@inbook{10268, abstract = {The analysis of dynamic cellular processes such as plant cytokinesis stands and falls with live-cell time-lapse confocal imaging. Conventional approaches to time-lapse imaging of cell division in Arabidopsis root tips are tedious and have low throughput. Here, we describe a protocol for long-term time-lapse simultaneous imaging of multiple root tips on a vertical-stage confocal microscope with automated root tracking. We also provide modifications of the basic protocol to implement this imaging method in the analysis of genetic, pharmacological or laser ablation wounding-mediated experimental manipulations. Our method dramatically improves the efficiency of cell division time-lapse imaging by increasing the throughput, while reducing the person-hour requirements of such experiments.}, author = {Hörmayer, Lukas and Friml, Jiří and Glanc, Matous}, booktitle = {Plant Cell Division}, isbn = {978-1-0716-1743-4}, issn = {1940-6029}, pages = {105--114}, publisher = {Humana Press}, title = {{Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy}}, doi = {10.1007/978-1-0716-1744-1_6}, volume = {2382}, year = {2021}, } @article{8582, abstract = {Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems.}, author = {Li, Hongjiang and von Wangenheim, Daniel and Zhang, Xixi and Tan, Shutang and Darwish-Miranda, Nasser and Naramoto, Satoshi and Wabnik, Krzysztof T and de Rycke, Riet and Kaufmann, Walter and Gütl, Daniel J and Tejos, Ricardo and Grones, Peter and Ke, Meiyu and Chen, Xu and Dettmer, Jan and Friml, Jiří}, issn = {14698137}, journal = {New Phytologist}, number = {1}, pages = {351--369}, publisher = {Wiley}, title = {{Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana}}, doi = {10.1111/nph.16887}, volume = {229}, year = {2021}, } @article{8606, abstract = {The leaf is a crucial organ evolved with remarkable morphological diversity to maximize plant photosynthesis. The leaf shape is a key trait that affects photosynthesis, flowering rates, disease resistance, and yield. Although many genes regulating leaf development have been identified in the past years, the precise regulatory architecture underlying the generation of diverse leaf shapes remains to be elucidated. We used cotton as a reference model to probe the genetic framework underlying divergent leaf forms. Comparative transcriptome analysis revealed that the GhARF16‐1 and GhKNOX2‐1 genes might be potential regulators of leaf shape. We functionally characterized the auxin‐responsive factor ARF16‐1 acting upstream of GhKNOX2‐1 to determine leaf morphology in cotton. The transcription of GhARF16‐1 was significantly higher in lobed‐leaved cotton than in smooth‐leaved cotton. Furthermore, the overexpression of GhARF16‐1 led to the upregulation of GhKNOX2‐1 and resulted in more and deeper serrations in cotton leaves, similar to the leaf shape of cotton plants overexpressing GhKNOX2‐1. We found that GhARF16‐1 specifically bound to the promoter of GhKNOX2‐1 to induce its expression. The heterologous expression of GhARF16‐1 and GhKNOX2‐1 in Arabidopsis led to lobed and curly leaves, and a genetic analysis revealed that GhKNOX2‐1 is epistatic to GhARF16‐1 in Arabidopsis, suggesting that the GhARF16‐1 and GhKNOX2‐1 interaction paradigm also functions to regulate leaf shape in Arabidopsis. To our knowledge, our results uncover a novel mechanism by which auxin, through the key component ARF16‐1 and its downstream‐activated gene KNOX2‐1, determines leaf morphology in eudicots.}, author = {He, P and Zhang, Yuzhou and Li, H and Fu, X and Shang, H and Zou, C and Friml, Jiří and Xiao, G}, issn = {1467-7644}, journal = {Plant Biotechnology Journal}, number = {3}, pages = {548--562}, publisher = {Wiley}, title = {{GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton}}, doi = {10.1111/pbi.13484}, volume = {19}, year = {2021}, } @article{8992, abstract = {The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network.}, author = {Tan, Shutang and Luschnig, Christian and Friml, Jiří}, issn = {17529867}, journal = {Molecular Plant}, number = {1}, pages = {151--165}, publisher = {Elsevier}, title = {{Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling}}, doi = {10.1016/j.molp.2020.11.004}, volume = {14}, year = {2021}, } @article{8993, abstract = {N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.}, author = {Abas, Lindy and Kolb, Martina and Stadlmann, Johannes and Janacek, Dorina P. and Lukic, Kristina and Schwechheimer, Claus and Sazanov, Leonid A and Mach, Lukas and Friml, Jiří and Hammes, Ulrich Z.}, issn = {10916490}, journal = {PNAS}, number = {1}, publisher = {National Academy of Sciences}, title = {{Naphthylphthalamic acid associates with and inhibits PIN auxin transporters}}, doi = {10.1073/pnas.2020857118}, volume = {118}, year = {2021}, } @article{9254, abstract = {Auxin is a key regulator of plant growth and development. Local auxin biosynthesis and intercellular transport generates regional gradients in the root that are instructive for processes such as specification of developmental zones that maintain root growth and tropic responses. Here we present a toolbox to study auxin-mediated root development that features: (i) the ability to control auxin synthesis with high spatio-temporal resolution and (ii) single-cell nucleus tracking and morphokinetic analysis infrastructure. Integration of these two features enables cutting-edge analysis of root development at single-cell resolution based on morphokinetic parameters under normal growth conditions and during cell-type-specific induction of auxin biosynthesis. We show directional auxin flow in the root and refine the contributions of key players in this process. In addition, we determine the quantitative kinetics of Arabidopsis root meristem skewing, which depends on local auxin gradients but does not require PIN2 and AUX1 auxin transporter activities. Beyond the mechanistic insights into root development, the tools developed here will enable biologists to study kinetics and morphology of various critical processes at the single cell-level in whole organisms.}, author = {Hu, Yangjie and Omary, Moutasem and Hu, Yun and Doron, Ohad and Hörmayer, Lukas and Chen, Qingguo and Megides, Or and Chekli, Ori and Ding, Zhaojun and Friml, Jiří and Zhao, Yunde and Tsarfaty, Ilan and Shani, Eilon}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing}}, doi = {10.1038/s41467-021-21802-3}, volume = {12}, year = {2021}, } @article{9443, abstract = {Endoplasmic reticulum–plasma membrane contact sites (ER–PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER–PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER–PM tether that also functions in maintaining PM integrity. The ER–PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild-type while the levels of most glycerolipid species remain unchanged. In addition, the SYT1-green fluorescent protein fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.}, author = {Ruiz-Lopez, N and Pérez-Sancho, J and Esteban Del Valle, A and Haslam, RP and Vanneste, S and Catalá, R and Perea-Resa, C and Van Damme, D and García-Hernández, S and Albert, A and Vallarino, J and Lin, J and Friml, Jiří and Macho, AP and Salinas, J and Rosado, A and Napier, JA and Amorim-Silva, V and Botella, MA}, issn = {1532-298x}, journal = {Plant Cell}, number = {7}, pages = {2431--2453}, publisher = {American Society of Plant Biologists}, title = {{Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress}}, doi = {10.1093/plcell/koab122}, volume = {33}, year = {2021}, } @article{9657, abstract = {To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that is fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia.}, author = {Gao, Z and Chen, Z and Cui, Y and Ke, M and Xu, H and Xu, Q and Chen, J and Li, Y and Huang, L and Zhao, H and Huang, D and Mai, S and Xu, T and Liu, X and Li, S and Guan, Y and Yang, W and Friml, Jiří and Petrášek, J and Zhang, J and Chen, X}, issn = {1532-298x}, journal = {Plant Cell}, number = {9}, pages = {2981–3003}, publisher = {American Society of Plant Biologists}, title = {{GmPIN-dependent polar auxin transport is involved in soybean nodule development}}, doi = {10.1093/plcell/koab183}, volume = {33}, year = {2021}, } @article{9656, abstract = {Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment.}, author = {Han, Huibin and Adamowski, Maciek and Qi, Linlin and Alotaibi, SS and Friml, Jiří}, issn = {1469-8137}, journal = {New Phytologist}, number = {2}, pages = {510--522}, publisher = {Wiley}, title = {{PIN-mediated polar auxin transport regulations in plant tropic responses}}, doi = {10.1111/nph.17617}, volume = {232}, year = {2021}, } @article{9909, abstract = {Roots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling. Exogenously applied ABA suppressed AR formation at 0.25 µM or higher doses. AR formation was less sensitive to the synthetic ABA analog pyrabactin (PB). However, PB was a more potent inhibitor at concentrations above 1 µM, suggesting that it was more selective in triggering a root inhibition response. Analysis of a series of phosphonamide and phosphonate pyrabactin analogs suggested that adventitious root formation and lateral root branching are differentially regulated by ABA signaling. ABA biosynthesis and signaling mutants affirmed a general inhibitory role of ABA and point to PYL1 and PYL2 as candidate ABA receptors that regulate AR inhibition.}, author = {Zeng, Yinwei and Verstraeten, Inge and Trinh, Hoang Khai and Heugebaert, Thomas and Stevens, Christian V. and Garcia-Maquilon, Irene and Rodriguez, Pedro L. and Vanneste, Steffen and Geelen, Danny}, issn = {20734425}, journal = {Genes}, number = {8}, publisher = {MDPI}, title = {{Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling}}, doi = {10.3390/genes12081141}, volume = {12}, year = {2021}, } @article{10282, abstract = {Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development.