Zhang, and Guanghui Xiao. “Origin of a Subgenome and Genome Evolution of Allotetraploid Cotton Species.” Molecular Plant. Elsevier, 2020. https://doi.org/10.1016/j.molp.2020.07.006. ieee: P. He, Y. Zhang, and G. Xiao, “Origin of a subgenome and genome evolution of allotetraploid cotton species,” Molecular Plant, vol. 13, no. 9. Elsevier, pp. 1238–1240, 2020. ista: He P, Zhang Y, Xiao G. 2020. Origin of a subgenome and genome evolution of allotetraploid cotton species. Molecular Plant. 13(9), 1238–1240. mla: He, Peng, et al. “Origin of a Subgenome and Genome Evolution of Allotetraploid Cotton Species.” Molecular Plant, vol. 13, no. 9, Elsevier, 2020, pp. 1238–40, doi:10.1016/j.molp.2020.07.006. short: P. He, Y. Zhang, G. Xiao, Molecular Plant 13 (2020) 1238–1240. date_created: 2020-08-16T22:00:57Z date_published: 2020-09-07T00:00:00Z date_updated: 2023-08-22T08:40:35Z day: '07' department: - _id: JiFr doi: 10.1016/j.molp.2020.07.006 external_id: isi: - '000566895400007' pmid: - '32688032' intvolume: ' 13' isi: 1 issue: '9' language: - iso: eng month: '09' oa_version: None page: 1238-1240 pmid: 1 publication: Molecular Plant publication_identifier: eissn: - '17529867' issn: - '16742052' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Origin of a subgenome and genome evolution of allotetraploid cotton species type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2020' ... --- _id: '8337' abstract: - lang: eng text: Cytokinins are mobile multifunctional plant hormones with roles in development and stress resilience. Although their Histidine Kinase receptors are substantially localised to the endoplasmic reticulum, cellular sites of cytokinin perception and importance of spatially heterogeneous cytokinin distribution continue to be debated. Here we show that cytokinin perception by plasma membrane receptors is an effective additional path for cytokinin response. Readout from a Two Component Signalling cytokinin-specific reporter (TCSn::GFP) closely matches intracellular cytokinin content in roots, yet we also find cytokinins in extracellular fluid, potentially enabling action at the cell surface. Cytokinins covalently linked to beads that could not pass the plasma membrane increased expression of both TCSn::GFP and Cytokinin Response Factors. Super-resolution microscopy of GFP-labelled receptors and diminished TCSn::GFP response to immobilised cytokinins in cytokinin receptor mutants, further indicate that receptors can function at the cell surface. We argue that dual intracellular and surface locations may augment flexibility of cytokinin responses. acknowledged_ssus: - _id: Bio acknowledgement: 'We thank Bruno Müller and Aaron Rashotte for critical discussions and provision of plant lines used in this work, Roger Granbom and Tamara Hernández Verdeja (UPSC, Umeå, Sweden) for technical assistance and providing materials, Zuzana Pěkná and Karolina Wojewodová (CRH, Palacký University, Olomouc, Czech Republic) for help with cytokinin receptor binding assays, and David Zalabák (CRH, Palacký University, Olomouc, Czech Republic) for provision of vector pINIIIΔEH expressing CRE1/AHK4. The bioimaging facility of IST Austria, the Swedish Metabolomics Centre and the IST Austria Bio-Imaging facility are acknowledged for support. The work was funded by the European Molecular Biology Organization (EMBO ASTF 297-2013) (I.A.), Development—The Company of Biologists (DEVTF2012) (I.A.; C.T.), Plant Fellows (the International Post doc Fellowship Programme in Plant Sciences, 267423) (I.A.; K.L.), the Swedish Research Council (621-2014-4514) (K.L.), UPSC Berzelii Center for Forest Biotechnology (Vinnova 2012-01560), Kempestiftelserna (JCK-2711) (K.L.) and (JCK-1811) (E.-M.B., K.L.). The Ministry of Education, Youth and Sports of the Czech Republic via the European Regional Development Fund-Project “Plants as a tool for sustainable global development” (CZ.02.1.01/0.0/0.0/16_019/0000827) (O.N., O.P., R.S., V.M., L.P., K.D.) and project CEITEC 2020 (LQ1601) (M.P., J.H.) provided support, as did the Czech Science Foundation via projects GP14-30004P (M.P.) and 16-04184S (O.P., K.D., O.N.), Vetenskapsrådet and Vinnova (Verket för Innovationssystem) (T.V., S.R.), Knut och Alice Wallenbergs Stiftelse via “Shapesystem” grant number 2012.0050. A.J. was supported by the Austria Science Fund (FWF): I03630 to J.F. The research leading to these results received funding from European Union’s Horizon 2020 programme (ERC grant no. 742985) and FWO-FWF joint project G0E5718N to J.F.' article_number: '4284' article_processing_charge: No article_type: original author: - first_name: Ioanna full_name: Antoniadi, Ioanna last_name: Antoniadi - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Ondřej full_name: Plíhal, Ondřej last_name: Plíhal - first_name: Radim full_name: Simerský, Radim last_name: Simerský - first_name: Václav full_name: Mik, Václav last_name: Mik - first_name: Thomas full_name: Vain, Thomas last_name: Vain - first_name: Eduardo full_name: Mateo-Bonmatí, Eduardo last_name: Mateo-Bonmatí - first_name: Michal full_name: Karady, Michal last_name: Karady - first_name: Markéta full_name: Pernisová, Markéta last_name: Pernisová - first_name: Lenka full_name: Plačková, Lenka last_name: Plačková - first_name: Korawit full_name: Opassathian, Korawit last_name: Opassathian - first_name: Jan full_name: Hejátko, Jan last_name: Hejátko - first_name: Stéphanie full_name: Robert, Stéphanie last_name: Robert - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Karel full_name: Doležal, Karel last_name: Doležal - first_name: Karin full_name: Ljung, Karin last_name: Ljung - first_name: Colin full_name: Turnbull, Colin last_name: Turnbull citation: ama: Antoniadi I, Novák O, Gelová Z, et al. Cell-surface receptors enable perception of extracellular cytokinins. Nature Communications. 2020;11. doi:10.1038/s41467-020-17700-9 apa: Antoniadi, I., Novák, O., Gelová, Z., Johnson, A. J., Plíhal, O., Simerský, R., … Turnbull, C. (2020). Cell-surface receptors enable perception of extracellular cytokinins. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-020-17700-9 chicago: Antoniadi, Ioanna, Ondřej Novák, Zuzana Gelová, Alexander J Johnson, Ondřej Plíhal, Radim Simerský, Václav Mik, et al. “Cell-Surface Receptors Enable Perception of Extracellular Cytokinins.” Nature Communications. Springer Nature, 2020. https://doi.org/10.1038/s41467-020-17700-9. ieee: I. Antoniadi et al., “Cell-surface receptors enable perception of extracellular cytokinins,” Nature Communications, vol. 11. Springer Nature, 2020. ista: Antoniadi I, Novák O, Gelová Z, Johnson AJ, Plíhal O, Simerský R, Mik V, Vain T, Mateo-Bonmatí E, Karady M, Pernisová M, Plačková L, Opassathian K, Hejátko J, Robert S, Friml J, Doležal K, Ljung K, Turnbull C. 2020. Cell-surface receptors enable perception of extracellular cytokinins. Nature Communications. 