@article{10282, abstract = {Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development.}, author = {Kashkan, Ivan and Hrtyan, Mónika and Retzer, Katarzyna and Humpolíčková, Jana and Jayasree, Aswathy and Filepová, Roberta and Vondráková, Zuzana and Simon, Sibu and Rombaut, Debbie and Jacobs, Thomas B. and Frilander, Mikko J. and Hejátko, Jan and Friml, Jiří and Petrášek, Jan and Růžička, Kamil}, issn = {1469-8137}, journal = {New Phytologist}, pages = {329--343}, publisher = {Wiley}, title = {{Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana}}, doi = {10.1111/nph.17792}, volume = {233}, year = {2021}, } @article{10326, abstract = {Strigolactones (SLs) are carotenoid-derived plant hormones that control shoot branching and communications between host plants and symbiotic fungi or root parasitic plants. Extensive studies have identified the key components participating in SL biosynthesis and signalling, whereas the catabolism or deactivation of endogenous SLs in planta remains largely unknown. Here, we report that the Arabidopsis carboxylesterase 15 (AtCXE15) and its orthologues function as efficient hydrolases of SLs. We show that overexpression of AtCXE15 promotes shoot branching by dampening SL-inhibited axillary bud outgrowth. We further demonstrate that AtCXE15 could bind and efficiently hydrolyse SLs both in vitro and in planta. We also provide evidence that AtCXE15 is capable of catalysing hydrolysis of diverse SL analogues and that such CXE15-dependent catabolism of SLs is evolutionarily conserved in seed plants. These results disclose a catalytic mechanism underlying homoeostatic regulation of SLs in plants, which also provides a rational approach to spatial-temporally manipulate the endogenous SLs and thus architecture of crops and ornamental plants.}, author = {Xu, Enjun and Chai, Liang and Zhang, Shiqi and Yu, Ruixue and Zhang, Xixi and Xu, Chongyi and Hu, Yuxin}, issn = {2055-0278}, journal = {Nature Plants}, pages = {1495–1504 }, publisher = {Springer Nature}, title = {{Catabolism of strigolactones by a carboxylesterase}}, doi = {10.1038/s41477-021-01011-y}, volume = {7}, year = {2021}, } @article{9368, abstract = {The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3'-Phosphoinositide-Dependent Protein Kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.2 in Arabidopsis thaliana. Notably, the severe growth attenuation of pdk1.1 pdk1.2 was rescued by sop21 (suppressor of pdk1.1 pdk1.2), which harbours a loss-of-function mutation in PELOTA1 (PEL1). PEL1 is a homologue of mammalian PELOTA and yeast (Saccharomyces cerevisiae) DOM34p, which each form a heterodimeric complex with the GTPase HBS1 (HSP70 SUBFAMILY B SUPPRESSOR1, also called SUPERKILLER PROTEIN7, SKI7), a protein that is responsible for ribosomal rescue and thereby assures the quality and fidelity of mRNA molecules during translation. Genetic analysis further revealed that a dysfunctional PEL1-HBS1 complex failed to degrade the T-DNA-disrupted PDK1 transcripts, which were truncated but functional, and thus rescued the growth and developmental defects of pdk1.1 pdk1.2. Our studies demonstrated the functionality of a homologous PELOTA-HBS1 complex and identified its essential regulatory role in plants, providing insights into the mechanism of mRNA quality control.}, author = {Kong, W and Tan, Shutang and Zhao, Q and Lin, DL and Xu, ZH and Friml, Jiří and Xue, HW}, issn = {1532-2548}, journal = {Plant Physiology}, number = {4}, pages = {2003--2020}, publisher = {American Society of Plant Biologists}, title = {{mRNA surveillance complex PELOTA-HBS1 eegulates phosphoinositide-sependent protein kinase1 and plant growth}}, doi = {10.1093/plphys/kiab199}, volume = {186}, year = {2021}, } @article{9290, abstract = {Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development.}, author = {Glanc, Matous and Van Gelderen, K and Hörmayer, Lukas and Tan, Shutang and Naramoto, S and Zhang, Xixi and Domjan, David and Vcelarova, L and Hauschild, Robert and Johnson, Alexander J and de Koning, E and van Dop, M and Rademacher, E and Janson, S and Wei, X and Molnar, Gergely and Fendrych, Matyas and De Rybel, B and Offringa, R and Friml, Jiří}, issn = {1879-0445}, journal = {Current Biology}, number = {9}, pages = {1918--1930}, publisher = {Elsevier}, title = {{AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells}}, doi = {10.1016/j.cub.2021.02.028}, volume = {31}, year = {2021}, } @article{8824, abstract = {Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1, 2, 3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1, 2, 3, 4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7, 8, 9, 10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface.}, author = {Marquès-Bueno, MM and Armengot, L and Noack, LC and Bareille, J and Rodriguez Solovey, Lesia and Platre, MP and Bayle, V and Liu, M and Opdenacker, D and Vanneste, S and Möller, BK and Nimchuk, ZL and Beeckman, T and Caño-Delgado, AI and Friml, Jiří and Jaillais, Y}, issn = {1879-0445}, journal = {Current Biology}, number = {1}, publisher = {Elsevier}, title = {{Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism}}, doi = {10.1016/j.cub.2020.10.011}, volume = {31}, year = {2021}, } @article{9288, abstract = {• The phenylpropanoid pathway serves a central role in plant metabolism, providing numerous compounds involved in diverse physiological processes. Most carbon entering the pathway is incorporated into lignin. Although several phenylpropanoid pathway mutants show seedling growth arrest, the role for lignin in seedling growth and development is unexplored. • We use complementary pharmacological and genetic approaches to block CINNAMATE‐4‐HYDROXYLASE (C4H) functionality in Arabidopsis seedlings and a set of molecular and biochemical techniques to investigate the underlying phenotypes. • Blocking C4H resulted in reduced lateral rooting and increased adventitious rooting apically in the hypocotyl. These phenotypes coincided with an inhibition in auxin transport. The upstream accumulation in cis‐cinnamic acid was found to likely cause polar auxin transport inhibition. Conversely, a downstream depletion in lignin perturbed phloem‐mediated auxin transport. Restoring lignin deposition effectively reestablished phloem transport and, accordingly, auxin homeostasis. • Our results show that the accumulation of bioactive intermediates and depletion in lignin jointly cause the aberrant phenotypes upon blocking C4H, and demonstrate that proper deposition of lignin is essential for the establishment of auxin distribution in seedlings. Our data position the phenylpropanoid pathway and lignin in a new physiological framework, consolidating their importance in plant growth and development.}, author = {El Houari, I and Van Beirs, C and Arents, HE and Han, Huibin and Chanoca, A and Opdenacker, D and Pollier, J and Storme, V and Steenackers, W and Quareshy, M and Napier, R and Beeckman, T and Friml, Jiří and De Rybel, B and Boerjan, W and Vanholme, B}, issn = {1469-8137}, journal = {New Phytologist}, number = {6}, pages = {2275--2291}, publisher = {Wiley}, title = {{Seedling developmental defects upon blocking CINNAMATE-4-HYDROXYLASE are caused by perturbations in auxin transport}}, doi = {10.1111/nph.17349}, volume = {230}, year = {2021}, } @article{8608, abstract = {To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.}, author = {Ke, M and Ma, Z and Wang, D and Sun, Y and Wen, C and Huang, D and Chen, Z and Yang, L and Tan, Shutang and Li, R and Friml, Jiří and Miao, Y and Chen, X}, issn = {1469-8137}, journal = {New Phytologist}, number = {2}, pages = {963--978}, publisher = {Wiley}, title = {{Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana}}, doi = {10.1111/nph.16915}, volume = {229}, year = {2021}, } @article{9298, abstract = {In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field. }, author = {Klionsky, Daniel J. and Abdel-Aziz, Amal Kamal and Abdelfatah, Sara and Abdellatif, Mahmoud and Abdoli, Asghar and Abel, Steffen and Abeliovich, Hagai and Abildgaard, Marie H. and Abudu, Yakubu Princely and Acevedo-Arozena, Abraham and Adamopoulos, Iannis E. and Adeli, Khosrow and Adolph, Timon E. and Adornetto, Annagrazia and Aflaki, Elma and Agam, Galila and Agarwal, Anupam and Aggarwal, Bharat B. and Agnello, Maria and Agostinis, Patrizia and Agrewala, Javed N. and Agrotis, Alexander and Aguilar, Patricia V. and Ahmad, S. Tariq and Ahmed, Zubair M. and Ahumada-Castro, Ulises and Aits, Sonja and Aizawa, Shu and Akkoc, Yunus and Akoumianaki, Tonia and Akpinar, Hafize Aysin and Al-Abd, Ahmed M. and Al-Akra, Lina and Al-Gharaibeh, Abeer and Alaoui-Jamali, Moulay A. and Alberti, Simon and Alcocer-Gómez, Elísabet and Alessandri, Cristiano and Ali, Muhammad and Alim Al-Bari, M. Abdul and Aliwaini, Saeb and Alizadeh, Javad and Almacellas, Eugènia and Almasan, Alexandru and Alonso, Alicia and Alonso, Guillermo D. and Altan-Bonnet, Nihal and Altieri, Dario C. and Álvarez, Élida M.C. and Alves, Sara and Alves Da Costa, Cristine and Alzaharna, Mazen M. and Amadio, Marialaura and Amantini, Consuelo and Amaral, Cristina and Ambrosio, Susanna and Amer, Amal O. and Ammanathan, Veena and An, Zhenyi and Andersen, Stig U. and Andrabi, Shaida A. and Andrade-Silva, Magaiver and Andres, Allen M. and Angelini, Sabrina and Ann, David and Anozie, Uche C. and Ansari, Mohammad Y. and Antas, Pedro and Antebi, Adam and Antón, Zuriñe and Anwar, Tahira and Apetoh, Lionel and Apostolova, Nadezda and Araki, Toshiyuki and Araki, Yasuhiro and Arasaki, Kohei and Araújo, Wagner L. and Araya, Jun and Arden, Catherine and Arévalo, Maria Angeles and Arguelles, Sandro and Arias, Esperanza and Arikkath, Jyothi and Arimoto, Hirokazu and Ariosa, Aileen R. and Armstrong-James, Darius and Arnauné-Pelloquin, Laetitia and Aroca, Angeles and Arroyo, Daniela S. and Arsov, Ivica and Artero, Rubén and Asaro, Dalia Maria Lucia and Aschner, Michael and Ashrafizadeh, Milad and Ashur-Fabian, Osnat and Atanasov, Atanas G. and Au, Alicia K. and Auberger, Patrick and Auner, Holger W. and Aurelian, Laure and Autelli, Riccardo and Avagliano, Laura and Ávalos, Yenniffer and Aveic, Sanja and Aveleira, Célia Alexandra and Avin-Wittenberg, Tamar and Aydin, Yucel and Ayton, Scott and Ayyadevara, Srinivas and Azzopardi, Maria and Baba, Misuzu and Backer, Jonathan M. and Backues, Steven K. and Bae, Dong Hun and Bae, Ok Nam and Bae, Soo Han and Baehrecke, Eric H. and Baek, Ahruem and Baek, Seung Hoon and Baek, Sung Hee and Bagetta, Giacinto and Bagniewska-Zadworna, Agnieszka and Bai, Hua and Bai, Jie and Bai, Xiyuan and Bai, Yidong and Bairagi, Nandadulal and Baksi, Shounak and Balbi, Teresa and Baldari, Cosima T. and Balduini, Walter and Ballabio, Andrea and Ballester, Maria and Balazadeh, Salma and Balzan, Rena and Bandopadhyay, Rina and Banerjee, Sreeparna and Banerjee, Sulagna and Bánréti, Ágnes and Bao, Yan and Baptista, Mauricio S. and Baracca, Alessandra and Barbati, Cristiana and Bargiela, Ariadna and Barilà, Daniela and Barlow, Peter G. and Barmada, Sami J. and Barreiro, Esther and Barreto, George E. and Bartek, Jiri and Bartel, Bonnie and Bartolome, Alberto and Barve, Gaurav R. and Basagoudanavar, Suresh H. and Bassham, Diane C. and Bast, Robert C. and Basu, Alakananda and Batoko, Henri and Batten, Isabella and Baulieu, Etienne E. and Baumgarner, Bradley L. and Bayry, Jagadeesh and Beale, Rupert and Beau, Isabelle and Beaumatin, Florian and Bechara, Luiz R.G. and Beck, George R. and Beers, Michael F. and Begun, Jakob and Behrends, Christian and Behrens, Georg M.N. and Bei, Roberto and Bejarano, Eloy and Bel, Shai and Behl, Christian and Belaid, Amine and Belgareh-Touzé, Naïma and Bellarosa, Cristina and Belleudi, Francesca and Belló Pérez, Melissa and Bello-Morales, Raquel and Beltran, Jackeline Soares De Oliveira and Beltran, Sebastián and Benbrook, Doris Mangiaracina and Bendorius, Mykolas and Benitez, Bruno A. and Benito-Cuesta, Irene and Bensalem, Julien and Berchtold, Martin W. and Berezowska, Sabina and Bergamaschi, Daniele and Bergami, Matteo and Bergmann, Andreas and Berliocchi, Laura and Berlioz-Torrent, Clarisse and Bernard, Amélie and Berthoux, Lionel and Besirli, Cagri G. and Besteiro, Sebastien and Betin, Virginie M. and Beyaert, Rudi and Bezbradica, Jelena S. and Bhaskar, Kiran and Bhatia-Kissova, Ingrid and Bhattacharya, Resham and Bhattacharya, Sujoy and Bhattacharyya, Shalmoli and Bhuiyan, Md Shenuarin and Bhutia, Sujit Kumar and Bi, Lanrong and Bi, Xiaolin and Biden, Trevor J. and Bijian, Krikor and Billes, Viktor A. and Binart, Nadine and Bincoletto, Claudia and Birgisdottir, Asa B. and Bjorkoy, Geir and Blanco, Gonzalo and Blas-Garcia, Ana and Blasiak, Janusz and Blomgran, Robert and Blomgren, Klas and Blum, Janice S. and Boada-Romero, Emilio and Boban, Mirta and Boesze-Battaglia, Kathleen and Boeuf, Philippe and Boland, Barry and Bomont, Pascale and Bonaldo, Paolo and Bonam, Srinivasa Reddy and Bonfili, Laura and Bonifacino, Juan S. and Boone, Brian A. and Bootman, Martin D. and Bordi, Matteo and Borner, Christoph and Bornhauser, Beat C. and Borthakur, Gautam and Bosch, Jürgen and Bose, Santanu and Botana, Luis M. and Botas, Juan and Boulanger, Chantal M. and Boulton, Michael E. and Bourdenx, Mathieu and Bourgeois, Benjamin and Bourke, Nollaig M. and Bousquet, Guilhem and Boya, Patricia and Bozhkov, Peter V. and Bozi, Luiz H.M. and Bozkurt, Tolga O. and Brackney, Doug E. and Brandts, Christian H. and Braun, Ralf J. and Braus, Gerhard H. and Bravo-Sagua, Roberto and Bravo-San Pedro, José M. and Brest, Patrick and Bringer, Marie Agnès and Briones-Herrera, Alfredo and Broaddus, V. Courtney and Brodersen, Peter and Brodsky, Jeffrey L. and Brody, Steven L. and Bronson, Paola G. and Bronstein, Jeff M. and Brown, Carolyn N. and Brown, Rhoderick E. and Brum, Patricia C. and Brumell, John H. and Brunetti-Pierri, Nicola and Bruno, Daniele and Bryson-Richardson, Robert J. and Bucci, Cecilia and Buchrieser, Carmen and Bueno, Marta and Buitrago-Molina, Laura Elisa and Buraschi, Simone and Buch, Shilpa and Buchan, J. Ross and Buckingham, Erin M. and Budak, Hikmet and Budini, Mauricio and Bultynck, Geert and Burada, Florin and Burgoyne, Joseph R. and Burón, M. Isabel and Bustos, Victor and Büttner, Sabrina and Butturini, Elena and Byrd, Aaron and Cabas, Isabel and Cabrera-Benitez, Sandra and Cadwell, Ken and Cai, Jingjing and Cai, Lu and Cai, Qian and Cairó, Montserrat and Calbet, Jose A. and Caldwell, Guy A. and Caldwell, Kim A. and Call, Jarrod A. and Calvani, Riccardo and Calvo, Ana C. and Calvo-Rubio Barrera, Miguel and Camara, Niels O.S. and Camonis, Jacques H. and Camougrand, Nadine and Campanella, Michelangelo and Campbell, Edward M. and Campbell-Valois, François Xavier and Campello, Silvia and Campesi, Ilaria and Campos, Juliane C. and Camuzard, Olivier and Cancino, Jorge and Candido De Almeida, Danilo and Canesi, Laura and Caniggia, Isabella and Canonico, Barbara and Cantí, Carles and Cao, Bin and Caraglia, Michele and Caramés, Beatriz and Carchman, Evie H. and Cardenal-Muñoz, Elena and Cardenas, Cesar and Cardenas, Luis and Cardoso, Sandra M. and Carew, Jennifer S. and Carle, Georges F. and Carleton, Gillian and Carloni, Silvia and Carmona-Gutierrez, Didac and Carneiro, Leticia A. and Carnevali, Oliana and Carosi, Julian M. and Carra, Serena and Carrier, Alice and Carrier, Lucie and