}, author = {Kashkan, Ivan and Hrtyan, Mónika and Retzer, Katarzyna and Humpolíčková, Jana and Jayasree, Aswathy and Filepová, Roberta and Vondráková, Zuzana and Simon, Sibu and Rombaut, Debbie and Jacobs, Thomas B. and Frilander, Mikko J. and Hejátko, Jan and Friml, Jiří and Petrášek, Jan and Růžička, Kamil}, issn = {1469-8137}, journal = {New Phytologist}, pages = {329--343}, publisher = {Wiley}, title = {{Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana}}, doi = {10.1111/nph.17792}, volume = {233}, year = {2021}, } @article{10326, abstract = {Strigolactones (SLs) are carotenoid-derived plant hormones that control shoot branching and communications between host plants and symbiotic fungi or root parasitic plants. Extensive studies have identified the key components participating in SL biosynthesis and signalling, whereas the catabolism or deactivation of endogenous SLs in planta remains largely unknown. Here, we report that the Arabidopsis carboxylesterase 15 (AtCXE15) and its orthologues function as efficient hydrolases of SLs. We show that overexpression of AtCXE15 promotes shoot branching by dampening SL-inhibited axillary bud outgrowth. We further demonstrate that AtCXE15 could bind and efficiently hydrolyse SLs both in vitro and in planta. We also provide evidence that AtCXE15 is capable of catalysing hydrolysis of diverse SL analogues and that such CXE15-dependent catabolism of SLs is evolutionarily conserved in seed plants. These results disclose a catalytic mechanism underlying homoeostatic regulation of SLs in plants, which also provides a rational approach to spatial-temporally manipulate the endogenous SLs and thus architecture of crops and ornamental plants.}, author = {Xu, Enjun and Chai, Liang and Zhang, Shiqi and Yu, Ruixue and Zhang, Xixi and Xu, Chongyi and Hu, Yuxin}, issn = {2055-0278}, journal = {Nature Plants}, pages = {1495–1504 }, publisher = {Springer Nature}, title = {{Catabolism of strigolactones by a carboxylesterase}}, doi = {10.1038/s41477-021-01011-y}, volume = {7}, year = {2021}, } @article{9368, abstract = {The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3'-Phosphoinositide-Dependent Protein Kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.2 in Arabidopsis thaliana. Notably, the severe growth attenuation of pdk1.1 pdk1.2 was rescued by sop21 (suppressor of pdk1.1 pdk1.2), which harbours a loss-of-function mutation in PELOTA1 (PEL1). PEL1 is a homologue of mammalian PELOTA and yeast (Saccharomyces cerevisiae) DOM34p, which each form a heterodimeric complex with the GTPase HBS1 (HSP70 SUBFAMILY B SUPPRESSOR1, also called SUPERKILLER PROTEIN7, SKI7), a protein that is responsible for ribosomal rescue and thereby assures the quality and fidelity of mRNA molecules during translation. Genetic analysis further revealed that a dysfunctional PEL1-HBS1 complex failed to degrade the T-DNA-disrupted PDK1 transcripts, which were truncated but functional, and thus rescued the growth and developmental defects of pdk1.1 pdk1.2. Our studies demonstrated the functionality of a homologous PELOTA-HBS1 complex and identified its essential regulatory role in plants, providing insights into the mechanism of mRNA quality control.}, author = {Kong, W and Tan, Shutang and Zhao, Q and Lin, DL and Xu, ZH and Friml, Jiří and Xue, HW}, issn = {1532-2548}, journal = {Plant Physiology}, number = {4}, pages = {2003--2020}, publisher = {American Society of Plant Biologists}, title = {{mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth}}, doi = {10.1093/plphys/kiab199}, volume = {186}, year = {2021}, } @article{9290, abstract = {Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development.}, author = {Glanc, Matous and Van Gelderen, K and Hörmayer, Lukas and Tan, Shutang and Naramoto, S and Zhang, Xixi and Domjan, David and Vcelarova, L and Hauschild, Robert and Johnson, Alexander J and de Koning, E and van Dop, M and Rademacher, E and Janson, S and Wei, X and Molnar, Gergely and Fendrych, Matyas and De Rybel, B and Offringa, R and Friml, Jiří}, issn = {1879-0445}, journal = {Current Biology}, number = {9}, pages = {1918--1930}, publisher = {Elsevier}, title = {{AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells}}, doi = {10.1016/j.cub.2021.02.028}, volume = {31}, year = {2021}, } @article{8824, abstract = {Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1, 2, 3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1, 2, 3, 4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7, 8, 9, 10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface.}, author = {Marquès-Bueno, MM and Armengot, L and Noack, LC and Bareille, J and Rodriguez Solovey, Lesia and Platre, MP and Bayle, V and Liu, M and Opdenacker, D and Vanneste, S and Möller, BK and Nimchuk, ZL and Beeckman, T and Caño-Delgado, AI and Friml, Jiří and Jaillais, Y}, issn = {1879-0445}, journal = {Current Biology}, number = {1}, publisher = {Elsevier}, title = {{Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism}}, doi = {10.1016/j.cub.2020.10.011}, volume = {31}, year = {2021}, } @article{9288, abstract = {• The phenylpropanoid pathway serves a central role in plant metabolism, providing numerous compounds involved in diverse physiological processes. Most carbon entering the pathway is incorporated into lignin. Although several phenylpropanoid pathway mutants show seedling growth arrest, the role for lignin in seedling growth and development is unexplored. • We use complementary pharmacological and genetic approaches to block CINNAMATE‐4‐HYDROXYLASE (C4H) functionality in Arabidopsis seedlings and a set of molecular and biochemical techniques to investigate the underlying phenotypes. • Blocking C4H resulted in reduced lateral rooting and increased adventitious rooting apically in the hypocotyl. These phenotypes coincided with an inhibition in auxin transport. The upstream accumulation in cis‐cinnamic acid was found to likely cause polar auxin transport inhibition. Conversely, a downstream depletion in lignin perturbed phloem‐mediated auxin transport. Restoring lignin deposition effectively reestablished phloem transport and, accordingly, auxin homeostasis. • Our results show that the accumulation of bioactive intermediates and depletion in lignin jointly cause the aberrant phenotypes upon blocking C4H, and demonstrate that proper deposition of lignin is essential for the establishment of auxin distribution in seedlings. Our data position the phenylpropanoid pathway and lignin in a new physiological framework, consolidating their importance in plant growth and development.}, author = {El Houari, I and Van Beirs, C and Arents, HE and Han, Huibin and Chanoca, A and Opdenacker, D and Pollier, J and Storme, V and Steenackers, W and Quareshy, M and Napier, R and Beeckman, T and Friml, Jiří and De Rybel, B and Boerjan, W and Vanholme, B}, issn = {1469-8137}, journal = {New Phytologist}, number = {6}, pages = {2275--2291}, publisher = {Wiley}, title = {{Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport}}, doi = {10.1111/nph.17349}, volume = {230}, year = {2021}, } @article{8608, abstract = {To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.}, author = {Ke, M and Ma, Z and Wang, D and Sun, Y and Wen, C and Huang, D and Chen, Z and Yang, L and Tan, Shutang and Li, R and Friml, Jiří and Miao, Y and Chen, X}, issn = {1469-8137}, journal = {New Phytologist}, number = {2}, pages = {963--978}, publisher = {Wiley}, title = {{Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana}}, doi = {10.1111/nph.16915}, volume = {229}, year = {2021}, } @article{9298, abstract = {In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field. }, author = {Klionsky, Daniel J. and Abdel-Aziz, Amal Kamal and Abdelfatah, Sara and Abdellatif, Mahmoud and Abdoli, Asghar and Abel, Steffen and Abeliovich, Hagai and Abildgaard, Marie H. and Abudu, Yakubu Princely and Acevedo-Arozena, Abraham and Adamopoulos, Iannis E. and Adeli, Khosrow and Adolph, Timon E. and Adornetto, Annagrazia and Aflaki, Elma and Agam, Galila and Agarwal, Anupam and Aggarwal, Bharat B. and Agnello, Maria and Agostinis, Patrizia and Agrewala, Javed N. and Agrotis, Alexander and Aguilar, Patricia V. and Ahmad, S. Tariq and Ahmed, Zubair M. and Ahumada-Castro, Ulises and Aits, Sonja and Aizawa, Shu and Akkoc, Yunus and Akoumianaki, Tonia and Akpinar, Hafize Aysin and Al-Abd, Ahmed M. and Al-Akra, Lina and Al-Gharaibeh, Abeer and Alaoui-Jamali, Moulay A. and Alberti, Simon and Alcocer-Gómez, Elísabet and Alessandri, Cristiano and Ali, Muhammad and Alim Al-Bari, M. Abdul and Aliwaini, Saeb and Alizadeh, Javad and Almacellas, Eugènia and Almasan, Alexandru and Alonso, Alicia and Alonso, Guillermo D. and Altan-Bonnet, Nihal and Altieri, Dario C. and Álvarez, Élida M.C. and Alves, Sara and Alves Da Costa, Cristine and Alzaharna, Mazen M. and Amadio, Marialaura and Amantini, Consuelo and Amaral, Cristina and Ambrosio, Susanna and Amer, Amal O. and Ammanathan, Veena and An, Zhenyi and Andersen, Stig U. and Andrabi, Shaida A. and Andrade-Silva, Magaiver and Andres, Allen M. and Angelini, Sabrina and Ann, David and Anozie, Uche C. and Ansari, Mohammad Y. and Antas, Pedro and Antebi, Adam and Antón, Zuriñe and Anwar, Tahira and Apetoh, Lionel and Apostolova, Nadezda and Araki, Toshiyuki and Araki, Yasuhiro and Arasaki, Kohei and Araújo, Wagner L. and Araya, Jun and Arden, Catherine and Arévalo, Maria Angeles and Arguelles, Sandro and Arias, Esperanza and Arikkath, Jyothi and Arimoto, Hirokazu and Ariosa, Aileen R. and Armstrong-James, Darius and Arnauné-Pelloquin, Laetitia and Aroca, Angeles and Arroyo, Daniela S. and Arsov, Ivica and Artero, Rubén and Asaro, Dalia Maria Lucia and Aschner, Michael and Ashrafizadeh, Milad and Ashur-Fabian, Osnat and Atanasov, Atanas G. and Au, Alicia K. and Auberger, Patrick and Auner, Holger W. and Aurelian, Laure and Autelli, Riccardo and Avagliano, Laura and Ávalos, Yenniffer and Aveic, Sanja and Aveleira, Célia Alexandra and Avin-Wittenberg, Tamar and Aydin, Yucel and Ayton, Scott and