11, 4284. mla: Antoniadi, Ioanna, et al. “Cell-Surface Receptors Enable Perception of Extracellular Cytokinins.” Nature Communications, vol. 11, 4284, Springer Nature, 2020, doi:10.1038/s41467-020-17700-9. short: I. Antoniadi, O. Novák, Z. Gelová, A.J. Johnson, O. Plíhal, R. Simerský, V. Mik, T. Vain, E. Mateo-Bonmatí, M. Karady, M. Pernisová, L. Plačková, K. Opassathian, J. Hejátko, S. Robert, J. Friml, K. Doležal, K. Ljung, C. Turnbull, Nature Communications 11 (2020). date_created: 2020-09-06T22:01:13Z date_published: 2020-08-27T00:00:00Z date_updated: 2023-08-22T09:10:32Z day: '27' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-020-17700-9 ec_funded: 1 external_id: isi: - '000567931000001' file: - access_level: open_access checksum: 5b96f39b598de7510cfefefb819b9a6d content_type: application/pdf creator: dernst date_created: 2020-12-10T12:23:56Z date_updated: 2020-12-10T12:23:56Z file_id: '8936' file_name: 2020_NatureComm_Antoniadi.pdf file_size: 3526415 relation: main_file success: 1 file_date_updated: 2020-12-10T12:23:56Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cell-surface receptors enable perception of extracellular cytokinins tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2020' ... --- _id: '8721' abstract: - lang: eng text: Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: 'We acknowledge M. Glanc and Y. Zhang for providing entryclones; Vienna Biocenter Core Facilities (VBCF) for recombinantprotein production and purification; Vienna Biocenter Massspectrometry Facility, Bioimaging, and Life Science Facilities at IST Austria and Proteomics Core Facility CEITEC for a great assistance.Funding:This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 742985) and Austrian Science Fund (FWF): I 3630-B25 to J.F.and by grants from the Austrian Academy of Science through the Gregor Mendel Institute (Y.B.) and the Austrian Agency for International Cooperation in Education and Research (D.D.); the Netherlands Organization for Scientific Research (NWO; VIDI-864.13.001) (W.S.); the Research Foundation–Flanders (FWO;Odysseus II G0D0515N) and a European Research Council grant (ERC; StG TORPEDO; 714055) to B.D.R., B.Y., and E.M.; and the Hertha Firnberg Programme postdoctoral fellowship (T-947) from the FWF Austrian Science Fund to E.S.-L.; J.H. is the recipient of a DOC Fellowship of the Austrian Academy of Sciences at IST Austria.' article_processing_charge: No article_type: original author: - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat - first_name: N full_name: Rydza, N last_name: Rydza - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: David full_name: Domjan, David id: C684CD7A-257E-11EA-9B6F-D8588B4F947F last_name: Domjan orcid: 0000-0003-2267-106X - first_name: E full_name: Mazur, E last_name: Mazur - first_name: E full_name: Smakowska-Luzan, E last_name: Smakowska-Luzan - first_name: W full_name: Smet, W last_name: Smet - first_name: E full_name: Mor, E last_name: Mor - first_name: J full_name: Nolf, J last_name: Nolf - first_name: B full_name: Yang, B last_name: Yang - first_name: W full_name: Grunewald, W last_name: Grunewald - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Y full_name: Belkhadir, Y last_name: Belkhadir - first_name: B full_name: De Rybel, B last_name: De Rybel - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Hajny J, Prat T, Rydza N, et al. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science. 2020;370(6516):550-557. doi:10.1126/science.aba3178 apa: Hajny, J., Prat, T., Rydza, N., Rodriguez Solovey, L., Tan, S., Verstraeten, I., … Friml, J. (2020). Receptor kinase module targets PIN-dependent auxin transport during canalization. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aba3178 chicago: Hajny, Jakub, Tomas Prat, N Rydza, Lesia Rodriguez Solovey, Shutang Tan, Inge Verstraeten, David Domjan, et al. “Receptor Kinase Module Targets PIN-Dependent Auxin Transport during Canalization.” Science. American Association for the Advancement of Science, 2020. https://doi.org/10.1126/science.aba3178. ieee: J. Hajny et al., “Receptor kinase module targets PIN-dependent auxin transport during canalization,” Science, vol. 370, no. 6516. American Association for the Advancement of Science, pp. 550–557, 2020. ista: Hajny J, Prat T, Rydza N, Rodriguez Solovey L, Tan S, Verstraeten I, Domjan D, Mazur E, Smakowska-Luzan E, Smet W, Mor E, Nolf J, Yang B, Grunewald W, Molnar G, Belkhadir Y, De Rybel B, Friml J. 2020. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science. 370(6516), 550–557. mla: Hajny, Jakub, et al. “Receptor Kinase Module Targets PIN-Dependent Auxin Transport during Canalization.” Science, vol. 370, no. 6516, American Association for the Advancement of Science, 2020, pp. 550–57, doi:10.1126/science.aba3178. short: J. Hajny, T. Prat, N. Rydza, L. Rodriguez Solovey, S. Tan, I. Verstraeten, D. Domjan, E. Mazur, E. Smakowska-Luzan, W. Smet, E. Mor, J. Nolf, B. Yang, W. Grunewald, G. Molnar, Y. Belkhadir, B. De Rybel, J. Friml, Science 370 (2020) 550–557. date_created: 2020-11-02T10:04:46Z date_published: 2020-10-30T00:00:00Z date_updated: 2023-09-05T12:02:35Z day: '30' department: - _id: JiFr doi: 10.1126/science.aba3178 ec_funded: 1 external_id: isi: - '000583031800041' pmid: - '33122378' intvolume: ' 370' isi: 1 issue: '6516' language: - iso: eng main_file_link: - open_access: '1' url: https://europepmc.org/article/MED/33122378#free-full-text month: '10' oa: 1 oa_version: Published Version page: 550-557 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 2699E3D2-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: Cell surface receptor complexes for PIN polarity and auxin-mediated development publication: Science publication_identifier: eissn: - 1095-9203 issn: - 0036-8075 publication_status: published publisher: American Association for the Advancement of Science quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/molecular-compass-for-cell-orientation/ scopus_import: '1' status: public title: Receptor kinase module targets PIN-dependent auxin transport during canalization type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 370 year: '2020' ... --- _id: '7949' abstract: - lang: eng text: Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance. acknowledgement: We thank Maria Njo, Sarah De Cokere, Marieke Mispelaere and Darren Wells, for practical assistance, Daniël Van Damme for assistance with image analysis, Marnik Vuylsteke for advice on statistics, Catherine Perrot-Rechenmann for useful discussions, Steffen Lau for critical reading oft he manuscript, and Philip Benfey, Gerd Jürgens, Philippe Nacry, Frederik Börnke, and Frans Tax for sharing materials. article_processing_charge: No article_type: original author: - first_name: S full_name: Smith, S last_name: Smith - first_name: S full_name: Zhu, S last_name: Zhu - first_name: L full_name: Joos, L last_name: Joos - first_name: I full_name: Roberts, I last_name: Roberts - first_name: N full_name: Nikonorova, N last_name: Nikonorova - first_name: LD full_name: Vu, LD last_name: Vu - first_name: E full_name: Stes, E last_name: Stes - first_name: H full_name: Cho, H last_name: Cho - first_name: A full_name: Larrieu, A last_name: Larrieu - first_name: W full_name: Xuan, W last_name: Xuan - first_name: B full_name: Goodall, B last_name: Goodall - first_name: B full_name: van de Cotte, B last_name: van de Cotte - first_name: JM full_name: Waite, JM last_name: Waite - first_name: A full_name: Rigal, A last_name: Rigal - first_name: SR full_name: R Harborough, SR last_name: R Harborough - first_name: G full_name: Persiau, G last_name: Persiau - first_name: S full_name: Vanneste, S last_name: Vanneste - first_name: GK full_name: Kirschner, GK last_name: Kirschner - first_name: E full_name: Vandermarliere, E last_name: Vandermarliere - first_name: L full_name: Martens, L last_name: Martens - first_name: Y full_name: Stahl, Y last_name: Stahl - first_name: D full_name: Audenaert, D last_name: Audenaert - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: G full_name: Felix, G last_name: Felix - first_name: R full_name: Simon, R last_name: Simon - first_name: M full_name: Bennett, M last_name: Bennett - first_name: A full_name: Bishopp, A last_name: Bishopp - first_name: G full_name: De Jaeger, G last_name: De Jaeger - first_name: K full_name: Ljung, K last_name: Ljung - first_name: S full_name: Kepinski, S last_name: Kepinski - first_name: S full_name: Robert, S last_name: Robert - first_name: J full_name: Nemhauser, J last_name: Nemhauser - first_name: I full_name: Hwang, I last_name: Hwang - first_name: K full_name: Gevaert, K last_name: Gevaert - first_name: T full_name: Beeckman, T last_name: Beeckman - first_name: I full_name: De Smet, I last_name: De Smet citation: ama: Smith S, Zhu S, Joos L, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. 