Carroll, Bernadette and Carter, A. Brent and Carvalho, Andreia Neves and Casanova, Magali and Casas, Caty and Casas, Josefina and Cassioli, Chiara and Castillo, Eliseo F. and Castillo, Karen and Castillo-Lluva, Sonia and Castoldi, Francesca and Castori, Marco and Castro, Ariel F. and Castro-Caldas, Margarida and Castro-Hernandez, Javier and Castro-Obregon, Susana and Catz, Sergio D. and Cavadas, Claudia and Cavaliere, Federica and Cavallini, Gabriella and Cavinato, Maria and Cayuela, Maria L. and Cebollada Rica, Paula and Cecarini, Valentina and Cecconi, Francesco and Cechowska-Pasko, Marzanna and Cenci, Simone and Ceperuelo-Mallafré, Victòria and Cerqueira, João J. and Cerutti, Janete M. and Cervia, Davide and Cetintas, Vildan Bozok and Cetrullo, Silvia and Chae, Han Jung and Chagin, Andrei S. and Chai, Chee Yin and Chakrabarti, Gopal and Chakrabarti, Oishee and Chakraborty, Tapas and Chakraborty, Trinad and Chami, Mounia and Chamilos, Georgios and Chan, David W. and Chan, Edmond Y.W. and Chan, Edward D. and Chan, H. Y.Edwin and Chan, Helen H. and Chan, Hung and Chan, Matthew T.V. and Chan, Yau Sang and Chandra, Partha K. and Chang, Chih Peng and Chang, Chunmei and Chang, Hao Chun and Chang, Kai and Chao, Jie and Chapman, Tracey and Charlet-Berguerand, Nicolas and Chatterjee, Samrat and Chaube, Shail K. and Chaudhary, Anu and Chauhan, Santosh and Chaum, Edward and Checler, Frédéric and Cheetham, Michael E. and Chen, Chang Shi and Chen, Guang Chao and Chen, Jian Fu and Chen, Liam L. and Chen, Leilei and Chen, Lin and Chen, Mingliang and Chen, Mu Kuan and Chen, Ning and Chen, Quan and Chen, Ruey Hwa and Chen, Shi and Chen, Wei and Chen, Weiqiang and Chen, Xin Ming and Chen, Xiong Wen and Chen, Xu and Chen, Yan and Chen, Ye Guang and Chen, Yingyu and Chen, Yongqiang and Chen, Yu Jen and Chen, Yue Qin and Chen, Zhefan Stephen and Chen, Zhi and Chen, Zhi Hua and Chen, Zhijian J. and Chen, Zhixiang and Cheng, Hanhua and Cheng, Jun and Cheng, Shi Yuan and Cheng, Wei and Cheng, Xiaodong and Cheng, Xiu Tang and Cheng, Yiyun and Cheng, Zhiyong and Chen, Zhong and Cheong, Heesun and Cheong, Jit Kong and Chernyak, Boris V. and Cherry, Sara and Cheung, Chi Fai Randy and Cheung, Chun Hei Antonio and Cheung, King Ho and Chevet, Eric and Chi, Richard J. and Chiang, Alan Kwok Shing and Chiaradonna, Ferdinando and Chiarelli, Roberto and Chiariello, Mario and Chica, Nathalia and Chiocca, Susanna and Chiong, Mario and Chiou, Shih Hwa and Chiramel, Abhilash I. and Chiurchiù, Valerio and Cho, Dong Hyung and Choe, Seong Kyu and Choi, Augustine M.K. and Choi, Mary E. and Choudhury, Kamalika Roy and Chow, Norman S. and Chu, Charleen T. and Chua, Jason P. and Chua, John Jia En and Chung, Hyewon and Chung, Kin Pan and Chung, Seockhoon and Chung, So Hyang and Chung, Yuen Li and Cianfanelli, Valentina and Ciechomska, Iwona A. and Cifuentes, Mariana and Cinque, Laura and Cirak, Sebahattin and Cirone, Mara and Clague, Michael J. and Clarke, Robert and Clementi, Emilio and Coccia, Eliana M. and Codogno, Patrice and Cohen, Ehud and Cohen, Mickael M. and Colasanti, Tania and Colasuonno, Fiorella and Colbert, Robert A. and Colell, Anna and Čolić, Miodrag and Coll, Nuria S. and Collins, Mark O. and Colombo, María I. and Colón-Ramos, Daniel A. and Combaret, Lydie and Comincini, Sergio and Cominetti, Márcia R. and Consiglio, Antonella and Conte, Andrea and Conti, Fabrizio and Contu, Viorica Raluca and Cookson, Mark R. and Coombs, Kevin M. and Coppens, Isabelle and Corasaniti, Maria Tiziana and Corkery, Dale P. and Cordes, Nils and Cortese, Katia and Costa, Maria Do Carmo and Costantino, Sarah and Costelli, Paola and Coto-Montes, Ana and Crack, Peter J. and Crespo, Jose L. and Criollo, Alfredo and Crippa, Valeria and Cristofani, Riccardo and Csizmadia, Tamas and Cuadrado, Antonio and Cui, Bing and Cui, Jun and Cui, Yixian and Cui, Yong and Culetto, Emmanuel and Cumino, Andrea C. and Cybulsky, Andrey V. and Czaja, Mark J. and Czuczwar, Stanislaw J. and D’Adamo, Stefania and D’Amelio, Marcello and D’Arcangelo, Daniela and D’Lugos, Andrew C. and D’Orazi, Gabriella and Da Silva, James A. and Dafsari, Hormos Salimi and Dagda, Ruben K. and Dagdas, Yasin and Daglia, Maria and Dai, Xiaoxia and Dai, Yun and Dai, Yuyuan and Dal Col, Jessica and Dalhaimer, Paul and Dalla Valle, Luisa and Dallenga, Tobias and Dalmasso, Guillaume and Damme, Markus and Dando, Ilaria and Dantuma, Nico P. and Darling, April L. and Das, Hiranmoy and Dasarathy, Srinivasan and Dasari, Santosh K. and Dash, Srikanta and Daumke, Oliver and Dauphinee, Adrian N. and Davies, Jeffrey S. and Dávila, Valeria A. and Davis, Roger J. and Davis, Tanja and Dayalan Naidu, Sharadha and De Amicis, Francesca and De Bosscher, Karolien and De Felice, Francesca and De Franceschi, Lucia and De Leonibus, Chiara and De Mattos Barbosa, Mayara G. and De Meyer, Guido R.Y. and De Milito, Angelo and De Nunzio, Cosimo and De Palma, Clara and De Santi, Mauro and De Virgilio, Claudio and De Zio, Daniela and Debnath, Jayanta and Debosch, Brian J. and Decuypere, Jean Paul and Deehan, Mark A. and Deflorian, Gianluca and Degregori, James and Dehay, Benjamin and Del Rio, Gabriel and Delaney, Joe R. and Delbridge, Lea M.D. and Delorme-Axford, Elizabeth and Delpino, M. Victoria and Demarchi, Francesca and Dembitz, Vilma and Demers, Nicholas D. and Deng, Hongbin and Deng, Zhiqiang and Dengjel, Joern and Dent, Paul and Denton, Donna and Depamphilis, Melvin L. and Der, Channing J. and Deretic, Vojo and Descoteaux, Albert and Devis, Laura and Devkota, Sushil and Devuyst, Olivier and Dewson, Grant and Dharmasivam, Mahendiran and Dhiman, Rohan and Di Bernardo, Diego and Di Cristina, Manlio and Di Domenico, Fabio and Di Fazio, Pietro and Di Fonzo, Alessio and Di Guardo, Giovanni and Di Guglielmo, Gianni M. and Di Leo, Luca and Di Malta, Chiara and Di Nardo, Alessia and Di Rienzo, Martina and Di Sano, Federica and Diallinas, George and Diao, Jiajie and Diaz-Araya, Guillermo and Díaz-Laviada, Inés and Dickinson, Jared M. and Diederich, Marc and Dieudé, Mélanie and Dikic, Ivan and Ding, Shiping and Ding, Wen Xing and Dini, Luciana and Dinić, Jelena and Dinic, Miroslav and Dinkova-Kostova, Albena T. and Dionne, Marc S. and Distler, Jörg H.W. and Diwan, Abhinav and Dixon, Ian M.C. and Djavaheri-Mergny, Mojgan and Dobrinski, Ina and Dobrovinskaya, Oxana and Dobrowolski, Radek and Dobson, Renwick C.J. and Đokić, Jelena and Dokmeci Emre, Serap and Donadelli, Massimo and Dong, Bo and Dong, Xiaonan and Dong, Zhiwu and Dorn, Gerald W. and Dotsch, Volker and Dou, Huan and Dou, Juan and Dowaidar, Moataz and Dridi, Sami and Drucker, Liat and Du, Ailian and Du, Caigan and Du, Guangwei and Du, Hai Ning and Du, Li Lin and Du Toit, André and Duan, Shao Bin and Duan, Xiaoqiong and Duarte, Sónia P. and Dubrovska, Anna and Dunlop, Elaine A. and Dupont, Nicolas and Durán, Raúl V. and Dwarakanath, Bilikere S. and Dyshlovoy, Sergey A. and Ebrahimi-Fakhari, Darius and Eckhart, Leopold and Edelstein, Charles L. and Efferth, Thomas and Eftekharpour, Eftekhar and Eichinger, Ludwig and Eid, Nabil and Eisenberg, Tobias and Eissa, N. Tony and Eissa, Sanaa and Ejarque, Miriam and El Andaloussi, Abdeljabar and El-Hage, Nazira and El-Naggar, Shahenda and Eleuteri, Anna Maria and El-Shafey, Eman S. and Elgendy, Mohamed and Eliopoulos, Aristides G. and Elizalde, María M. and Elks, Philip M. and Elsasser, Hans Peter and Elsherbiny, Eslam S. and Emerling, Brooke M. and Emre, N. C.Tolga and Eng, Christina H. and Engedal, Nikolai and Engelbrecht, Anna Mart and Engelsen, Agnete S.T. and Enserink, Jorrit M. and Escalante, Ricardo and Esclatine, Audrey and Escobar-Henriques, Mafalda and Eskelinen, Eeva Liisa and Espert, Lucile and Eusebio, Makandjou Ola and Fabrias, Gemma and Fabrizi, Cinzia and Facchiano, Antonio and Facchiano, Francesco and Fadeel, Bengt and Fader, Claudio and Faesen, Alex C. and Fairlie, W. Douglas and Falcó, Alberto and Falkenburger, Bjorn H. and Fan, Daping and Fan, Jie and Fan, Yanbo and Fang, Evandro F. and Fang, Yanshan and Fang, Yognqi and Fanto, Manolis and Farfel-Becker, Tamar and Faure, Mathias and Fazeli, Gholamreza and Fedele, Anthony O. and Feldman, Arthur M. and Feng, Du and Feng, Jiachun and Feng, Lifeng and Feng, Yibin and Feng, Yuchen and Feng, Wei and Fenz Araujo, Thais and Ferguson, Thomas A. and Fernández, Álvaro F. and Fernandez-Checa, Jose C. and Fernández-Veledo, Sonia and Fernie, Alisdair R. and Ferrante, Anthony W. and Ferraresi, Alessandra and Ferrari, Merari F. and Ferreira, Julio C.B. and Ferro-Novick, Susan and Figueras, Antonio and Filadi, Riccardo and Filigheddu, Nicoletta and Filippi-Chiela, Eduardo and Filomeni, Giuseppe and Fimia, Gian Maria and Fineschi, Vittorio and Finetti, Francesca and Finkbeiner, Steven and Fisher, Edward A. and Fisher, Paul B. and Flamigni, Flavio and Fliesler, Steven J. and Flo, Trude H. and Florance, Ida and Florey, Oliver and Florio, Tullio and Fodor, Erika and Follo, Carlo and Fon, Edward A. and Forlino, Antonella and Fornai, Francesco and Fortini, Paola and Fracassi, Anna and Fraldi, Alessandro and Franco, Brunella and Franco, Rodrigo and Franconi, Flavia and Frankel, Lisa B. and Friedman, Scott L. and Fröhlich, Leopold F. and Frühbeck, Gema and Fuentes, Jose M. and Fujiki, Yukio and Fujita, Naonobu and Fujiwara, Yuuki and Fukuda, Mitsunori and Fulda, Simone and Furic, Luc and Furuya, Norihiko and Fusco, Carmela and Gack, Michaela U. and Gaffke, Lidia and Galadari, Sehamuddin and Galasso, Alessia and Galindo, Maria F. and Gallolu Kankanamalage, Sachith and Galluzzi, Lorenzo and Galy, Vincent and Gammoh, Noor and Gan, Boyi and Ganley, Ian G. and Gao, Feng and Gao, Hui and Gao, Minghui and Gao, Ping and Gao, Shou Jiang and Gao, Wentao and Gao, Xiaobo and Garcera, Ana and Garcia, Maria Noé and Garcia, Verónica E. and García-Del Portillo, Francisco and Garcia-Escudero, Vega and Garcia-Garcia, Aracely and Garcia-Macia, Marina and García-Moreno, Diana and Garcia-Ruiz, Carmen and García-Sanz, Patricia and Garg, Abhishek D. and Gargini, Ricardo and Garofalo, Tina and Garry, Robert F. and Gassen, Nils C. and Gatica, Damian and Ge, Liang and Ge, Wanzhong and Geiss-Friedlander, Ruth and Gelfi, Cecilia and Genschik, Pascal and Gentle, Ian E. and Gerbino, Valeria and Gerhardt, Christoph and Germain, Kyla and Germain, Marc and Gewirtz, David A. and Ghasemipour Afshar, Elham and Ghavami, Saeid and Ghigo, Alessandra and Ghosh, Manosij and Giamas, Georgios and Giampietri, Claudia and Giatromanolaki, Alexandra and Gibson, Gary E. and Gibson, Spencer B. and Ginet, Vanessa and Giniger, Edward and Giorgi, Carlotta and Girao, Henrique and Girardin, Stephen E. and Giridharan, Mridhula and Giuliano, Sandy and Giulivi, Cecilia and Giuriato, Sylvie and Giustiniani, Julien and Gluschko, Alexander and Goder, Veit and Goginashvili, Alexander and Golab, Jakub and Goldstone, David C. and Golebiewska, Anna and Gomes, Luciana R. and Gomez, Rodrigo and Gómez-Sánchez, Rubén and Gomez-Puerto, Maria Catalina and Gomez-Sintes, Raquel and Gong, Qingqiu and Goni, Felix M. and González-Gallego, Javier and Gonzalez-Hernandez, Tomas and Gonzalez-Polo, Rosa A. and Gonzalez-Reyes, Jose A. and González-Rodríguez, Patricia and Goping, Ing Swie and Gorbatyuk, Marina S. and Gorbunov, Nikolai V. and Görgülü, Kıvanç and Gorojod, Roxana M. and Gorski, Sharon M. and Goruppi, Sandro and Gotor, Cecilia and Gottlieb, Roberta A. and Gozes, Illana and Gozuacik, Devrim and Graef, Martin and Gräler, Markus H. and Granatiero, Veronica and Grasso, Daniel and Gray, Joshua P. and Green, Douglas R. and Greenhough, Alexander and Gregory, Stephen L. and Griffin, Edward F. and Grinstaff, Mark W. and Gros, Frederic and Grose, Charles and Gross, Angelina S. and Gruber, Florian and Grumati, Paolo and Grune, Tilman and Gu, Xueyan and Guan, Jun Lin and Guardia, Carlos M. and Guda, Kishore and Guerra, Flora and Guerri, Consuelo and Guha, Prasun and Guillén, Carlos and Gujar, Shashi and Gukovskaya, Anna and Gukovsky, Ilya and Gunst, Jan and Günther, Andreas and Guntur, Anyonya R. and Guo, Chuanyong and Guo, Chun and Guo, Hongqing and Guo, Lian Wang and Guo, Ming and Gupta, Pawan and Gupta, Shashi Kumar and Gupta, Swapnil and Gupta, Veer Bala and Gupta, Vivek and Gustafsson, Asa B. and Gutterman, David D. and H.B, Ranjitha and Haapasalo, Annakaisa and Haber, James E. and Hać, Aleksandra and Hadano, Shinji and Hafrén, Anders J. and Haidar, Mansour and Hall, Belinda S. and Halldén, Gunnel and Hamacher-Brady, Anne and Hamann, Andrea and Hamasaki, Maho and Han, Weidong and Hansen, Malene and Hanson, Phyllis I. . and Hao, Zijian and Harada, Masaru and Harhaji-Trajkovic, Ljubica and Hariharan, Nirmala and Haroon, Nigil and Harris, James and Hasegawa, Takafumi and Hasima Nagoor, Noor and Haspel, Jeffrey A. and Haucke, Volker and Hawkins, Wayne D. and Hay, Bruce A. and Haynes, Cole M. and Hayrabedyan, Soren B. and Hays, Thomas S. and He, Congcong and He, Qin and He, Rong Rong and He, You Wen and He, Yu Ying and Heakal, Yasser and Heberle, Alexander M. and Hejtmancik, J. Fielding and Helgason, Gudmundur Vignir and Henkel, Vanessa and Herb, Marc and Hergovich, Alexander and Herman-Antosiewicz, Anna and Hernández, Agustín and Hernandez, Carlos and Hernandez-Diaz, Sergio and Hernandez-Gea, Virginia and Herpin, Amaury and Herreros, Judit and Hervás, Javier H. and Hesselson, Daniel and Hetz, Claudio and Heussler, Volker T. and Higuchi, Yujiro and Hilfiker, Sabine and Hill, Joseph A. and Hlavacek, William S. and Ho, Emmanuel A. and Ho, Idy H.T. and Ho, Philip Wing Lok and Ho, Shu Leong and Ho, Wan Yun and Hobbs, G. Aaron and Hochstrasser, Mark and Hoet, Peter H.M. and Hofius, Daniel and Hofman, Paul and Höhn, Annika and Holmberg, Carina I. and Hombrebueno, Jose R. and Yi-Ren Hong, Chang Won Hong and Hooper, Lora V. and Hoppe, Thorsten and Horos, Rastislav and Hoshida, Yujin and Hsin, I. Lun and Hsu, Hsin Yun and Hu, Bing and Hu, Dong and Hu, Li Fang and Hu, Ming Chang and Hu, Ronggui and Hu, Wei and Hu, Yu Chen and Hu, Zhuo Wei and Hua, Fang and Hua, Jinlian and Hua, Yingqi and Huan, Chongmin and Huang, Canhua and Huang, Chuanshu and Huang, Chuanxin and Huang, Chunling and Huang, Haishan and Huang, Kun and Huang, Michael L.H. and Huang, Rui and Huang, Shan and Huang, Tianzhi and Huang, Xing and Huang, Yuxiang Jack and Huber, Tobias B. and Hubert, Virginie and Hubner, Christian A. and Hughes, Stephanie M. and Hughes, William E. and Humbert, Magali and Hummer, Gerhard and Hurley, James H. and Hussain, Sabah and Hussain, Salik and Hussey, Patrick J. and Hutabarat, Martina and Hwang, Hui Yun and Hwang, Seungmin and Ieni, Antonio and Ikeda, Fumiyo and Imagawa, Yusuke and Imai, Yuzuru and Imbriano, Carol and Imoto, Masaya and Inman, Denise M. and Inoki, Ken and Iovanna, Juan and Iozzo, Renato V. and Ippolito, Giuseppe and Irazoqui, Javier E. and Iribarren, Pablo and Ishaq, Mohd and Ishikawa, Makoto and Ishimwe, Nestor and Isidoro, Ciro and Ismail, Nahed and Issazadeh-Navikas, Shohreh and Itakura, Eisuke and Ito, Daisuke and Ivankovic, Davor and Ivanova, Saška and Iyer, Anand Krishnan V. and Izquierdo, José M. and Izumi, Masanori and Jäättelä, Marja and Jabir, Majid Sakhi and Jackson, William T. and Jacobo-Herrera, Nadia and Jacomin, Anne Claire and Jacquin, Elise and Jadiya, Pooja and Jaeschke, Hartmut and Jagannath, Chinnaswamy and Jakobi, Arjen J. and Jakobsson, Johan and