Ayyadevara, Srinivas and Azzopardi, Maria and Baba, Misuzu and Backer, Jonathan M. and Backues, Steven K. and Bae, Dong Hun and Bae, Ok Nam and Bae, Soo Han and Baehrecke, Eric H. and Baek, Ahruem and Baek, Seung Hoon and Baek, Sung Hee and Bagetta, Giacinto and Bagniewska-Zadworna, Agnieszka and Bai, Hua and Bai, Jie and Bai, Xiyuan and Bai, Yidong and Bairagi, Nandadulal and Baksi, Shounak and Balbi, Teresa and Baldari, Cosima T. and Balduini, Walter and Ballabio, Andrea and Ballester, Maria and Balazadeh, Salma and Balzan, Rena and Bandopadhyay, Rina and Banerjee, Sreeparna and Banerjee, Sulagna and Bánréti, Ágnes and Bao, Yan and Baptista, Mauricio S. and Baracca, Alessandra and Barbati, Cristiana and Bargiela, Ariadna and Barilà, Daniela and Barlow, Peter G. and Barmada, Sami J. and Barreiro, Esther and Barreto, George E. and Bartek, Jiri and Bartel, Bonnie and Bartolome, Alberto and Barve, Gaurav R. and Basagoudanavar, Suresh H. and Bassham, Diane C. and Bast, Robert C. and Basu, Alakananda and Batoko, Henri and Batten, Isabella and Baulieu, Etienne E. and Baumgarner, Bradley L. and Bayry, Jagadeesh and Beale, Rupert and Beau, Isabelle and Beaumatin, Florian and Bechara, Luiz R.G. and Beck, George R. and Beers, Michael F. and Begun, Jakob and Behrends, Christian and Behrens, Georg M.N. and Bei, Roberto and Bejarano, Eloy and Bel, Shai and Behl, Christian and Belaid, Amine and Belgareh-Touzé, Naïma and Bellarosa, Cristina and Belleudi, Francesca and Belló Pérez, Melissa and Bello-Morales, Raquel and Beltran, Jackeline Soares De Oliveira and Beltran, Sebastián and Benbrook, Doris Mangiaracina and Bendorius, Mykolas and Benitez, Bruno A. and Benito-Cuesta, Irene and Bensalem, Julien and Berchtold, Martin W. and Berezowska, Sabina and Bergamaschi, Daniele and Bergami, Matteo and Bergmann, Andreas and Berliocchi, Laura and Berlioz-Torrent, Clarisse and Bernard, Amélie and Berthoux, Lionel and Besirli, Cagri G. and Besteiro, Sebastien and Betin, Virginie M. and Beyaert, Rudi and Bezbradica, Jelena S. and Bhaskar, Kiran and Bhatia-Kissova, Ingrid and Bhattacharya, Resham and Bhattacharya, Sujoy and Bhattacharyya, Shalmoli and Bhuiyan, Md Shenuarin and Bhutia, Sujit Kumar and Bi, Lanrong and Bi, Xiaolin and Biden, Trevor J. and Bijian, Krikor and Billes, Viktor A. and Binart, Nadine and Bincoletto, Claudia and Birgisdottir, Asa B. and Bjorkoy, Geir and Blanco, Gonzalo and Blas-Garcia, Ana and Blasiak, Janusz and Blomgran, Robert and Blomgren, Klas and Blum, Janice S. and Boada-Romero, Emilio and Boban, Mirta and Boesze-Battaglia, Kathleen and Boeuf, Philippe and Boland, Barry and Bomont, Pascale and Bonaldo, Paolo and Bonam, Srinivasa Reddy and Bonfili, Laura and Bonifacino, Juan S. and Boone, Brian A. and Bootman, Martin D. and Bordi, Matteo and Borner, Christoph and Bornhauser, Beat C. and Borthakur, Gautam and Bosch, Jürgen and Bose, Santanu and Botana, Luis M. and Botas, Juan and Boulanger, Chantal M. and Boulton, Michael E. and Bourdenx, Mathieu and Bourgeois, Benjamin and Bourke, Nollaig M. and Bousquet, Guilhem and Boya, Patricia and Bozhkov, Peter V. and Bozi, Luiz H.M. and Bozkurt, Tolga O. and Brackney, Doug E. and Brandts, Christian H. and Braun, Ralf J. and Braus, Gerhard H. and Bravo-Sagua, Roberto and Bravo-San Pedro, José M. and Brest, Patrick and Bringer, Marie Agnès and Briones-Herrera, Alfredo and Broaddus, V. Courtney and Brodersen, Peter and Brodsky, Jeffrey L. and Brody, Steven L. and Bronson, Paola G. and Bronstein, Jeff M. and Brown, Carolyn N. and Brown, Rhoderick E. and Brum, Patricia C. and Brumell, John H. and Brunetti-Pierri, Nicola and Bruno, Daniele and Bryson-Richardson, Robert J. and Bucci, Cecilia and Buchrieser, Carmen and Bueno, Marta and Buitrago-Molina, Laura Elisa and Buraschi, Simone and Buch, Shilpa and Buchan, J. Ross and Buckingham, Erin M. and Budak, Hikmet and Budini, Mauricio and Bultynck, Geert and Burada, Florin and Burgoyne, Joseph R. and Burón, M. Isabel and Bustos, Victor and Büttner, Sabrina and Butturini, Elena and Byrd, Aaron and Cabas, Isabel and Cabrera-Benitez, Sandra and Cadwell, Ken and Cai, Jingjing and Cai, Lu and Cai, Qian and Cairó, Montserrat and Calbet, Jose A. and Caldwell, Guy A. and Caldwell, Kim A. and Call, Jarrod A. and Calvani, Riccardo and Calvo, Ana C. and Calvo-Rubio Barrera, Miguel and Camara, Niels O.S. and Camonis, Jacques H. and Camougrand, Nadine and Campanella, Michelangelo and Campbell, Edward M. and Campbell-Valois, François Xavier and Campello, Silvia and Campesi, Ilaria and Campos, Juliane C. and Camuzard, Olivier and Cancino, Jorge and Candido De Almeida, Danilo and Canesi, Laura and Caniggia, Isabella and Canonico, Barbara and Cantí, Carles and Cao, Bin and Caraglia, Michele and Caramés, Beatriz and Carchman, Evie H. and Cardenal-Muñoz, Elena and Cardenas, Cesar and Cardenas, Luis and Cardoso, Sandra M. and Carew, Jennifer S. and Carle, Georges F. and Carleton, Gillian and Carloni, Silvia and Carmona-Gutierrez, Didac and Carneiro, Leticia A. and Carnevali, Oliana and Carosi, Julian M. and Carra, Serena and Carrier, Alice and Carrier, Lucie and Carroll, Bernadette and Carter, A. Brent and Carvalho, Andreia Neves and Casanova, Magali and Casas, Caty and Casas, Josefina and Cassioli, Chiara and Castillo, Eliseo F. and Castillo, Karen and Castillo-Lluva, Sonia and Castoldi, Francesca and Castori, Marco and Castro, Ariel F. and Castro-Caldas, Margarida and Castro-Hernandez, Javier and Castro-Obregon, Susana and Catz, Sergio D. and Cavadas, Claudia and Cavaliere, Federica and Cavallini, Gabriella and Cavinato, Maria and Cayuela, Maria L. and Cebollada Rica, Paula and Cecarini, Valentina and Cecconi, Francesco and Cechowska-Pasko, Marzanna and Cenci, Simone and Ceperuelo-Mallafré, Victòria and Cerqueira, João J. and Cerutti, Janete M. and Cervia, Davide and Cetintas, Vildan Bozok and Cetrullo, Silvia and Chae, Han Jung and Chagin, Andrei S. and Chai, Chee Yin and Chakrabarti, Gopal and Chakrabarti, Oishee and Chakraborty, Tapas and Chakraborty, Trinad and Chami, Mounia and Chamilos, Georgios and Chan, David W. and Chan, Edmond Y.W. and Chan, Edward D. and Chan, H. Y.Edwin and Chan, Helen H. and Chan, Hung and Chan, Matthew T.V. and Chan, Yau Sang and Chandra, Partha K. and Chang, Chih Peng and Chang, Chunmei and Chang, Hao Chun and Chang, Kai and Chao, Jie and Chapman, Tracey and Charlet-Berguerand, Nicolas and Chatterjee, Samrat and Chaube, Shail K. and Chaudhary, Anu and Chauhan, Santosh and Chaum, Edward and Checler, Frédéric and Cheetham, Michael E. and Chen, Chang Shi and Chen, Guang Chao and Chen, Jian Fu and Chen, Liam L. and Chen, Leilei and Chen, Lin and Chen, Mingliang and Chen, Mu Kuan and Chen, Ning and Chen, Quan and Chen, Ruey Hwa and Chen, Shi and Chen, Wei and Chen, Weiqiang and Chen, Xin Ming and Chen, Xiong Wen and Chen, Xu and Chen, Yan and Chen, Ye Guang and Chen, Yingyu and Chen, Yongqiang and Chen, Yu Jen and Chen, Yue Qin and Chen, Zhefan Stephen and Chen, Zhi and Chen, Zhi Hua and Chen, Zhijian J. and Chen, Zhixiang and Cheng, Hanhua and Cheng, Jun and Cheng, Shi Yuan and Cheng, Wei and Cheng, Xiaodong and Cheng, Xiu Tang and Cheng, Yiyun and Cheng, Zhiyong and Chen, Zhong and Cheong, Heesun and Cheong, Jit Kong and Chernyak, Boris V. and Cherry, Sara and Cheung, Chi Fai Randy and Cheung, Chun Hei Antonio and Cheung, King Ho and Chevet, Eric and Chi, Richard J. and Chiang, Alan Kwok Shing and Chiaradonna, Ferdinando and Chiarelli, Roberto and Chiariello, Mario and Chica, Nathalia and Chiocca, Susanna and Chiong, Mario and Chiou, Shih Hwa and Chiramel, Abhilash I. and Chiurchiù, Valerio and Cho, Dong Hyung and Choe, Seong Kyu and Choi, Augustine M.K. and Choi, Mary E. and Choudhury, Kamalika Roy and Chow, Norman S. and Chu, Charleen T. and Chua, Jason P. and Chua, John Jia En and Chung, Hyewon and Chung, Kin Pan and Chung, Seockhoon and Chung, So Hyang and Chung, Yuen Li and Cianfanelli, Valentina and Ciechomska, Iwona A. and Cifuentes, Mariana and Cinque, Laura and Cirak, Sebahattin and Cirone, Mara and Clague, Michael J. and Clarke, Robert and Clementi, Emilio and Coccia, Eliana M. and Codogno, Patrice and Cohen, Ehud and Cohen, Mickael M. and Colasanti, Tania and Colasuonno, Fiorella and Colbert, Robert A. and Colell, Anna and Čolić, Miodrag and Coll, Nuria S. and Collins, Mark O. and Colombo, María I. and Colón-Ramos, Daniel A. and Combaret, Lydie and Comincini, Sergio and Cominetti, Márcia R. and Consiglio, Antonella and Conte, Andrea and Conti, Fabrizio and Contu, Viorica Raluca and Cookson, Mark R. and Coombs, Kevin M. and Coppens, Isabelle and Corasaniti, Maria Tiziana and Corkery, Dale P. and Cordes, Nils and Cortese, Katia and Costa, Maria Do Carmo and Costantino, Sarah and Costelli, Paola and Coto-Montes, Ana and Crack, Peter J. and Crespo, Jose L. and Criollo, Alfredo and Crippa, Valeria and Cristofani, Riccardo and Csizmadia, Tamas and Cuadrado, Antonio and Cui, Bing and Cui, Jun and Cui, Yixian and Cui, Yong and Culetto, Emmanuel and Cumino, Andrea C. and Cybulsky, Andrey V. and Czaja, Mark J. and Czuczwar, Stanislaw J. and D’Adamo, Stefania and D’Amelio, Marcello and D’Arcangelo, Daniela and D’Lugos, Andrew C. and D’Orazi, Gabriella and Da Silva, James A. and Dafsari, Hormos Salimi and Dagda, Ruben K. and Dagdas, Yasin and Daglia, Maria and Dai, Xiaoxia and Dai, Yun and Dai, Yuyuan and Dal Col, Jessica and Dalhaimer, Paul and Dalla Valle, Luisa and Dallenga, Tobias and Dalmasso, Guillaume and Damme, Markus and Dando, Ilaria and Dantuma, Nico P. and Darling, April L. and Das, Hiranmoy and Dasarathy, Srinivasan and Dasari, Santosh K. and Dash, Srikanta and Daumke, Oliver and Dauphinee, Adrian N. and Davies, Jeffrey S. and Dávila, Valeria A. and Davis, Roger J. and Davis, Tanja and Dayalan Naidu, Sharadha and De Amicis, Francesca and De Bosscher, Karolien and De Felice, Francesca and De Franceschi, Lucia and De Leonibus, Chiara and De Mattos Barbosa, Mayara G. and De Meyer, Guido R.Y. and De Milito, Angelo