2020;19(8):1248-1262. doi:10.1074/mcp.ra119.001826 apa: Smith, S., Zhu, S., Joos, L., Roberts, I., Nikonorova, N., Vu, L., … De Smet, I. (2020). The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. American Society for Biochemistry and Molecular Biology. https://doi.org/10.1074/mcp.ra119.001826 chicago: Smith, S, S Zhu, L Joos, I Roberts, N Nikonorova, LD Vu, E Stes, et al. “The CEP5 Peptide Promotes Abiotic Stress Tolerance, as Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis.” Molecular & Cellular Proteomics. American Society for Biochemistry and Molecular Biology, 2020. https://doi.org/10.1074/mcp.ra119.001826. ieee: S. Smith et al., “The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis,” Molecular & Cellular Proteomics, vol. 19, no. 8. American Society for Biochemistry and Molecular Biology, pp. 1248–1262, 2020. ista: Smith S, Zhu S, Joos L, Roberts I, Nikonorova N, Vu L, Stes E, Cho H, Larrieu A, Xuan W, Goodall B, van de Cotte B, Waite J, Rigal A, R Harborough S, Persiau G, Vanneste S, Kirschner G, Vandermarliere E, Martens L, Stahl Y, Audenaert D, Friml J, Felix G, Simon R, Bennett M, Bishopp A, De Jaeger G, Ljung K, Kepinski S, Robert S, Nemhauser J, Hwang I, Gevaert K, Beeckman T, De Smet I. 2020. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Molecular & Cellular Proteomics. 19(8), 1248–1262. mla: Smith, S., et al. “The CEP5 Peptide Promotes Abiotic Stress Tolerance, as Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis.” Molecular & Cellular Proteomics, vol. 19, no. 8, American Society for Biochemistry and Molecular Biology, 2020, pp. 1248–62, doi:10.1074/mcp.ra119.001826. short: S. Smith, S. Zhu, L. Joos, I. Roberts, N. Nikonorova, L. Vu, E. Stes, H. Cho, A. Larrieu, W. Xuan, B. Goodall, B. van de Cotte, J. Waite, A. Rigal, S. R Harborough, G. Persiau, S. Vanneste, G. Kirschner, E. Vandermarliere, L. Martens, Y. Stahl, D. Audenaert, J. Friml, G. Felix, R. Simon, M. Bennett, A. Bishopp, G. De Jaeger, K. Ljung, S. Kepinski, S. Robert, J. Nemhauser, I. Hwang, K. Gevaert, T. Beeckman, I. De Smet, Molecular & Cellular Proteomics 19 (2020) 1248–1262. date_created: 2020-06-08T10:10:53Z date_published: 2020-08-01T00:00:00Z date_updated: 2023-09-05T12:17:46Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1074/mcp.ra119.001826 external_id: isi: - '000561114000001' pmid: - '32404488' file: - access_level: open_access checksum: 3f3f37b4a1ba2cfd270fc7733dd89680 content_type: application/pdf creator: kschuh date_created: 2021-05-05T10:10:14Z date_updated: 2021-05-05T10:10:14Z file_id: '9373' file_name: 2020_MCP_Smith.pdf file_size: 1632311 relation: main_file success: 1 file_date_updated: 2021-05-05T10:10:14Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '8' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 1248-1262 pmid: 1 publication: Molecular & Cellular Proteomics publication_identifier: eissn: - 1535-9484 publication_status: published publisher: American Society for Biochemistry and Molecular Biology quality_controlled: '1' scopus_import: '1' status: public title: The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 19 year: '2020' ... --- _id: '7619' abstract: - lang: eng text: Cell polarity is a fundamental feature of all multicellular organisms. In plants, prominent cell polarity markers are PIN auxin transporters crucial for plant development. To identify novel components involved in cell polarity establishment and maintenance, we carried out a forward genetic screening with PIN2:PIN1-HA;pin2 Arabidopsis plants, which ectopically express predominantly basally localized PIN1 in the root epidermal cells leading to agravitropic root growth. From the screen, we identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused PIN1-HA polarity switch from basal to apical side of root epidermal cells. Complementation experiments established the repp12 causative mutation as an amino acid substitution in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase with predicted function in vesicle formation. ala3 T-DNA mutants show defects in many auxin-regulated processes, in asymmetric auxin distribution and in PIN trafficking. Analysis of quintuple and sextuple mutants confirmed a crucial role of ALA proteins in regulating plant development and in PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with GNOM and BIG3 ARF GEFs. Taken together, our results identified ALA3 flippase as an important interactor and regulator of ARF GEF functioning in PIN polarity, trafficking and auxin-mediated development. acknowledged_ssus: - _id: Bio article_processing_charge: No article_type: original author: - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Petra full_name: Marhavá, Petra id: 44E59624-F248-11E8-B48F-1D18A9856A87 last_name: Marhavá - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Vendula full_name: Pukyšová, Vendula last_name: Pukyšová - first_name: Adrià Sans full_name: Sánchez, Adrià Sans last_name: Sánchez - first_name: Vivek Kumar full_name: Raxwal, Vivek Kumar last_name: Raxwal - first_name: Christian S. full_name: Hardtke, Christian S. last_name: Hardtke - first_name: Tomasz full_name: Nodzynski, Tomasz last_name: Nodzynski - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang X, Adamowski M, Marhavá P, et al. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. 2020;32(5):1644-1664. doi:10.1105/tpc.19.00869 apa: Zhang, X., Adamowski, M., Marhavá, P., Tan, S., Zhang, Y., Rodriguez Solovey, L., … Friml, J. (2020). Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.19.00869 chicago: Zhang, Xixi, Maciek Adamowski, Petra Marhavá, Shutang Tan, Yuzhou Zhang, Lesia Rodriguez Solovey, Marta Zwiewka, et al. “Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters.” The Plant Cell. American Society of Plant Biologists, 2020. https://doi.org/10.1105/tpc.19.00869. ieee: X. Zhang et al., “Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters,” The Plant Cell, vol. 32, no. 5. American Society of Plant Biologists, pp. 1644–1664, 2020. ista: Zhang X, Adamowski M, Marhavá P, Tan S, Zhang Y, Rodriguez Solovey L, Zwiewka M, Pukyšová V, Sánchez AS, Raxwal VK, Hardtke CS, Nodzynski T, Friml J. 2020. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell. 32(5), 1644–1664. mla: Zhang, Xixi, et al. “Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters.” The Plant Cell, vol. 32, no. 5, American Society of Plant Biologists, 2020, pp. 1644–64, doi:10.1105/tpc.19.00869. short: X. Zhang, M. Adamowski, P. Marhavá, S. Tan, Y. Zhang, L. Rodriguez Solovey, M. Zwiewka, V. Pukyšová, A.S. Sánchez, V.K. Raxwal, C.S. Hardtke, T. Nodzynski, J. Friml, The Plant Cell 32 (2020) 1644–1664. date_created: 2020-03-28T07:39:22Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-09-05T12:21:06Z day: '01' department: - _id: JiFr doi: 10.1105/tpc.19.00869 ec_funded: 1 external_id: isi: - '000545741500030' pmid: - '32193204' intvolume: ' 32' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1105/tpc.19.00869 month: '05' oa: 1 oa_version: Published Version page: 1644-1664 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: The Plant Cell publication_identifier: eissn: - 1532-298X issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2020' ... --- _id: '8607' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) and its core endocytic machinery are evolutionarily conserved across all eukaryotes. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) sorts plasma membrane (PM) cargoes into vesicles through the recognition of motifs based on tyrosine or di-leucine in their cytoplasmic tails. However, in plants, very little is known on how PM proteins are sorted for CME and whether similar motifs are required. In Arabidopsis thaliana, the brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), undergoes endocytosis that depends on clathrin and AP-2. Here we demonstrate that BRI1 binds directly to the medium AP-2 subunit, AP2M. The cytoplasmic domain of BRI1 contains five putative canonical surface-exposed tyrosine-based endocytic motifs. The tyrosine-to-phenylalanine substitution in Y898KAI reduced BRI1 internalization without affecting its kinase activity. Consistently, plants carrying the BRI1Y898F mutation were hypersensitive to BRs. Our study demonstrates that AP-2-dependent internalization of PM proteins via the recognition of functional tyrosine motifs also operates in plants. article_processing_charge: No article_type: original author: - first_name: D full_name: Liu, D last_name: Liu - first_name: R full_name: Kumar, R last_name: Kumar - first_name: Claus full_name: LAN, Claus last_name: LAN - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: W full_name: Siao, W last_name: Siao - first_name: I full_name: Vanhoutte, I last_name: Vanhoutte - first_name: P full_name: Wang, P last_name: Wang - first_name: KW full_name: Bender, KW last_name: Bender - first_name: K full_name: Yperman, K last_name: Yperman - first_name: S full_name: Martins, S last_name: Martins - first_name: X full_name: Zhao, X last_name: Zhao - first_name: G full_name: Vert, G last_name: Vert - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: E full_name: Russinova, E last_name: Russinova citation: ama: Liu D, Kumar R, LAN C, et al. Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif. Plant Cell. 2020;32(11):3598-3612. doi:10.1105/tpc.20.00384 apa: Liu, D., Kumar, R., LAN, C., Johnson, A. J., Siao, W., Vanhoutte, I., … Russinova, E. (2020). Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.20.00384 chicago: Liu, D, R Kumar, Claus LAN, Alexander J Johnson, W Siao, I Vanhoutte, P Wang, et al. “Endocytosis of BRASSINOSTEROID INSENSITIVE1 Is Partly Driven by a Canonical Tyrosine-Based Motif.” Plant Cell. American Society of Plant Biologists, 2020. https://doi.org/10.1105/tpc.20.00384. ieee: D. Liu et al., “Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif,” Plant Cell, vol. 32, no. 11. American Society of Plant Biologists, pp. 3598–3612, 2020. ista: Liu D, Kumar R, LAN C, Johnson AJ, Siao W, Vanhoutte I, Wang P, Bender K, Yperman K, Martins S, Zhao X, Vert G, Van Damme D, Friml J, Russinova E. 2020. Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif. Plant Cell. 32(11), 3598–3612. mla: Liu, D., et al. “Endocytosis of BRASSINOSTEROID INSENSITIVE1 Is Partly Driven by a Canonical Tyrosine-Based Motif.” Plant Cell, vol. 32, no. 11, American Society of Plant Biologists, 2020, pp. 3598–612, doi:10.1105/tpc.20.00384. short: D. Liu, R. Kumar, C. LAN, A.J. Johnson, W. Siao, I. Vanhoutte, P. Wang, K. Bender, K. Yperman, S. Martins, X. Zhao, G. Vert, D. Van Damme, J. Friml, E. Russinova, Plant Cell 32 (2020) 3598–3612. date_created: 2020-10-05T12:45:16Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-09-05T12:21:32Z day: '01' department: - _id: JiFr doi: 10.1105/tpc.20.00384 ec_funded: 1 external_id: isi: - '000600226800021' pmid: - '32958564' intvolume: ' 32' isi: 1 issue: '11' language: - iso: eng main_file_link: - open_access: '1' url: https://europepmc.org/article/MED/32958564 month: '11' oa: 1 oa_version: Published Version page: 3598-3612 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2020' ... --- _id: '7695' abstract: - lang: eng text: The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits, AtEH1/Pan1 and AtEH2/Pan1, although cytoplasmic proteins are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with co-localization analysis of different TPC subunits, allow us to conclude that TPC in plant cells is not recruited to the PM sequentially but as an octameric complex. article_processing_charge: No article_type: original author: - first_name: J full_name: Wang, J last_name: Wang - first_name: E full_name: Mylle, E last_name: Mylle - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: N full_name: Besbrugge, N last_name: Besbrugge - first_name: G full_name: De Jaeger, G last_name: De Jaeger - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: R full_name: Pleskot, R last_name: Pleskot - first_name: D full_name: van Damme, D last_name: van Damme citation: ama: Wang J, Mylle E, Johnson AJ, et al. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. 2020;183(3):986-997. doi:10.1104/pp.20.00178 apa: Wang, J., Mylle, E., Johnson, A. J., Besbrugge, N., De Jaeger, G., Friml, J., … van Damme, D. (2020). High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.20.00178 chicago: Wang, J, E Mylle, Alexander J Johnson, N Besbrugge, G De Jaeger, Jiří Friml, R Pleskot, and D van Damme. “High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits.” Plant Physiology. American Society of Plant Biologists, 2020. https://doi.org/10.1104/pp.20.00178. ieee: J. Wang et al., “High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits,” Plant Physiology, vol. 183, no. 3. American Society of Plant Biologists, pp. 986–997, 2020. ista: Wang J, Mylle E, Johnson AJ, Besbrugge N, De Jaeger G, Friml J, Pleskot R, van Damme D. 2020. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. 183(3), 986–997. mla: Wang, J., et al. “High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits.” Plant Physiology, vol. 183, no. 3, American Society of Plant Biologists, 2020, pp. 986–97, doi:10.1104/pp.20.00178. short: J. Wang, E. Mylle, A.J. Johnson, N. Besbrugge, G. De Jaeger, J. Friml, R. Pleskot, D. van Damme, Plant Physiology 183 (2020) 986–997. date_created: 2020-04-29T15:23:00Z date_published: 2020-07-01T00:00:00Z date_updated: 2023-09-05T12:20:02Z day: '01' department: - _id: JiFr doi: 10.1104/pp.20.00178 external_id: isi: - '000550682000018' pmid: - '32321842' intvolume: ' 183' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.02.13.948109 month: '07' oa: 1 oa_version: Preprint page: 986-997 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 183 year: '2020' ... --- _id: '7697' abstract: - lang: eng text: "* Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane‐based PIN‐FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown.\r\n* In this study, we systematically swapped the domains between ER‐ and PM‐localized PIN proteins, as well as between apical and basal PM‐localized PINs from Arabidopsis thaliana , to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells.\r\n* Our results show that not only do the N‐ and C‐terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise‐matched N‐ and C‐terminal TMDs resulting from intramolecular domain–domain coevolution are also crucial for their divergent patterns of localization.\r\n* These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Corinna full_name: Hartinger, Corinna id: AEFB2266-8ABF-11EA-AA39-812C3623CBE4 last_name: Hartinger orcid: 0000-0003-1618-2737 - first_name: Xiaojuan full_name: Wang, Xiaojuan last_name: Wang - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang Y, Hartinger C, Wang X, Friml J. Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters. New Phytologist. 2020;227(5):1406-1416. doi:10.1111/nph.16629 apa: Zhang, Y., Hartinger, C., Wang, X., & Friml, J. (2020). Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters. New Phytologist. Wiley. https://doi.org/10.1111/nph.16629 chicago: Zhang, Yuzhou, Corinna Hartinger, Xiaojuan Wang, and Jiří Friml. “Directional Auxin Fluxes in Plants by Intramolecular Domain‐domain Co‐evolution of PIN Auxin Transporters.” New Phytologist. Wiley, 2020. https://doi.org/10.1111/nph.16629. ieee: Y. Zhang, C. Hartinger, X. Wang, and J. Friml, “Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters,” New Phytologist, vol. 227, no. 5. Wiley, pp. 1406–1416, 2020. ista: Zhang Y, Hartinger C, Wang X, Friml J. 2020. Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters. New Phytologist. 