Janji, Bassam and Jansen-Dürr, Pidder and Jansson, Patric J. and Jantsch, Jonathan and Januszewski, Sławomir and Jassey, Alagie and Jean, Steve and Jeltsch-David, Hélène and Jendelova, Pavla and Jenny, Andreas and Jensen, Thomas E. and Jessen, Niels and Jewell, Jenna L. and Ji, Jing and Jia, Lijun and Jia, Rui and Jiang, Liwen and Jiang, Qing and Jiang, Richeng and Jiang, Teng and Jiang, Xuejun and Jiang, Yu and Jimenez-Sanchez, Maria and Jin, Eun Jung and Jin, Fengyan and Jin, Hongchuan and Jin, Li and Jin, Luqi and Jin, Meiyan and Jin, Si and Jo, Eun Kyeong and Joffre, Carine and Johansen, Terje and Johnson, Gail V.W. and Johnston, Simon A. and Jokitalo, Eija and Jolly, Mohit Kumar and Joosten, Leo A.B. and Jordan, Joaquin and Joseph, Bertrand and Ju, Dianwen and Ju, Jeong Sun and Ju, Jingfang and Juárez, Esmeralda and Judith, Delphine and Juhász, Gábor and Jun, Youngsoo and Jung, Chang Hwa and Jung, Sung Chul and Jung, Yong Keun and Jungbluth, Heinz and Jungverdorben, Johannes and Just, Steffen and Kaarniranta, Kai and Kaasik, Allen and Kabuta, Tomohiro and Kaganovich, Daniel and Kahana, Alon and Kain, Renate and Kajimura, Shinjo and Kalamvoki, Maria and Kalia, Manjula and Kalinowski, Danuta S. and Kaludercic, Nina and Kalvari, Ioanna and Kaminska, Joanna and Kaminskyy, Vitaliy O. and Kanamori, Hiromitsu and Kanasaki, Keizo and Kang, Chanhee and Kang, Rui and Kang, Sang Sun and Kaniyappan, Senthilvelrajan and Kanki, Tomotake and Kanneganti, Thirumala Devi and Kanthasamy, Anumantha G. and Kanthasamy, Arthi and Kantorow, Marc and Kapuy, Orsolya and Karamouzis, Michalis V. and Karim, Md Razaul and Karmakar, Parimal and Katare, Rajesh G. and Kato, Masaru and Kaufmann, Stefan H.E. and Kauppinen, Anu and Kaushal, Gur P. and Kaushik, Susmita and Kawasaki, Kiyoshi and Kazan, Kemal and Ke, Po Yuan and Keating, Damien J. and Keber, Ursula and Kehrl, John H. and Keller, Kate E. and Keller, Christian W. and Kemper, Jongsook Kim and Kenific, Candia M. and Kepp, Oliver and Kermorgant, Stephanie and Kern, Andreas and Ketteler, Robin and Keulers, Tom G. and Khalfin, Boris and Khalil, Hany and Khambu, Bilon and Khan, Shahid Y. and Khandelwal, Vinoth Kumar Megraj and Khandia, Rekha and Kho, Widuri and Khobrekar, Noopur V. and Khuansuwan, Sataree and Khundadze, Mukhran and Killackey, Samuel A. and Kim, Dasol and Kim, Deok Ryong and Kim, Do Hyung and Kim, Dong Eun and Kim, Eun Young and Kim, Eun Kyoung and Kim, Hak Rim and Kim, Hee Sik and Hyung-Ryong Kim, Unknown and Kim, Jeong Hun and Kim, Jin Kyung and Kim, Jin Hoi and Kim, Joungmok and Kim, Ju Hwan and Kim, Keun Il and Kim, Peter K. and Kim, Seong Jun and Kimball, Scot R. and Kimchi, Adi and Kimmelman, Alec C. and Kimura, Tomonori and King, Matthew A. and Kinghorn, Kerri J. and Kinsey, Conan G. and Kirkin, Vladimir and Kirshenbaum, Lorrie A. and Kiselev, Sergey L. and Kishi, Shuji and Kitamoto, Katsuhiko and Kitaoka, Yasushi and Kitazato, Kaio and Kitsis, Richard N. and Kittler, Josef T. and Kjaerulff, Ole and Klein, Peter S. and Klopstock, Thomas and Klucken, Jochen and Knævelsrud, Helene and Knorr, Roland L. and Ko, Ben C.B. and Ko, Fred and Ko, Jiunn Liang and Kobayashi, Hotaka and Kobayashi, Satoru and Koch, Ina and Koch, Jan C. and Koenig, Ulrich and Kögel, Donat and Koh, Young Ho and Koike, Masato and Kohlwein, Sepp D. and Kocaturk, Nur M. and Komatsu, Masaaki and König, Jeannette and Kono, Toru and Kopp, Benjamin T. and Korcsmaros, Tamas and Korkmaz, Gözde and Korolchuk, Viktor I. and Korsnes, Mónica Suárez and Koskela, Ali and Kota, Janaiah and Kotake, Yaichiro and Kotler, Monica L. and Kou, Yanjun and Koukourakis, Michael I. and Koustas, Evangelos and Kovacs, Attila L. and Kovács, Tibor and Koya, Daisuke and Kozako, Tomohiro and Kraft, Claudine and Krainc, Dimitri and Krämer, Helmut and Krasnodembskaya, Anna D. and Kretz-Remy, Carole and Kroemer, Guido and Ktistakis, Nicholas T. and Kuchitsu, Kazuyuki and Kuenen, Sabine and Kuerschner, Lars and Kukar, Thomas and Kumar, Ajay and Kumar, Ashok and Kumar, Deepak and Kumar, Dhiraj and Kumar, Sharad and Kume, Shinji and Kumsta, Caroline and Kundu, Chanakya N. and Kundu, Mondira and Kunnumakkara, Ajaikumar B. and Kurgan, Lukasz and Kutateladze, Tatiana G. and Kutlu, Ozlem and Kwak, Seong Ae and Kwon, Ho Jeong and Kwon, Taeg Kyu and Kwon, Yong Tae and Kyrmizi, Irene and La Spada, Albert and Labonté, Patrick and Ladoire, Sylvain and Laface, Ilaria and Lafont, Frank and Lagace, Diane C. and Lahiri, Vikramjit and Lai, Zhibing and Laird, Angela S. and Lakkaraju, Aparna and Lamark, Trond and Lan, Sheng Hui and Landajuela, Ane and Lane, Darius J.R. and Lane, Jon D. and Lang, Charles H. and Lange, Carsten and Langel, Ülo and Langer, Rupert and Lapaquette, Pierre and Laporte, Jocelyn and Larusso, Nicholas F. and Lastres-Becker, Isabel and Lau, Wilson Chun Yu and Laurie, Gordon W. and Lavandero, Sergio and Law, Betty Yuen Kwan and Law, Helen Ka Wai and Layfield, Rob and Le, Weidong and Le Stunff, Herve and Leary, Alexandre Y. and Lebrun, Jean Jacques and Leck, Lionel Y.W. and Leduc-Gaudet, Jean Philippe and Lee, Changwook and Lee, Chung Pei and Lee, Da Hye and Lee, Edward B. and Lee, Erinna F. and Lee, Gyun Min and Lee, He Jin and Lee, Heung Kyu and Lee, Jae Man and Lee, Jason S. and Lee, Jin A. and Lee, Joo Yong and Lee, Jun Hee and Lee, Michael and Lee, Min Goo and Lee, Min Jae and Lee, Myung Shik and Lee, Sang Yoon and Lee, Seung Jae and Lee, Stella Y. and Lee, Sung Bae and Lee, Won Hee and Lee, Ying Ray and Lee, Yong Ho and Lee, Youngil and Lefebvre, Christophe and Legouis, Renaud and Lei, Yu L. and Lei, Yuchen and Leikin, Sergey and Leitinger, Gerd and Lemus, Leticia and Leng, Shuilong and Lenoir, Olivia and Lenz, Guido and Lenz, Heinz Josef and Lenzi, Paola and León, Yolanda and Leopoldino, Andréia M. and Leschczyk, Christoph and Leskelä, Stina and Letellier, Elisabeth and Leung, Chi Ting and Leung, Po Sing and Leventhal, Jeremy S. and Levine, Beth and Lewis, Patrick A. and Ley, Klaus and Li, Bin and Li, Da Qiang and Li, Jianming and Li, Jing and Li, Jiong and Li, Ke and Li, Liwu and Li, Mei and Li, Min and Li, Min and Li, Ming and Li, Mingchuan and Li, Pin Lan and Li, Ming Qing and Li, Qing and Li, Sheng and Li, Tiangang and Li, Wei and Li, Wenming and Li, Xue and Li, Yi Ping and Li, Yuan and Li, Zhiqiang and Li, Zhiyong and Li, Zhiyuan and Lian, Jiqin and Liang, Chengyu and Liang, Qiangrong and Liang, Weicheng and Liang, Yongheng and Liang, Yong Tian and Liao, Guanghong and Liao, Lujian and Liao, Mingzhi and Liao, Yung Feng and Librizzi, Mariangela and Lie, Pearl P.Y. and Lilly, Mary A. and Lim, Hyunjung J. and Lima, Thania R.R. and Limana, Federica and Lin, Chao and Lin, Chih Wen and Lin, Dar Shong and Lin, Fu Cheng and Lin, Jiandie D. and Lin, Kurt M. and Lin, Kwang Huei and Lin, Liang Tzung and Lin, Pei Hui and Lin, Qiong and Lin, Shaofeng and Lin, Su Ju and Lin, Wenyu and Lin, Xueying and Lin, Yao Xin and Lin, Yee Shin and Linden, Rafael and Lindner, Paula and Ling, Shuo Chien and Lingor, Paul and Linnemann, Amelia K. and Liou, Yih Cherng and Lipinski, Marta M. and Lipovšek, Saška and Lira, Vitor A. and Lisiak, Natalia and Liton, Paloma B. and Liu, Chao and Liu, Ching Hsuan and Liu, Chun Feng and Liu, Cui Hua and Liu, Fang and Liu, Hao and Liu, Hsiao Sheng and Liu, Hua Feng and Liu, Huifang and Liu, Jia and Liu, Jing and Liu, Julia and Liu, Leyuan and Liu, Longhua and Liu, Meilian and Liu, Qin and Liu, Wei and Liu, Wende and Liu, Xiao Hong and Liu, Xiaodong and Liu, Xingguo and Liu, Xu and Liu, Xuedong and Liu, Yanfen and Liu, Yang and Liu, Yang and Liu, Yueyang and Liu, Yule and Livingston, J. Andrew and Lizard, Gerard and Lizcano, Jose M. and Ljubojevic-Holzer, Senka and Lleonart, Matilde E. and Llobet-Navàs, David and Llorente, Alicia and Lo, Chih Hung and Lobato-Márquez, Damián and Long, Qi and Long, Yun Chau and Loos, Ben and Loos, Julia A. and López, Manuela G. and López-Doménech, Guillermo and López-Guerrero, José Antonio and López-Jiménez, Ana T. and López-Pérez, Óscar and López-Valero, Israel and Lorenowicz, Magdalena J. and Lorente, Mar and Lorincz, Peter and Lossi, Laura and Lotersztajn, Sophie and Lovat, Penny E. and Lovell, Jonathan F. and Lovy, Alenka and Lőw, Péter and Lu, Guang and Lu, Haocheng and Lu, Jia Hong and Lu, Jin Jian and Lu, Mengji and Lu, Shuyan and Luciani, Alessandro and Lucocq, John M. and Ludovico, Paula and Luftig, Micah A. and Luhr, Morten and Luis-Ravelo, Diego and Lum, Julian J. and Luna-Dulcey, Liany and Lund, Anders H. and Lund, Viktor K. and Lünemann, Jan D. and Lüningschrör, Patrick and Luo, Honglin and Luo, Rongcan and Luo, Shouqing and Luo, Zhi and Luparello, Claudio and Lüscher, Bernhard and Luu, Luan and Lyakhovich, Alex and Lyamzaev, Konstantin G. and Lystad, Alf Håkon and Lytvynchuk, Lyubomyr and Ma, Alvin C. and Ma, Changle and Ma, Mengxiao and Ma, Ning Fang and Ma, Quan Hong and Ma, Xinliang and Ma, Yueyun and Ma, Zhenyi and Macdougald, Ormond A. and Macian, Fernando and Macintosh, Gustavo C. and Mackeigan, Jeffrey P. and Macleod, Kay F. and Maday, Sandra and Madeo, Frank and Madesh, Muniswamy and Madl, Tobias and Madrigal-Matute, Julio and Maeda, Akiko and Maejima, Yasuhiro and Magarinos, Marta and Mahavadi, Poornima and Maiani, Emiliano and Maiese, Kenneth and Maiti, Panchanan and Maiuri, Maria Chiara and Majello, Barbara and Major, Michael B. and Makareeva, Elena and Malik, Fayaz and Mallilankaraman, Karthik and Malorni, Walter and Maloyan, Alina and Mammadova, Najiba and Man, Gene Chi Wai and Manai, Federico and Mancias, Joseph D. and Mandelkow, Eva Maria and Mandell, Michael A. and Manfredi, Angelo A. and Manjili, Masoud H. and Manjithaya, Ravi and Manque, Patricio and Manshian, Bella B. and Manzano, Raquel and Manzoni, Claudia and Mao, Kai and Marchese, Cinzia and Marchetti, Sandrine and Marconi, Anna Maria and Marcucci, Fabrizio and Mardente, Stefania and Mareninova, Olga A. and Margeta, Marta and Mari, Muriel and Marinelli, Sara and Marinelli, Oliviero and Mariño, Guillermo and Mariotto, Sofia and Marshall, Richard S. and Marten, Mark R. and Martens, Sascha and Martin, Alexandre P.J. and Martin, Katie R. and Martin, Sara and Martin, Shaun and Martín-Segura, Adrián and Martín-Acebes, Miguel A. and Martin-Burriel, Inmaculada and Martin-Rincon, Marcos and Martin-Sanz, Paloma and Martina, José A. and Martinet, Wim and Martinez, Aitor and Martinez, Ana and Martinez, Jennifer and Martinez Velazquez, Moises and Martinez-Lopez, Nuria and Martinez-Vicente, Marta and Martins, Daniel O. and Martins, Joilson O. and Martins, Waleska K. and Martins-Marques, Tania and Marzetti, Emanuele and Masaldan, Shashank and Masclaux-Daubresse, Celine and Mashek, Douglas G. and Massa, Valentina and Massieu, Lourdes and Masson, Glenn R. and Masuelli, Laura and Masyuk, Anatoliy I. and Masyuk, Tetyana V. and Matarrese, Paola and Matheu, Ander and Matoba, Satoaki and Matsuzaki, Sachiko and Mattar, Pamela and Matte, Alessandro and Mattoscio, Domenico and Mauriz, José L. and Mauthe, Mario and Mauvezin, Caroline and Maverakis, Emanual and Maycotte, Paola and Mayer, Johanna and Mazzoccoli, Gianluigi and Mazzoni, Cristina and Mazzulli, Joseph R. and Mccarty, Nami and Mcdonald, Christine and Mcgill, Mitchell R. and Mckenna, Sharon L. and Mclaughlin, Beth Ann and Mcloughlin, Fionn and Mcniven, Mark A. and Mcwilliams, Thomas G. and Mechta-Grigoriou, Fatima and Medeiros, Tania Catarina and Medina, Diego L. and Megeney, Lynn A. and Megyeri, Klara and Mehrpour, Maryam and Mehta, Jawahar L. and Meijer, Alfred J. and Meijer, Annemarie H. and Mejlvang, Jakob and Meléndez, Alicia and Melk, Annette and Memisoglu, Gonen and Mendes, Alexandrina F. and Meng, Delong and Meng, Fei and Meng, Tian and Menna-Barreto, Rubem and Menon, Manoj B. and Mercer, Carol and Mercier, Anne E. and Mergny, Jean Louis and Merighi, Adalberto and Merkley, Seth D. and Merla, Giuseppe and Meske, Volker and Mestre, Ana Cecilia and Metur, Shree Padma and Meyer, Christian and Meyer, Hemmo and Mi, Wenyi and Mialet-Perez, Jeanne and Miao, Junying and Micale, Lucia and Miki, Yasuo and Milan, Enrico and Milczarek, Małgorzata and Miller, Dana L. and Miller, Samuel I. and Miller, Silke and Millward, Steven W. and Milosevic, Ira and Minina, Elena A. and Mirzaei, Hamed and Mirzaei, Hamid Reza and Mirzaei, Mehdi and Mishra, Amit and Mishra, Nandita and Mishra, Paras Kumar and Misirkic Marjanovic, Maja and Misasi, Roberta and Misra, Amit and Misso, Gabriella and Mitchell, Claire and Mitou, Geraldine and Miura, Tetsuji and Miyamoto, Shigeki and Miyazaki, Makoto and Miyazaki, Mitsunori and Miyazaki, Taiga and Miyazawa, Keisuke and Mizushima, Noboru and Mogensen, Trine H. and Mograbi, Baharia and Mohammadinejad, Reza and Mohamud, Yasir and Mohanty, Abhishek and Mohapatra, Sipra and Möhlmann, Torsten and Mohmmed, Asif and Moles, Anna and Moley, Kelle H. and Molinari, Maurizio and Mollace, Vincenzo and Møller, Andreas Buch and Mollereau, Bertrand and Mollinedo, Faustino and Montagna, Costanza and Monteiro, Mervyn J. and Montella, Andrea and Montes, L. Ruth and Montico, Barbara and Mony, Vinod K. and Monzio Compagnoni, Giacomo and Moore, Michael N. and Moosavi, Mohammad A. and Mora, Ana L. and Mora, Marina and Morales-Alamo, David and Moratalla, Rosario and Moreira, Paula I. and Morelli, Elena and Moreno, Sandra and Moreno-Blas, Daniel and Moresi, Viviana and Morga, Benjamin and Morgan, Alwena H. and Morin, Fabrice and Morishita, Hideaki and Moritz, Orson L. and Moriyama, Mariko and Moriyasu, Yuji and Morleo, Manuela and Morselli, Eugenia and Moruno-Manchon, Jose F. and Moscat, Jorge and Mostowy, Serge and Motori, Elisa and Moura, Andrea Felinto and Moustaid-Moussa, Naima and Mrakovcic, Maria and Muciño-Hernández, Gabriel and Mukherjee, Anupam and Mukhopadhyay, Subhadip and Mulcahy Levy, Jean M. and Mulero, Victoriano and Muller, Sylviane and Münch, Christian and Munjal, Ashok and Munoz-Canoves, Pura and Muñoz-Galdeano, Teresa and Münz, Christian and Murakawa, Tomokazu and Muratori, Claudia and Murphy, Brona M. and Murphy, J. Patrick and Murthy, Aditya and Myöhänen, Timo T. and Mysorekar, Indira U. and Mytych, Jennifer and Nabavi, Seyed Mohammad and Nabissi, Massimo and Nagy, Péter and Nah, Jihoon and Nahimana, Aimable and Nakagawa, Ichiro and Nakamura, Ken and Nakatogawa, Hitoshi and Nandi, Shyam S. and Nanjundan, Meera and Nanni, Monica and Napolitano, Gennaro and Nardacci, Roberta and Narita, Masashi and Nassif, Melissa and Nathan, Ilana and Natsumeda, Manabu and Naude, Ryno J. and Naumann, Christin and Naveiras, Olaia and Navid, Fatemeh and Nawrocki, Steffan T. and Nazarko, Taras Y. and Nazio, Francesca and Negoita, Florentina and Neill, Thomas and Neisch, Amanda L. and Neri, Luca M. and Netea, Mihai G. and Neubert, Patrick and Neufeld, Thomas P. and Neumann, Dietbert and Neutzner, Albert and Newton, Phillip T. and Ney, Paul A. and Nezis, Ioannis P. and Ng, Charlene C.W. and Ng, Tzi Bun and Nguyen, Hang T.T. and Nguyen, Long T. and Ni, Hong Min and Ní Cheallaigh, Clíona and Ni, Zhenhong and Nicolao, M. Celeste and Nicoli, Francesco and Nieto-Diaz, Manuel and Nilsson, Per and Ning, Shunbin and Niranjan, Rituraj and Nishimune, Hiroshi and Niso-Santano, Mireia and Nixon, Ralph A. and Nobili, Annalisa and Nobrega, Clevio and Noda, Takeshi and Nogueira-Recalde, Uxía and Nolan, Trevor M. and Nombela, Ivan and Novak, Ivana and Novoa, Beatriz