--- _id: '913' abstract: - lang: eng text: Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We performed a microarray-based approach to find regulators of the auxin-induced PIN relocation in the Arabidopsis thaliana root. We identified a subset of a family of phosphatidylinositol transfer proteins (PITP), the PATELLINs (PATL). Here, we show that PATLs are expressed in partially overlapping cells types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia, and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests PATLs redundantly play a crucial role in polarity and patterning in Arabidopsis. article_number: jcs.204198 article_processing_charge: No author: - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Cecilia full_name: Rodríguez Furlán, Cecilia last_name: Rodríguez Furlán - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Michael full_name: Sauer, Michael last_name: Sauer - first_name: Lorena full_name: Norambuena, Lorena last_name: Norambuena - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tejos R, Rodríguez Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 2018;131(2). doi:10.1242/jcs.204198 apa: Tejos, R., Rodríguez Furlán, C., Adamowski, M., Sauer, M., Norambuena, L., & Friml, J. (2018). PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. Company of Biologists. https://doi.org/10.1242/jcs.204198 chicago: Tejos, Ricardo, Cecilia Rodríguez Furlán, Maciek Adamowski, Michael Sauer, Lorena Norambuena, and Jiří Friml. “PATELLINS Are Regulators of Auxin Mediated PIN1 Relocation and Plant Development in Arabidopsis Thaliana.” Journal of Cell Science. Company of Biologists, 2018. https://doi.org/10.1242/jcs.204198. ieee: R. Tejos, C. Rodríguez Furlán, M. Adamowski, M. Sauer, L. Norambuena, and J. Friml, “PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana,” Journal of Cell Science, vol. 131, no. 2. Company of Biologists, 2018. ista: Tejos R, Rodríguez Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. 2018. PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 131(2), jcs. 204198. mla: Tejos, Ricardo, et al. “PATELLINS Are Regulators of Auxin Mediated PIN1 Relocation and Plant Development in Arabidopsis Thaliana.” Journal of Cell Science, vol. 131, no. 2, jcs. 204198, Company of Biologists, 2018, doi:10.1242/jcs.204198. short: R. Tejos, C. Rodríguez Furlán, M. Adamowski, M. Sauer, L. Norambuena, J. Friml, Journal of Cell Science 131 (2018). date_created: 2018-12-11T11:49:10Z date_published: 2018-01-29T00:00:00Z date_updated: 2023-09-26T15:47:50Z day: '29' ddc: - '581' department: - _id: JiFr doi: 10.1242/jcs.204198 ec_funded: 1 external_id: isi: - '000424842400019' file: - access_level: open_access checksum: bf156c20a4f117b4b932370d54cbac8c content_type: application/pdf creator: dernst date_created: 2019-04-12T08:46:32Z date_updated: 2020-07-14T12:48:15Z file_id: '6299' file_name: 2017_adamowski_PATELLINS_are.pdf file_size: 14925985 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 131' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Journal of Cell Science publication_identifier: issn: - '00219533' publication_status: published publisher: Company of Biologists publist_id: '6530' pubrep_id: '988' quality_controlled: '1' scopus_import: '1' status: public title: PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 131 year: '2018' ... --- _id: '5673' abstract: - lang: eng text: Cell polarity, manifested by the localization of proteins to distinct polar plasma membrane domains, is a key prerequisite of multicellular life. In plants, PIN auxin transporters are prominent polarity markers crucial for a plethora of developmental processes. Cell polarity mechanisms in plants are distinct from other eukaryotes and still largely elusive. In particular, how the cell polarities are propagated and maintained following cell division remains unknown. Plant cytokinesis is orchestrated by the cell plate—a transient centrifugally growing endomembrane compartment ultimately forming the cross wall1. Trafficking of polar membrane proteins is typically redirected to the cell plate, and these will consequently have opposite polarity in at least one of the daughter cells2–5. Here, we provide mechanistic insights into post-cytokinetic re-establishment of cell polarity as manifested by the apical, polar localization of PIN2. We show that the apical domain is defined in a cell-intrinsic manner and that re-establishment of PIN2 localization to this domain requires de novo protein secretion and endocytosis, but not basal-to-apical transcytosis. Furthermore, we identify a PINOID-related kinase WAG1, which phosphorylates PIN2 in vitro6 and is transcriptionally upregulated specifically in dividing cells, as a crucial regulator of post-cytokinetic PIN2 polarity re-establishment. article_processing_charge: No author: - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Glanc M, Fendrych M, Friml J. Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division. Nature Plants. 2018;4(12):1082-1088. doi:10.1038/s41477-018-0318-3 apa: Glanc, M., Fendrych, M., & Friml, J. (2018). Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division. Nature Plants. Nature Research. https://doi.org/10.1038/s41477-018-0318-3 chicago: Glanc, Matous, Matyas Fendrych, and Jiří Friml. “Mechanistic Framework for Cell-Intrinsic Re-Establishment of PIN2 Polarity after Cell Division.” Nature Plants. Nature Research, 2018. https://doi.org/10.1038/s41477-018-0318-3. ieee: M. Glanc, M. Fendrych, and J. Friml, “Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division,” Nature Plants, vol. 4, no. 12. Nature Research, pp. 1082–1088, 2018. ista: Glanc M, Fendrych M, Friml J. 2018. Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division. Nature Plants. 4(12), 1082–1088. mla: Glanc, Matous, et al. “Mechanistic Framework for Cell-Intrinsic Re-Establishment of PIN2 Polarity after Cell Division.” Nature Plants, vol. 4, no. 12, Nature Research, 2018, pp. 1082–88, doi:10.1038/s41477-018-0318-3. short: M. Glanc, M. Fendrych, J. Friml, Nature Plants 4 (2018) 1082–1088. date_created: 2018-12-16T22:59:18Z date_published: 2018-12-03T00:00:00Z date_updated: 2023-10-17T12:19:28Z day: '03' department: - _id: JiFr doi: 10.1038/s41477-018-0318-3 ec_funded: 1 external_id: isi: - '000454576600017' pmid: - '30518833' intvolume: ' 4' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30518833 month: '12' oa: 1 oa_version: Submitted Version page: 1082-1088 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature Plants publication_identifier: issn: - 2055-0278 publication_status: published publisher: Nature Research quality_controlled: '1' scopus_import: '1' status: public title: Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2018' ... --- _id: '412' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterised compared to that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing Tandem Affinity Purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologues of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in A. thaliana caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like(1/2) loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the on-going characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in A. thaliana. acknowledgement: We thank James Matthew Watson, Monika Borowska, and Peggy Stolt-Bergner at ProTech Facility of the Vienna Biocenter Core Facilities for the CRISPR/CAS9 construct; Anna Müller for assistance with molecular cloning; Sebastian Bednarek, Liwen Jiang, and Daniël Van Damme for sharing published material; Matyáš Fendrych, Daniël Van Damme, and Lindy Abas for valuable discussions; and Martine De Cock for help with correcting the manuscript. This work was supported by the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013)/ERC Grant 282300 and by the Ministry of Education of the Czech Republic/MŠMT project NPUI-LO1417. article_processing_charge: No article_type: original author: - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Urszula full_name: Kania, Urszula id: 4AE5C486-F248-11E8-B48F-1D18A9856A87 last_name: Kania - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Geert full_name: De Jaeger, Geert last_name: De Jaeger - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J. A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis. The Plant Cell. 2018;30(3):700-716. doi:10.1105/tpc.17.00785 apa: Adamowski, M., Narasimhan, M., Kania, U., Glanc, M., De Jaeger, G., & Friml, J. (2018). A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis. The Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.17.00785 chicago: Adamowski, Maciek, Madhumitha Narasimhan, Urszula Kania, Matous Glanc, Geert De Jaeger, and Jiří Friml. “A Functional Study of AUXILIN LIKE1 and 2 Two Putative Clathrin Uncoating Factors in Arabidopsis.” The Plant Cell. American Society of Plant Biologists, 2018. https://doi.org/10.1105/tpc.17.00785. ieee: M. Adamowski, M. Narasimhan, U. Kania, M. Glanc, G. De Jaeger, and J. Friml, “A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis,” The Plant Cell, vol. 30, no. 3. American Society of Plant Biologists, pp. 700–716, 2018. ista: Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J. 2018. A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis. The Plant Cell. 30(3), 700–716. mla: Adamowski, Maciek, et al. “A Functional Study of AUXILIN LIKE1 and 2 Two Putative Clathrin Uncoating Factors in Arabidopsis.” The Plant Cell, vol. 30, no. 3, American Society of Plant Biologists, 2018, pp. 700–16, doi:10.1105/tpc.17.00785. short: M. Adamowski, M. Narasimhan, U. Kania, M. Glanc, G. De Jaeger, J. Friml, The Plant Cell 30 (2018) 700–716. date_created: 2018-12-11T11:46:20Z date_published: 2018-04-09T00:00:00Z date_updated: 2024-03-28T23:30:06Z day: '09' ddc: - '580' department: - _id: JiFr doi: 10.1105/tpc.17.00785 ec_funded: 1 external_id: isi: - '000429441400018' pmid: - '29511054' file: - access_level: open_access checksum: 4e165e653b67d3f0684697f21aace5a1 content_type: application/pdf creator: dernst date_created: 2022-05-23T09:12:38Z date_updated: 2022-05-23T09:12:38Z file_id: '11406' file_name: 2018_PlantCell_Adamowski.pdf file_size: 4407538 relation: main_file success: 1 file_date_updated: 2022-05-23T09:12:38Z has_accepted_license: '1' intvolume: ' 30' isi: 1 issue: '3' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 700 - 716 pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: The Plant Cell publication_identifier: eissn: - 1532-298X issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists publist_id: '7417' quality_controlled: '1' related_material: record: - id: '6269' relation: dissertation_contains status: public scopus_import: '1' status: public title: A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 30 year: '2018' ... --- _id: '449' abstract: - lang: eng text: Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. article_processing_charge: Yes author: - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Wim full_name: Grunewald, Wim last_name: Grunewald - first_name: Mina K full_name: Vasileva, Mina K id: 3407EB18-F248-11E8-B48F-1D18A9856A87 last_name: Vasileva - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Markus full_name: Schmid, Markus last_name: Schmid - first_name: Michael full_name: Sauer, Michael last_name: Sauer - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Prat T, Hajny J, Grunewald W, et al. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics. 2018;14(1). doi:10.1371/journal.pgen.1007177 apa: Prat, T., Hajny, J., Grunewald, W., Vasileva, M. K., Molnar, G., Tejos, R., … Friml, J. (2018). WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics. Public Library of Science. https://doi.org/10.1371/journal.pgen.1007177 chicago: Prat, Tomas, Jakub Hajny, Wim Grunewald, Mina K Vasileva, Gergely Molnar, Ricardo Tejos, Markus Schmid, Michael Sauer, and Jiří Friml. “WRKY23 Is a Component of the Transcriptional Network Mediating Auxin Feedback on PIN Polarity.” PLoS Genetics. Public Library of Science, 2018. https://doi.org/10.1371/journal.pgen.1007177. ieee: T. Prat et al., “WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity,” PLoS Genetics, vol. 14, no. 1. Public Library of Science, 2018. ista: Prat T, Hajny J, Grunewald W, Vasileva MK, Molnar G, Tejos R, Schmid M, Sauer M, Friml J. 2018. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics. 14(1). mla: Prat, Tomas, et al. “WRKY23 Is a Component of the Transcriptional Network Mediating Auxin Feedback on PIN Polarity.” PLoS Genetics, vol. 14, no. 1, Public Library of Science, 2018, doi:10.1371/journal.pgen.1007177. short: T. Prat, J. Hajny, W. Grunewald, M.K. Vasileva, G. Molnar, R. Tejos, M. Schmid, M. Sauer, J. Friml, PLoS Genetics 14 (2018). date_created: 2018-12-11T11:46:32Z date_published: 2018-01-29T00:00:00Z date_updated: 2024-03-28T23:30:38Z day: '29' ddc: - '581' department: - _id: JiFr doi: 10.1371/journal.pgen.1007177 ec_funded: 1 external_id: isi: - '000423718600034' file: - access_level: open_access checksum: 0276d66788ec076f4924164a39e6a712 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:52Z date_updated: 2020-07-14T12:46:30Z file_id: '4843' file_name: IST-2018-967-v1+1_journal.pgen.1007177.pdf file_size: 24709062 relation: main_file file_date_updated: 2020-07-14T12:46:30Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: PLoS Genetics publication_status: published publisher: Public Library of Science publist_id: '7373' pubrep_id: '967' quality_controlled: '1' related_material: record: - id: '1127' relation: dissertation_contains status: public - id: '7172' relation: dissertation_contains status: public - id: '8822' relation: dissertation_contains status: public scopus_import: '1' status: public title: WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 14 year: '2018' ... --- _id: '191' abstract: - lang: eng text: Intercellular distribution of the plant hormone auxin largely depends on the polar subcellular