and De Nunzio, Cosimo and De Palma, Clara and De Santi, Mauro and De Virgilio, Claudio and De Zio, Daniela and Debnath, Jayanta and Debosch, Brian J. and Decuypere, Jean Paul and Deehan, Mark A. and Deflorian, Gianluca and Degregori, James and Dehay, Benjamin and Del Rio, Gabriel and Delaney, Joe R. and Delbridge, Lea M.D. and Delorme-Axford, Elizabeth and Delpino, M. Victoria and Demarchi, Francesca and Dembitz, Vilma and Demers, Nicholas D. and Deng, Hongbin and Deng, Zhiqiang and Dengjel, Joern and Dent, Paul and Denton, Donna and Depamphilis, Melvin L. and Der, Channing J. and Deretic, Vojo and Descoteaux, Albert and Devis, Laura and Devkota, Sushil and Devuyst, Olivier and Dewson, Grant and Dharmasivam, Mahendiran and Dhiman, Rohan and Di Bernardo, Diego and Di Cristina, Manlio and Di Domenico, Fabio and Di Fazio, Pietro and Di Fonzo, Alessio and Di Guardo, Giovanni and Di Guglielmo, Gianni M. and Di Leo, Luca and Di Malta, Chiara and Di Nardo, Alessia and Di Rienzo, Martina and Di Sano, Federica and Diallinas, George and Diao, Jiajie and Diaz-Araya, Guillermo and Díaz-Laviada, Inés and Dickinson, Jared M. and Diederich, Marc and Dieudé, Mélanie and Dikic, Ivan and Ding, Shiping and Ding, Wen Xing and Dini, Luciana and Dinić, Jelena and Dinic, Miroslav and Dinkova-Kostova, Albena T. and Dionne, Marc S. and Distler, Jörg H.W. and Diwan, Abhinav and Dixon, Ian M.C. and Djavaheri-Mergny, Mojgan and Dobrinski, Ina and Dobrovinskaya, Oxana and Dobrowolski, Radek and Dobson, Renwick C.J. and Đokić, Jelena and Dokmeci Emre, Serap and Donadelli, Massimo and Dong, Bo and Dong, Xiaonan and Dong, Zhiwu and Dorn, Gerald W. and Dotsch, Volker and Dou, Huan and Dou, Juan and Dowaidar, Moataz and Dridi, Sami and Drucker, Liat and Du, Ailian and Du, Caigan and Du, Guangwei and Du, Hai Ning and Du, Li Lin and Du Toit, André and Duan, Shao Bin and Duan, Xiaoqiong and Duarte, Sónia P. and Dubrovska, Anna and Dunlop, Elaine A. and Dupont, Nicolas and Durán, Raúl V. and Dwarakanath, Bilikere S. and Dyshlovoy, Sergey A. and Ebrahimi-Fakhari, Darius and Eckhart, Leopold and Edelstein, Charles L. and Efferth, Thomas and Eftekharpour, Eftekhar and Eichinger, Ludwig and Eid, Nabil and Eisenberg, Tobias and Eissa, N. Tony and Eissa, Sanaa and Ejarque, Miriam and El Andaloussi, Abdeljabar and El-Hage, Nazira and El-Naggar, Shahenda and Eleuteri, Anna Maria and El-Shafey, Eman S. and Elgendy, Mohamed and Eliopoulos, Aristides G. and Elizalde, María M. and Elks, Philip M. and Elsasser, Hans Peter and Elsherbiny, Eslam S. and Emerling, Brooke M. and Emre, N. C.Tolga and Eng, Christina H. and Engedal, Nikolai and Engelbrecht, Anna Mart and Engelsen, Agnete S.T. and Enserink, Jorrit M. and Escalante, Ricardo and Esclatine, Audrey and Escobar-Henriques, Mafalda and Eskelinen, Eeva Liisa and Espert, Lucile and Eusebio, Makandjou Ola and Fabrias, Gemma and Fabrizi, Cinzia and Facchiano, Antonio and Facchiano, Francesco and Fadeel, Bengt and Fader, Claudio and Faesen, Alex C. and Fairlie, W. Douglas and Falcó, Alberto and Falkenburger, Bjorn H. and Fan, Daping and Fan, Jie and Fan, Yanbo and Fang, Evandro F. and Fang, Yanshan and Fang, Yognqi and Fanto, Manolis and Farfel-Becker, Tamar and Faure, Mathias and Fazeli, Gholamreza and Fedele, Anthony O. and Feldman, Arthur M. and Feng, Du and Feng, Jiachun and Feng, Lifeng and Feng, Yibin and Feng, Yuchen and Feng, Wei and Fenz Araujo, Thais and Ferguson, Thomas A. and Fernández, Álvaro F. and Fernandez-Checa, Jose C. and Fernández-Veledo, Sonia and Fernie, Alisdair R. and Ferrante, Anthony W. and Ferraresi, Alessandra and Ferrari, Merari F. and Ferreira, Julio C.B. and Ferro-Novick, Susan and Figueras, Antonio and Filadi, Riccardo and Filigheddu, Nicoletta and Filippi-Chiela, Eduardo and Filomeni, Giuseppe and Fimia, Gian Maria and Fineschi, Vittorio and Finetti, Francesca and Finkbeiner, Steven and Fisher, Edward A. and Fisher, Paul B. and Flamigni, Flavio and Fliesler, Steven J. and Flo, Trude H. and Florance, Ida and Florey, Oliver and Florio, Tullio and Fodor, Erika and Follo, Carlo and Fon, Edward A. and Forlino, Antonella and Fornai, Francesco and Fortini, Paola and Fracassi, Anna and Fraldi, Alessandro and Franco, Brunella and Franco, Rodrigo and Franconi, Flavia and Frankel, Lisa B. and Friedman, Scott L. and Fröhlich, Leopold F. and Frühbeck, Gema and Fuentes, Jose M. and Fujiki, Yukio and Fujita, Naonobu and Fujiwara, Yuuki and Fukuda, Mitsunori and Fulda, Simone and Furic, Luc and Furuya, Norihiko and Fusco, Carmela and Gack, Michaela U. and Gaffke, Lidia and Galadari, Sehamuddin and Galasso, Alessia and Galindo, Maria F. and Gallolu Kankanamalage, Sachith and Galluzzi, Lorenzo and Galy, Vincent and Gammoh, Noor and Gan, Boyi and Ganley, Ian G. and Gao, Feng and Gao, Hui and Gao, Minghui and Gao, Ping and Gao, Shou Jiang and Gao, Wentao and Gao, Xiaobo and Garcera, Ana and Garcia, Maria Noé and Garcia, Verónica E. and García-Del Portillo, Francisco and Garcia-Escudero, Vega and Garcia-Garcia, Aracely and Garcia-Macia, Marina and García-Moreno, Diana and Garcia-Ruiz, Carmen and García-Sanz, Patricia and Garg, Abhishek D. and Gargini, Ricardo and Garofalo, Tina and Garry, Robert F. and Gassen, Nils C. and Gatica, Damian and Ge, Liang and Ge, Wanzhong and Geiss-Friedlander, Ruth and Gelfi, Cecilia and Genschik, Pascal and Gentle, Ian E. and Gerbino, Valeria and Gerhardt, Christoph and Germain, Kyla and Germain, Marc and Gewirtz, David A. and Ghasemipour Afshar, Elham and Ghavami, Saeid and Ghigo, Alessandra and Ghosh, Manosij and Giamas, Georgios and Giampietri, Claudia and Giatromanolaki, Alexandra and Gibson, Gary E. and Gibson, Spencer B. and Ginet, Vanessa and Giniger, Edward and Giorgi, Carlotta and Girao, Henrique and Girardin, Stephen E. and Giridharan, Mridhula and Giuliano, Sandy and Giulivi, Cecilia and Giuriato, Sylvie and Giustiniani, Julien and Gluschko, Alexander and Goder, Veit and Goginashvili, Alexander and Golab, Jakub and Goldstone, David C. and Golebiewska, Anna and Gomes, Luciana R. and Gomez, Rodrigo and Gómez-Sánchez, Rubén and Gomez-Puerto, Maria Catalina and Gomez-Sintes, Raquel and Gong, Qingqiu and Goni, Felix M. and González-Gallego, Javier and Gonzalez-Hernandez, Tomas and Gonzalez-Polo, Rosa A. and Gonzalez-Reyes, Jose A. and González-Rodríguez, Patricia and Goping, Ing Swie and Gorbatyuk, Marina S. and Gorbunov, Nikolai V. and Görgülü, Kıvanç and Gorojod, Roxana M. and Gorski, Sharon M. and Goruppi, Sandro and Gotor, Cecilia and Gottlieb, Roberta A. and Gozes, Illana and Gozuacik, Devrim and Graef, Martin and Gräler, Markus H. and Granatiero, Veronica and Grasso, Daniel and Gray, Joshua P. and Green, Douglas R. and Greenhough, Alexander and Gregory, Stephen L. and Griffin, Edward F. and Grinstaff, Mark W. and Gros, Frederic and Grose, Charles and Gross, Angelina S. and Gruber, Florian and Grumati, Paolo and Grune, Tilman and Gu, Xueyan and Guan, Jun Lin and Guardia, Carlos M. and Guda, Kishore and Guerra, Flora and Guerri, Consuelo and Guha, Prasun and Guillén, Carlos and Gujar, Shashi and Gukovskaya, Anna and Gukovsky, Ilya and Gunst, Jan and Günther, Andreas and Guntur, Anyonya R. and Guo, Chuanyong and Guo, Chun and Guo, Hongqing and Guo, Lian Wang and Guo, Ming and Gupta, Pawan and Gupta, Shashi Kumar and Gupta, Swapnil and Gupta, Veer Bala and Gupta, Vivek and Gustafsson, Asa B. and Gutterman, David D. and H.B, Ranjitha and Haapasalo, Annakaisa and Haber, James E. and Hać, Aleksandra and Hadano, Shinji and Hafrén, Anders J. and Haidar, Mansour and Hall, Belinda S. and Halldén, Gunnel and Hamacher-Brady, Anne and Hamann, Andrea and Hamasaki, Maho and Han, Weidong and Hansen, Malene and Hanson, Phyllis I. . and Hao, Zijian and Harada, Masaru and Harhaji-Trajkovic, Ljubica and Hariharan, Nirmala and Haroon, Nigil and Harris, James and Hasegawa, Takafumi and Hasima Nagoor, Noor and Haspel, Jeffrey A. and Haucke, Volker and Hawkins, Wayne D. and Hay, Bruce A. and Haynes, Cole M. and Hayrabedyan, Soren B. and Hays, Thomas S. and He, Congcong and He, Qin and He, Rong Rong and He, You Wen and He, Yu Ying and Heakal, Yasser and Heberle, Alexander M. and Hejtmancik, J. Fielding and Helgason, Gudmundur Vignir and Henkel, Vanessa and Herb, Marc and Hergovich, Alexander and Herman-Antosiewicz, Anna and Hernández, Agustín and Hernandez, Carlos and Hernandez-Diaz, Sergio and Hernandez-Gea, Virginia and Herpin, Amaury and Herreros, Judit and Hervás, Javier H. and Hesselson, Daniel and Hetz, Claudio and Heussler, Volker T. and Higuchi, Yujiro and Hilfiker, Sabine and Hill, Joseph A. and Hlavacek, William S. and Ho, Emmanuel A. and Ho, Idy H.T. and Ho, Philip Wing Lok and Ho, Shu Leong and Ho, Wan Yun and Hobbs, G. Aaron and Hochstrasser, Mark and Hoet, Peter H.M. and Hofius, Daniel and Hofman, Paul and Höhn, Annika and Holmberg, Carina I. and Hombrebueno, Jose R. and Yi-Ren Hong, Chang Won Hong and Hooper, Lora V. and Hoppe, Thorsten and Horos, Rastislav and Hoshida, Yujin and Hsin, I. Lun and Hsu, Hsin Yun and Hu, Bing and Hu, Dong and Hu, Li Fang and Hu, Ming Chang and Hu, Ronggui and Hu, Wei and Hu, Yu Chen and Hu, Zhuo Wei and Hua, Fang and Hua, Jinlian and Hua, Yingqi and Huan, Chongmin and Huang, Canhua and Huang, Chuanshu and Huang, Chuanxin and Huang, Chunling and Huang, Haishan and Huang, Kun and Huang, Michael L.H. and Huang, Rui and Huang, Shan and Huang, Tianzhi and Huang, Xing and Huang, Yuxiang Jack and Huber, Tobias B. and Hubert, Virginie and Hubner, Christian A. and Hughes, Stephanie M. and Hughes, William E. and Humbert, Magali and Hummer, Gerhard and Hurley, James H. and Hussain, Sabah and Hussain, Salik and Hussey, Patrick J. and Hutabarat, Martina and Hwang, Hui Yun and Hwang, Seungmin and Ieni, Antonio and Ikeda, Fumiyo and Imagawa, Yusuke and Imai, Yuzuru and Imbriano, Carol and Imoto, Masaya and Inman, Denise M. and Inoki, Ken and Iovanna, Juan and Iozzo, Renato V. and Ippolito, Giuseppe and Irazoqui, Javier E. and Iribarren, Pablo and