and Nozawa, Takashi and Nukina, Nobuyuki and Nussbaum-Krammer, Carmen and Nylandsted, Jesper and O’Donovan, Tracey R. and O’Leary, Seónadh M. and O’Rourke, Eyleen J. and O’Sullivan, Mary P. and O’Sullivan, Timothy E. and Oddo, Salvatore and Oehme, Ina and Ogawa, Michinaga and Ogier-Denis, Eric and Ogmundsdottir, Margret H. and Ogretmen, Besim and Oh, Goo Taeg and Oh, Seon Hee and Oh, Young J. and Ohama, Takashi and Ohashi, Yohei and Ohmuraya, Masaki and Oikonomou, Vasileios and Ojha, Rani and Okamoto, Koji and Okazawa, Hitoshi and Oku, Masahide and Oliván, Sara and Oliveira, Jorge M.A. and Ollmann, Michael and Olzmann, James A. and Omari, Shakib and Omary, M. Bishr and Önal, Gizem and Ondrej, Martin and Ong, Sang Bing and Ong, Sang Ging and Onnis, Anna and Orellana, Juan A. and Orellana-Muñoz, Sara and Ortega-Villaizan, Maria Del Mar and Ortiz-Gonzalez, Xilma R. and Ortona, Elena and Osiewacz, Heinz D. and Osman, Abdel Hamid K. and Osta, Rosario and Otegui, Marisa S. and Otsu, Kinya and Ott, Christiane and Ottobrini, Luisa and Ou, Jing Hsiung James and Outeiro, Tiago F. and Oynebraten, Inger and Ozturk, Melek and Pagès, Gilles and Pahari, Susanta and Pajares, Marta and Pajvani, Utpal B. and Pal, Rituraj and Paladino, Simona and Pallet, Nicolas and Palmieri, Michela and Palmisano, Giuseppe and Palumbo, Camilla and Pampaloni, Francesco and Pan, Lifeng and Pan, Qingjun and Pan, Wenliang and Pan, Xin and Panasyuk, Ganna and Pandey, Rahul and Pandey, Udai B. and Pandya, Vrajesh and Paneni, Francesco and Pang, Shirley Y. and Panzarini, Elisa and Papademetrio, Daniela L. and Papaleo, Elena and Papinski, Daniel and Papp, Diana and Park, Eun Chan and Park, Hwan Tae and Park, Ji Man and Park, Jong In and Park, Joon Tae and Park, Junsoo and Park, Sang Chul and Park, Sang Youel and Parola, Abraham H. and Parys, Jan B. and Pasquier, Adrien and Pasquier, Benoit and Passos, João F. and Pastore, Nunzia and Patel, Hemal H. and Patschan, Daniel and Pattingre, Sophie and Pedraza-Alva, Gustavo and Pedraza-Chaverri, Jose and Pedrozo, Zully and Pei, Gang and Pei, Jianming and Peled-Zehavi, Hadas and Pellegrini, Joaquín M. and Pelletier, Joffrey and Peñalva, Miguel A. and Peng, Di and Peng, Ying and Penna, Fabio and Pennuto, Maria and Pentimalli, Francesca and Pereira, Cláudia M.F. and Pereira, Gustavo J.S. and Pereira, Lilian C. and Pereira De Almeida, Luis and Perera, Nirma D. and Pérez-Lara, Ángel and Perez-Oliva, Ana B. and Pérez-Pérez, María Esther and Periyasamy, Palsamy and Perl, Andras and Perrotta, Cristiana and Perrotta, Ida and Pestell, Richard G. and Petersen, Morten and Petrache, Irina and Petrovski, Goran and Pfirrmann, Thorsten and Pfister, Astrid S. and Philips, Jennifer A. and Pi, Huifeng and Picca, Anna and Pickrell, Alicia M. and Picot, Sandy and Pierantoni, Giovanna M. and Pierdominici, Marina and Pierre, Philippe and Pierrefite-Carle, Valérie and Pierzynowska, Karolina and Pietrocola, Federico and Pietruczuk, Miroslawa and Pignata, Claudio and Pimentel-Muiños, Felipe X. and Pinar, Mario and Pinheiro, Roberta O. and Pinkas-Kramarski, Ronit and Pinton, Paolo and Pircs, Karolina and Piya, Sujan and Pizzo, Paola and Plantinga, Theo S. and Platta, Harald W. and Plaza-Zabala, Ainhoa and Plomann, Markus and Plotnikov, Egor Y. and Plun-Favreau, Helene and Pluta, Ryszard and Pocock, Roger and Pöggeler, Stefanie and Pohl, Christian and Poirot, Marc and Poletti, Angelo and Ponpuak, Marisa and Popelka, Hana and Popova, Blagovesta and Porta, Helena and Porte Alcon, Soledad and Portilla-Fernandez, Eliana and Post, Martin and Potts, Malia B. and Poulton, Joanna and Powers, Ted and Prahlad, Veena and Prajsnar, Tomasz K. and Praticò, Domenico and Prencipe, Rosaria and Priault, Muriel and Proikas-Cezanne, Tassula and Promponas, Vasilis J. and Proud, Christopher G. and Puertollano, Rosa and Puglielli, Luigi and Pulinilkunnil, Thomas and Puri, Deepika and Puri, Rajat and Puyal, Julien and Qi, Xiaopeng and Qi, Yongmei and Qian, Wenbin and Qiang, Lei and Qiu, Yu and Quadrilatero, Joe and Quarleri, Jorge and Raben, Nina and Rabinowich, Hannah and Ragona, Debora and Ragusa, Michael J. and Rahimi, Nader and Rahmati, Marveh and Raia, Valeria and Raimundo, Nuno and Rajasekaran, Namakkal Soorappan and Ramachandra Rao, Sriganesh and Rami, Abdelhaq and Ramírez-Pardo, Ignacio and Ramsden, David B. and Randow, Felix and Rangarajan, Pundi N. and Ranieri, Danilo and Rao, Hai and Rao, Lang and Rao, Rekha and Rathore, Sumit and Ratnayaka, J. Arjuna and Ratovitski, Edward A. and Ravanan, Palaniyandi and Ravegnini, Gloria and Ray, Swapan K. and Razani, Babak and Rebecca, Vito and Reggiori, Fulvio and Régnier-Vigouroux, Anne and Reichert, Andreas S. and Reigada, David and Reiling, Jan H. and Rein, Theo and Reipert, Siegfried and Rekha, Rokeya Sultana and Ren, Hongmei and Ren, Jun and Ren, Weichao and Renault, Tristan and Renga, Giorgia and Reue, Karen and Rewitz, Kim and Ribeiro De Andrade Ramos, Bruna and Riazuddin, S. Amer and Ribeiro-Rodrigues, Teresa M. and Ricci, Jean Ehrland and Ricci, Romeo and Riccio, Victoria and Richardson, Des R. and Rikihisa, Yasuko and Risbud, Makarand V. and Risueño, Ruth M. and Ritis, Konstantinos and Rizza, Salvatore and Rizzuto, Rosario and Roberts, Helen C. and Roberts, Luke D. and Robinson, Katherine J. and Roccheri, Maria Carmela and Rocchi, Stephane and Rodney, George G. and Rodrigues, Tiago and Rodrigues Silva, Vagner Ramon and Rodriguez, Amaia and Rodriguez-Barrueco, Ruth and Rodriguez-Henche, Nieves and Rodriguez-Rocha, Humberto and Roelofs, Jeroen and Rogers, Robert S. and Rogov, Vladimir V. and Rojo, Ana I. and Rolka, Krzysztof and Romanello, Vanina and Romani, Luigina and Romano, Alessandra and Romano, Patricia S. and Romeo-Guitart, David and Romero, Luis C. and Romero, Montserrat and Roney, Joseph C. and Rongo, Christopher and Roperto, Sante and Rosenfeldt, Mathias T. and Rosenstiel, Philip and Rosenwald, Anne G. and Roth, Kevin A. and Roth, Lynn and Roth, Steven and Rouschop, Kasper M.A. and Roussel, Benoit D. and Roux, Sophie and Rovere-Querini, Patrizia and Roy, Ajit and Rozieres, Aurore and Ruano, Diego and Rubinsztein, David C. and Rubtsova, Maria P. and Ruckdeschel, Klaus and Ruckenstuhl, Christoph and Rudolf, Emil and Rudolf, Rüdiger and Ruggieri, Alessandra and Ruparelia, Avnika Ashok and Rusmini, Paola and Russell, Ryan R. and Russo, Gian Luigi and Russo, Maria and Russo, Rossella and Ryabaya, Oxana O. and Ryan, Kevin M. and Ryu, Kwon Yul and Sabater-Arcis, Maria and Sachdev, Ulka and Sacher, Michael and Sachse, Carsten and Sadhu, Abhishek and Sadoshima, Junichi and Safren, Nathaniel and Saftig, Paul and Sagona, Antonia P. and Sahay, Gaurav and Sahebkar, Amirhossein and Sahin, Mustafa and Sahin, Ozgur and Sahni, Sumit and Saito, Nayuta and Saito, Shigeru and Saito, Tsunenori and Sakai, Ryohei and Sakai, Yasuyoshi and Sakamaki, Jun Ichi and Saksela, Kalle and Salazar, Gloria and Salazar-Degracia, Anna and Salekdeh, Ghasem H. and Saluja, Ashok K. and Sampaio-Marques, Belém and Sanchez, Maria Cecilia and Sanchez-Alcazar, Jose A. and Sanchez-Vera, Victoria and Sancho-Shimizu, Vanessa and Sanderson, J. Thomas and Sandri, Marco and Santaguida, Stefano and Santambrogio, Laura and Santana, Magda M. and Santoni, Giorgio and Sanz, Alberto and Sanz, Pascual and Saran, Shweta and Sardiello, Marco and Sargeant, Timothy J. and Sarin, Apurva and Sarkar, Chinmoy and Sarkar, Sovan and Sarrias, Maria Rosa and Sarkar, Surajit and Sarmah, Dipanka Tanu and Sarparanta, Jaakko and Sathyanarayan, Aishwarya and Sathyanarayanan, Ranganayaki and Scaglione, K. Matthew and Scatozza, Francesca and Schaefer, Liliana and Schafer, Zachary T. and Schaible, Ulrich E. and Schapira, Anthony H.V. and Scharl, Michael and Schatzl, Hermann M. and Schein, Catherine H. and Scheper, Wiep and Scheuring, David and Schiaffino, Maria Vittoria and Schiappacassi, Monica and Schindl, Rainer and Schlattner, Uwe and Schmidt, Oliver and Schmitt, Roland and Schmidt, Stephen D. and Schmitz, Ingo and Schmukler, Eran and Schneider, Anja and Schneider, Bianca E. and Schober, Romana and Schoijet, Alejandra C. and Schott, Micah B. and Schramm, Michael and Schröder, Bernd and Schuh, Kai and Schüller, Christoph and Schulze, Ryan J. and Schürmanns, Lea and Schwamborn, Jens C. and Schwarten, Melanie and Scialo, Filippo and Sciarretta, Sebastiano and Scott, Melanie J. and Scotto, Kathleen W. and Scovassi, A. Ivana and Scrima, Andrea and Scrivo, Aurora and Sebastian, David and Sebti, Salwa and Sedej, Simon and Segatori, Laura and Segev, Nava and Seglen, Per O. and Seiliez, Iban and Seki, Ekihiro and Selleck, Scott B. and Sellke, Frank W. and Selsby, Joshua T. and Sendtner, Michael and Senturk, Serif and Seranova, Elena and Sergi, Consolato and Serra-Moreno, Ruth and Sesaki, Hiromi and Settembre, Carmine and Setty, Subba Rao Gangi and Sgarbi, Gianluca and Sha, Ou and Shacka, John J. and Shah, Javeed A. and Shang, Dantong and Shao, Changshun and Shao, Feng and Sharbati, Soroush and Sharkey, Lisa M. and Sharma, Dipali and Sharma, Gaurav and Sharma, Kulbhushan and Sharma, Pawan and Sharma, Surendra and Shen, Han Ming and Shen, Hongtao and Shen, Jiangang and Shen, Ming and Shen, Weili and Shen, Zheni and Sheng, Rui and Sheng, Zhi and Sheng, Zu Hang and Shi, Jianjian and Shi, Xiaobing and Shi, Ying Hong and Shiba-Fukushima, Kahori and Shieh, Jeng Jer and Shimada, Yohta and Shimizu, Shigeomi and Shimozawa, Makoto and Shintani, Takahiro and Shoemaker, Christopher J. and Shojaei, Shahla and Shoji, Ikuo and Shravage, Bhupendra V. and Shridhar, Viji and Shu, Chih Wen and Shu, Hong Bing and Shui, Ke and Shukla, Arvind K. and Shutt, Timothy E. and Sica, Valentina and Siddiqui, Aleem and Sierra, Amanda and Sierra-Torre, Virginia and Signorelli, Santiago and Sil, Payel and Silva, Bruno J.De Andrade and Silva, Johnatas D. and Silva-Pavez, Eduardo and Silvente-Poirot, Sandrine and Simmonds, Rachel E. and Simon, Anna Katharina and Simon, Hans Uwe and Simons, Matias and Singh, Anurag and Singh, Lalit P. and Singh, Rajat and Singh, Shivendra V. and Singh, Shrawan K. and Singh, Sudha B. and Singh, Sunaina and Singh, Surinder Pal and Sinha, Debasish and Sinha, Rohit Anthony and Sinha, Sangita and Sirko, Agnieszka and Sirohi, Kapil and Sivridis, Efthimios L. and Skendros, Panagiotis and Skirycz, Aleksandra and Slaninová, Iva and Smaili, Soraya S. and Smertenko, Andrei and Smith, Matthew D. and Soenen, Stefaan J. and Sohn, Eun Jung and Sok, Sophia P.M. and Solaini, Giancarlo and Soldati, Thierry and Soleimanpour, Scott A. and Soler, Rosa M. and Solovchenko, Alexei and Somarelli, Jason A. and Sonawane, Avinash and Song, Fuyong and Song, Hyun Kyu and Song, Ju Xian and Song, Kunhua and Song, Zhiyin and Soria, Leandro R. and Sorice, Maurizio and Soukas, Alexander A. and Soukup, Sandra Fausia and Sousa, Diana and Sousa, Nadia and Spagnuolo, Paul A. and Spector, Stephen A. and Srinivas Bharath, M. M. and St. Clair, Daret and Stagni, Venturina and Staiano, Leopoldo and Stalnecker, Clint A. and Stankov, Metodi V. and Stathopulos, Peter B. and Stefan, Katja and Stefan, Sven Marcel and Stefanis, Leonidas and Steffan, Joan S. and Steinkasserer, Alexander and Stenmark, Harald and Sterneckert, Jared and Stevens, Craig and Stoka, Veronika and Storch, Stephan and Stork, Björn and Strappazzon, Flavie and Strohecker, Anne Marie and Stupack, Dwayne G. and Su, Huanxing and Su, Ling Yan and Su, Longxiang and Suarez-Fontes, Ana M. and Subauste, Carlos S. and Subbian, Selvakumar and Subirada, Paula V. and Sudhandiran, Ganapasam and Sue, Carolyn M. and Sui, Xinbing and Summers, Corey and Sun, Guangchao and Sun, Jun and Sun, Kang and Sun, Meng Xiang and Sun, Qiming and Sun, Yi and Sun, Zhongjie and Sunahara, Karen K.S. and Sundberg, Eva and Susztak, Katalin and Sutovsky, Peter and Suzuki, Hidekazu and Sweeney, Gary and Symons, J. David and Sze, Stephen Cho Wing and Szewczyk, Nathaniel J. and Tabęcka-Łonczynska, Anna and Tabolacci, Claudio and Tacke, Frank and Taegtmeyer, Heinrich and Tafani, Marco and Tagaya, Mitsuo and Tai, Haoran and Tait, Stephen W.G. and Takahashi, Yoshinori and Takats, Szabolcs and Talwar, Priti and Tam, Chit and Tam, Shing Yau and Tampellini, Davide and Tamura, Atsushi and Tan, Chong Teik and Tan, Eng King and Tan, Ya Qin and Tanaka, Masaki and Tanaka, Motomasa and Tang, Daolin and Tang, Jingfeng and Tang, Tie Shan and Tanida, Isei and Tao, Zhipeng and Taouis, Mohammed and Tatenhorst, Lars and Tavernarakis, Nektarios and Taylor, Allen and Taylor, Gregory A. and Taylor, Joan M. and Tchetina, Elena and Tee, Andrew R. and Tegeder, Irmgard and Teis, David and Teixeira, Natercia and Teixeira-Clerc, Fatima and Tekirdag, Kumsal A. and Tencomnao, Tewin and Tenreiro, Sandra and Tepikin, Alexei V. and Testillano, Pilar S. and Tettamanti, Gianluca and Tharaux, Pierre Louis and Thedieck, Kathrin and Thekkinghat, Arvind A. and Thellung, Stefano and Thinwa, Josephine W. and Thirumalaikumar, V. P. and Thomas, Sufi Mary and Thomes, Paul G. and Thorburn, Andrew and Thukral, Lipi and Thum, Thomas and Thumm, Michael and Tian, Ling and Tichy, Ales and Till, Andreas and Timmerman, Vincent and Titorenko, Vladimir I. and Todi, Sokol V. and Todorova, Krassimira and Toivonen, Janne M. and Tomaipitinca, Luana and Tomar, Dhanendra and Tomas-Zapico, Cristina and Tomić, Sergej and Tong, Benjamin Chun Kit and Tong, Chao and Tong, Xin and Tooze, Sharon A. and Torgersen, Maria L. and Torii, Satoru and Torres-López, Liliana and Torriglia, Alicia and Towers, Christina G. and Towns, Roberto and Toyokuni, Shinya and Trajkovic, Vladimir and Tramontano, Donatella and Tran, Quynh Giao and Travassos, Leonardo H. and Trelford, Charles B. and Tremel, Shirley and Trougakos, Ioannis P. and Tsao, Betty P. and Tschan, Mario P. and Tse, Hung Fat and Tse, Tak Fu and Tsugawa, Hitoshi and Tsvetkov, Andrey S. and Tumbarello, David A. and Tumtas, Yasin and Tuñón, María J. and Turcotte, Sandra and Turk, Boris and Turk, Vito and Turner, Bradley J. and Tuxworth, Richard I. and Tyler, Jessica K. and Tyutereva, Elena V. and Uchiyama, Yasuo and Ugun-Klusek, Aslihan and Uhlig, Holm H. and Ułamek-Kozioł, Marzena and Ulasov, Ilya V. and Umekawa, Midori and Ungermann, Christian and Unno, Rei and Urbe, Sylvie and Uribe-Carretero, Elisabet and Üstün, Suayib and Uversky, Vladimir N. and Vaccari, Thomas and Vaccaro, Maria I. and Vahsen, Björn F. and Vakifahmetoglu-Norberg, Helin and Valdor, Rut and Valente, Maria J. and Valko, Ayelén and Vallee, Richard B. and Valverde, Angela M. and Van Den Berghe, Greet and Van Der Veen, Stijn and Van Kaer, Luc and Van Loosdregt, Jorg and Van Wijk, Sjoerd J.L. and Vandenberghe, Wim and Vanhorebeek, Ilse and Vannier-Santos, Marcos A. and Vannini, Nicola and Vanrell, M. Cristina and Vantaggiato, Chiara and Varano, Gabriele and Varela-Nieto, Isabel and Varga, Máté and Vasconcelos, M. Helena and Vats, Somya and Vavvas, Demetrios G. and Vega-Naredo, Ignacio and Vega-Rubin-De-Celis, Silvia and Velasco, Guillermo and Velázquez, Ariadna P. and Vellai, Tibor and Vellenga, Edo and Velotti, Francesca and Verdier, Mireille and Verginis, Panayotis and Vergne, Isabelle and Verkade, Paul and Verma, Manish and Verstreken, Patrik and Vervliet, Tim and Vervoorts, Jörg and Vessoni, Alexandre T. and Victor, Victor M. and Vidal, Michel and Vidoni, Chiara and Vieira, Otilia V. and Vierstra, Richard D. and