distribution of the plasma membrane PIN-FORMED (PIN) auxin transporters. PIN polarity switches in response to different developmental and environmental signals have been shown to redirect auxin fluxes mediating certain developmental responses. PIN phosphorylation at different sites and by different kinases is crucial for PIN function. Here we investigate the role of PIN phosphorylation during gravitropic response. Loss- and gain-of-function mutants in PINOID and related kinases but not in D6PK kinase as well as mutations mimicking constitutive dephosphorylated or phosphorylated status of two clusters of predicted phosphorylation sites partially disrupted PIN3 phosphorylation and caused defects in gravitropic bending in roots and hypocotyls. In particular, they impacted PIN3 polarity rearrangements in response to gravity and during feed-back regulation by auxin itself. Thus PIN phosphorylation, besides regulating transport activity and apical-basal targeting, is also important for the rapid polarity switches in response to environmental and endogenous signals. article_number: '10279' article_processing_charge: No author: - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Melinda F full_name: Abas, Melinda F id: 3CFB3B1C-F248-11E8-B48F-1D18A9856A87 last_name: Abas - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Angharad full_name: Jones, Angharad last_name: Jones - first_name: Sascha full_name: Waidmann, Sascha last_name: Waidmann - first_name: Jürgen full_name: Kleine Vehn, Jürgen last_name: Kleine Vehn - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Grones P, Abas MF, Hajny J, et al. PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-28188-1 apa: Grones, P., Abas, M. F., Hajny, J., Jones, A., Waidmann, S., Kleine Vehn, J., & Friml, J. (2018). PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. Springer. https://doi.org/10.1038/s41598-018-28188-1 chicago: Grones, Peter, Melinda F Abas, Jakub Hajny, Angharad Jones, Sascha Waidmann, Jürgen Kleine Vehn, and Jiří Friml. “PID/WAG-Mediated Phosphorylation of the Arabidopsis PIN3 Auxin Transporter Mediates Polarity Switches during Gravitropism.” Scientific Reports. Springer, 2018. https://doi.org/10.1038/s41598-018-28188-1. ieee: P. Grones et al., “PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism,” Scientific Reports, vol. 8, no. 1. Springer, 2018. ista: Grones P, Abas MF, Hajny J, Jones A, Waidmann S, Kleine Vehn J, Friml J. 2018. PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. 8(1), 10279. mla: Grones, Peter, et al. “PID/WAG-Mediated Phosphorylation of the Arabidopsis PIN3 Auxin Transporter Mediates Polarity Switches during Gravitropism.” Scientific Reports, vol. 8, no. 1, 10279, Springer, 2018, doi:10.1038/s41598-018-28188-1. short: P. Grones, M.F. Abas, J. Hajny, A. Jones, S. Waidmann, J. Kleine Vehn, J. Friml, Scientific Reports 8 (2018). date_created: 2018-12-11T11:45:06Z date_published: 2018-07-06T00:00:00Z date_updated: 2024-03-28T23:30:38Z day: '06' ddc: - '581' department: - _id: JiFr - _id: EvBe doi: 10.1038/s41598-018-28188-1 ec_funded: 1 external_id: isi: - '000437673200053' file: - access_level: open_access checksum: 266b03f4fb8198e83141617aaa99dcab content_type: application/pdf creator: dernst date_created: 2018-12-17T15:38:56Z date_updated: 2020-07-14T12:45:20Z file_id: '5714' file_name: 2018_ScientificReports_Grones.pdf file_size: 2413876 relation: main_file file_date_updated: 2020-07-14T12:45:20Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Scientific Reports publication_status: published publisher: Springer publist_id: '7729' quality_controlled: '1' related_material: record: - id: '8822' relation: dissertation_contains status: public scopus_import: '1' status: public title: PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2018' ... --- _id: '442' abstract: - lang: eng text: The rapid auxin-triggered growth of the Arabidopsis hypocotyls involves the nuclear TIR1/AFB-Aux/IAA signaling and is accompanied by acidification of the apoplast and cell walls (Fendrych et al., 2016). Here, we describe in detail the method for analysis of the elongation and the TIR1/AFB-Aux/IAA-dependent auxin response in hypocotyl segments as well as the determination of relative values of the cell wall pH. acknowledgement: 'This protocol was adapted from Fendrych et al., 2016. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385, and Austrian Science Fund (FWF) [M 2128-B21]. ' article_processing_charge: No article_type: original author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li L, Krens G, Fendrych M, Friml J. Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls. Bio-protocol. 2018;8(1). doi:10.21769/BioProtoc.2685 apa: Li, L., Krens, G., Fendrych, M., & Friml, J. (2018). Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls. Bio-Protocol. Bio-protocol. https://doi.org/10.21769/BioProtoc.2685 chicago: Li, Lanxin, Gabriel Krens, Matyas Fendrych, and Jiří Friml. “Real-Time Analysis of Auxin Response, Cell Wall PH and Elongation in Arabidopsis Thaliana Hypocotyls.” Bio-Protocol. Bio-protocol, 2018. https://doi.org/10.21769/BioProtoc.2685. ieee: L. Li, G. Krens, M. Fendrych, and J. Friml, “Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls,” Bio-protocol, vol. 8, no. 1. Bio-protocol, 2018. ista: Li L, Krens G, Fendrych M, Friml J. 2018. Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls. Bio-protocol. 8(1). mla: Li, Lanxin, et al. “Real-Time Analysis of Auxin Response, Cell Wall PH and Elongation in Arabidopsis Thaliana Hypocotyls.” Bio-Protocol, vol. 8, no. 1, Bio-protocol, 2018, doi:10.21769/BioProtoc.2685. short: L. Li, G. Krens, M. Fendrych, J. Friml, Bio-Protocol 8 (2018). date_created: 2018-12-11T11:46:30Z date_published: 2018-01-05T00:00:00Z date_updated: 2024-03-28T23:30:43Z day: '05' ddc: - '576' - '581' department: - _id: JiFr - _id: Bio doi: 10.21769/BioProtoc.2685 ec_funded: 1 file: - access_level: open_access checksum: 6644ba698206eda32b0abf09128e63e3 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:43Z date_updated: 2020-07-14T12:46:29Z file_id: '5299' file_name: IST-2018-970-v1+1_2018_Lanxin_Real-time_analysis.pdf file_size: 11352389 relation: main_file file_date_updated: 2020-07-14T12:46:29Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Bio-protocol publication_identifier: eissn: - 2331-8325 publication_status: published publisher: Bio-protocol publist_id: '7381' pubrep_id: '970' quality_controlled: '1' related_material: record: - id: '10083' relation: dissertation_contains status: public status: public title: Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2018' ... --- _id: '572' abstract: - lang: eng text: In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture. article_number: '2587' article_processing_charge: No author: - first_name: Damilola full_name: Olatunji, Damilola last_name: Olatunji - first_name: Danny full_name: Geelen, Danny last_name: Geelen - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 citation: ama: Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences. 