227(5), 1406–1416. mla: Zhang, Yuzhou, et al. “Directional Auxin Fluxes in Plants by Intramolecular Domain‐domain Co‐evolution of PIN Auxin Transporters.” New Phytologist, vol. 227, no. 5, Wiley, 2020, pp. 1406–16, doi:10.1111/nph.16629. short: Y. Zhang, C. Hartinger, X. Wang, J. Friml, New Phytologist 227 (2020) 1406–1416. date_created: 2020-04-30T08:43:29Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-09-05T15:46:04Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.16629 ec_funded: 1 external_id: isi: - '000534092400001' pmid: - '32350870' file: - access_level: open_access checksum: 8e8150dbbba8cb65b72f81d1f0864b8b content_type: application/pdf creator: dernst date_created: 2020-11-24T12:19:38Z date_updated: 2020-11-24T12:19:38Z file_id: '8799' file_name: 2020_09_NewPhytologist_Zhang.pdf file_size: 3643395 relation: main_file success: 1 file_date_updated: 2020-11-24T12:19:38Z has_accepted_license: '1' intvolume: ' 227' isi: 1 issue: '5' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1406-1416 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 227 year: '2020' ... --- _id: '7417' abstract: - lang: eng text: Previously, we reported that the allelic de-etiolated by zinc (dez) and trichome birefringence (tbr) mutants exhibit photomorphogenic development in the dark, which is enhanced by high Zn. TRICHOME BIREFRINGENCE-LIKE proteins had been implicated in transferring acetyl groups to various hemicelluloses. Pectin O-acetylation levels were lower in dark-grown dez seedlings than in the wild type. We observed Zn-enhanced photomorphogenesis in the dark also in the reduced wall acetylation 2 (rwa2-3) mutant, which exhibits lowered O-acetylation levels of cell wall macromolecules including pectins and xyloglucans, supporting a role for cell wall macromolecule O-acetylation in the photomorphogenic phenotypes of rwa2-3 and dez. Application of very short oligogalacturonides (vsOGs) restored skotomorphogenesis in dark-grown dez and rwa2-3. Here we demonstrate that in dez, O-acetylation of non-pectin cell wall components, notably of xyloglucan, is enhanced. Our results highlight the complexity of cell wall homeostasis and indicate against an influence of xyloglucan O-acetylation on light-dependent seedling development. article_number: e1687185 article_processing_charge: No article_type: original author: - first_name: Scott A full_name: Sinclair, Scott A id: 2D99FE6A-F248-11E8-B48F-1D18A9856A87 last_name: Sinclair orcid: 0000-0002-4566-0593 - first_name: S. full_name: Gille, S. last_name: Gille - first_name: M. full_name: Pauly, M. last_name: Pauly - first_name: U. full_name: Krämer, U. last_name: Krämer citation: ama: Sinclair SA, Gille S, Pauly M, Krämer U. Regulation of acetylation of plant cell wall components is complex and responds to external stimuli. Plant Signaling & Behavior. 2020;15(1). doi:10.1080/15592324.2019.1687185 apa: Sinclair, S. A., Gille, S., Pauly, M., & Krämer, U. (2020). Regulation of acetylation of plant cell wall components is complex and responds to external stimuli. Plant Signaling & Behavior. Informa UK Limited. https://doi.org/10.1080/15592324.2019.1687185 chicago: Sinclair, Scott A, S. Gille, M. Pauly, and U. Krämer. “Regulation of Acetylation of Plant Cell Wall Components Is Complex and Responds to External Stimuli.” Plant Signaling & Behavior. Informa UK Limited, 2020. https://doi.org/10.1080/15592324.2019.1687185. ieee: S. A. Sinclair, S. Gille, M. Pauly, and U. Krämer, “Regulation of acetylation of plant cell wall components is complex and responds to external stimuli,” Plant Signaling & Behavior, vol. 15, no. 1. Informa UK Limited, 2020. ista: Sinclair SA, Gille S, Pauly M, Krämer U. 2020. Regulation of acetylation of plant cell wall components is complex and responds to external stimuli. Plant Signaling & Behavior. 15(1), e1687185. mla: Sinclair, Scott A., et al. “Regulation of Acetylation of Plant Cell Wall Components Is Complex and Responds to External Stimuli.” Plant Signaling & Behavior, vol. 15, no. 1, e1687185, Informa UK Limited, 2020, doi:10.1080/15592324.2019.1687185. short: S.A. Sinclair, S. Gille, M. Pauly, U. Krämer, Plant Signaling & Behavior 15 (2020). date_created: 2020-01-30T10:14:14Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-09-06T15:23:04Z day: '01' department: - _id: JiFr doi: 10.1080/15592324.2019.1687185 external_id: isi: - '000494907500001' pmid: - '31696770' intvolume: ' 15' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012154 month: '01' oa: 1 oa_version: Submitted Version pmid: 1 publication: Plant Signaling & Behavior publication_identifier: issn: - 1559-2324 publication_status: published publisher: Informa UK Limited quality_controlled: '1' scopus_import: '1' status: public title: Regulation of acetylation of plant cell wall components is complex and responds to external stimuli type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 15 year: '2020' ... --- _id: '8589' abstract: - lang: eng text: The plant hormone auxin plays indispensable roles in plant growth and development. An essential level of regulation in auxin action is the directional auxin transport within cells. The establishment of auxin gradient in plant tissue has been attributed to local auxin biosynthesis and directional intercellular auxin transport, which both are controlled by various environmental and developmental signals. It is well established that asymmetric auxin distribution in cells is achieved by polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the initial insights into cellular mechanisms of PIN polarization obtained from the last decades, the molecular mechanism and specific regulators mediating PIN polarization remains elusive. In this thesis, we aim to find novel players in PIN subcellular polarity regulation during Arabidopsis development. We first characterize the physiological effect of piperonylic acid (PA) on Arabidopsis hypocotyl gravitropic bending and PIN polarization. Secondly, we reveal the importance of SCFTIR1/AFB auxin signaling pathway in shoot gravitropism bending termination. In addition, we also explore the role of myosin XI complex, and actin cytoskeleton in auxin feedback regulation on PIN polarity. In Chapter 1, we give an overview of the current knowledge about PIN-mediated auxin fluxes in various plant tropic responses. In Chapter 2, we study the physiological effect of PA on shoot gravitropic bending. Our results show that PA treatment inhibits auxin-mediated PIN3 repolarization by interfering with PINOID and PIN3 phosphorylation status, ultimately leading to hyperbending hypocotyls. In Chapter 3, we provide evidence to show that the SCFTIR1/AFB nuclear auxin signaling pathway is crucial and required for auxin-mediated PIN3 repolarization and shoot gravitropic bending termination. In Chapter 4, we perform a phosphoproteomics approach and identify the motor protein Myosin XI and its binding protein, the MadB2 family, as an essential regulator of PIN polarity for auxin-canalization related developmental processes. In Chapter 5, we demonstrate the vital role of actin cytoskeleton in auxin feedback on PIN polarity by regulating PIN subcellular trafficking. Overall, the data presented in this PhD thesis brings novel insights into the PIN polar localization regulation that resulted in the (re)establishment of the polar auxin flow and gradient in response to environmental stimuli during plant development. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: I also want to thank the China Scholarship Council for supporting my study during the year from 2015 to 2019. I also want to thank IST facilities – the Bioimaging facility, the media kitchen, the plant facility and all of the campus services, for their support. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han citation: ama: Han H. Novel insights into PIN polarity regulation during Arabidopsis development. 2020. doi:10.15479/AT:ISTA:8589 apa: Han, H. (2020). Novel insights into PIN polarity regulation during Arabidopsis development. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8589 chicago: Han, Huibin. “Novel Insights into PIN Polarity Regulation during Arabidopsis Development.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8589. ieee: H. Han, “Novel insights into PIN polarity regulation during Arabidopsis development,” Institute of Science and Technology Austria, 2020. ista: Han H. 2020. Novel insights into PIN polarity regulation during Arabidopsis development. Institute of Science and Technology Austria. mla: Han, Huibin. Novel Insights into PIN Polarity Regulation during Arabidopsis Development. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8589. short: H. Han, Novel Insights into PIN Polarity Regulation during Arabidopsis Development, Institute of Science and Technology Austria, 2020. date_created: 2020-09-30T14:50:51Z date_published: 2020-09-30T00:00:00Z date_updated: 2023-09-07T13:13:05Z day: '30' ddc: - '580' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:8589 file: - access_level: closed checksum: c4bda1947d4c09c428ac9ce667b02327 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2020-09-30T14:50:20Z date_updated: 2020-09-30T14:50:20Z file_id: '8590' file_name: 2020_Han_Thesis.docx file_size: 49198118 relation: source_file - access_level: open_access checksum: 3f4f5d1718c2230adf30639ecaf8a00b content_type: application/pdf creator: dernst date_created: 2020-09-30T14:49:59Z date_updated: 2021-10-01T13:33:02Z file_id: '8591' file_name: 2020_Han_Thesis.pdf file_size: 15513963 relation: main_file file_date_updated: 2021-10-01T13:33:02Z has_accepted_license: '1' language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: '164' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7643' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Novel insights into PIN polarity regulation during Arabidopsis development type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7643' acknowledgement: 'This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation Programme (ERC grant agreement number 742985), and the Austrian Science Fund (FWF, grant number I 3630-B25) to JF. HH is supported by the China Scholarship Council (CSC scholarship). ' article_processing_charge: No article_type: letter_note author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Hana full_name: Rakusova, Hana id: 4CAAA450-78D2-11EA-8E57-B40A396E08BA last_name: Rakusova - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Han H, Rakusova H, Verstraeten I, Zhang Y, Friml J. SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism. Plant Physiology. 2020;183(5):37-40. doi:10.1104/pp.20.00212 apa: Han, H., Rakusova, H., Verstraeten, I., Zhang, Y., & Friml, J. (2020). SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.20.00212 chicago: Han, Huibin, Hana Rakusova, Inge Verstraeten, Yuzhou Zhang, and Jiří Friml. “SCF TIR1/AFB Auxin Signaling for Bending Termination during Shoot Gravitropism.” Plant Physiology. American Society of Plant Biologists, 2020. https://doi.org/10.1104/pp.20.00212. ieee: H. Han, H. Rakusova, I. Verstraeten, Y. Zhang, and J. Friml, “SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism,” Plant Physiology, vol. 183, no. 5. American Society of Plant Biologists, pp. 37–40, 2020. ista: Han H, Rakusova H, Verstraeten I, Zhang Y, Friml J. 2020. SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism. Plant Physiology. 183(5), 37–40. mla: Han, Huibin, et al. “SCF TIR1/AFB Auxin Signaling for Bending Termination during Shoot Gravitropism.” Plant Physiology, vol. 183, no. 5, American Society of Plant Biologists, 2020, pp. 37–40, doi:10.1104/pp.20.00212. short: H. Han, H. Rakusova, I. Verstraeten, Y. Zhang, J. Friml, Plant Physiology 183 (2020) 37–40. date_created: 2020-04-06T10:06:40Z date_published: 2020-05-08T00:00:00Z date_updated: 2023-09-07T13:13:04Z day: '08' department: - _id: JiFr doi: 10.1104/pp.20.00212 ec_funded: 1 external_id: isi: - '000536641800018' pmid: - '32107280' intvolume: ' 183' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1104/pp.20.00212 month: '05' oa: 1 oa_version: Published Version page: 37-40 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' related_material: record: - id: '8589' relation: dissertation_contains status: public scopus_import: '1' status: public title: SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 183 year: '2020' ... --- _id: '7416' abstract: - lang: eng text: Earlier, we demonstrated that transcript levels of METAL TOLERANCE PROTEIN2 (MTP2) and of HEAVY METAL ATPase2 (HMA2) increase strongly in roots of Arabidopsis upon prolonged zinc (Zn) deficiency and respond to shoot physiological Zn status, and not to the local Zn status in roots. This provided evidence for shoot-to-root communication in the acclimation of plants to Zn deficiency. Zn-deficient soils limit both the yield and quality of agricultural crops and can result in clinically relevant nutritional Zn deficiency in human populations. Implementing Zn deficiency during cultivation of the model plant Arabidopsis thaliana on agar-solidified media is difficult because trace element contaminations are present in almost all commercially available agars. Here, we demonstrate root morphological acclimations to Zn deficiency on agar-solidified medium following the effective removal of contaminants. These advancements allow reproducible phenotyping toward understanding fundamental plant responses to deficiencies of Zn and other essential trace elements. article_number: '1687175' article_processing_charge: No article_type: original author: - first_name: Scott A full_name: Sinclair, Scott A id: 2D99FE6A-F248-11E8-B48F-1D18A9856A87 last_name: Sinclair orcid: 0000-0002-4566-0593 - first_name: U. full_name: Krämer, U. last_name: Krämer citation: ama: Sinclair SA, Krämer U. Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation. Plant Signaling & Behavior. 2020;15(1). doi:10.1080/15592324.2019.1687175 apa: Sinclair, S. A., & Krämer, U. (2020). Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation. Plant Signaling & Behavior. Taylor & Francis. https://doi.org/10.1080/15592324.2019.1687175 chicago: Sinclair, Scott A, and U. Krämer. “Generation of Effective Zinc-Deficient Agar-Solidified Media Allows Identification of Root Morphology Changes in Response to Zinc Limitation.” Plant Signaling & Behavior. Taylor & Francis, 2020. https://doi.org/10.1080/15592324.2019.1687175. ieee: S. A. Sinclair and U. Krämer, “Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation,” Plant Signaling & Behavior, vol. 15, no. 1. Taylor & Francis, 2020. ista: Sinclair SA, Krämer U. 2020. Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation. Plant Signaling & Behavior. 15(1), 1687175. mla: Sinclair, Scott A., and U. Krämer. “Generation of Effective Zinc-Deficient Agar-Solidified Media Allows Identification of Root Morphology Changes in Response to Zinc Limitation.” Plant Signaling & Behavior, vol. 15, no. 1, 1687175, Taylor & Francis, 2020, doi:10.1080/15592324.2019.1687175. short: S.A. Sinclair, U. Krämer, Plant Signaling & Behavior 15 (2020). date_created: 2020-01-30T10:12:04Z date_published: 2020-01-01T00:00:00Z date_updated: 2023-10-17T09:01:48Z day: '01' department: - _id: JiFr doi: 10.1080/15592324.2019.1687175 external_id: isi: - '000494909300001' pmid: - '31696764' intvolume: ' 15' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012054 month: '01' oa: 1 oa_version: Submitted Version pmid: 1 publication: Plant Signaling & Behavior publication_identifier: issn: - 1559-2324 publication_status: published publisher: Taylor & Francis quality_controlled: '1' scopus_import: '1' status: public title: Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 15 year: '2020' ... --- _id: '8943' abstract: - lang: eng text: The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: "We thank Drs. Sebastian Bednarek (University of Wisconsin-Madison), Niko Geldner (University of Lausanne), and Karin Schumacher (Heidelberg University) for kindly sharing published Arabidopsis lines; Dr. Satoshi Naramoto for the pPIN2::PIN2-GFP; pVHA-a1::VHA-a1-mRFP reporter; the staff at the Life Science Facility and Bioimaging Facility, Monika Hrtyan, and Dorota Jaworska at IST Austria for technical support; and Drs. Su Tang (Texas A&M University),\r\nMelinda Abas (BOKU), Eva Benkova´ (IST Austria), Christian Luschnig (BOKU), Bartel Vanholme (Gent University), and the Friml group for valuable discussions. The research leading to these findings was funded by the European Union’s Horizon 2020 program (ERC grant agreement no. 742985, to J.F.), the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no.