Viganó, Sonia and Vihinen, Helena and Vijayan, Vinoy and Vila, Miquel and Vilar, Marçal and Villalba, José M. and Villalobo, Antonio and Villarejo-Zori, Beatriz and Villarroya, Francesc and Villarroya, Joan and Vincent, Olivier and Vindis, Cecile and Viret, Christophe and Viscomi, Maria Teresa and Visnjic, Dora and Vitale, Ilio and Vocadlo, David J. and Voitsekhovskaja, Olga V. and Volonté, Cinzia and Volta, Mattia and Vomero, Marta and Von Haefen, Clarissa and Vooijs, Marc A. and Voos, Wolfgang and Vucicevic, Ljubica and Wade-Martins, Richard and Waguri, Satoshi and Waite, Kenrick A. and Wakatsuki, Shuji and Walker, David W. and Walker, Mark J. and Walker, Simon A. and Walter, Jochen and Wandosell, Francisco G. and Wang, Bo and Wang, Chao Yung and Wang, Chen and Wang, Chenran and Wang, Chenwei and Wang, Cun Yu and Wang, Dong and Wang, Fangyang and Wang, Feng and Wang, Fengming and Wang, Guansong and Wang, Han and Wang, Hao and Wang, Hexiang and Wang, Hong Gang and Wang, Jianrong and Wang, Jigang and Wang, Jiou and Wang, Jundong and Wang, Kui and Wang, Lianrong and Wang, Liming and Wang, Maggie Haitian and Wang, Meiqing and Wang, Nanbu and Wang, Pengwei and Wang, Peipei and Wang, Ping and Wang, Ping and Wang, Qing Jun and Wang, Qing and Wang, Qing Kenneth and Wang, Qiong A. and Wang, Wen Tao and Wang, Wuyang and Wang, Xinnan and Wang, Xuejun and Wang, Yan and Wang, Yanchang and Wang, Yanzhuang and Wang, Yen Yun and Wang, Yihua and Wang, Yipeng and Wang, Yu and Wang, Yuqi and Wang, Zhe and Wang, Zhenyu and Wang, Zhouguang and Warnes, Gary and Warnsmann, Verena and Watada, Hirotaka and Watanabe, Eizo and Watchon, Maxinne and Wawrzyńska, Anna and Weaver, Timothy E. and Wegrzyn, Grzegorz and Wehman, Ann M. and Wei, Huafeng and Wei, Lei and Wei, Taotao and Wei, Yongjie and Weiergräber, Oliver H. and Weihl, Conrad C. and Weindl, Günther and Weiskirchen, Ralf and Wells, Alan and Wen, Runxia H. and Wen, Xin and Werner, Antonia and Weykopf, Beatrice and Wheatley, Sally P. and Whitton, J. Lindsay and Whitworth, Alexander J. and Wiktorska, Katarzyna and Wildenberg, Manon E. and Wileman, Tom and Wilkinson, Simon and Willbold, Dieter and Williams, Brett and Williams, Robin S.B. and Williams, Roger L. and Williamson, Peter R. and Wilson, Richard A. and Winner, Beate and Winsor, Nathaniel J. and Witkin, Steven S. and Wodrich, Harald and Woehlbier, Ute and Wollert, Thomas and Wong, Esther and Wong, Jack Ho and Wong, Richard W. and Wong, Vincent Kam Wai and Wong, W. Wei Lynn and Wu, An Guo and Wu, Chengbiao and Wu, Jian and Wu, Junfang and Wu, Kenneth K. and Wu, Min and Wu, Shan Ying and Wu, Shengzhou and Wu, Shu Yan and Wu, Shufang and Wu, William K.K. and Wu, Xiaohong and Wu, Xiaoqing and Wu, Yao Wen and Wu, Yihua and Xavier, Ramnik J. and Xia, Hongguang and Xia, Lixin and Xia, Zhengyuan and Xiang, Ge and Xiang, Jin and Xiang, Mingliang and Xiang, Wei and Xiao, Bin and Xiao, Guozhi and Xiao, Hengyi and Xiao, Hong Tao and Xiao, Jian and Xiao, Lan and Xiao, Shi and Xiao, Yin and Xie, Baoming and Xie, Chuan Ming and Xie, Min and Xie, Yuxiang and Xie, Zhiping and Xie, Zhonglin and Xilouri, Maria and Xu, Congfeng and Xu, En and Xu, Haoxing and Xu, Jing and Xu, Jin Rong and Xu, Liang and Xu, Wen Wen and Xu, Xiulong and Xue, Yu and Yakhine-Diop, Sokhna M.S. and Yamaguchi, Masamitsu and Yamaguchi, Osamu and Yamamoto, Ai and Yamashina, Shunhei and Yan, Shengmin and Yan, Shian Jang and Yan, Zhen and Yanagi, Yasuo and Yang, Chuanbin and Yang, Dun Sheng and Yang, Huan and Yang, Huang Tian and Yang, Hui and Yang, Jin Ming and Yang, Jing and Yang, Jingyu and Yang, Ling and Yang, Liu and Yang, Ming and Yang, Pei Ming and Yang, Qian and Yang, Seungwon and Yang, Shu and Yang, Shun Fa and Yang, Wannian and Yang, Wei Yuan and Yang, Xiaoyong and Yang, Xuesong and Yang, Yi and Yang, Ying and Yao, Honghong and Yao, Shenggen and Yao, Xiaoqiang and Yao, Yong Gang and Yao, Yong Ming and Yasui, Takahiro and Yazdankhah, Meysam and Yen, Paul M. and Yi, Cong and Yin, Xiao Ming and Yin, Yanhai and Yin, Zhangyuan and Yin, Ziyi and Ying, Meidan and Ying, Zheng and Yip, Calvin K. and Yiu, Stephanie Pei Tung and Yoo, Young H. and Yoshida, Kiyotsugu and Yoshii, Saori R. and Yoshimori, Tamotsu and Yousefi, Bahman and Yu, Boxuan and Yu, Haiyang and Yu, Jun and Yu, Jun and Yu, Li and Yu, Ming Lung and Yu, Seong Woon and Yu, Victor C. and Yu, W. Haung and Yu, Zhengping and Yu, Zhou and Yuan, Junying and Yuan, Ling Qing and Yuan, Shilin and Yuan, Shyng Shiou F. and Yuan, Yanggang and Yuan, Zengqiang and Yue, Jianbo and Yue, Zhenyu and Yun, Jeanho and Yung, Raymond L. and Zacks, David N. and Zaffagnini, Gabriele and Zambelli, Vanessa O. and Zanella, Isabella and Zang, Qun S. and Zanivan, Sara and Zappavigna, Silvia and Zaragoza, Pilar and Zarbalis, Konstantinos S. and Zarebkohan, Amir and Zarrouk, Amira and Zeitlin, Scott O. and Zeng, Jialiu and Zeng, Ju Deng and Žerovnik, Eva and Zhan, Lixuan and Zhang, Bin and Zhang, Donna D. and Zhang, Hanlin and Zhang, Hong and Zhang, Hong and Zhang, Honghe and Zhang, Huafeng and Zhang, Huaye and Zhang, Hui and Zhang, Hui Ling and Zhang, Jianbin and Zhang, Jianhua and Zhang, Jing Pu and Zhang, Kalin Y.B. and Zhang, Leshuai W. and Zhang, Lin and Zhang, Lisheng and Zhang, Lu and Zhang, Luoying and Zhang, Menghuan and Zhang, Peng and Zhang, Sheng and Zhang, Wei and Zhang, Xiangnan and Zhang, Xiao Wei and Zhang, Xiaolei and Zhang, Xiaoyan and Zhang, Xin and Zhang, Xinxin and Zhang, Xu Dong and Zhang, Yang and Zhang, Yanjin and Zhang, Yi and Zhang, Ying Dong and Zhang, Yingmei and Zhang, Yuan Yuan and Zhang, Yuchen and Zhang, Zhe and Zhang, Zhengguang and Zhang, Zhibing and Zhang, Zhihai and Zhang, Zhiyong and Zhang, Zili and Zhao, Haobin and Zhao, Lei and Zhao, Shuang and Zhao, Tongbiao and Zhao, Xiao Fan and Zhao, Ying and Zhao, Yongchao and Zhao, Yongliang and Zhao, Yuting and Zheng, Guoping and Zheng, Kai and Zheng, Ling and Zheng, Shizhong and Zheng, Xi Long and Zheng, Yi and Zheng, Zu Guo and Zhivotovsky, Boris and Zhong, Qing and Zhou, Ao and Zhou, Ben and Zhou, Cefan and Zhou, Gang and Zhou, Hao and Zhou, Hong and Zhou, Hongbo and Zhou, Jie and Zhou, Jing and Zhou, Jing and Zhou, Jiyong and Zhou, Kailiang and Zhou, Rongjia and Zhou, Xu Jie and Zhou, Yanshuang and Zhou, Yinghong and Zhou, Yubin and Zhou, Zheng Yu and Zhou, Zhou and Zhu, Binglin and Zhu, Changlian and Zhu, Guo Qing and Zhu, Haining and Zhu, Hongxin and Zhu, Hua and Zhu, Wei Guo and Zhu, Yanping and Zhu, Yushan and Zhuang, Haixia and Zhuang, Xiaohong and Zientara-Rytter, Katarzyna and Zimmermann, Christine M. and Ziviani, Elena and Zoladek, Teresa and Zong, Wei Xing and Zorov, Dmitry B. and Zorzano, Antonio and Zou, Weiping and Zou, Zhen and Zou, Zhengzhi and Zuryn, Steven and Zwerschke, Werner and Brand-Saberi, Beate and Dong, X. Charlie and Kenchappa, Chandra Shekar and Li, Zuguo and Lin, Yong and Oshima, Shigeru and Rong, Yueguang and Sluimer, Judith C. and Stallings, Christina L. and Tong, Chun Kit}, issn = {1554-8635}, journal = {Autophagy}, number = {1}, pages = {1--382}, publisher = {Taylor & Francis}, title = {{Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)}}, doi = {10.1080/15548627.2020.1797280}, volume = {17}, year = {2021}, } @article{10223, abstract = {Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, issn = {14764687}, journal = {Nature}, keywords = {Multidisciplinary}, number = {7884}, pages = {273--277}, publisher = {Springer Nature}, title = {{Cell surface and intracellular auxin signalling for H+ fluxes in root growth}}, doi = {10.1038/s41586-021-04037-6}, volume = {599}, year = {2021}, } @article{9189, abstract = {Transposable elements exist widely throughout plant genomes and play important roles in plant evolution. Auxin is an important regulator that is traditionally associated with root development and drought stress adaptation. The DEEPER ROOTING 1 (DRO1) gene is a key component of rice drought avoidance. Here, we identified a transposon that acts as an autonomous auxin‐responsive promoter and its presence at specific genome positions conveys physiological adaptations related to drought avoidance. Rice varieties with high and auxin‐mediated transcription of DRO1 in the root tip show deeper and longer root phenotypes and are thus better adapted to drought. The INDITTO2 transposon contains an auxin response element and displays auxin‐responsive promoter activity; it is thus able to convey auxin regulation of transcription to genes in its proximity. In the rice Acuce, which displays DRO1‐mediated drought adaptation, the INDITTO2 transposon was found to be inserted at the promoter region of the DRO1 locus. Transgenesis‐based insertion of the INDITTO2 transposon into the DRO1 promoter of the non‐adapted rice variety Nipponbare was sufficient to promote its drought avoidance. Our data identify an example of how transposons can act as promoters and convey hormonal regulation to nearby loci, improving plant fitness in response to different abiotic stresses.}, author = {Zhao, Y and Wu, L and Fu, Q and Wang, D and Li, J and Yao, B and Yu, S and Jiang, L and Qian, J and Zhou, X and Han, L and Zhao, S and Ma, C and Zhang, Y and Luo, C and Dong, Q and Li, S and Zhang, L and Jiang, X and Li, Y and Luo, H and Li, K and Yang, J and Luo, Q and Li, L and Peng, S and Huang, H and Zuo, Z and Liu, C and Wang, L and Li, C and He, X and Friml, Jiří and Du, Y}, issn = {1365-3040}, journal = {Plant, Cell & Environment}, number = {6}, pages = {1846--1857}, publisher = {Wiley}, title = {{INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance}}, doi = {10.1111/pce.14029}, volume = {44}, year = {2021}, } @article{9887, abstract = {Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin–mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells.}, author = {Johnson, Alexander J and Dahhan, Dana A and Gnyliukh, Nataliia and Kaufmann, Walter and Zheden, Vanessa and Costanzo, Tommaso and Mahou, Pierre and Hrtyan, Mónika and Wang, Jie and Aguilera Servin, Juan L and van Damme, Daniël and Beaurepaire, Emmanuel and Loose, Martin and Bednarek, Sebastian Y and Friml, Jiří}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {51}, publisher = {National Academy of Sciences}, title = {{The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis}}, doi = {10.1073/pnas.2113046118}, volume = {118}, year = {2021}, } @misc{14988, abstract = {Raw data generated from the publication - The TPLATE complex mediates membrane bending during plant clathrin-mediated endocytosis by Johnson et al., 2021 In PNAS}, author = {Johnson, Alexander J}, publisher = {Zenodo}, title = {{Raw data from Johnson et al, PNAS, 2021}}, doi = {10.5281/ZENODO.5747100}, year = {2021}, } @phdthesis{9992, abstract = {Blood – this is what animals use to heal wounds fast and efficient. Plants do not have blood circulation and their cells cannot move. However, plants have evolved remarkable capacities to regenerate tissues and organs preventing further damage. In my PhD research, I studied the wound healing in the Arabidopsis root. I used a UV laser to ablate single cells in the root tip and observed the consequent wound healing. Interestingly, the inner adjacent cells induced a division plane switch and subsequently adopted the cell type of the killed cell to replace it. We termed this form of wound healing “restorative divisions”. This initial observation triggered the questions of my PhD studies: How and why do cells orient their division planes, how do they feel the wound and why does this happen only in inner adjacent cells. For answering these questions, I used a quite simple experimental setup: 5 day - old seedlings were stained with propidium iodide to visualize cell walls and dead cells; ablation was carried out using a special laser cutter and a confocal microscope. Adaptation of the novel vertical microscope system made it possible to observe wounds in real time. This revealed that restorative divisions occur at increased frequency compared to normal divisions. Additionally, the major plant hormone auxin accumulates in wound adjacent cells and drives the expression of the wound-stress responsive transcription factor ERF115. Using this as a marker gene for wound responses, we found that an important part of wound signalling is the sensing of the collapse of the ablated cell. The collapse causes a radical pressure drop, which results in strong tissue deformations. These deformations manifest in an invasion of the now free spot specifically by the inner adjacent cells within seconds, probably because of higher pressure of the inner tissues. Long-term imaging revealed that those deformed cells continuously expand towards the wound hole and that this is crucial for the restorative division. These wound-expanding cells exhibit an abnormal, biphasic polarity of microtubule arrays before the division. Experiments inhibiting cell expansion suggest that it is the biphasic stretching that induces those MT arrays. Adapting the micromanipulator aspiration system from animal scientists at our institute confirmed the hypothesis that stretching influences microtubule stability. In conclusion, this shows that microtubules react to tissue deformation and this facilitates the observed division plane switch. This puts mechanical cues and tensions at the most prominent position for explaining the growth and wound healing properties of plants. Hence, it shines light onto the importance of understanding mechanical signal transduction. }, author = {Hörmayer, Lukas}, issn = {2663-337X}, pages = {168}, publisher = {Institute of Science and Technology Austria}, title = {{Wound healing in the Arabidopsis root meristem}}, doi = {10.15479/at:ista:9992}, year = {2021}, } @article{9010, abstract = {Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.}, author = {Ötvös, Krisztina and Marconi, Marco and Vega, Andrea and O’Brien, Jose and Johnson, Alexander J and Abualia, Rashed and Antonielli, Livio and Montesinos López, Juan C and Zhang, Yuzhou and Tan, Shutang and Cuesta, Candela and Artner, Christina and Bouguyon, Eleonore and Gojon, Alain and Friml, Jiří and Gutiérrez, Rodrigo A. and Wabnik, Krzysztof T and Benková, Eva}, issn = {14602075}, journal = {EMBO Journal}, number = {3}, publisher = {Embo Press}, title = {{Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport}}, doi = {10.15252/embj.2020106862}, volume = {40}, year = {2021}, } @article{8931, abstract = {Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.