2017;18(12). doi:10.3390/ijms18122587 apa: Olatunji, D., Geelen, D., & Verstraeten, I. (2017). Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms18122587 chicago: Olatunji, Damilola, Danny Geelen, and Inge Verstraeten. “Control of Endogenous Auxin Levels in Plant Root Development.” International Journal of Molecular Sciences. MDPI, 2017. https://doi.org/10.3390/ijms18122587. ieee: D. Olatunji, D. Geelen, and I. Verstraeten, “Control of endogenous auxin levels in plant root development,” International Journal of Molecular Sciences, vol. 18, no. 12. MDPI, 2017. ista: Olatunji D, Geelen D, Verstraeten I. 2017. Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences. 18(12), 2587. mla: Olatunji, Damilola, et al. “Control of Endogenous Auxin Levels in Plant Root Development.” International Journal of Molecular Sciences, vol. 18, no. 12, 2587, MDPI, 2017, doi:10.3390/ijms18122587. short: D. Olatunji, D. Geelen, I. Verstraeten, International Journal of Molecular Sciences 18 (2017). date_created: 2018-12-11T11:47:15Z date_published: 2017-12-01T00:00:00Z date_updated: 2021-01-12T08:03:16Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.3390/ijms18122587 file: - access_level: open_access checksum: 82d51f11e493f7eec02976d9a9a9805e content_type: application/pdf creator: system date_created: 2018-12-12T10:08:55Z date_updated: 2020-07-14T12:47:10Z file_id: '4718' file_name: IST-2017-917-v1+1_ijms-18-02587.pdf file_size: 920962 relation: main_file file_date_updated: 2020-07-14T12:47:10Z has_accepted_license: '1' intvolume: ' 18' issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: International Journal of Molecular Sciences publication_status: published publisher: MDPI publist_id: '7242' pubrep_id: '917' quality_controlled: '1' scopus_import: '1' status: public title: Control of endogenous auxin levels in plant root development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 18 year: '2017' ... --- _id: '657' abstract: - lang: eng text: Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator. author: - first_name: Barbara full_name: Möller, Barbara last_name: Möller - first_name: Colette full_name: Ten Hove, Colette last_name: Ten Hove - first_name: Daoquan full_name: Xiang, Daoquan last_name: Xiang - first_name: Nerys full_name: Williams, Nerys last_name: Williams - first_name: Lorena full_name: López, Lorena last_name: López - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Margot full_name: Smit, Margot last_name: Smit - first_name: Raju full_name: Datla, Raju last_name: Datla - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers citation: ama: Möller B, Ten Hove C, Xiang D, et al. Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo. PNAS. 2017;114(12):E2533-E2539. doi:10.1073/pnas.1616493114 apa: Möller, B., Ten Hove, C., Xiang, D., Williams, N., López, L., Yoshida, S., … Weijers, D. (2017). Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1616493114 chicago: Möller, Barbara, Colette Ten Hove, Daoquan Xiang, Nerys Williams, Lorena López, Saiko Yoshida, Margot Smit, Raju Datla, and Dolf Weijers. “Auxin Response Cell Autonomously Controls Ground Tissue Initiation in the Early Arabidopsis Embryo.” PNAS. National Academy of Sciences, 2017. https://doi.org/10.1073/pnas.1616493114. ieee: B. Möller et al., “Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo,” PNAS, vol. 114, no. 12. National Academy of Sciences, pp. E2533–E2539, 2017. ista: Möller B, Ten Hove C, Xiang D, Williams N, López L, Yoshida S, Smit M, Datla R, Weijers D. 2017. Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo. PNAS. 114(12), E2533–E2539. mla: Möller, Barbara, et al. “Auxin Response Cell Autonomously Controls Ground Tissue Initiation in the Early Arabidopsis Embryo.” PNAS, vol. 114, no. 12, National Academy of Sciences, 2017, pp. E2533–39, doi:10.1073/pnas.1616493114. short: B. Möller, C. Ten Hove, D. Xiang, N. Williams, L. López, S. Yoshida, M. Smit, R. Datla, D. Weijers, PNAS 114 (2017) E2533–E2539. date_created: 2018-12-11T11:47:45Z date_published: 2017-03-21T00:00:00Z date_updated: 2021-01-12T08:08:02Z day: '21' department: - _id: JiFr doi: 10.1073/pnas.1616493114 external_id: pmid: - '28265057' intvolume: ' 114' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373392/ month: '03' oa: 1 oa_version: Submitted Version page: E2533 - E2539 pmid: 1 publication: PNAS publication_identifier: issn: - '00278424' publication_status: published publisher: National Academy of Sciences publist_id: '7076' quality_controlled: '1' scopus_import: 1 status: public title: Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 114 year: '2017' ... --- _id: '669' abstract: - lang: eng text: 'The exocyst, a eukaryotic tethering complex, coregulates targeted exocytosis as an effector of small GTPases in polarized cell growth. In land plants, several exocyst subunits are encoded by double or triple paralogs, culminating in tens of EXO70 paralogs. Out of 23 Arabidopsis thaliana EXO70 isoforms, we analyzed seven isoforms expressed in pollen. Genetic and microscopic analyses of single mutants in EXO70A2, EXO70C1, EXO70C2, EXO70F1, EXO70H3, EXO70H5, and EXO70H6 genes revealed that only a loss-of-function EXO70C2 allele resulted in a significant male-specific transmission defect (segregation 40%:51%:9%) due to aberrant pollen tube growth. Mutant pollen tubes grown in vitro exhibited an enhanced growth rate and a decreased thickness of the tip cell wall, causing tip bursts. However, exo70C2 pollen tubes could frequently recover and restart their speedy elongation, resulting in a repetitive stop-and-go growth dynamics. A pollenspecific depletion of the closest paralog, EXO70C1, using artificial microRNA in the exo70C2 mutant background, resulted in a complete pollen-specific transmission defect, suggesting redundant functions of EXO70C1 and EXO70C2. Both EXO70C1 and EXO70C2, GFP tagged and expressed under the control of their native promoters, localized in the cytoplasm of pollen grains, pollen tubes, and also root trichoblast cells. The expression of EXO70C2-GFP complemented the aberrant growth of exo70C2 pollen tubes. The absent EXO70C2 interactions with core exocyst subunits in the yeast two-hybrid assay, cytoplasmic localization, and genetic effect suggest an unconventional EXO70 function possibly as a regulator of exocytosis outside the exocyst complex. In conclusion, EXO70C2 is a novel factor contributing to the regulation of optimal tip growth of Arabidopsis pollen tubes. ' article_processing_charge: No article_type: original author: - first_name: Lukáš full_name: Synek, Lukáš last_name: Synek - first_name: Nemanja full_name: Vukašinović, Nemanja last_name: Vukašinović - first_name: Ivan full_name: Kulich, Ivan last_name: Kulich - first_name: Michal full_name: Hála, Michal last_name: Hála - first_name: Klára full_name: Aldorfová, Klára last_name: Aldorfová - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Viktor full_name: Žárský, Viktor last_name: Žárský citation: ama: Synek L, Vukašinović N, Kulich I, et al. EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. 