\r\n291734, the Swiss National Funds (31003A_165877, to M.G.), the Ministry of Education, Youth, and Sports of the Czech Republic (project no. CZ.02.1.01/0.0/0.0/16_019/0000738, EU Operational Programme ‘‘Research, development and education and Centre for Plant Experimental Biology’’), and the EU Operational Programme Prague - Competitiveness (project no. CZ.2.16/3.1.00/21519). S.T. was funded by a European Molecular Biology Organization (EMBO) long-term postdoctoral fellowship (ALTF 723-2015). X.Z. was partly supported by a PhD scholarship from the China Scholarship Council." article_number: '108463' article_processing_charge: Yes article_type: original author: - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Martin full_name: Di Donato, Martin last_name: Di Donato - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Petr full_name: Klíma, Petr last_name: Klíma - first_name: Jie full_name: Liu, Jie last_name: Liu - first_name: Aurélien full_name: Bailly, Aurélien last_name: Bailly - first_name: Noel full_name: Ferro, Noel last_name: Ferro - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Markus full_name: Geisler, Markus last_name: Geisler - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tan S, Di Donato M, Glanc M, et al. Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development. Cell Reports. 2020;33(9). doi:10.1016/j.celrep.2020.108463 apa: Tan, S., Di Donato, M., Glanc, M., Zhang, X., Klíma, P., Liu, J., … Friml, J. (2020). Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development. Cell Reports. Elsevier. https://doi.org/10.1016/j.celrep.2020.108463 chicago: Tan, Shutang, Martin Di Donato, Matous Glanc, Xixi Zhang, Petr Klíma, Jie Liu, Aurélien Bailly, et al. “Non-Steroidal Anti-Inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development.” Cell Reports. Elsevier, 2020. https://doi.org/10.1016/j.celrep.2020.108463. ieee: S. Tan et al., “Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development,” Cell Reports, vol. 33, no. 9. Elsevier, 2020. ista: Tan S, Di Donato M, Glanc M, Zhang X, Klíma P, Liu J, Bailly A, Ferro N, Petrášek J, Geisler M, Friml J. 2020. Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development. Cell Reports. 33(9), 108463. mla: Tan, Shutang, et al. “Non-Steroidal Anti-Inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development.” Cell Reports, vol. 33, no. 9, 108463, Elsevier, 2020, doi:10.1016/j.celrep.2020.108463. short: S. Tan, M. Di Donato, M. Glanc, X. Zhang, P. Klíma, J. Liu, A. Bailly, N. Ferro, J. Petrášek, M. Geisler, J. Friml, Cell Reports 33 (2020). date_created: 2020-12-13T23:01:21Z date_published: 2020-12-01T00:00:00Z date_updated: 2023-11-16T13:03:31Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.celrep.2020.108463 ec_funded: 1 external_id: isi: - '000595658100018' pmid: - '33264621' file: - access_level: open_access checksum: ed18cba0fb48ed2e789381a54cc21904 content_type: application/pdf creator: dernst date_created: 2020-12-14T07:33:39Z date_updated: 2020-12-14T07:33:39Z file_id: '8948' file_name: 2020_CellReports_Tan.pdf file_size: 8056434 relation: main_file success: 1 file_date_updated: 2020-12-14T07:33:39Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '9' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship publication: Cell Reports publication_identifier: eissn: - '22111247' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/plants-on-aspirin/ scopus_import: '1' status: public title: Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 33 year: '2020' ... --- _id: '8002' abstract: - lang: eng text: Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity. acknowledged_ssus: - _id: Bio - _id: LifeSc article_number: '202003346' article_processing_charge: No article_type: original author: - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Juan C full_name: Montesinos López, Juan C id: 310A8E3E-F248-11E8-B48F-1D18A9856A87 last_name: Montesinos López orcid: 0000-0001-9179-6099 - first_name: Petra full_name: Marhavá, Petra id: 44E59624-F248-11E8-B48F-1D18A9856A87 last_name: Marhavá - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Hörmayer L, Montesinos López JC, Marhavá P, Benková E, Yoshida S, Friml J. Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences. 2020;117(26). doi:10.1073/pnas.2003346117 apa: Hörmayer, L., Montesinos López, J. C., Marhavá, P., Benková, E., Yoshida, S., & Friml, J. (2020). Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2003346117 chicago: Hörmayer, Lukas, Juan C Montesinos López, Petra Marhavá, Eva Benková, Saiko Yoshida, and Jiří Friml. “Wounding-Induced Changes in Cellular Pressure and Localized Auxin Signalling Spatially Coordinate Restorative Divisions in Roots.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.2003346117. ieee: L. Hörmayer, J. C. Montesinos López, P. Marhavá, E. Benková, S. Yoshida, and J. Friml, “Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots,” Proceedings of the National Academy of Sciences, vol. 117, no. 26. Proceedings of the National Academy of Sciences, 2020. ista: Hörmayer L, Montesinos López JC, Marhavá P, Benková E, Yoshida S, Friml J. 2020. Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences. 117(26), 202003346. mla: Hörmayer, Lukas, et al. “Wounding-Induced Changes in Cellular Pressure and Localized Auxin Signalling Spatially Coordinate Restorative Divisions in Roots.” Proceedings of the National Academy of Sciences, vol. 117, no. 26, 202003346, Proceedings of the National Academy of Sciences, 2020, doi:10.1073/pnas.2003346117. short: L. Hörmayer, J.C. Montesinos López, P. Marhavá, E. Benková, S. Yoshida, J. Friml, Proceedings of the National Academy of Sciences 117 (2020). date_created: 2020-06-22T13:33:52Z date_published: 2020-06-30T00:00:00Z date_updated: 2024-03-27T23:30:11Z day: '30' ddc: - '580' department: - _id: JiFr - _id: EvBe doi: 10.1073/pnas.2003346117 ec_funded: 1 external_id: isi: - '000565729700033' pmid: - '32541049' file: - access_level: open_access checksum: 908b09437680181de9990915f2113aca content_type: application/pdf creator: dernst date_created: 2020-06-23T11:30:53Z date_updated: 2020-07-14T12:48:07Z file_id: '8009' file_name: 2020_PNAS_Hoermayer.pdf file_size: 2407102 relation: main_file file_date_updated: 2020-07-14T12:48:07Z has_accepted_license: '1' intvolume: ' 117' isi: 1 issue: '26' language: - iso: eng month: '06' oa: 1 oa_version: None pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/how-wounded-plants-coordinate-their-healing/ record: - id: '9992' relation: dissertation_contains status: public scopus_import: '1' status: public title: Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 117 year: '2020' ... --- _id: '7427' abstract: - lang: eng text: Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: "We thank Shigeyuki Betsuyaku (University of Tsukuba), Alison Delong (Brown University), Xinnian Dong (Duke University), Dolf Weijers (Wageningen University), Yuelin Zhang (UBC), and Martine Pastuglia (Institut Jean-Pierre Bourgin) for sharing published materials; Jana Riederer for help with cantharidin physiological analysis; David Domjan for help with cloning pET28a-PIN2HL; Qing Lu for help with DARTS; Hana Kozubı´kova´ for technical support on SA derivative synthesis; Zuzana Vondra´ kova´ for technical support with tobacco cells; Lucia Strader (Washington University), Bert De Rybel (Ghent University), Bartel Vanholme (Ghent University), and Lukas Mach (BOKU) for helpful discussions; and bioimaging and life science facilities of IST Austria for continuous support. We gratefully acknowledge the Nottingham Arabidopsis Stock Center (NASC) for providing T-DNA insertional mutants. The DSC and SPR instruments were provided