}, author = {Gelová, Zuzana and Gallei, Michelle C and Pernisová, Markéta and Brunoud, Géraldine and Zhang, Xixi and Glanc, Matous and Li, Lanxin and Michalko, Jaroslav and Pavlovicova, Zlata and Verstraeten, Inge and Han, Huibin and Hajny, Jakub and Hauschild, Robert and Čovanová, Milada and Zwiewka, Marta and Hörmayer, Lukas and Fendrych, Matyas and Xu, Tongda and Vernoux, Teva and Friml, Jiří}, issn = {0168-9452}, journal = {Plant Science}, keywords = {Agronomy and Crop Science, Plant Science, Genetics, General Medicine}, publisher = {Elsevier}, title = {{Developmental roles of auxin binding protein 1 in Arabidopsis thaliana}}, doi = {10.1016/j.plantsci.2020.110750}, volume = {303}, year = {2021}, } @article{9287, abstract = {The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural (IAA) and synthetic (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network (EE/TGN), rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using Total Internal Reflection Fluorescence (TIRF) microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments. }, author = {Narasimhan, Madhumitha and Gallei, Michelle C and Tan, Shutang and Johnson, Alexander J and Verstraeten, Inge and Li, Lanxin and Rodriguez Solovey, Lesia and Han, Huibin and Himschoot, E and Wang, R and Vanneste, S and Sánchez-Simarro, J and Aniento, F and Adamowski, Maciek and Friml, Jiří}, issn = {1532-2548}, journal = {Plant Physiology}, number = {2}, pages = {1122–1142}, publisher = {Oxford University Press}, title = {{Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking}}, doi = {10.1093/plphys/kiab134}, volume = {186}, year = {2021}, } @phdthesis{10083, abstract = {Plant motions occur across a wide spectrum of timescales, ranging from seed dispersal through bursting (milliseconds) and stomatal opening (minutes) to long-term adaptation of gross architecture. Relatively fast motions include water-driven growth as exemplified by root cell expansion under abiotic/biotic stresses or during gravitropism. A showcase is a root growth inhibition in 30 seconds triggered by the phytohormone auxin. However, the cellular and molecular mechanisms are still largely unknown. This thesis covers the studies about this topic as follows. By taking advantage of microfluidics combined with live imaging, pharmaceutical tools, and transgenic lines, we examined the kinetics of and causal relationship among various auxininduced rapid cellular changes in root growth, apoplastic pH, cytosolic Ca2+, cortical microtubule (CMT) orientation, and vacuolar morphology. We revealed that CMT reorientation and vacuolar constriction are the consequence of growth itself instead of responding directly to auxin. In contrast, auxin induces apoplast alkalinization to rapidly inhibit root growth in 30 seconds. This auxin-triggered apoplast alkalinization results from rapid H+- influx that is contributed by Ca2+ inward channel CYCLIC NUCLEOTIDE-GATED CHANNEL 14 (CNGC14)-dependent Ca2+ signaling. To dissect which auxin signaling mediates the rapid apoplast alkalinization, we combined microfluidics and genetic engineering to verify that TIR1/AFB receptors conduct a non-transcriptional regulation on Ca2+ and H+ -influx. This non-canonical pathway is mostly mediated by the cytosolic portion of TIR1/AFB. On the other hand, we uncovered, using biochemical and phospho-proteomic analysis, that auxin cell surface signaling component TRANSMEMBRANE KINASE 1 (TMK1) plays a negative role during auxin-trigger apoplast alkalinization and root growth inhibition through directly activating PM H+ -ATPases. Therefore, we discovered that PM H+ -ATPases counteract instead of mediate the auxintriggered rapid H+ -influx, and that TIR1/AFB and TMK1 regulate root growth antagonistically. This opposite effect of TIR1/AFB and TMK1 is consistent during auxin-induced hypocotyl elongation, leading us to explore the relation of two signaling pathways. Assisted with biochemistry and fluorescent imaging, we verified for the first time that TIR1/AFB and TMK1 can interact with each other. The ability of TIR1/AFB binding to membrane lipid provides a basis for the interaction of plasma membrane- and cytosol-localized proteins. Besides, transgenic analysis combined with genetic engineering and biochemistry showed that vi they do function in the same pathway. Particularly, auxin-induced TMK1 increase is TIR1/AFB dependent, suggesting TIR1/AFB regulation on TMK1. Conversely, TMK1 also regulates TIR1/AFB protein levels and thus auxin canonical signaling. To follow the study of rapid growth regulation, we analyzed another rapid growth regulator, signaling peptide RALF1. We showed that RALF1 also triggers a rapid and reversible growth inhibition caused by H + influx, highly resembling but not dependent on auxin. Besides, RALF1 promotes auxin biosynthesis by increasing expression of auxin biosynthesis enzyme YUCCAs and thus induces auxin signaling in ca. 1 hour, contributing to the sustained RALF1-triggered growth inhibition. These studies collectively contribute to understanding rapid regulation on plant cell growth, novel auxin signaling pathway as well as auxin-peptide crosstalk. }, author = {Li, Lanxin}, issn = {2663-337X}, publisher = {Institute of Science and Technology Austria}, title = {{Rapid cell growth regulation in Arabidopsis}}, doi = {10.15479/at:ista:10083}, year = {2021}, } @article{10015, abstract = {Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxincontrolled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.}, author = {Nikonorova, N and Murphy, E and Fonseca de Lima, CF and Zhu, S and van de Cotte, B and Vu, LD and Balcerowicz, D and Li, Lanxin and Kong, X and De Rop, G and Beeckman, T and Friml, Jiří and Vissenberg, K and Morris, PC and Ding, Z and De Smet, I}, issn = {2073-4409}, journal = {Cells}, keywords = {primary root, (phospho)proteomics, auxin, (receptor) kinase}, publisher = {MDPI}, title = {{The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators}}, doi = {10.3390/cells10071665}, volume = {10}, year = {2021}, } @unpublished{10095, abstract = {Growth regulation tailors plant development to its environment. A showcase is response to gravity, where shoots bend up and roots down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots, while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phospho-proteomics in Arabidopsis thaliana, we advance our understanding how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on the rapid regulation of the apoplastic pH, a causative growth determinant. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+-influx, causing apoplast alkalinisation. The simultaneous activation of these two counteracting mechanisms poises the root for a rapid, fine-tuned growth modulation while navigating complex soil environment.}, author = {Li, Lanxin and Verstraeten, Inge and Roosjen, Mark and Takahashi, Koji and Rodriguez Solovey, Lesia and Merrin, Jack and Chen, Jian and Shabala, Lana and Smet, Wouter and Ren, Hong and Vanneste, Steffen and Shabala, Sergey and De Rybel, Bert and Weijers, Dolf and Kinoshita, Toshinori and Gray, William M. and Friml, Jiří}, booktitle = {Research Square}, issn = {2693-5015}, title = {{Cell surface and intracellular auxin signalling for H+-fluxes in root growth}}, doi = {10.21203/rs.3.rs-266395/v3}, year = {2021}, } @unpublished{7601, abstract = {Plasmodesmata (PD) are crucial structures for intercellular communication in multicellular plants with remorins being their crucial plant-specific structural and functional constituents. The PD biogenesis is an intriguing but poorly understood process. By expressing an Arabidopsis remorin protein in mammalian cells, we have reconstituted a PD-like filamentous structure, termed remorin filament (RF), connecting neighboring cells physically and physiologically. Notably, RFs are capable of transporting macromolecules intercellularly, in a way similar to plant PD. With further super-resolution microscopic analysis and biochemical characterization, we found that RFs are also composed of actin filaments, forming the core skeleton structure, aligned with the remorin protein. This unique heterologous filamentous structure might explain the molecular mechanism for remorin function as well as PD construction. Furthermore, remorin protein exhibits a specific distribution manner in the plasma membrane in mammalian cells, representing a lipid nanodomain, depending on its lipid modification status. Our studies not only provide crucial insights into the mechanism of PD biogenesis, but also uncovers unsuspected fundamental mechanistic and evolutionary links between intercellular communication systems of plants and animals.}, author = {Wei, Zhuang and Tan, Shutang and Liu, Tao and Wu, Yuan and Lei, Ji-Gang and Chen, ZhengJun and Friml, Jiří and Xue, Hong-Wei and Liao, Kan}, booktitle = {bioRxiv}, pages = {22}, publisher = {Cold Spring Harbor Laboratory}, title = {{Plasmodesmata-like intercellular connections by plant remorin in animal cells}}, doi = {10.1101/791137}, year = {2020}, } @article{6997, author = {Zhang, Yuzhou and Friml, Jiří}, issn = {1469-8137}, journal = {New Phytologist}, number = {3}, pages = {1049--1052}, publisher = {Wiley}, title = {{Auxin guides roots to avoid obstacles during gravitropic growth}}, doi = {10.1111/nph.16203}, volume = {225}, year = {2020}, } @article{7204, abstract = {Plant root architecture dynamically adapts to various environmental conditions, such as salt‐containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor‐protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs‐protein phosphatase 2C (PP2C) mechanism is identified. The PYLs‐PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase‐mediated phosphorylation of PIN‐FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross‐talk between the stress hormone ABA and the versatile developmental regulator auxin.}, author = {Li, Yang and Wang, Yaping and Tan, Shutang and Li, Zhen and Yuan, Zhi and Glanc, Matous and Domjan, David and Wang, Kai and Xuan, Wei and Guo, Yan and Gong, Zhizhong and Friml, Jiří and Zhang, Jing}, issn = {2198-3844}, journal = {Advanced Science}, number = {3}, publisher = {Wiley}, title = {{Root growth adaptation is mediated by PYLs ABA receptor-PP2A protein phosphatase complex}}, doi = {10.1002/advs.201901455}, volume = {7}, year = {2020}, } @article{7142, abstract = {The phytohormone auxin acts as an amazingly versatile coordinator of plant growth and development. With its morphogen-like properties, auxin controls sites and timing of differentiation and/or growth responses both, in quantitative and qualitative terms. Specificity in the auxin response depends largely on distinct modes of signal transmission, by which individual cells perceive and convert auxin signals into a remarkable diversity of responses. The best understood, or so-called canonical mechanism of auxin perception ultimately results in variable adjustments of the cellular transcriptome, via a short, nuclear signal transduction pathway. Additional findings that accumulated over decades implied that an additional, presumably, cell surface-based auxin perception mechanism mediates very rapid cellular responses and decisively contributes to the cell's overall hormonal response. Recent investigations into both, nuclear and cell surface auxin signalling challenged this assumed partition of roles for different auxin signalling pathways and revealed an unexpected complexity in transcriptional and non-transcriptional cellular responses mediated by auxin.}, author = {Gallei, Michelle C and Luschnig, Christian and Friml, Jiří}, issn = {1879-0356}, journal = {Current Opinion in Plant Biology}, number = {2}, pages = {43--49}, publisher = {Elsevier}, title = {{Auxin signalling in growth: Schrödinger's cat out of the bag}}, doi = {10.1016/j.pbi.2019.10.003}, volume = {53}, year = {2020}, } @article{7219, abstract = {Root system architecture (RSA), governed by the phytohormone auxin, endows plants with an adaptive advantage in particular environments. Using geographically representative arabidopsis (Arabidopsis thaliana) accessions as a resource for GWA mapping, Waidmann et al. and Ogura et al. recently identified two novel components involved in modulating auxin-mediated RSA and conferring plant fitness in particular habitats.}, author = {Xiao, Guanghui and Zhang, Yuzhou}, issn = {13601385}, journal = {Trends in Plant Science}, number = {2}, pages = {P121--123}, publisher = {Elsevier}, title = {{Adaptive growth: Shaping auxin-mediated root system architecture}}, doi = {10.1016/j.tplants.2019.12.001}, volume = {25}, year = {2020}, } @article{7465, abstract = {The flexible development of plants is characterized by a high capacity for post-embryonic organ formation and tissue regeneration, processes, which require tightly regulated intercellular communication and coordinated tissue (re-)polarization. The phytohormone auxin, the main driver for these processes, is able to establish polarized auxin transport channels, which are characterized by the expression and polar, subcellular localization of the PIN1 auxin transport proteins. These channels are demarcating the position of future vascular strands necessary for organ formation and tissue regeneration. Major progress has been made in the last years to understand how PINs can change their polarity in different contexts and thus guide auxin flow through the plant. However, it still remains elusive how auxin mediates the establishment of auxin conducting channels and the formation of vascular tissue and which cellular processes are involved. By the means of sophisticated regeneration experiments combined with local auxin applications in Arabidopsis thaliana inflorescence stems we show that (i) PIN subcellular dynamics, (ii) PIN internalization by clathrin-mediated trafficking and (iii) an intact actin cytoskeleton required for post-endocytic trafficking are indispensable for auxin channel formation, de novo vascular formation and vascular regeneration after wounding. These observations provide novel insights into cellular mechanism of coordinated tissue polarization during auxin canalization.}, author = {Mazur, Ewa and Gallei, Michelle C and Adamowski, Maciek and Han, Huibin and Robert, Hélène S. and Friml, Jiří}, issn = {18732259}, journal = {Plant Science}, number = {4}, publisher = {Elsevier}, title = {{Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis}}, doi = {10.1016/j.plantsci.2020.110414}, volume = {293}, year = {2020}, } @article{7490, abstract = {In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.}, author = {Narasimhan, Madhumitha and Johnson, Alexander J and Prizak, Roshan and Kaufmann, Walter and Tan, Shutang and Casillas Perez, Barbara E and Friml, Jiří}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants}}, doi = {10.7554/eLife.52067}, volume = {9}, year = {2020}, } @article{7497, abstract = {Endophytic fungi can be beneficial to plant growth. However, the molecular mechanisms underlying colonization of Acremonium spp. remain unclear. In this study, a novel endophytic Acremonium strain was isolated from the buds of Panax notoginseng and named Acremonium sp. D212. The Acremonium sp. D212 could colonize the roots of P. notoginseng, enhance the resistance of P. notoginseng to root rot disease, and promote root growth and saponin biosynthesis in P. notoginseng. Acremonium sp. D212 could secrete indole‐3‐acetic acid (IAA) and jasmonic acid (JA), and inoculation with the fungus increased the endogenous levels of IAA and JA in P. notoginseng. Colonization of the Acremonium sp. D212 in the roots of the rice line Nipponbare was dependent on the concentration of methyl jasmonate (MeJA) (2 to 15 μM) and 1‐naphthalenacetic acid (NAA) (10 to 20 μM). Moreover, the roots of the JA signalling‐defective coi1‐18 mutant were colonized by Acremonium sp. D212 to a lesser degree than those of the wild‐type Nipponbare and miR393b‐overexpressing lines, and the colonization was rescued by MeJA but not by NAA. It suggests that the cross‐talk between JA signalling and the auxin biosynthetic pathway plays a crucial role in the colonization of Acremonium sp. D212 in host plants.