2017;174(1):223-240. doi:10.1104/pp.16.01282 apa: Synek, L., Vukašinović, N., Kulich, I., Hála, M., Aldorfová, K., Fendrych, M., & Žárský, V. (2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.16.01282 chicago: Synek, Lukáš, Nemanja Vukašinović, Ivan Kulich, Michal Hála, Klára Aldorfová, Matyas Fendrych, and Viktor Žárský. “EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen.” Plant Physiology. American Society of Plant Biologists, 2017. https://doi.org/10.1104/pp.16.01282. ieee: L. Synek et al., “EXO70C2 is a key regulatory factor for optimal tip growth of pollen,” Plant Physiology, vol. 174, no. 1. American Society of Plant Biologists, pp. 223–240, 2017. ista: Synek L, Vukašinović N, Kulich I, Hála M, Aldorfová K, Fendrych M, Žárský V. 2017. EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. 174(1), 223–240. mla: Synek, Lukáš, et al. “EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen.” Plant Physiology, vol. 174, no. 1, American Society of Plant Biologists, 2017, pp. 223–40, doi:10.1104/pp.16.01282. short: L. Synek, N. Vukašinović, I. Kulich, M. Hála, K. Aldorfová, M. Fendrych, V. Žárský, Plant Physiology 174 (2017) 223–240. date_created: 2018-12-11T11:47:49Z date_published: 2017-05-01T00:00:00Z date_updated: 2021-01-12T08:08:35Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1104/pp.16.01282 external_id: pmid: - '28356503' file: - access_level: open_access checksum: 97155acc6aa5f0d0a78e0589a932fe02 content_type: application/pdf creator: dernst date_created: 2019-11-18T16:16:18Z date_updated: 2020-07-14T12:47:37Z file_id: '7041' file_name: 2017_PlantPhysio_Synek.pdf file_size: 2176903 relation: main_file file_date_updated: 2020-07-14T12:47:37Z has_accepted_license: '1' intvolume: ' 174' issue: '1' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 223 - 240 pmid: 1 publication: Plant Physiology publication_identifier: issn: - '00320889' publication_status: published publisher: American Society of Plant Biologists publist_id: '7058' quality_controlled: '1' scopus_import: 1 status: public title: EXO70C2 is a key regulatory factor for optimal tip growth of pollen type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 174 year: '2017' ... --- _id: '722' abstract: - lang: eng text: Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil signals. As a result, 3D root architecture is shaped by myriad environmental signals to ensure resource capture is optimised and unfavourable environments are avoided. The first signals sensed by newly germinating seeds — gravity and light — direct root growth into the soil to aid seedling establishment. Heterogeneous soil resources, such as water, nitrogen and phosphate, also act as signals that shape 3D root growth to optimise uptake. Root architecture is also modified through biotic interactions that include soil fungi and neighbouring plants. This developmental plasticity results in a ‘custom-made’ 3D root system that is best adapted to forage for resources in each soil environment that a plant colonises. author: - first_name: Emily full_name: Morris, Emily last_name: Morris - first_name: Marcus full_name: Griffiths, Marcus last_name: Griffiths - first_name: Agata full_name: Golebiowska, Agata last_name: Golebiowska - first_name: Stefan full_name: Mairhofer, Stefan last_name: Mairhofer - first_name: Jasmine full_name: Burr Hersey, Jasmine last_name: Burr Hersey - first_name: Tatsuaki full_name: Goh, Tatsuaki last_name: Goh - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Brian full_name: Atkinson, Brian last_name: Atkinson - first_name: Craig full_name: Sturrock, Craig last_name: Sturrock - first_name: Jonathan full_name: Lynch, Jonathan last_name: Lynch - first_name: Kris full_name: Vissenberg, Kris last_name: Vissenberg - first_name: Karl full_name: Ritz, Karl last_name: Ritz - first_name: Darren full_name: Wells, Darren last_name: Wells - first_name: Sacha full_name: Mooney, Sacha last_name: Mooney - first_name: Malcolm full_name: Bennett, Malcolm last_name: Bennett citation: ama: Morris E, Griffiths M, Golebiowska A, et al. Shaping 3D root system architecture. Current Biology. 2017;27(17):R919-R930. doi:10.1016/j.cub.2017.06.043 apa: Morris, E., Griffiths, M., Golebiowska, A., Mairhofer, S., Burr Hersey, J., Goh, T., … Bennett, M. (2017). Shaping 3D root system architecture. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2017.06.043 chicago: Morris, Emily, Marcus Griffiths, Agata Golebiowska, Stefan Mairhofer, Jasmine Burr Hersey, Tatsuaki Goh, Daniel von Wangenheim, et al. “Shaping 3D Root System Architecture.” Current Biology. Cell Press, 2017. https://doi.org/10.1016/j.cub.2017.06.043. ieee: E. Morris et al., “Shaping 3D root system architecture,” Current Biology, vol. 27, no. 17. Cell Press, pp. R919–R930, 2017. ista: Morris E, Griffiths M, Golebiowska A, Mairhofer S, Burr Hersey J, Goh T, von Wangenheim D, Atkinson B, Sturrock C, Lynch J, Vissenberg K, Ritz K, Wells D, Mooney S, Bennett M. 2017. Shaping 3D root system architecture. Current Biology. 27(17), R919–R930. mla: Morris, Emily, et al. “Shaping 3D Root System Architecture.” Current Biology, vol. 27, no. 17, Cell Press, 2017, pp. R919–30, doi:10.1016/j.cub.2017.06.043. short: E. Morris, M. Griffiths, A. Golebiowska, S. Mairhofer, J. Burr Hersey, T. Goh, D. von Wangenheim, B. Atkinson, C. Sturrock, J. Lynch, K. Vissenberg, K. Ritz, D. Wells, S. Mooney, M. Bennett, Current Biology 27 (2017) R919–R930. date_created: 2018-12-11T11:48:08Z date_published: 2017-09-11T00:00:00Z date_updated: 2021-01-12T08:12:29Z day: '11' ddc: - '581' department: - _id: JiFr doi: 10.1016/j.cub.2017.06.043 ec_funded: 1 external_id: pmid: - '28898665' file: - access_level: open_access checksum: e45588b21097b408da6276a3e5eedb2e content_type: application/pdf creator: dernst date_created: 2019-04-17T07:46:40Z date_updated: 2020-07-14T12:47:54Z file_id: '6332' file_name: 2017_CurrentBiology_Morris.pdf file_size: 1576593 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 27' issue: '17' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: R919 - R930 pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Current Biology publication_identifier: issn: - '09609822' publication_status: published publisher: Cell Press publist_id: '6956' pubrep_id: '982' quality_controlled: '1' scopus_import: 1 status: public title: Shaping 3D root system architecture tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2017' ... --- _id: '938' abstract: - lang: eng text: The thesis encompasses several topics of plant cell biology which were studied in the model plant Arabidopsis thaliana. Chapter 1 concerns the plant hormone auxin and its polar transport through cells and tissues. The highly controlled, directional transport of auxin is facilitated by