Ishaq, Mohd and Ishikawa, Makoto and Ishimwe, Nestor and Isidoro, Ciro and Ismail, Nahed and Issazadeh-Navikas, Shohreh and Itakura, Eisuke and Ito, Daisuke and Ivankovic, Davor and Ivanova, Saška and Iyer, Anand Krishnan V. and Izquierdo, José M. and Izumi, Masanori and Jäättelä, Marja and Jabir, Majid Sakhi and Jackson, William T. and Jacobo-Herrera, Nadia and Jacomin, Anne Claire and Jacquin, Elise and Jadiya, Pooja and Jaeschke, Hartmut and Jagannath, Chinnaswamy and Jakobi, Arjen J. and Jakobsson, Johan and Janji, Bassam and Jansen-Dürr, Pidder and Jansson, Patric J. and Jantsch, Jonathan and Januszewski, Sławomir and Jassey, Alagie and Jean, Steve and Jeltsch-David, Hélène and Jendelova, Pavla and Jenny, Andreas and Jensen, Thomas E. and Jessen, Niels and Jewell, Jenna L. and Ji, Jing and Jia, Lijun and Jia, Rui and Jiang, Liwen and Jiang, Qing and Jiang, Richeng and Jiang, Teng and Jiang, Xuejun and Jiang, Yu and Jimenez-Sanchez, Maria and Jin, Eun Jung and Jin, Fengyan and Jin, Hongchuan and Jin, Li and Jin, Luqi and Jin, Meiyan and Jin, Si and Jo, Eun Kyeong and Joffre, Carine and Johansen, Terje and Johnson, Gail V.W. and Johnston, Simon A. and Jokitalo, Eija and Jolly, Mohit Kumar and Joosten, Leo A.B. and Jordan, Joaquin and Joseph, Bertrand and Ju, Dianwen and Ju, Jeong Sun and Ju, Jingfang and Juárez, Esmeralda and Judith, Delphine and Juhász, Gábor and Jun, Youngsoo and Jung, Chang Hwa and Jung, Sung Chul and Jung, Yong Keun and Jungbluth, Heinz and Jungverdorben, Johannes and Just, Steffen and Kaarniranta, Kai and Kaasik, Allen and Kabuta, Tomohiro and Kaganovich, Daniel and Kahana, Alon and Kain, Renate and Kajimura, Shinjo and Kalamvoki, Maria and Kalia, Manjula and Kalinowski, Danuta S. and Kaludercic, Nina and Kalvari, Ioanna and Kaminska, Joanna and Kaminskyy, Vitaliy O. and Kanamori, Hiromitsu and Kanasaki, Keizo and Kang, Chanhee and Kang, Rui and Kang, Sang Sun and Kaniyappan, Senthilvelrajan and Kanki, Tomotake and Kanneganti, Thirumala Devi and Kanthasamy, Anumantha G. and Kanthasamy, Arthi and Kantorow, Marc and Kapuy, Orsolya and Karamouzis, Michalis V. and Karim, Md Razaul and Karmakar, Parimal and Katare, Rajesh G. and Kato, Masaru and Kaufmann, Stefan H.E. and Kauppinen, Anu and Kaushal, Gur P. and Kaushik, Susmita and Kawasaki, Kiyoshi and Kazan, Kemal and Ke, Po Yuan and Keating, Damien J. and Keber, Ursula and Kehrl, John H. and Keller, Kate E. and Keller, Christian W. and Kemper, Jongsook Kim and Kenific, Candia M. and Kepp, Oliver and Kermorgant, Stephanie and Kern, Andreas and Ketteler, Robin and Keulers, Tom G. and Khalfin, Boris and Khalil, Hany and Khambu, Bilon and Khan, Shahid Y. and Khandelwal, Vinoth Kumar Megraj and Khandia, Rekha and Kho, Widuri and Khobrekar, Noopur V. and Khuansuwan, Sataree and Khundadze, Mukhran and Killackey, Samuel A. and Kim, Dasol and Kim, Deok Ryong and Kim, Do Hyung and Kim, Dong Eun and Kim, Eun Young and Kim, Eun Kyoung and Kim, Hak Rim and Kim, Hee Sik and Hyung-Ryong Kim, Unknown and Kim, Jeong Hun and Kim, Jin Kyung and Kim, Jin Hoi and Kim, Joungmok and Kim, Ju Hwan and Kim, Keun Il and Kim, Peter K. and Kim, Seong Jun and Kimball, Scot R. and Kimchi, Adi and Kimmelman, Alec C. and Kimura, Tomonori and King, Matthew A. and Kinghorn, Kerri J. and Kinsey, Conan G. and Kirkin, Vladimir and Kirshenbaum, Lorrie A. and Kiselev, Sergey L. and Kishi, Shuji and Kitamoto, Katsuhiko and Kitaoka, Yasushi and Kitazato, Kaio and Kitsis, Richard N. and Kittler, Josef T. and Kjaerulff, Ole and Klein, Peter S. and Klopstock, Thomas and Klucken, Jochen and Knævelsrud, Helene and Knorr, Roland L. and Ko, Ben C.B. and Ko, Fred and Ko, Jiunn Liang and Kobayashi, Hotaka and Kobayashi, Satoru and Koch, Ina and Koch, Jan C. and Koenig, Ulrich and Kögel, Donat and Koh, Young Ho and Koike, Masato and Kohlwein, Sepp D. and Kocaturk, Nur M. and Komatsu, Masaaki and König, Jeannette and Kono, Toru and Kopp, Benjamin T. and Korcsmaros, Tamas and Korkmaz, Gözde and Korolchuk, Viktor I. and Korsnes, Mónica Suárez and Koskela, Ali and Kota, Janaiah and Kotake, Yaichiro and Kotler, Monica L. and Kou, Yanjun and Koukourakis, Michael I. and Koustas, Evangelos and Kovacs, Attila L. and Kovács, Tibor and Koya, Daisuke and Kozako, Tomohiro and Kraft, Claudine and Krainc, Dimitri and Krämer, Helmut and Krasnodembskaya, Anna D. and Kretz-Remy, Carole and Kroemer, Guido and Ktistakis, Nicholas T. and Kuchitsu, Kazuyuki and Kuenen, Sabine and Kuerschner, Lars and Kukar, Thomas and Kumar, Ajay and Kumar, Ashok and Kumar, Deepak and Kumar, Dhiraj and Kumar, Sharad and Kume, Shinji and Kumsta, Caroline and Kundu, Chanakya N. and Kundu, Mondira and Kunnumakkara, Ajaikumar B. and Kurgan, Lukasz and Kutateladze, Tatiana G. and Kutlu, Ozlem and Kwak, Seong Ae and Kwon, Ho Jeong and Kwon, Taeg Kyu and Kwon, Yong Tae and Kyrmizi, Irene and La Spada, Albert and Labonté, Patrick and Ladoire, Sylvain and Laface, Ilaria and Lafont, Frank and Lagace, Diane C. and Lahiri, Vikramjit and Lai, Zhibing and Laird, Angela S. and Lakkaraju, Aparna and Lamark, Trond and Lan, Sheng Hui and Landajuela, Ane and Lane, Darius J.R. and Lane, Jon D. and Lang, Charles H. and Lange, Carsten and Langel, Ülo and Langer, Rupert and Lapaquette, Pierre and Laporte, Jocelyn and Larusso, Nicholas F. and Lastres-Becker, Isabel and Lau, Wilson Chun Yu and Laurie, Gordon W. and Lavandero, Sergio and Law, Betty Yuen Kwan and Law, Helen Ka Wai and Layfield, Rob and Le, Weidong and Le Stunff, Herve and Leary, Alexandre Y. and Lebrun, Jean Jacques and Leck, Lionel Y.W. and Leduc-Gaudet, Jean Philippe and Lee, Changwook and Lee, Chung Pei and Lee, Da Hye and Lee, Edward B. and Lee, Erinna F. and Lee, Gyun Min and Lee, He Jin and Lee, Heung Kyu and Lee, Jae Man and Lee, Jason S. and Lee, Jin A. and Lee, Joo Yong and Lee, Jun Hee and Lee, Michael and Lee, Min Goo and Lee, Min Jae and Lee, Myung Shik and Lee, Sang Yoon and Lee, Seung Jae and Lee, Stella Y. and Lee, Sung Bae and Lee, Won Hee and Lee, Ying Ray and Lee, Yong Ho and Lee, Youngil and Lefebvre, Christophe and Legouis, Renaud and Lei, Yu L. and Lei, Yuchen and Leikin, Sergey and Leitinger, Gerd and Lemus, Leticia and Leng, Shuilong and Lenoir, Olivia and Lenz, Guido and Lenz, Heinz Josef and Lenzi, Paola and León, Yolanda and Leopoldino, Andréia M. and Leschczyk, Christoph and Leskelä, Stina and Letellier, Elisabeth and Leung, Chi Ting and Leung, Po Sing and Leventhal, Jeremy S. and Levine, Beth and Lewis, Patrick A. and Ley, Klaus and Li, Bin and Li, Da Qiang and Li, Jianming and Li, Jing and Li, Jiong and Li, Ke and Li, Liwu and Li, Mei and Li, Min and Li, Min and Li, Ming and Li, Mingchuan and Li, Pin Lan and Li, Ming Qing and Li, Qing and Li, Sheng and Li, Tiangang and Li, Wei and Li, Wenming and Li, Xue and Li, Yi Ping and Li, Yuan and Li, Zhiqiang and Li, Zhiyong and Li, Zhiyuan and Lian, Jiqin and Liang, Chengyu and Liang, Qiangrong and Liang, Weicheng and Liang, Yongheng and Liang, Yong Tian and Liao, Guanghong and Liao, Lujian and Liao, Mingzhi and Liao, Yung Feng and Librizzi, Mariangela and Lie, Pearl P.Y. and Lilly, Mary A. and Lim, Hyunjung J. and Lima, Thania R.R. and Limana, Federica and Lin, Chao and Lin, Chih Wen and Lin, Dar Shong and Lin, Fu Cheng and Lin, Jiandie D. and Lin, Kurt M. and Lin, Kwang Huei and Lin, Liang Tzung and Lin, Pei Hui and Lin, Qiong and Lin, Shaofeng and Lin, Su Ju and Lin, Wenyu and Lin, Xueying and Lin, Yao Xin and Lin, Yee Shin and Linden, Rafael and Lindner, Paula and Ling, Shuo Chien and Lingor, Paul and Linnemann, Amelia K. and Liou, Yih Cherng and Lipinski, Marta M. and Lipovšek, Saška and Lira, Vitor A. and Lisiak, Natalia and Liton, Paloma B. and Liu, Chao and Liu, Ching Hsuan and Liu, Chun Feng and Liu, Cui Hua and Liu, Fang and Liu, Hao and Liu, Hsiao Sheng and Liu, Hua Feng and Liu, Huifang and Liu, Jia and Liu, Jing and Liu, Julia and Liu, Leyuan and Liu, Longhua and Liu, Meilian and Liu, Qin and Liu, Wei and Liu, Wende and Liu, Xiao Hong and Liu, Xiaodong and Liu, Xingguo and Liu, Xu and Liu, Xuedong and Liu, Yanfen and Liu, Yang and Liu, Yang and Liu, Yueyang and Liu, Yule and Livingston, J. Andrew and Lizard, Gerard and Lizcano, Jose M. and Ljubojevic-Holzer, Senka and Lleonart, Matilde E. and Llobet-Navàs, David and Llorente, Alicia and Lo, Chih Hung and Lobato-Márquez, Damián and Long, Qi and Long, Yun Chau and Loos, Ben and Loos, Julia A. and López, Manuela G. and López-Doménech, Guillermo and López-Guerrero, José Antonio and López-Jiménez, Ana T. and López-Pérez, Óscar and López-Valero, Israel and Lorenowicz, Magdalena J. and Lorente, Mar and Lorincz, Peter and Lossi, Laura and Lotersztajn, Sophie and Lovat, Penny E. and Lovell, Jonathan F. and Lovy, Alenka and Lőw, Péter and Lu, Guang and Lu, Haocheng and Lu, Jia Hong and Lu, Jin Jian and Lu, Mengji and Lu, Shuyan and Luciani, Alessandro and Lucocq, John M. and Ludovico, Paula and Luftig, Micah A. and Luhr, Morten and Luis-Ravelo, Diego and Lum, Julian J. and Luna-Dulcey, Liany and Lund, Anders H. and Lund, Viktor K. and Lünemann, Jan D. and Lüningschrör, Patrick and Luo, Honglin and Luo, Rongcan and Luo, Shouqing and Luo, Zhi and Luparello, Claudio and Lüscher, Bernhard and Luu, Luan and Lyakhovich, Alex and Lyamzaev, Konstantin G. and Lystad, Alf Håkon and Lytvynchuk, Lyubomyr and Ma, Alvin C. and Ma, Changle and Ma, Mengxiao and Ma, Ning Fang and Ma, Quan Hong and Ma, Xinliang and Ma, Yueyun and Ma, Zhenyi and Macdougald, Ormond A. and Macian, Fernando and Macintosh, Gustavo C. and Mackeigan, Jeffrey P. and Macleod, Kay F. and Maday, Sandra and Madeo, Frank and Madesh, Muniswamy and Madl, Tobias and Madrigal-Matute, Julio and Maeda, Akiko and Maejima, Yasuhiro and Magarinos, Marta and Mahavadi, Poornima and Maiani, Emiliano and Maiese, Kenneth and Maiti, Panchanan and Maiuri, Maria Chiara and Majello, Barbara and Major, Michael B. and Makareeva, Elena and Malik, Fayaz and Mallilankaraman, Karthik and Malorni, Walter and Maloyan, Alina and Mammadova, Najiba