}, author = {Han, L and Zhou, X and Zhao, Y and Zhu, S and Wu, L and He, Y and Ping, X and Lu, X and Huang, W and Qian, J and Zhang, L and Jiang, X and Zhu, D and Luo, C and Li, S and Dong, Q and Fu, Q and Deng, K and Wang, X and Wang, L and Peng, S and Wu, J and Li, W and Friml, Jiří and Zhu, Y and He, X and Du, Y}, issn = {1744-7909}, journal = {Journal of Integrative Plant Biology}, number = {9}, pages = {1433--1451}, publisher = {Wiley}, title = {{Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid}}, doi = {10.1111/jipb.12905}, volume = {62}, year = {2020}, } @article{7540, abstract = { In vitro propagation of the ornamentally interesting species Wikstroemia gemmata is limited by the recalcitrance to form adventitious roots. In this article, two strategies to improve the rooting capacity of in vitro microcuttings are presented. Firstly, the effect of exogenous auxin was evaluated in both light and dark cultivated stem segments and also the sucrose-content of the medium was varied in order to determine better rooting conditions. Secondly, different spectral lights were evaluated and the effect on shoot growth and root induction demonstrated that the exact spectral composition of light is important for successful in vitro growth and development of Wikstroemia gemmata. We show that exogenous auxin cannot compensate for the poor rooting under unfavorable light conditions. Adapting the culture conditions is therefore paramount for successful industrial propagation of Wikstroemia gemmata. }, author = {Verstraeten, Inge and Buyle, H. and Werbrouck, S. and Van Labeke, M.C. and Geelen, D.}, issn = {2223-8980}, journal = {Israel Journal of Plant Sciences}, number = {1-2}, pages = {16--26}, publisher = {Brill}, title = {{In vitro shoot growth and adventitious rooting of Wikstroemia gemmata depends on light quality}}, doi = {10.1163/22238980-20191110}, volume = {67}, year = {2020}, } @article{7582, abstract = {Small RNAs (smRNA, 19–25 nucleotides long), which are transcribed by RNA polymerase II, regulate the expression of genes involved in a multitude of processes in eukaryotes. miRNA biogenesis and the proteins involved in the biogenesis pathway differ across plant and animal lineages. The major proteins constituting the biogenesis pathway, namely, the Dicers (DCL/DCR) and Argonautes (AGOs), have been extensively studied. However, the accessory proteins (DAWDLE (DDL), SERRATE (SE), and TOUGH (TGH)) of the pathway that differs across the two lineages remain largely uncharacterized. We present the first detailed report on the molecular evolution and divergence of these proteins across eukaryotes. Although DDL is present in eukaryotes and prokaryotes, SE and TGH appear to be specific to eukaryotes. The addition/deletion of specific domains and/or domain-specific sequence divergence in the three proteins points to the observed functional divergence of these proteins across the two lineages, which correlates with the differences in miRNA length across the two lineages. Our data enhance the current understanding of the structure–function relationship of these proteins and reveals previous unexplored crucial residues in the three proteins that can be used as a basis for further functional characterization. The data presented here on the number of miRNAs in crown eukaryotic lineages are consistent with the notion of the expansion of the number of miRNA-coding genes in animal and plant lineages correlating with organismal complexity. Whether this difference in functionally correlates with the diversification (or presence/absence) of the three proteins studied here or the miRNA signaling in the plant and animal lineages is unclear. Based on our results of the three proteins studied here and previously available data concerning the evolution of miRNA genes in the plant and animal lineages, we believe that miRNAs probably evolved once in the ancestor to crown eukaryotes and have diversified independently in the eukaryotes.}, author = {Moturu, Taraka Ramji and Sinha, Sansrity and Salava, Hymavathi and Thula, Sravankumar and Nodzyński, Tomasz and Vařeková, Radka Svobodová and Friml, Jiří and Simon, Sibu}, issn = {22237747}, journal = {Plants}, number = {3}, publisher = {MDPI}, title = {{Molecular evolution and diversification of proteins involved in miRNA maturation pathway}}, doi = {10.3390/plants9030299}, volume = {9}, year = {2020}, } @article{7600, abstract = {Directional intercellular transport of the phytohormone auxin mediated by PIN FORMED (PIN) efflux carriers plays essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. Multilevel regulations of PIN activity under internal and external cues are complicated; however, the underlying molecular mechanism remains elusive. Here we demonstrate that 3’-Phosphoinositide-Dependent Protein Kinase1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub integrating the upstream lipid signalling and the downstream substrate activity through phosphorylation. Genetic analysis uncovers that loss-of-function Arabidopsis mutant pdk1.1 pdk1.2 exhibits a plethora of abnormalities in organogenesis and growth, due to the defective PIN-dependent auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 Protein Kinase to facilitate its activity towards PIN proteins. Our studies establish a lipid-dependent phosphorylation cascade connecting membrane composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes.}, author = {Tan, Shutang and Zhang, Xixi and Kong, Wei and Yang, Xiao-Li and Molnar, Gergely and Vondráková, Zuzana and Filepová, Roberta and Petrášek, Jan and Friml, Jiří and Xue, Hong-Wei}, issn = {20550278}, journal = {Nature Plants}, pages = {556--569}, publisher = {Springer Nature}, title = {{The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis}}, doi = {10.1038/s41477-020-0648-9}, volume = {6}, year = {2020}, } @article{7646, abstract = {In plant cells, environmental stressors promote changes in connectivity between the cortical ER and the PM. Although this process is tightly regulated in space and time, the molecular signals and structural components mediating these changes in inter-organelle communication are only starting to be characterized. In this report, we confirm the presence of a putative tethering complex containing the synaptotagmins 1 and 5 (SYT1 and SYT5) and the Ca2+ and lipid binding protein 1 (CLB1/SYT7). This complex is enriched at ER-PM contact sites (EPCS), have slow responses to changes in extracellular Ca2+, and display severe cytoskeleton-dependent rearrangements in response to the trivalent lanthanum (La3+) and gadolinium (Gd3+) rare earth elements (REEs). Although REEs are generally used as non-selective cation channel blockers at the PM, here we show that the slow internalization of REEs into the cytosol underlies the activation of the Ca2+/Calmodulin intracellular signaling, the accumulation of phosphatidylinositol-4-phosphate (PI4P) at the PM, and the cytoskeleton-dependent rearrangement of the SYT1/SYT5 EPCS complexes. We propose that the observed EPCS rearrangements act as a slow adaptive response to sustained stress conditions, and that this process involves the accumulation of stress-specific phosphoinositides species at the PM.}, author = {Lee, E and Vila Nova Santana, B and Samuels, E and Benitez-Fuente, F and Corsi, E and Botella, MA and Perez-Sancho, J and Vanneste, S and Friml, Jiří and Macho, A and Alves Azevedo, A and Rosado, A}, issn = {1460-2431}, journal = {Journal of Experimental Botany}, number = {14}, pages = {3986–3998}, publisher = {Oxford University Press}, title = {{Rare earth elements induce cytoskeleton-dependent and PI4P-associated rearrangement of SYT1/SYT5 ER-PM contact site complexes in Arabidopsis}}, doi = {10.1093/jxb/eraa138}, volume = {71}, year = {2020}, } @article{7686, abstract = {The agricultural green revolution spectacularly enhanced crop yield and lodging resistance with modified DELLA-mediated gibberellin signaling. However, this was achieved at the expense of reduced nitrogen-use efficiency (NUE). Recently, Wu et al. revealed novel gibberellin signaling that provides a blueprint for improving tillering and NUE in Green Revolution varieties (GRVs). }, author = {Xue, Huidan and Zhang, Yuzhou and Xiao, Guanghui}, issn = {1360-1385}, journal = {Trends in Plant Science}, number = {6}, pages = {520--522}, publisher = {Elsevier}, title = {{Neo-gibberellin signaling: Guiding the next generation of the green revolution}}, doi = {10.1016/j.tplants.2020.04.001}, volume = {25}, year = {2020}, } @article{7793, abstract = {Hormonal signalling in animals often involves direct transcription factor-hormone interactions that modulate gene expression. In contrast, plant hormone signalling is most commonly based on de-repression via the degradation of transcriptional repressors. Recently, we uncovered a non-canonical signalling mechanism for the plant hormone auxin whereby auxin directly affects the activity of the atypical auxin response factor (ARF), ETTIN towards target genes without the requirement for protein degradation. Here we show that ETTIN directly binds auxin, leading to dissociation from co-repressor proteins of the TOPLESS/TOPLESS-RELATED family followed by histone acetylation and induction of gene expression. This mechanism is reminiscent of animal hormone signalling as it affects the activity towards regulation of target genes and provides the first example of a DNA-bound hormone receptor in plants. Whilst auxin affects canonical ARFs indirectly by facilitating degradation of Aux/IAA repressors, direct ETTIN-auxin interactions allow switching between repressive and de-repressive chromatin states in an instantly-reversible manner.}, author = {Kuhn, André and Ramans Harborough, Sigurd and McLaughlin, Heather M and Natarajan, Bhavani and Verstraeten, Inge and Friml, Jiří and Kepinski, Stefan and Østergaard, Lars}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Direct ETTIN-auxin interaction controls chromatin states in gynoecium development}}, doi = {10.7554/elife.51787}, volume = {9}, year = {2020}, } @article{8138, abstract = {Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.}, author = {Zhang, J and Mazur, E and Balla, J and Gallei, Michelle C and Kalousek, P and Medveďová, Z and Li, Y and Wang, Y and Prat, Tomas and Vasileva, Mina K and Reinöhl, V and Procházka, S and Halouzka, R and Tarkowski, P and Luschnig, C and Brewer, PB and Friml, Jiří}, issn = {2041-1723}, journal = {Nature Communications}, number = {1}, pages = {3508}, publisher = {Springer Nature}, title = {{Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization}}, doi = {10.1038/s41467-020-17252-y}, volume = {11}, year = {2020}, } @article{8271, author = {He, Peng and Zhang, Yuzhou and Xiao, Guanghui}, issn = {17529867}, journal = {Molecular Plant}, number = {9}, pages = {1238--1240}, publisher = {Elsevier}, title = {{Origin of a subgenome and genome evolution of allotetraploid cotton species}}, doi = {10.1016/j.molp.2020.07.006}, volume = {13}, year = {2020}, } @article{8337, abstract = {Cytokinins are mobile multifunctional plant hormones with roles in development and stress resilience. Although their Histidine Kinase receptors are substantially localised to the endoplasmic reticulum, cellular sites of cytokinin perception and importance of spatially heterogeneous cytokinin distribution continue to be debated. Here we show that cytokinin perception by plasma membrane receptors is an effective additional path for cytokinin response. Readout from a Two Component Signalling cytokinin-specific reporter (TCSn::GFP) closely matches intracellular cytokinin content in roots, yet we also find cytokinins in extracellular fluid, potentially enabling action at the cell surface. Cytokinins covalently linked to beads that could not pass the plasma membrane increased expression of both TCSn::GFP and Cytokinin Response Factors. Super-resolution microscopy of GFP-labelled receptors and diminished TCSn::GFP response to immobilised cytokinins in cytokinin receptor mutants, further indicate that receptors can function at the cell surface. We argue that dual intracellular and surface locations may augment flexibility of cytokinin responses.}, author = {Antoniadi, Ioanna and Novák, Ondřej and Gelová, Zuzana and Johnson, Alexander J and Plíhal, Ondřej and Simerský, Radim and Mik, Václav and Vain, Thomas and Mateo-Bonmatí, Eduardo and Karady, Michal and Pernisová, Markéta and Plačková, Lenka and Opassathian, Korawit and Hejátko, Jan and Robert, Stéphanie and Friml, Jiří and Doležal, Karel and Ljung, Karin and Turnbull, Colin}, issn = {20411723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Cell-surface receptors enable perception of extracellular cytokinins}}, doi = {10.1038/s41467-020-17700-9}, volume = {11}, year = {2020}, } @article{8721, abstract = {Spontaneously arising channels that transport the phytohormone auxin provide positional cues for self-organizing aspects of plant development such as flexible vasculature regeneration or its patterning during leaf venation. The auxin canalization hypothesis proposes a feedback between auxin signaling and transport as the underlying mechanism, but molecular players await discovery. We identified part of the machinery that routes auxin transport. The auxin-regulated receptor CAMEL (Canalization-related Auxin-regulated Malectin-type RLK) together with CANAR (Canalization-related Receptor-like kinase) interact with and phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated PIN polarization, which macroscopically manifests as defects in leaf venation and vasculature regeneration after wounding. The CAMEL-CANAR receptor complex is part of the auxin feedback that coordinates polarization of individual cells during auxin canalization.}, author = {Hajny, Jakub and Prat, Tomas and Rydza, N and Rodriguez Solovey, Lesia and Tan, Shutang and Verstraeten, Inge and Domjan, David and Mazur, E and Smakowska-Luzan, E and Smet, W and Mor, E and Nolf, J and Yang, B and Grunewald, W and Molnar, Gergely and Belkhadir, Y and De Rybel, B and Friml, Jiří}, issn = {1095-9203}, journal = {Science}, number = {6516}, pages = {550--557}, publisher = {American Association for the Advancement of Science}, title = {{Receptor kinase module targets PIN-dependent auxin transport during canalization}}, doi = {10.1126/science.aba3178}, volume = {370}, year = {2020}, } @article{7949, abstract = {Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.