plasma membrane-localized transporters. Transporters from the PIN family direct auxin transport due to their polarized localizations at cell membranes. Substantial effort has been put into research on cellular trafficking of PIN proteins, which is thought to underlie their polar distribution. I participated in a forward genetic screen aimed at identifying novel regulators of PIN polarity. The screen yielded several genes which may be involved in PIN polarity regulation or participate in polar auxin transport by other means. Chapter 2 focuses on the endomembrane system, with particular attention to clathrin-mediated endocytosis. The project started with identification of several proteins that interact with clathrin light chains. Among them, I focused on two putative homologues of auxilin, which in non-plant systems is an endocytotic factor known for uncoating clathrin-coated vesicles in the final step of endocytosis. The body of my work consisted of an in-depth characterization of transgenic A. thaliana lines overexpressing these putative auxilins in an inducible manner. Overexpression of these proteins leads to an inhibition of endocytosis, as documented by imaging of cargoes and clathrin-related endocytic machinery. An extension of this work is an investigation into a concept of homeostatic regulation acting between distinct transport processes in the endomembrane system. With auxilin overexpressing lines, where endocytosis is blocked specifically, I made observations on the mutual relationship between two opposite trafficking processes of secretion and endocytosis. In Chapter 3, I analyze cortical microtubule arrays and their relationship to auxin signaling and polarized growth in elongating cells. In plants, microtubules are organized into arrays just below the plasma membrane, and it is thought that their function is to guide membrane-docked cellulose synthase complexes. These, in turn, influence cell wall structure and cell shape by directed deposition of cellulose fibres. In elongating cells, cortical microtubule arrays are able to reorient in relation to long cell axis, and these reorientations have been linked to cell growth and to signaling of growth-regulating factors such as auxin or light. In this chapter, I am addressing the causal relationship between microtubule array reorientation, growth, and auxin signaling. I arrive at a model where array reorientation is not guided by auxin directly, but instead is only controlled by growth, which, in turn, is regulated by auxin. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 citation: ama: Adamowski M. Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana . 2017. doi:10.15479/AT:ISTA:th_842 apa: Adamowski, M. (2017). Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana . Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_842 chicago: Adamowski, Maciek. “Investigations into Cell Polarity and Trafficking in the Plant Model Arabidopsis Thaliana .” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:th_842. ieee: M. Adamowski, “Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana ,” Institute of Science and Technology Austria, 2017. ista: Adamowski M. 2017. Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana . Institute of Science and Technology Austria. mla: Adamowski, Maciek. Investigations into Cell Polarity and Trafficking in the Plant Model Arabidopsis Thaliana . Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:th_842. short: M. Adamowski, Investigations into Cell Polarity and Trafficking in the Plant Model Arabidopsis Thaliana , Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:49:18Z date_published: 2017-06-02T00:00:00Z date_updated: 2023-09-07T12:06:09Z day: '02' ddc: - '581' - '583' - '580' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:th_842 file: - access_level: closed checksum: 193425764d9aaaed3ac57062a867b315 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:03:20Z date_updated: 2020-07-14T12:48:15Z file_id: '6215' file_name: 2017_Adamowski-Thesis_Source.docx file_size: 46903863 relation: source_file - access_level: open_access checksum: df5ab01be81f821e1b958596a1ec8d21 content_type: application/pdf creator: dernst date_created: 2019-04-05T09:03:19Z date_updated: 2020-07-14T12:48:15Z file_id: '6216' file_name: 2017_Adamowski-Thesis.pdf file_size: 8698888 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '117' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6483' pubrep_id: '842' related_material: record: - id: '1591' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: 'Investigations into cell polarity and trafficking in the plant model Arabidopsis thaliana ' type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '1127' abstract: - lang: eng text: "Plant hormone auxin and its transport between cells belong to the most important\r\nmechanisms controlling plant development. Auxin itself could change localization of PINs and\r\nthereby control direction of its own flow. We performed an expression profiling experiment\r\nin Arabidopsis roots to identify potential regulators of PIN polarity which are transcriptionally\r\nregulated by auxin signalling. We identified several novel regulators and performed a detailed\r\ncharacterization of the transcription factor WRKY23 (At2g47260) and its role in auxin\r\nfeedback on PIN polarity. Gain-of-function and dominant-negative mutants revealed that\r\nWRKY23 plays a crucial role in mediating the auxin effect on PIN polarity. In concordance,\r\ntypical polar auxin transport processes such as gravitropism and leaf vascular pattern\r\nformation were disturbed by interfering with WRKY23 function.\r\nIn order to identify direct targets of WRKY23, we performed consequential expression\r\nprofiling experiments using a WRKY23 inducible gain-of-function line and dominant-negative\r\nWRKY23 line that is defunct in PIN re-arrangement. Among several genes mostly related to\r\nthe groups of cell wall and defense process regulators, we identified LYSINE-HISTIDINE\r\nTRANSPORTER 1 (LHT1; At5g40780), a small amino acid permease gene from the amino\r\nacid/auxin permease family (AAAP), we present its detailed characterisation in auxin feedback\r\non PIN repolarization, identified its transcriptional regulation, we propose a potential\r\nmechanism of its action. Moreover, we identified also a member of receptor-like protein\r\nkinase LRR-RLK (LEUCINE-RICH REPEAT TRANSMEMBRANE PROTEIN KINASE PROTEIN 1;\r\nLRRK1; At1g05700), which also affects auxin-dependent PIN re-arrangement. We described\r\nits transcriptional behaviour, subcellular localization. Based on global expression data, we\r\ntried to identify ligand responsible for mechanism of signalling and suggest signalling partner\r\nand interactors. Additionally, we described role of novel phytohormone group, strigolactone,\r\nin auxin-dependent PIN re-arrangement, that could be a fundament for future studies in this\r\nfield.