and Man, Gene Chi Wai and Manai, Federico and Mancias, Joseph D. and Mandelkow, Eva Maria and Mandell, Michael A. and Manfredi, Angelo A. and Manjili, Masoud H. and Manjithaya, Ravi and Manque, Patricio and Manshian, Bella B. and Manzano, Raquel and Manzoni, Claudia and Mao, Kai and Marchese, Cinzia and Marchetti, Sandrine and Marconi, Anna Maria and Marcucci, Fabrizio and Mardente, Stefania and Mareninova, Olga A. and Margeta, Marta and Mari, Muriel and Marinelli, Sara and Marinelli, Oliviero and Mariño, Guillermo and Mariotto, Sofia and Marshall, Richard S. and Marten, Mark R. and Martens, Sascha and Martin, Alexandre P.J. and Martin, Katie R. and Martin, Sara and Martin, Shaun and Martín-Segura, Adrián and Martín-Acebes, Miguel A. and Martin-Burriel, Inmaculada and Martin-Rincon, Marcos and Martin-Sanz, Paloma and Martina, José A. and Martinet, Wim and Martinez, Aitor and Martinez, Ana and Martinez, Jennifer and Martinez Velazquez, Moises and Martinez-Lopez, Nuria and Martinez-Vicente, Marta and Martins, Daniel O. and Martins, Joilson O. and Martins, Waleska K. and Martins-Marques, Tania and Marzetti, Emanuele and Masaldan, Shashank and Masclaux-Daubresse, Celine and Mashek, Douglas G. and Massa, Valentina and Massieu, Lourdes and Masson, Glenn R. and Masuelli, Laura and Masyuk, Anatoliy I. and Masyuk, Tetyana V. and Matarrese, Paola and Matheu, Ander and Matoba, Satoaki and Matsuzaki, Sachiko and Mattar, Pamela and Matte, Alessandro and Mattoscio, Domenico and Mauriz, José L. and Mauthe, Mario and Mauvezin, Caroline and Maverakis, Emanual and Maycotte, Paola and Mayer, Johanna and Mazzoccoli, Gianluigi and Mazzoni, Cristina and Mazzulli, Joseph R. and Mccarty, Nami and Mcdonald, Christine and Mcgill, Mitchell R. and Mckenna, Sharon L. and Mclaughlin, Beth Ann and Mcloughlin, Fionn and Mcniven, Mark A. and Mcwilliams, Thomas G. and Mechta-Grigoriou, Fatima and Medeiros, Tania Catarina and Medina, Diego L. and Megeney, Lynn A. and Megyeri, Klara and Mehrpour, Maryam and Mehta, Jawahar L. and Meijer, Alfred J. and Meijer, Annemarie H. and Mejlvang, Jakob and Meléndez, Alicia and Melk, Annette and Memisoglu, Gonen and Mendes, Alexandrina F. and Meng, Delong and Meng, Fei and Meng, Tian and Menna-Barreto, Rubem and Menon, Manoj B. and Mercer, Carol and Mercier, Anne E. and Mergny, Jean Louis and Merighi, Adalberto and Merkley, Seth D. and Merla, Giuseppe and Meske, Volker and Mestre, Ana Cecilia and Metur, Shree Padma and Meyer, Christian and Meyer, Hemmo and Mi, Wenyi and Mialet-Perez, Jeanne and Miao, Junying and Micale, Lucia and Miki, Yasuo and Milan, Enrico and Milczarek, Małgorzata and Miller, Dana L. and Miller, Samuel I. and Miller, Silke and Millward, Steven W. and Milosevic, Ira and Minina, Elena A. and Mirzaei, Hamed and Mirzaei, Hamid Reza and Mirzaei, Mehdi and Mishra, Amit and Mishra, Nandita and Mishra, Paras Kumar and Misirkic Marjanovic, Maja and Misasi, Roberta and Misra, Amit and Misso, Gabriella and Mitchell, Claire and Mitou, Geraldine and Miura, Tetsuji and Miyamoto, Shigeki and Miyazaki, Makoto and Miyazaki, Mitsunori and Miyazaki, Taiga and Miyazawa, Keisuke and Mizushima, Noboru and Mogensen, Trine H. and Mograbi, Baharia and Mohammadinejad, Reza and Mohamud, Yasir and Mohanty, Abhishek and Mohapatra, Sipra and Möhlmann, Torsten and Mohmmed, Asif and Moles, Anna and Moley, Kelle H. and Molinari, Maurizio and Mollace, Vincenzo and Møller, Andreas Buch and Mollereau, Bertrand and Mollinedo, Faustino and Montagna, Costanza and Monteiro, Mervyn J. and Montella, Andrea and Montes, L. Ruth and Montico, Barbara and Mony, Vinod K. and Monzio Compagnoni, Giacomo and Moore, Michael N. and Moosavi, Mohammad A. and Mora, Ana L. and Mora, Marina and Morales-Alamo, David and Moratalla, Rosario and Moreira, Paula I. and Morelli, Elena and Moreno, Sandra and Moreno-Blas, Daniel and Moresi, Viviana and Morga, Benjamin and Morgan, Alwena H. and Morin, Fabrice and Morishita, Hideaki and Moritz, Orson L. and Moriyama, Mariko and Moriyasu, Yuji and Morleo, Manuela and Morselli, Eugenia and Moruno-Manchon, Jose F. and Moscat, Jorge and Mostowy, Serge and Motori, Elisa and Moura, Andrea Felinto and Moustaid-Moussa, Naima and Mrakovcic, Maria and Muciño-Hernández, Gabriel and Mukherjee, Anupam and Mukhopadhyay, Subhadip and Mulcahy Levy, Jean M. and Mulero, Victoriano and Muller, Sylviane and Münch, Christian and Munjal, Ashok and Munoz-Canoves, Pura and Muñoz-Galdeano, Teresa and Münz, Christian and Murakawa, Tomokazu and Muratori, Claudia and Murphy, Brona M. and Murphy, J. Patrick and Murthy, Aditya and Myöhänen, Timo T. and Mysorekar, Indira U. and Mytych, Jennifer and Nabavi, Seyed Mohammad and Nabissi, Massimo and Nagy, Péter and Nah, Jihoon and Nahimana, Aimable and Nakagawa, Ichiro and Nakamura, Ken and Nakatogawa, Hitoshi and Nandi, Shyam S. and Nanjundan, Meera and Nanni, Monica and Napolitano, Gennaro and Nardacci, Roberta and Narita, Masashi and Nassif, Melissa and Nathan, Ilana and Natsumeda, Manabu and Naude, Ryno J. and Naumann, Christin and Naveiras, Olaia and Navid, Fatemeh and Nawrocki, Steffan T. and Nazarko, Taras Y. and Nazio, Francesca and Negoita, Florentina and Neill, Thomas and Neisch, Amanda L. and Neri, Luca M. and Netea, Mihai G. and Neubert, Patrick and Neufeld, Thomas P. and Neumann, Dietbert and Neutzner, Albert and Newton, Phillip T. and Ney, Paul A. and Nezis, Ioannis P. and Ng, Charlene C.W. and Ng, Tzi Bun and Nguyen, Hang T.T. and Nguyen, Long T. and Ni, Hong Min and Ní Cheallaigh, Clíona and Ni, Zhenhong and Nicolao, M. Celeste and Nicoli, Francesco and Nieto-Diaz, Manuel and Nilsson, Per and Ning, Shunbin and Niranjan, Rituraj and Nishimune, Hiroshi and Niso-Santano, Mireia and Nixon, Ralph A. and Nobili, Annalisa and Nobrega, Clevio and Noda, Takeshi and Nogueira-Recalde, Uxía and Nolan, Trevor M. and Nombela, Ivan and Novak, Ivana and Novoa, Beatriz and Nozawa, Takashi and Nukina, Nobuyuki and Nussbaum-Krammer, Carmen and Nylandsted, Jesper and O’Donovan, Tracey R. and O’Leary, Seónadh M. and O’Rourke, Eyleen J. and O’Sullivan, Mary P. and O’Sullivan, Timothy E. and Oddo, Salvatore and Oehme, Ina and Ogawa, Michinaga and Ogier-Denis, Eric and Ogmundsdottir, Margret H. and Ogretmen, Besim and Oh, Goo Taeg and Oh, Seon Hee and Oh, Young J. and Ohama, Takashi and Ohashi, Yohei and Ohmuraya, Masaki and Oikonomou, Vasileios and Ojha, Rani and Okamoto, Koji and Okazawa, Hitoshi and Oku, Masahide and Oliván, Sara and Oliveira, Jorge M.A. and Ollmann, Michael and Olzmann, James A. and Omari, Shakib and Omary, M. Bishr and Önal, Gizem and Ondrej, Martin and Ong, Sang Bing and Ong, Sang Ging and Onnis, Anna and Orellana, Juan A. and Orellana-Muñoz, Sara and Ortega-Villaizan, Maria Del Mar and Ortiz-Gonzalez, Xilma R. and Ortona, Elena and Osiewacz, Heinz D. and Osman, Abdel Hamid K. and Osta, Rosario and Otegui, Marisa S. and Otsu, Kinya and Ott, Christiane and Ottobrini, Luisa and Ou, Jing Hsiung James and Outeiro, Tiago F. and Oynebraten, Inger and Ozturk, Melek and Pagès, Gilles and Pahari, Susanta and Pajares, Marta and Pajvani, Utpal B. and Pal, Rituraj and Paladino, Simona and Pallet, Nicolas and Palmieri, Michela and Palmisano, Giuseppe and Palumbo, Camilla and Pampaloni, Francesco and Pan, Lifeng and Pan, Qingjun and Pan, Wenliang and Pan, Xin and Panasyuk, Ganna and Pandey, Rahul and Pandey, Udai B. and Pandya, Vrajesh and Paneni, Francesco and Pang, Shirley Y. and Panzarini, Elisa and Papademetrio, Daniela L. and Papaleo, Elena and Papinski, Daniel and Papp, Diana and Park, Eun Chan and Park, Hwan Tae and Park, Ji Man and Park, Jong In and Park, Joon Tae and Park, Junsoo and Park, Sang Chul and Park, Sang Youel and Parola, Abraham H. and Parys, Jan B. and Pasquier, Adrien and Pasquier, Benoit and Passos, João F. and Pastore, Nunzia and Patel, Hemal H. and Patschan, Daniel and Pattingre, Sophie and Pedraza-Alva, Gustavo and Pedraza-Chaverri, Jose and Pedrozo, Zully and Pei, Gang and Pei, Jianming and Peled-Zehavi, Hadas and Pellegrini, Joaquín M. and Pelletier, Joffrey and Peñalva, Miguel A. and Peng, Di and Peng, Ying and Penna, Fabio and Pennuto, Maria and Pentimalli, Francesca and Pereira, Cláudia M.F. and Pereira, Gustavo J.S. and Pereira, Lilian C. and Pereira De Almeida, Luis and Perera, Nirma D. and Pérez-Lara, Ángel and Perez-Oliva, Ana B. and Pérez-Pérez, María Esther and Periyasamy, Palsamy and Perl, Andras and Perrotta, Cristiana and Perrotta, Ida and Pestell, Richard G. and Petersen, Morten and Petrache, Irina and Petrovski, Goran and Pfirrmann, Thorsten and Pfister, Astrid S. and Philips, Jennifer A. and Pi, Huifeng and Picca, Anna and Pickrell, Alicia M. and Picot, Sandy and Pierantoni, Giovanna M. and Pierdominici, Marina and Pierre, Philippe and Pierrefite-Carle, Valérie and Pierzynowska, Karolina and Pietrocola, Federico and Pietruczuk, Miroslawa and Pignata, Claudio and Pimentel-Muiños, Felipe X. and Pinar, Mario and Pinheiro, Roberta O. and Pinkas-Kramarski, Ronit and Pinton, Paolo and Pircs, Karolina and Piya, Sujan and Pizzo, Paola and Plantinga, Theo S. and Platta, Harald W. and Plaza-Zabala, Ainhoa and Plomann, Markus and Plotnikov, Egor Y. and Plun-Favreau, Helene and Pluta, Ryszard and Pocock, Roger and Pöggeler, Stefanie and Pohl, Christian and Poirot, Marc and Poletti, Angelo and Ponpuak, Marisa and Popelka, Hana and Popova, Blagovesta and Porta, Helena and Porte Alcon, Soledad and Portilla-Fernandez, Eliana and Post, Martin and Potts, Malia B. and Poulton, Joanna and Powers, Ted and Prahlad, Veena and Prajsnar, Tomasz K. and Praticò, Domenico and Prencipe, Rosaria and Priault, Muriel and Proikas-Cezanne, Tassula and Promponas, Vasilis J. and Proud, Christopher G. and Puertollano, Rosa and Puglielli, Luigi and Pulinilkunnil, Thomas and Puri, Deepika and Puri, Rajat and Puyal, Julien and Qi, Xiaopeng and Qi, Yongmei and Qian, Wenbin and Qiang, Lei and Qiu, Yu and Quadrilatero, Joe and Quarleri, Jorge and Raben, Nina and Rabinowich, Hannah and