by the EQ-BOKU VIBT GmbH and the BOKU Core Facility for Biomolecular and Cellular Analysis, with help of Irene Schaffner. The research leading to these results has received funding from the European Union’s Horizon 2020 program (ERC grant agreement no. 742985 to J.F.) and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 291734. S.T. was supported by a European Molecular Biology Organization (EMBO) long-term postdoctoral fellowship (ALTF 723-2015). O.N. was supported by the Ministry of Education, Youth and Sports of the Czech Republic (European Regional Development Fund-Project ‘‘Centre for Experimental Plant Biology’’ no. CZ.02.1.01/0.0/0.0/16_019/0000738). J. Pospısil was supported by European Regional Development Fund Project ‘‘Centre for Experimental Plant Biology’’\r\n(no. CZ.02.1.01/0.0/0.0/16_019/0000738). J. Petrasek was supported by EU Operational Programme Prague-Competitiveness (no. CZ.2.16/3.1.00/21519). " article_processing_charge: No article_type: original author: - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Melinda F full_name: Abas, Melinda F id: 3CFB3B1C-F248-11E8-B48F-1D18A9856A87 last_name: Abas - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Pavel full_name: Lasák, Pavel last_name: Lasák - first_name: Ivan full_name: Petřík, Ivan last_name: Petřík - first_name: Eugenia full_name: Russinova, Eugenia last_name: Russinova - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Jiří full_name: Pospíšil, Jiří last_name: Pospíšil - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tan S, Abas MF, Verstraeten I, et al. Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Current Biology. 2020;30(3):381-395.e8. doi:10.1016/j.cub.2019.11.058 apa: Tan, S., Abas, M. F., Verstraeten, I., Glanc, M., Molnar, G., Hajny, J., … Friml, J. (2020). Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2019.11.058 chicago: Tan, Shutang, Melinda F Abas, Inge Verstraeten, Matous Glanc, Gergely Molnar, Jakub Hajny, Pavel Lasák, et al. “Salicylic Acid Targets Protein Phosphatase 2A to Attenuate Growth in Plants.” Current Biology. Cell Press, 2020. https://doi.org/10.1016/j.cub.2019.11.058. ieee: S. Tan et al., “Salicylic acid targets protein phosphatase 2A to attenuate growth in plants,” Current Biology, vol. 30, no. 3. Cell Press, p. 381–395.e8, 2020. ista: Tan S, Abas MF, Verstraeten I, Glanc M, Molnar G, Hajny J, Lasák P, Petřík I, Russinova E, Petrášek J, Novák O, Pospíšil J, Friml J. 2020. Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Current Biology. 30(3), 381–395.e8. mla: Tan, Shutang, et al. “Salicylic Acid Targets Protein Phosphatase 2A to Attenuate Growth in Plants.” Current Biology, vol. 30, no. 3, Cell Press, 2020, p. 381–395.e8, doi:10.1016/j.cub.2019.11.058. short: S. Tan, M.F. Abas, I. Verstraeten, M. Glanc, G. Molnar, J. Hajny, P. Lasák, I. Petřík, E. Russinova, J. Petrášek, O. Novák, J. Pospíšil, J. Friml, Current Biology 30 (2020) 381–395.e8. date_created: 2020-02-02T23:01:00Z date_published: 2020-02-03T00:00:00Z date_updated: 2024-03-27T23:30:37Z day: '03' ddc: - '580' department: - _id: JiFr - _id: EvBe doi: 10.1016/j.cub.2019.11.058 ec_funded: 1 external_id: isi: - '000511287900018' pmid: - '31956021' file: - access_level: open_access checksum: 16f7d51fe28f91c21e4896a2028df40b content_type: application/pdf creator: dernst date_created: 2020-09-22T09:51:28Z date_updated: 2020-09-22T09:51:28Z file_id: '8555' file_name: 2020_CurrentBiology_Tan.pdf file_size: 5360135 relation: main_file success: 1 file_date_updated: 2020-09-22T09:51:28Z has_accepted_license: '1' intvolume: ' 30' isi: 1 issue: '3' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: 381-395.e8 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship publication: Current Biology publication_identifier: issn: - '09609822' publication_status: published publisher: Cell Press quality_controlled: '1' related_material: record: - id: '8822' relation: dissertation_contains status: public scopus_import: '1' status: public title: Salicylic acid targets protein phosphatase 2A to attenuate growth in plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 30 year: '2020' ... --- _id: '7500' abstract: - lang: eng text: "Plant survival depends on vascular tissues, which originate in a self‐organizing manner as strands of cells co‐directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited.\r\nIn the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application.\r\nOur methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN‐dependent auxin transport and nuclear, TIR1/AFB‐mediated auxin signaling. We also show that leaf venation and auxin‐mediated PIN repolarization in the root require TIR1/AFB signaling.\r\nFurther studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts." acknowledgement: We thank Mark Estelle, José M. Alonso and the Arabidopsis Stock Centre for providing seeds. We acknowledge the core facility CELLIM of CEITEC supported by the MEYS CR (LM2015062 Czech‐BioImaging) and Plant Sciences Core Facility of CEITEC Masaryk University for help in generating essential data. This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 742985) and the Czech Science Foundation GAČR (GA13‐40637S and GA18‐26981S) to JF. JH is the recipient of a DOC Fellowship of the Austrian Academy of Sciences at the Institute of Science and Technology. The authors declare no competing interests. article_processing_charge: No article_type: original author: - first_name: E full_name: Mazur, E last_name: Mazur - first_name: Ivan full_name: Kulik, Ivan id: F0AB3FCE-02D1-11E9-BD0E-99399A5D3DEB last_name: Kulik - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Mazur E, Kulik I, Hajny J, Friml J. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in arabidopsis. New Phytologist. 2020;226(5):1375-1383. doi:10.1111/nph.16446 apa: Mazur, E., Kulik, I., Hajny, J., & Friml, J. (2020). Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in arabidopsis. New Phytologist. Wiley. https://doi.org/10.1111/nph.16446 chicago: Mazur, E, Ivan Kulik, Jakub Hajny, and Jiří Friml. “Auxin Canalization and Vascular Tissue Formation by TIR1/AFB-Mediated Auxin Signaling in Arabidopsis.” New Phytologist. Wiley, 2020. https://doi.org/10.1111/nph.16446. ieee: E. Mazur, I. Kulik, J. Hajny, and J. Friml, “Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in arabidopsis,” New Phytologist, vol. 226, no. 5. Wiley, pp. 1375–1383, 2020. ista: Mazur E, Kulik I, Hajny J, Friml J. 2020. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in arabidopsis. New Phytologist. 226(5), 1375–1383. mla: Mazur, E., et al. “Auxin Canalization and Vascular Tissue Formation by TIR1/AFB-Mediated Auxin Signaling in Arabidopsis.” New Phytologist, vol. 226, no. 5, Wiley, 2020, pp. 1375–83, doi:10.1111/nph.16446. short: E. Mazur, I. Kulik, J. Hajny, J. Friml, New Phytologist 226 (2020) 1375–1383. date_created: 2020-02-18T10:03:47Z date_published: 2020-06-01T00:00:00Z date_updated: 2024-03-27T23:30:37Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.16446 ec_funded: 1 external_id: isi: - '000514939700001' pmid: - '31971254' file: - access_level: open_access checksum: 17de728b0205979feb95ce663ba918c2 content_type: application/pdf creator: dernst date_created: 2020-11-20T09:32:10Z date_updated: 2020-11-20T09:32:10Z file_id: '8781' file_name: 2020_NewPhytologist_Mazur.pdf file_size: 2106888 relation: main_file success: 1 file_date_updated: 2020-11-20T09:32:10Z has_accepted_license: '1' intvolume: ' 226' isi: 1 issue: '5' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1375-1383 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 2699E3D2-B435-11E9-9278-68D0E5697425 grant_number: '25239' name: Cell surface receptor complexes for PIN polarity and auxin-mediated development publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '8822' relation: dissertation_contains status: public status: public title: Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 226 year: '2020' ...