\r\nOur results provide first insights into an auxin transcriptional network targeting PIN\r\nlocalization and thus regulating plant development. We highlighted WRKY23 transcriptional\r\nnetwork and characterised its mediatory role in plant development. We identified direct\r\neffectors of this network, LHT1 and LRRK1, and describe their roles in PIN re-arrangement and\r\nPIN-dependent auxin transport processes." acknowledgement: I would like to first acknowledge my supervisor Jiří Friml for support, kind advice and patience. It was a pleasure to be a part of your lab, Jiří. I will remember the atmosphere present in auxin lab at VIB in Ghent and at IST in Klosterneuburg forever. I would like to thank all past and present lab members for the friendship and friendly and scientific environment in the groups. It was so nice to cooperate with you, guys. There was always someone who helped me with experiments, troubleshoot issues coming from our work etc. At this place, I would like to thank especially to Gergo Molnár. I’m happy (and lucky) that I have met him; he naturally became my tutor and guide through my PhD. From no one else during my entire professional career, I’ve learned that much. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat citation: ama: Prat T. Identification of novel regulators of PIN polarity and development of novel auxin sensor. 2017. apa: Prat, T. (2017). Identification of novel regulators of PIN polarity and development of novel auxin sensor. Institute of Science and Technology Austria. chicago: Prat, Tomas. “Identification of Novel Regulators of PIN Polarity and Development of Novel Auxin Sensor.” Institute of Science and Technology Austria, 2017. ieee: T. Prat, “Identification of novel regulators of PIN polarity and development of novel auxin sensor,” Institute of Science and Technology Austria, 2017. ista: Prat T. 2017. Identification of novel regulators of PIN polarity and development of novel auxin sensor. Institute of Science and Technology Austria. mla: Prat, Tomas. Identification of Novel Regulators of PIN Polarity and Development of Novel Auxin Sensor. Institute of Science and Technology Austria, 2017. short: T. Prat, Identification of Novel Regulators of PIN Polarity and Development of Novel Auxin Sensor, Institute of Science and Technology Austria, 2017. date_created: 2018-12-11T11:50:17Z date_published: 2017-01-12T00:00:00Z date_updated: 2023-09-19T10:39:33Z day: '12' ddc: - '580' degree_awarded: PhD department: - _id: JiFr file: - access_level: closed checksum: d192c7c6c5ea32c8432437286dc4909e content_type: application/pdf creator: dernst date_created: 2019-04-05T08:45:14Z date_updated: 2019-04-05T08:45:14Z file_id: '6209' file_name: IST_Austria_Thesis_Tomáš_Prát.pdf file_size: 10285946 relation: main_file - access_level: open_access checksum: bab18b52cf98145926042d8ed99fdb3b content_type: application/pdf creator: dernst date_created: 2021-02-22T11:52:56Z date_updated: 2021-02-22T11:52:56Z file_id: '9185' file_name: 2017_Thesis_Prat.pdf file_size: 9802991 relation: main_file success: 1 file_date_updated: 2021-02-22T11:52:56Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '131' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6233' related_material: record: - id: '449' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Identification of novel regulators of PIN polarity and development of novel auxin sensor type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '1159' abstract: - lang: eng text: Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis. article_processing_charge: No article_type: original author: - first_name: Ward full_name: Steenackers, Ward last_name: Steenackers - first_name: Petr full_name: Klíma, Petr last_name: Klíma - first_name: Mussa full_name: Quareshy, Mussa last_name: Quareshy - first_name: Igor full_name: Cesarino, Igor last_name: Cesarino - first_name: Robert full_name: Kumpf, Robert last_name: Kumpf - first_name: Sander full_name: Corneillie, Sander last_name: Corneillie - first_name: Pedro full_name: Araújo, Pedro last_name: Araújo - first_name: Tom full_name: Viaene, Tom last_name: Viaene - first_name: Geert full_name: Goeminne, Geert last_name: Goeminne - first_name: Moritz full_name: Nowack, Moritz last_name: Nowack - first_name: Karin full_name: Ljung, Karin last_name: Ljung - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Joshua full_name: Blakeslee, Joshua last_name: Blakeslee - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Eva full_name: Zažímalová, Eva last_name: Zažímalová - first_name: Richard full_name: Napier, Richard last_name: Napier - first_name: Wout full_name: Boerjan, Wout last_name: Boerjan - first_name: Bartel full_name: Vanholme, Bartel last_name: Vanholme citation: ama: Steenackers W, Klíma P, Quareshy M, et al. Cis-cinnamic acid is a novel natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiology. 2017;173(1):552-565. doi:10.1104/pp.16.00943 apa: Steenackers, W., Klíma, P., Quareshy, M., Cesarino, I., Kumpf, R., Corneillie, S., … Vanholme, B. (2017). Cis-cinnamic acid is a novel natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.16.00943 chicago: Steenackers, Ward, Petr Klíma, Mussa Quareshy, Igor Cesarino, Robert Kumpf, Sander Corneillie, Pedro Araújo, et al. “Cis-Cinnamic Acid Is a Novel Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation.” Plant Physiology. American Society of Plant Biologists, 2017. https://doi.org/10.1104/pp.16.00943. ieee: W. Steenackers et al., “Cis-cinnamic acid is a novel natural auxin efflux inhibitor that promotes lateral root formation,” Plant Physiology, vol. 173, no. 1. American Society of Plant Biologists, pp. 552–565, 2017. ista: Steenackers W, Klíma P, Quareshy M, Cesarino I, Kumpf R, Corneillie S, Araújo P, Viaene T, Goeminne G, Nowack M, Ljung K, Friml J, Blakeslee J, Novák O, Zažímalová E, Napier R, Boerjan W, Vanholme B. 2017. Cis-cinnamic acid is a novel natural auxin efflux inhibitor that promotes lateral root formation. Plant Physiology. 