Ragona, Debora and Ragusa, Michael J. and Rahimi, Nader and Rahmati, Marveh and Raia, Valeria and Raimundo, Nuno and Rajasekaran, Namakkal Soorappan and Ramachandra Rao, Sriganesh and Rami, Abdelhaq and Ramírez-Pardo, Ignacio and Ramsden, David B. and Randow, Felix and Rangarajan, Pundi N. and Ranieri, Danilo and Rao, Hai and Rao, Lang and Rao, Rekha and Rathore, Sumit and Ratnayaka, J. Arjuna and Ratovitski, Edward A. and Ravanan, Palaniyandi and Ravegnini, Gloria and Ray, Swapan K. and Razani, Babak and Rebecca, Vito and Reggiori, Fulvio and Régnier-Vigouroux, Anne and Reichert, Andreas S. and Reigada, David and Reiling, Jan H. and Rein, Theo and Reipert, Siegfried and Rekha, Rokeya Sultana and Ren, Hongmei and Ren, Jun and Ren, Weichao and Renault, Tristan and Renga, Giorgia and Reue, Karen and Rewitz, Kim and Ribeiro De Andrade Ramos, Bruna and Riazuddin, S. Amer and Ribeiro-Rodrigues, Teresa M. and Ricci, Jean Ehrland and Ricci, Romeo and Riccio, Victoria and Richardson, Des R. and Rikihisa, Yasuko and Risbud, Makarand V. and Risueño, Ruth M. and Ritis, Konstantinos and Rizza, Salvatore and Rizzuto, Rosario and Roberts, Helen C. and Roberts, Luke D. and Robinson, Katherine J. and Roccheri, Maria Carmela and Rocchi, Stephane and Rodney, George G. and Rodrigues, Tiago and Rodrigues Silva, Vagner Ramon and Rodriguez, Amaia and Rodriguez-Barrueco, Ruth and Rodriguez-Henche, Nieves and Rodriguez-Rocha, Humberto and Roelofs, Jeroen and Rogers, Robert S. and Rogov, Vladimir V. and Rojo, Ana I. and Rolka, Krzysztof and Romanello, Vanina and Romani, Luigina and Romano, Alessandra and Romano, Patricia S. and Romeo-Guitart, David and Romero, Luis C. and Romero, Montserrat and Roney, Joseph C. and Rongo, Christopher and Roperto, Sante and Rosenfeldt, Mathias T. and Rosenstiel, Philip and Rosenwald, Anne G. and Roth, Kevin A. and Roth, Lynn and Roth, Steven and Rouschop, Kasper M.A. and Roussel, Benoit D. and Roux, Sophie and Rovere-Querini, Patrizia and Roy, Ajit and Rozieres, Aurore and Ruano, Diego and Rubinsztein, David C. and Rubtsova, Maria P. and Ruckdeschel, Klaus and Ruckenstuhl, Christoph and Rudolf, Emil and Rudolf, Rüdiger and Ruggieri, Alessandra and Ruparelia, Avnika Ashok and Rusmini, Paola and Russell, Ryan R. and Russo, Gian Luigi and Russo, Maria and Russo, Rossella and Ryabaya, Oxana O. and Ryan, Kevin M. and Ryu, Kwon Yul and Sabater-Arcis, Maria and Sachdev, Ulka and Sacher, Michael and Sachse, Carsten and Sadhu, Abhishek and Sadoshima, Junichi and Safren, Nathaniel and Saftig, Paul and Sagona, Antonia P. and Sahay, Gaurav and Sahebkar, Amirhossein and Sahin, Mustafa and Sahin, Ozgur and Sahni, Sumit and Saito, Nayuta and Saito, Shigeru and Saito, Tsunenori and Sakai, Ryohei and Sakai, Yasuyoshi and Sakamaki, Jun Ichi and Saksela, Kalle and Salazar, Gloria and Salazar-Degracia, Anna and Salekdeh, Ghasem H. and Saluja, Ashok K. and Sampaio-Marques, Belém and Sanchez, Maria Cecilia and Sanchez-Alcazar, Jose A. and Sanchez-Vera, Victoria and Sancho-Shimizu, Vanessa and Sanderson, J. Thomas and Sandri, Marco and Santaguida, Stefano and Santambrogio, Laura and Santana, Magda M. and Santoni, Giorgio and Sanz, Alberto and Sanz, Pascual and Saran, Shweta and Sardiello, Marco and Sargeant, Timothy J. and Sarin, Apurva and Sarkar, Chinmoy and Sarkar, Sovan and Sarrias, Maria Rosa and Sarkar, Surajit and Sarmah, Dipanka Tanu and Sarparanta, Jaakko and Sathyanarayan, Aishwarya and Sathyanarayanan, Ranganayaki and Scaglione, K. Matthew and Scatozza, Francesca and Schaefer, Liliana and Schafer, Zachary T. and Schaible, Ulrich E. and Schapira, Anthony H.V. and Scharl, Michael and Schatzl, Hermann M. and Schein, Catherine H. and Scheper, Wiep and Scheuring, David and Schiaffino, Maria Vittoria and Schiappacassi, Monica and Schindl, Rainer and Schlattner, Uwe and Schmidt, Oliver and Schmitt, Roland and Schmidt, Stephen D. and Schmitz, Ingo and Schmukler, Eran and Schneider, Anja and Schneider, Bianca E. and Schober, Romana and Schoijet, Alejandra C. and Schott, Micah B. and Schramm, Michael and Schröder, Bernd and Schuh, Kai and Schüller, Christoph and Schulze, Ryan J. and Schürmanns, Lea and Schwamborn, Jens C. and Schwarten, Melanie and Scialo, Filippo and Sciarretta, Sebastiano and Scott, Melanie J. and Scotto, Kathleen W. and Scovassi, A. Ivana and Scrima, Andrea and Scrivo, Aurora and Sebastian, David and Sebti, Salwa and Sedej, Simon and Segatori, Laura and Segev, Nava and Seglen, Per O. and Seiliez, Iban and Seki, Ekihiro and Selleck, Scott B. and Sellke, Frank W. and Selsby, Joshua T. and Sendtner, Michael and Senturk, Serif and Seranova, Elena and Sergi, Consolato and Serra-Moreno, Ruth and Sesaki, Hiromi and Settembre, Carmine and Setty, Subba Rao Gangi and Sgarbi, Gianluca and Sha, Ou and Shacka, John J. and Shah, Javeed A. and Shang, Dantong and Shao, Changshun and Shao, Feng and Sharbati, Soroush and Sharkey, Lisa M. and Sharma, Dipali and Sharma, Gaurav and Sharma, Kulbhushan and Sharma, Pawan and Sharma, Surendra and Shen, Han Ming and Shen, Hongtao and Shen, Jiangang and Shen, Ming and Shen, Weili and Shen, Zheni and Sheng, Rui and Sheng, Zhi and Sheng, Zu Hang and Shi, Jianjian and Shi, Xiaobing and Shi, Ying Hong and Shiba-Fukushima, Kahori and Shieh, Jeng Jer and Shimada, Yohta and Shimizu, Shigeomi and Shimozawa, Makoto and Shintani, Takahiro and Shoemaker, Christopher J. and Shojaei, Shahla and Shoji, Ikuo and Shravage, Bhupendra V. and Shridhar, Viji and Shu, Chih Wen and Shu, Hong Bing and Shui, Ke and Shukla, Arvind K. and Shutt, Timothy E. and Sica, Valentina and Siddiqui, Aleem and Sierra, Amanda and Sierra-Torre, Virginia and Signorelli, Santiago and Sil, Payel and Silva, Bruno J.De Andrade and Silva, Johnatas D. and Silva-Pavez, Eduardo and Silvente-Poirot, Sandrine and Simmonds, Rachel E. and Simon, Anna Katharina and Simon, Hans Uwe and Simons, Matias and Singh, Anurag and Singh, Lalit P. and Singh, Rajat and Singh, Shivendra V. and Singh, Shrawan K. and Singh, Sudha B. and Singh, Sunaina and Singh, Surinder Pal and Sinha, Debasish and Sinha, Rohit Anthony and Sinha, Sangita and Sirko, Agnieszka and Sirohi, Kapil and Sivridis, Efthimios L. and Skendros, Panagiotis and Skirycz, Aleksandra and Slaninová, Iva and Smaili, Soraya S. and Smertenko, Andrei and Smith, Matthew D. and Soenen, Stefaan J. and Sohn, Eun Jung and Sok, Sophia P.M. and Solaini, Giancarlo and Soldati, Thierry and Soleimanpour, Scott A. and Soler, Rosa M. and Solovchenko, Alexei and Somarelli, Jason A. and Sonawane, Avinash and Song, Fuyong and Song, Hyun Kyu and Song, Ju Xian and Song, Kunhua and Song, Zhiyin and Soria, Leandro R. and Sorice, Maurizio and Soukas, Alexander A. and Soukup, Sandra Fausia and Sousa, Diana and Sousa, Nadia and Spagnuolo, Paul A. and Spector, Stephen A. and Srinivas Bharath, M. M. and St. Clair, Daret and Stagni, Venturina and Staiano, Leopoldo and Stalnecker, Clint A. and Stankov, Metodi V. and Stathopulos, Peter B. and Stefan, Katja and Stefan, Sven Marcel and Stefanis, Leonidas and Steffan, Joan S. and Steinkasserer, Alexander and Stenmark, Harald and Sterneckert, Jared and Stevens, Craig and Stoka, Veronika and Storch, Stephan and Stork, Björn and Strappazzon, Flavie and Strohecker, Anne Marie and Stupack, Dwayne G. and Su, Huanxing and Su, Ling Yan and Su, Longxiang and Suarez-Fontes, Ana M. and Subauste, Carlos S. and Subbian, Selvakumar and Subirada, Paula V. and Sudhandiran, Ganapasam and Sue, Carolyn M. and Sui, Xinbing and Summers, Corey and Sun, Guangchao and Sun, Jun and Sun, Kang and Sun, Meng Xiang and Sun, Qiming and Sun, Yi and Sun, Zhongjie and Sunahara, Karen K.S. and Sundberg, Eva and Susztak, Katalin and Sutovsky, Peter and Suzuki, Hidekazu and Sweeney, Gary and Symons, J. David and Sze, Stephen Cho Wing and Szewczyk, Nathaniel J. and Tabęcka-Łonczynska, Anna and Tabolacci, Claudio and Tacke, Frank and Taegtmeyer, Heinrich and Tafani, Marco and Tagaya, Mitsuo and Tai, Haoran and Tait, Stephen W.G. and Takahashi, Yoshinori and Takats, Szabolcs and Talwar, Priti and Tam, Chit and Tam, Shing Yau and Tampellini, Davide and Tamura, Atsushi and Tan, Chong Teik and Tan, Eng King and Tan, Ya Qin and Tanaka, Masaki and Tanaka, Motomasa and Tang, Daolin and Tang, Jingfeng and Tang, Tie Shan and Tanida, Isei and Tao, Zhipeng and Taouis, Mohammed and Tatenhorst, Lars and Tavernarakis, Nektarios and Taylor, Allen and Taylor, Gregory A. and Taylor, Joan M. and Tchetina, Elena and Tee, Andrew R. and Tegeder, Irmgard and Teis, David and Teixeira, Natercia and Teixeira-Clerc, Fatima and Tekirdag, Kumsal A. and Tencomnao, Tewin and Tenreiro, Sandra and Tepikin, Alexei V. and Testillano, Pilar S. and Tettamanti, Gianluca and Tharaux, Pierre Louis and Thedieck, Kathrin and Thekkinghat, Arvind A. and Thellung, Stefano and Thinwa, Josephine W. and Thirumalaikumar, V. P. and Thomas, Sufi Mary and Thomes, Paul G. and Thorburn, Andrew and Thukral, Lipi and Thum, Thomas and Thumm, Michael and Tian, Ling and Tichy, Ales and Till, Andreas and Timmerman, Vincent and Titorenko, Vladimir I. and Todi, Sokol V. and Todorova, Krassimira and Toivonen, Janne M. and Tomaipitinca, Luana and Tomar, Dhanendra and Tomas-Zapico, Cristina and Tomić, Sergej and Tong, Benjamin Chun Kit and Tong, Chao and Tong, Xin and Tooze, Sharon A. and Torgersen, Maria L. and Torii, Satoru and Torres-López, Liliana and Torriglia, Alicia and Towers, Christina G. and Towns, Roberto and Toyokuni, Shinya and Trajkovic, Vladimir and Tramontano, Donatella and Tran, Quynh Giao and Travassos, Leonardo H. and Trelford, Charles B. and Tremel, Shirley and Trougakos, Ioannis P. and Tsao, Betty P. and Tschan, Mario P. and Tse, Hung Fat and Tse, Tak Fu and Tsugawa, Hitoshi and Tsvetkov, Andrey S. and Tumbarello, David A. and Tumtas, Yasin and Tuñón, María J. and Turcotte, Sandra and Turk, Boris and Turk, Vito and Turner, Bradley J. and Tuxworth, Richard I. and Tyler, Jessica K. and Tyutereva, Elena V. and Uchiyama, Yasuo and Ugun-Klusek, Aslihan