}, author = {Smith, S and Zhu, S and Joos, L and Roberts, I and Nikonorova, N and Vu, LD and Stes, E and Cho, H and Larrieu, A and Xuan, W and Goodall, B and van de Cotte, B and Waite, JM and Rigal, A and R Harborough, SR and Persiau, G and Vanneste, S and Kirschner, GK and Vandermarliere, E and Martens, L and Stahl, Y and Audenaert, D and Friml, Jiří and Felix, G and Simon, R and Bennett, M and Bishopp, A and De Jaeger, G and Ljung, K and Kepinski, S and Robert, S and Nemhauser, J and Hwang, I and Gevaert, K and Beeckman, T and De Smet, I}, issn = {1535-9484}, journal = {Molecular & Cellular Proteomics}, number = {8}, pages = {1248--1262}, publisher = {American Society for Biochemistry and Molecular Biology}, title = {{The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis}}, doi = {10.1074/mcp.ra119.001826}, volume = {19}, year = {2020}, } @article{7619, abstract = {Cell polarity is a fundamental feature of all multicellular organisms. In plants, prominent cell polarity markers are PIN auxin transporters crucial for plant development. To identify novel components involved in cell polarity establishment and maintenance, we carried out a forward genetic screening with PIN2:PIN1-HA;pin2 Arabidopsis plants, which ectopically express predominantly basally localized PIN1 in the root epidermal cells leading to agravitropic root growth. From the screen, we identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused PIN1-HA polarity switch from basal to apical side of root epidermal cells. Complementation experiments established the repp12 causative mutation as an amino acid substitution in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase with predicted function in vesicle formation. ala3 T-DNA mutants show defects in many auxin-regulated processes, in asymmetric auxin distribution and in PIN trafficking. Analysis of quintuple and sextuple mutants confirmed a crucial role of ALA proteins in regulating plant development and in PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with GNOM and BIG3 ARF GEFs. Taken together, our results identified ALA3 flippase as an important interactor and regulator of ARF GEF functioning in PIN polarity, trafficking and auxin-mediated development.}, author = {Zhang, Xixi and Adamowski, Maciek and Marhavá, Petra and Tan, Shutang and Zhang, Yuzhou and Rodriguez Solovey, Lesia and Zwiewka, Marta and Pukyšová, Vendula and Sánchez, Adrià Sans and Raxwal, Vivek Kumar and Hardtke, Christian S. and Nodzynski, Tomasz and Friml, Jiří}, issn = {1532-298X}, journal = {The Plant Cell}, number = {5}, pages = {1644--1664}, publisher = {American Society of Plant Biologists}, title = {{Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters}}, doi = {10.1105/tpc.19.00869}, volume = {32}, year = {2020}, } @article{8607, abstract = {Clathrin-mediated endocytosis (CME) and its core endocytic machinery are evolutionarily conserved across all eukaryotes. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) sorts plasma membrane (PM) cargoes into vesicles through the recognition of motifs based on tyrosine or di-leucine in their cytoplasmic tails. However, in plants, very little is known on how PM proteins are sorted for CME and whether similar motifs are required. In Arabidopsis thaliana, the brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), undergoes endocytosis that depends on clathrin and AP-2. Here we demonstrate that BRI1 binds directly to the medium AP-2 subunit, AP2M. The cytoplasmic domain of BRI1 contains five putative canonical surface-exposed tyrosine-based endocytic motifs. The tyrosine-to-phenylalanine substitution in Y898KAI reduced BRI1 internalization without affecting its kinase activity. Consistently, plants carrying the BRI1Y898F mutation were hypersensitive to BRs. Our study demonstrates that AP-2-dependent internalization of PM proteins via the recognition of functional tyrosine motifs also operates in plants.}, author = {Liu, D and Kumar, R and LAN, Claus and Johnson, Alexander J and Siao, W and Vanhoutte, I and Wang, P and Bender, KW and Yperman, K and Martins, S and Zhao, X and Vert, G and Van Damme, D and Friml, Jiří and Russinova, E}, issn = {1532-298x}, journal = {Plant Cell}, number = {11}, pages = {3598--3612}, publisher = {American Society of Plant Biologists}, title = {{Endocytosis of BRASSINOSTEROID INSENSITIVE1 is partly driven by a canonical tyrosine-based Motif}}, doi = {10.1105/tpc.20.00384}, volume = {32}, year = {2020}, } @article{7695, abstract = {The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits, AtEH1/Pan1 and AtEH2/Pan1, although cytoplasmic proteins are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with co-localization analysis of different TPC subunits, allow us to conclude that TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.}, author = {Wang, J and Mylle, E and Johnson, Alexander J and Besbrugge, N and De Jaeger, G and Friml, Jiří and Pleskot, R and van Damme, D}, issn = {1532-2548}, journal = {Plant Physiology}, number = {3}, pages = {986--997}, publisher = {American Society of Plant Biologists}, title = {{High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits}}, doi = {10.1104/pp.20.00178}, volume = {183}, year = {2020}, } @article{7697, abstract = {* Morphogenesis and adaptive tropic growth in plants depend on gradients of the phytohormone auxin, mediated by the membrane‐based PIN‐FORMED (PIN) auxin transporters. PINs localize to a particular side of the plasma membrane (PM) or to the endoplasmic reticulum (ER) to directionally transport auxin and maintain intercellular and intracellular auxin homeostasis, respectively. However, the molecular cues that confer their diverse cellular localizations remain largely unknown. * In this study, we systematically swapped the domains between ER‐ and PM‐localized PIN proteins, as well as between apical and basal PM‐localized PINs from Arabidopsis thaliana , to shed light on why PIN family members with similar topological structures reside at different membrane compartments within cells. * Our results show that not only do the N‐ and C‐terminal transmembrane domains (TMDs) and central hydrophilic loop contribute to their differential subcellular localizations and cellular polarity, but that the pairwise‐matched N‐ and C‐terminal TMDs resulting from intramolecular domain–domain coevolution are also crucial for their divergent patterns of localization. * These findings illustrate the complexity of the evolutionary path of PIN proteins in acquiring their plethora of developmental functions and adaptive growth in plants.}, author = {Zhang, Yuzhou and Hartinger, Corinna and Wang, Xiaojuan and Friml, Jiří}, issn = {1469-8137}, journal = {New Phytologist}, number = {5}, pages = {1406--1416}, publisher = {Wiley}, title = {{Directional auxin fluxes in plants by intramolecular domain‐domain co‐evolution of PIN auxin transporters}}, doi = {10.1111/nph.16629}, volume = {227}, year = {2020}, } @article{7417, abstract = {Previously, we reported that the allelic de-etiolated by zinc (dez) and trichome birefringence (tbr) mutants exhibit photomorphogenic development in the dark, which is enhanced by high Zn. TRICHOME BIREFRINGENCE-LIKE proteins had been implicated in transferring acetyl groups to various hemicelluloses. Pectin O-acetylation levels were lower in dark-grown dez seedlings than in the wild type. We observed Zn-enhanced photomorphogenesis in the dark also in the reduced wall acetylation 2 (rwa2-3) mutant, which exhibits lowered O-acetylation levels of cell wall macromolecules including pectins and xyloglucans, supporting a role for cell wall macromolecule O-acetylation in the photomorphogenic phenotypes of rwa2-3 and dez. Application of very short oligogalacturonides (vsOGs) restored skotomorphogenesis in dark-grown dez and rwa2-3. Here we demonstrate that in dez, O-acetylation of non-pectin cell wall components, notably of xyloglucan, is enhanced. Our results highlight the complexity of cell wall homeostasis and indicate against an influence of xyloglucan O-acetylation on light-dependent seedling development.}, author = {Sinclair, Scott A and Gille, S. and Pauly, M. and Krämer, U.}, issn = {1559-2324}, journal = {Plant Signaling & Behavior}, number = {1}, publisher = {Informa UK Limited}, title = {{Regulation of acetylation of plant cell wall components is complex and responds to external stimuli}}, doi = {10.1080/15592324.2019.1687185}, volume = {15}, year = {2020}, } @phdthesis{8589, abstract = {The plant hormone auxin plays indispensable roles in plant growth and development. An essential level of regulation in auxin action is the directional auxin transport within cells. The establishment of auxin gradient in plant tissue has been attributed to local auxin biosynthesis and directional intercellular auxin transport, which both are controlled by various environmental and developmental signals. It is well established that asymmetric auxin distribution in cells is achieved by polarly localized PIN-FORMED (PIN) auxin efflux transporters. Despite the initial insights into cellular mechanisms of PIN polarization obtained from the last decades, the molecular mechanism and specific regulators mediating PIN polarization remains elusive. In this thesis, we aim to find novel players in PIN subcellular polarity regulation during Arabidopsis development. We first characterize the physiological effect of piperonylic acid (PA) on Arabidopsis hypocotyl gravitropic bending and PIN polarization. Secondly, we reveal the importance of SCFTIR1/AFB auxin signaling pathway in shoot gravitropism bending termination. In addition, we also explore the role of myosin XI complex, and actin cytoskeleton in auxin feedback regulation on PIN polarity. In Chapter 1, we give an overview of the current knowledge about PIN-mediated auxin fluxes in various plant tropic responses. In Chapter 2, we study the physiological effect of PA on shoot gravitropic bending. Our results show that PA treatment inhibits auxin-mediated PIN3 repolarization by interfering with PINOID and PIN3 phosphorylation status, ultimately leading to hyperbending hypocotyls. In Chapter 3, we provide evidence to show that the SCFTIR1/AFB nuclear auxin signaling pathway is crucial and required for auxin-mediated PIN3 repolarization and shoot gravitropic bending termination. In Chapter 4, we perform a phosphoproteomics approach and identify the motor protein Myosin XI and its binding protein, the MadB2 family, as an essential regulator of PIN polarity for auxin-canalization related developmental processes. In Chapter 5, we demonstrate the vital role of actin cytoskeleton in auxin feedback on PIN polarity by regulating PIN subcellular trafficking. Overall, the data presented in this PhD thesis brings novel insights into the PIN polar localization regulation that resulted in the (re)establishment of the polar auxin flow and gradient in response to environmental stimuli during plant development.}, author = {Han, Huibin}, issn = {2663-337X}, pages = {164}, publisher = {Institute of Science and Technology Austria}, title = {{Novel insights into PIN polarity regulation during Arabidopsis development}}, doi = {10.15479/AT:ISTA:8589}, year = {2020}, } @article{7643, author = {Han, Huibin and Rakusova, Hana and Verstraeten, Inge and Zhang, Yuzhou and Friml, Jiří}, issn = {1532-2548}, journal = {Plant Physiology}, number = {5}, pages = {37--40}, publisher = {American Society of Plant Biologists}, title = {{SCF TIR1/AFB auxin signaling for bending termination during shoot gravitropism}}, doi = {10.1104/pp.20.00212}, volume = {183}, year = {2020}, } @article{7416, abstract = {Earlier, we demonstrated that transcript levels of METAL TOLERANCE PROTEIN2 (MTP2) and of HEAVY METAL ATPase2 (HMA2) increase strongly in roots of Arabidopsis upon prolonged zinc (Zn) deficiency and respond to shoot physiological Zn status, and not to the local Zn status in roots. This provided evidence for shoot-to-root communication in the acclimation of plants to Zn deficiency. Zn-deficient soils limit both the yield and quality of agricultural crops and can result in clinically relevant nutritional Zn deficiency in human populations. Implementing Zn deficiency during cultivation of the model plant Arabidopsis thaliana on agar-solidified media is difficult because trace element contaminations are present in almost all commercially available agars. Here, we demonstrate root morphological acclimations to Zn deficiency on agar-solidified medium following the effective removal of contaminants. These advancements allow reproducible phenotyping toward understanding fundamental plant responses to deficiencies of Zn and other essential trace elements.}, author = {Sinclair, Scott A and Krämer, U.}, issn = {1559-2324}, journal = {Plant Signaling & Behavior}, number = {1}, publisher = {Taylor & Francis}, title = {{Generation of effective zinc-deficient agar-solidified media allows identification of root morphology changes in response to zinc limitation}}, doi = {10.1080/15592324.2019.1687175}, volume = {15}, year = {2020}, } @article{8943, abstract = {The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds.}, author = {Tan, Shutang and Di Donato, Martin and Glanc, Matous and Zhang, Xixi and Klíma, Petr and Liu, Jie and Bailly, Aurélien and Ferro, Noel and Petrášek, Jan and Geisler, Markus and Friml, Jiří}, issn = {22111247}, journal = {Cell Reports}, number = {9}, publisher = {Elsevier}, title = {{Non-steroidal anti-inflammatory drugs target TWISTED DWARF1-regulated actin dynamics and auxin transport-mediated plant development}}, doi = {10.1016/j.celrep.2020.108463}, volume = {33}, year = {2020}, } @article{8002, abstract = {Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.}, author = {Hörmayer, Lukas and Montesinos López, Juan C and Marhavá, Petra and Benková, Eva and Yoshida, Saiko and Friml, Jiří}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {26}, publisher = {Proceedings of the National Academy of Sciences}, title = {{Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots}}, doi = {10.1073/pnas.2003346117}, volume = {117}, year = {2020}, } @article{7427, abstract = {Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense.}, author = {Tan, Shutang and Abas, Melinda F and Verstraeten, Inge and Glanc, Matous and Molnar, Gergely and Hajny, Jakub and Lasák, Pavel and Petřík, Ivan and Russinova, Eugenia and Petrášek, Jan and Novák, Ondřej and Pospíšil, Jiří and Friml, Jiří}, issn = {09609822}, journal = {Current Biology}, number = {3}, pages = {381--395.e8}, publisher = {Cell Press}, title = {{Salicylic acid targets protein phosphatase 2A to attenuate growth in plants}}, doi = {10.1016/j.cub.2019.11.058}, volume = {30}, year = {2020}, } @article{7500, abstract = {Plant survival depends on vascular tissues, which originate in a self‐organizing manner as strands of cells co‐directionally transporting the plant hormone auxin. The latter phenomenon (also known as auxin canalization) is classically hypothesized to be regulated by auxin itself via the effect of this hormone on the polarity of its own intercellular transport. Correlative observations supported this concept, but molecular insights remain limited. In the current study, we established an experimental system based on the model Arabidopsis thaliana, which exhibits auxin transport channels and formation of vasculature strands in response to local auxin application. Our methodology permits the genetic analysis of auxin canalization under controllable experimental conditions. By utilizing this opportunity, we confirmed the dependence of auxin canalization on a PIN‐dependent auxin transport and nuclear, TIR1/AFB‐mediated auxin signaling. We also show that leaf venation and auxin‐mediated PIN repolarization in the root require TIR1/AFB signaling. Further studies based on this experimental system are likely to yield better understanding of the mechanisms underlying auxin transport polarization in other developmental contexts.}, author = {Mazur, E and Kulik, Ivan and Hajny, Jakub and Friml, Jiří}, issn = {1469-8137}, journal = {New Phytologist}, number = {5}, pages = {1375--1383}, publisher = {Wiley}, title = {{Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in arabidopsis}}, doi = {10.1111/nph.16446}, volume = {226}, year = {2020}, }