and Uhlig, Holm H. and Ułamek-Kozioł, Marzena and Ulasov, Ilya V. and Umekawa, Midori and Ungermann, Christian and Unno, Rei and Urbe, Sylvie and Uribe-Carretero, Elisabet and Üstün, Suayib and Uversky, Vladimir N. and Vaccari, Thomas and Vaccaro, Maria I. and Vahsen, Björn F. and Vakifahmetoglu-Norberg, Helin and Valdor, Rut and Valente, Maria J. and Valko, Ayelén and Vallee, Richard B. and Valverde, Angela M. and Van Den Berghe, Greet and Van Der Veen, Stijn and Van Kaer, Luc and Van Loosdregt, Jorg and Van Wijk, Sjoerd J.L. and Vandenberghe, Wim and Vanhorebeek, Ilse and Vannier-Santos, Marcos A. and Vannini, Nicola and Vanrell, M. Cristina and Vantaggiato, Chiara and Varano, Gabriele and Varela-Nieto, Isabel and Varga, Máté and Vasconcelos, M. Helena and Vats, Somya and Vavvas, Demetrios G. and Vega-Naredo, Ignacio and Vega-Rubin-De-Celis, Silvia and Velasco, Guillermo and Velázquez, Ariadna P. and Vellai, Tibor and Vellenga, Edo and Velotti, Francesca and Verdier, Mireille and Verginis, Panayotis and Vergne, Isabelle and Verkade, Paul and Verma, Manish and Verstreken, Patrik and Vervliet, Tim and Vervoorts, Jörg and Vessoni, Alexandre T. and Victor, Victor M. and Vidal, Michel and Vidoni, Chiara and Vieira, Otilia V. and Vierstra, Richard D. and Viganó, Sonia and Vihinen, Helena and Vijayan, Vinoy and Vila, Miquel and Vilar, Marçal and Villalba, José M. and Villalobo, Antonio and Villarejo-Zori, Beatriz and Villarroya, Francesc and Villarroya, Joan and Vincent, Olivier and Vindis, Cecile and Viret, Christophe and Viscomi, Maria Teresa and Visnjic, Dora and Vitale, Ilio and Vocadlo, David J. and Voitsekhovskaja, Olga V. and Volonté, Cinzia and Volta, Mattia and Vomero, Marta and Von Haefen, Clarissa and Vooijs, Marc A. and Voos, Wolfgang and Vucicevic, Ljubica and Wade-Martins, Richard and Waguri, Satoshi and Waite, Kenrick A. and Wakatsuki, Shuji and Walker, David W. and Walker, Mark J. and Walker, Simon A. and Walter, Jochen and Wandosell, Francisco G. and Wang, Bo and Wang, Chao Yung and Wang, Chen and Wang, Chenran and Wang, Chenwei and Wang, Cun Yu and Wang, Dong and Wang, Fangyang and Wang, Feng and Wang, Fengming and Wang, Guansong and Wang, Han and Wang, Hao and Wang, Hexiang and Wang, Hong Gang and Wang, Jianrong and Wang, Jigang and Wang, Jiou and Wang, Jundong and Wang, Kui and Wang, Lianrong and Wang, Liming and Wang, Maggie Haitian and Wang, Meiqing and Wang, Nanbu and Wang, Pengwei and Wang, Peipei and Wang, Ping and Wang, Ping and Wang, Qing Jun and Wang, Qing and Wang, Qing Kenneth and Wang, Qiong A. and Wang, Wen Tao and Wang, Wuyang and Wang, Xinnan and Wang, Xuejun and Wang, Yan and Wang, Yanchang and Wang, Yanzhuang and Wang, Yen Yun and Wang, Yihua and Wang, Yipeng and Wang, Yu and Wang, Yuqi and Wang, Zhe and Wang, Zhenyu and Wang, Zhouguang and Warnes, Gary and Warnsmann, Verena and Watada, Hirotaka and Watanabe, Eizo and Watchon, Maxinne and Wawrzyńska, Anna and Weaver, Timothy E. and Wegrzyn, Grzegorz and Wehman, Ann M. and Wei, Huafeng and Wei, Lei and Wei, Taotao and Wei, Yongjie and Weiergräber, Oliver H. and Weihl, Conrad C. and Weindl, Günther and Weiskirchen, Ralf and Wells, Alan and Wen, Runxia H. and Wen, Xin and Werner, Antonia and Weykopf, Beatrice and Wheatley, Sally P. and Whitton, J. Lindsay and Whitworth, Alexander J. and Wiktorska, Katarzyna and Wildenberg, Manon E. and Wileman, Tom and Wilkinson, Simon and Willbold, Dieter and Williams, Brett and Williams, Robin S.B. and Williams, Roger L. and Williamson, Peter R. and Wilson, Richard A. and Winner, Beate and Winsor, Nathaniel J. and Witkin, Steven S. and Wodrich, Harald and Woehlbier, Ute and Wollert, Thomas and Wong, Esther and Wong, Jack Ho and Wong, Richard W. and Wong, Vincent Kam Wai and Wong, W. Wei Lynn and Wu, An Guo and Wu, Chengbiao and Wu, Jian and Wu, Junfang and Wu, Kenneth K. and Wu, Min and Wu, Shan Ying and Wu, Shengzhou and Wu, Shu Yan and Wu, Shufang and Wu, William K.K. and Wu, Xiaohong and Wu, Xiaoqing and Wu, Yao Wen and Wu, Yihua and Xavier, Ramnik J. and Xia, Hongguang and Xia, Lixin and Xia, Zhengyuan and Xiang, Ge and Xiang, Jin and Xiang, Mingliang and Xiang, Wei and Xiao, Bin and Xiao, Guozhi and Xiao, Hengyi and Xiao, Hong Tao and Xiao, Jian and Xiao, Lan and Xiao, Shi and Xiao, Yin and Xie, Baoming and Xie, Chuan Ming and Xie, Min and Xie, Yuxiang and Xie, Zhiping and Xie, Zhonglin and Xilouri, Maria and Xu, Congfeng and Xu, En and Xu, Haoxing and Xu, Jing and Xu, Jin Rong and Xu, Liang and Xu, Wen Wen and Xu, Xiulong and Xue, Yu and Yakhine-Diop, Sokhna M.S. and Yamaguchi, Masamitsu and Yamaguchi, Osamu and Yamamoto, Ai and Yamashina, Shunhei and Yan, Shengmin and Yan, Shian Jang and Yan, Zhen and Yanagi, Yasuo and Yang, Chuanbin and Yang, Dun Sheng and Yang, Huan and Yang, Huang Tian and Yang, Hui and Yang, Jin Ming and Yang, Jing and Yang, Jingyu and Yang, Ling and Yang, Liu and Yang, Ming and Yang, Pei Ming and Yang, Qian and Yang, Seungwon and Yang, Shu and Yang, Shun Fa and Yang, Wannian and Yang, Wei Yuan and Yang, Xiaoyong and Yang, Xuesong and Yang, Yi and Yang, Ying and Yao, Honghong and Yao, Shenggen and Yao, Xiaoqiang and Yao, Yong Gang and Yao, Yong Ming and Yasui, Takahiro and Yazdankhah, Meysam and Yen, Paul M. and Yi, Cong and Yin, Xiao Ming and Yin, Yanhai and Yin, Zhangyuan and Yin, Ziyi and Ying, Meidan and Ying, Zheng and Yip, Calvin K. and Yiu, Stephanie Pei Tung and Yoo, Young H. and Yoshida, Kiyotsugu and Yoshii, Saori R. and Yoshimori, Tamotsu and Yousefi, Bahman and Yu, Boxuan and Yu, Haiyang and Yu, Jun and Yu, Jun and Yu, Li and Yu, Ming Lung and Yu, Seong Woon and Yu, Victor C. and Yu, W. Haung and Yu, Zhengping and Yu, Zhou and Yuan, Junying and Yuan, Ling Qing and Yuan, Shilin and Yuan, Shyng Shiou F. and Yuan, Yanggang and Yuan, Zengqiang and Yue, Jianbo and Yue, Zhenyu and Yun, Jeanho and Yung, Raymond L. and Zacks, David N. and Zaffagnini, Gabriele and Zambelli, Vanessa O. and Zanella, Isabella and Zang, Qun S. and Zanivan, Sara and Zappavigna, Silvia and Zaragoza, Pilar and Zarbalis, Konstantinos S. and Zarebkohan, Amir and Zarrouk, Amira and Zeitlin, Scott O. and Zeng, Jialiu and Zeng, Ju Deng and Žerovnik, Eva and Zhan, Lixuan and Zhang, Bin and Zhang, Donna D. and Zhang, Hanlin and Zhang, Hong and Zhang, Hong and Zhang, Honghe and Zhang, Huafeng and Zhang, Huaye and Zhang, Hui and Zhang, Hui Ling and Zhang, Jianbin and Zhang, Jianhua and Zhang, Jing Pu and Zhang, Kalin Y.B. and Zhang, Leshuai W. and Zhang, Lin and Zhang, Lisheng and Zhang, Lu and Zhang, Luoying and Zhang, Menghuan and Zhang, Peng and Zhang, Sheng and Zhang, Wei and Zhang, Xiangnan and Zhang, Xiao Wei and Zhang, Xiaolei and Zhang, Xiaoyan and Zhang, Xin and Zhang, Xinxin and Zhang, Xu Dong and Zhang, Yang and Zhang, Yanjin and Zhang, Yi and Zhang, Ying Dong and Zhang, Yingmei and Zhang, Yuan Yuan and Zhang, Yuchen and Zhang, Zhe and Zhang, Zhengguang and Zhang, Zhibing and Zhang, Zhihai and Zhang, Zhiyong and Zhang, Zili and Zhao, Haobin and Zhao, Lei and Zhao, Shuang and Zhao, Tongbiao and Zhao, Xiao Fan and Zhao, Ying and Zhao, Yongchao and Zhao, Yongliang and Zhao, Yuting and Zheng, Guoping and Zheng, Kai and Zheng, Ling and Zheng, Shizhong and Zheng, Xi Long and Zheng, Yi and Zheng, Zu Guo and Zhivotovsky, Boris and Zhong, Qing and Zhou, Ao and Zhou, Ben and Zhou, Cefan and Zhou, Gang and Zhou, Hao and Zhou, Hong and Zhou, Hongbo and Zhou, Jie and Zhou, Jing and Zhou, Jing and Zhou, Jiyong and Zhou, Kailiang and Zhou, Rongjia and Zhou, Xu Jie and Zhou, Yanshuang and Zhou, Yinghong and Zhou, Yubin and Zhou, Zheng Yu and Zhou, Zhou and Zhu, Binglin and Zhu, Changlian and Zhu, Guo Qing and Zhu, Haining and Zhu, Hongxin and Zhu, Hua and Zhu, Wei Guo and Zhu, Yanping and Zhu, Yushan and Zhuang, Haixia and Zhuang, Xiaohong and Zientara-Rytter, Katarzyna and Zimmermann, Christine M. and Ziviani, Elena and Zoladek, Teresa and Zong, Wei Xing and Zorov, Dmitry B. and Zorzano, Antonio and Zou, Weiping and Zou, Zhen and Zou, Zhengzhi and Zuryn, Steven and Zwerschke, Werner and Brand-Saberi, Beate and Dong, X. Charlie and Kenchappa, Chandra Shekar and Li, Zuguo and Lin, Yong and Oshima, Shigeru and Rong, Yueguang and Sluimer, Judith C. and Stallings, Christina L. and Tong, Chun Kit}, issn = {1554-8635}, journal = {Autophagy}, number = {1}, pages = {1--382}, publisher = {Taylor & Francis}, title = {{Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)}}, doi = {10.1080/15548627.2020.1797280}, volume = {17}, year = {2021}, } @article{10223, abstract = {Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, issn = {14764687}, journal = {Nature}, keywords = {Multidisciplinary}, number = {7884}, pages = {273--277}, publisher = {Springer Nature}, title = {{Cell surface and intracellular auxin signalling for H+ fluxes in root growth}}, doi = {10.1038/s41586-021-04037-6}, volume = {599}, year = {2021}, } @article{9189, abstract = {Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin‐responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with high and auxin‐mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin‐responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1‐mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis‐based insertion of the INDITTO2 transposon into the DRO1 promoter of the non‐adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.}, author = {Zhao, Y and Wu, L and Fu, Q and Wang, D and Li, J and Yao, B and Yu, S and Jiang, L and Qian, J and Zhou, X and Han, L and Zhao, S and Ma, C and Zhang, Y and Luo, C and Dong, Q and Li, S and Zhang, L and Jiang, X and Li, Y and Luo, H and Li, K and Yang, J and Luo, Q and Li, L and Peng, S and Huang, H and Zuo, Z and Liu, C and Wang, L and Li, C and He, X and Friml, Jiří and Du, Y}, issn = {1365-3040}, journal = {Plant, Cell & Environment}, number = {6}, pages = {1846--1857}, publisher = {Wiley}, title = {{INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance}}, doi = {10.1111/pce.14029}, volume = {44}, year = {2021}, }