173(1), 552–565. mla: Steenackers, Ward, et al. “Cis-Cinnamic Acid Is a Novel Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation.” Plant Physiology, vol. 173, no. 1, American Society of Plant Biologists, 2017, pp. 552–65, doi:10.1104/pp.16.00943. short: W. Steenackers, P. Klíma, M. Quareshy, I. Cesarino, R. Kumpf, S. Corneillie, P. Araújo, T. Viaene, G. Goeminne, M. Nowack, K. Ljung, J. Friml, J. Blakeslee, O. Novák, E. Zažímalová, R. Napier, W. Boerjan, B. Vanholme, Plant Physiology 173 (2017) 552–565. date_created: 2018-12-11T11:50:28Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-20T11:29:17Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1104/pp.16.00943 ec_funded: 1 external_id: isi: - '000394135800041' pmid: - '27837086' file: - access_level: open_access checksum: fd4d1cfe7ed70e54bb12ae3881f3fb91 content_type: application/pdf creator: dernst date_created: 2019-11-18T16:12:25Z date_updated: 2020-07-14T12:44:36Z file_id: '7040' file_name: 2016_PlantPhysi_Steenackers.pdf file_size: 4109142 relation: main_file file_date_updated: 2020-07-14T12:44:36Z has_accepted_license: '1' intvolume: ' 173' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 552 - 565 pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Plant Physiology publication_identifier: issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists publist_id: '6199' quality_controlled: '1' scopus_import: '1' status: public title: Cis-cinnamic acid is a novel natural auxin efflux inhibitor that promotes lateral root formation type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 173 year: '2017' ... --- _id: '1110' abstract: - lang: eng text: The phytohormone auxin is a major determinant and regulatory component important for plant development. Auxin transport between cells is mediated by a complex system of transporters such as AUX1/LAX, PIN, and ABCB proteins, and their localization and activity is thought to be influenced by phosphatases and kinases. Flavonols have been shown to alter auxin transport activity and changes in flavonol accumulation in the Arabidopsis thaliana rol1-2 mutant cause defects in auxin transport and seedling development. A new mutation in ROOTS CURL IN NPA 1 (RCN1), encoding a regulatory subunit of the phosphatase PP2A, was found to suppress the growth defects of rol1-2 without changing the flavonol content. rol1-2 rcn1-3 double mutants show wild type-like auxin transport activity while levels of free auxin are not affected by rcn1-3. In the rol1-2 mutant, PIN2 shows a flavonol-induced basal-to-apical shift in polar localization which is reversed in the rol1-2 rcn1-3 to basal localization. In vivo analysis of PINOID action, a kinase known to influence PIN protein localization in a PP2A-antagonistic manner, revealed a negative impact of flavonols on PINOID activity. Together, these data suggest that flavonols affect auxin transport by modifying the antagonistic kinase/phosphatase equilibrium. acknowledgement: European Research Council (project ERC-2011-StG-20101109-PSDP), European Social Fund (CZ.1.07/2.3.00/20.0043) and the Czech Science Foundation (GA13-40637S) [JF]. article_number: '41906' article_processing_charge: No author: - first_name: Benjamin full_name: Kuhn, Benjamin last_name: Kuhn - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Sanae full_name: Errafi, Sanae last_name: Errafi - first_name: Rahel full_name: Bucher, Rahel last_name: Bucher - first_name: Shibu full_name: Gupta, Shibu last_name: Gupta - first_name: Bibek full_name: Aryal, Bibek last_name: Aryal - first_name: Petre full_name: Dobrev, Petre last_name: Dobrev - first_name: Laurent full_name: Bigler, Laurent last_name: Bigler - first_name: Markus full_name: Geisler, Markus last_name: Geisler - first_name: Eva full_name: Zažímalová, Eva last_name: Zažímalová - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Christoph full_name: Ringli, Christoph last_name: Ringli citation: ama: Kuhn B, Nodzyński T, Errafi S, et al. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Scientific Reports. 2017;7. doi:10.1038/srep41906 apa: Kuhn, B., Nodzyński, T., Errafi, S., Bucher, R., Gupta, S., Aryal, B., … Ringli, C. (2017). Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep41906 chicago: Kuhn, Benjamin, Tomasz Nodzyński, Sanae Errafi, Rahel Bucher, Shibu Gupta, Bibek Aryal, Petre Dobrev, et al. “Flavonol-Induced Changes in PIN2 Polarity and Auxin Transport in the Arabidopsis Thaliana Rol1-2 Mutant Require Phosphatase Activity.” Scientific Reports. Nature Publishing Group, 2017. https://doi.org/10.1038/srep41906. ieee: B. Kuhn et al., “Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity,” Scientific Reports, vol. 7. Nature Publishing Group, 2017. ista: Kuhn B, Nodzyński T, Errafi S, Bucher R, Gupta S, Aryal B, Dobrev P, Bigler L, Geisler M, Zažímalová E, Friml J, Ringli C. 2017. Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity. Scientific Reports. 7, 41906. mla: Kuhn, Benjamin, et al. “Flavonol-Induced Changes in PIN2 Polarity and Auxin Transport in the Arabidopsis Thaliana Rol1-2 Mutant Require Phosphatase Activity.” Scientific Reports, vol. 7, 41906, Nature Publishing Group, 2017, doi:10.1038/srep41906. short: B. Kuhn, T. Nodzyński, S. Errafi, R. Bucher, S. Gupta, B. Aryal, P. Dobrev, L. Bigler, M. Geisler, E. Zažímalová, J. Friml, C. Ringli, Scientific Reports 7 (2017). date_created: 2018-12-11T11:50:12Z date_published: 2017-02-06T00:00:00Z date_updated: 2023-09-20T11:35:35Z day: '06' ddc: - '581' department: - _id: JiFr doi: 10.1038/srep41906 ec_funded: 1 external_id: isi: - '000393367600001' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:18:09Z date_updated: 2018-12-12T10:18:09Z file_id: '5328' file_name: IST-2017-803-v1+1_srep41906.pdf file_size: 1654496 relation: main_file file_date_updated: 2018-12-12T10:18:09Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '02' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Scientific Reports publication_identifier: issn: - '20452322' publication_status: published publisher: Nature Publishing Group publist_id: '6258' pubrep_id: '803' quality_controlled: '1' scopus_import: '1' status: public title: Flavonol-induced changes in PIN2 polarity and auxin transport in the Arabidopsis thaliana rol1-2 mutant require phosphatase activity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2017' ... --- _id: '799' abstract: - lang: eng text: Membrane traffic at the trans-Golgi network (TGN) is crucial for correctly distributing various membrane proteins to their destination. Polarly localized auxin efflux proteins, including PIN-FORMED1 (PIN1), are dynamically transported between the endosomes and the plasma membrane (PM) in the plant cells. The intracellular trafficking of PIN1 protein is sensitive to a fungal toxin brefeldin A (BFA), which is known to inhibit guanine-nucleotide exchange factors for ADP ribosylation factors (ARF GEFs) such as GNOM. However, the molecular details of the BFA-sensitive trafficking pathway have not been revealed fully. In a previous study, we have identified an Arabidopsis mutant BFA-visualized endocytic trafficking defective 3 (ben3) which exhibited reduced sensitivity to BFA in terms of BFA-induced intracellular PIN1 agglomeration. Here, we show that BEN3 encodes a member of BIG family ARF GEFs, BIG2. Fluorescent proteins tagged BEN3/BIG2 co-localized with markers for TGN / early endosome (EE). Inspection of conditionally induced de novo synthesized PIN1 confirmed that its secretion to the PM is BFA-sensitive and established BEN3/BIG2 as a crucial component of this BFA action at the level of TGN/EE. Furthermore, ben3 mutation alleviated BFA-induced agglomeration of another TGN-localized ARF GEF BEN1/MIN7. Taken together our results suggest that BEN3/BIG2 is an ARF GEF component, which confers BFA sensitivity to the TGN/EE in Arabidopsis. article_number: 1801-1811 article_processing_charge: No author: - first_name: Saeko full_name: Kitakura, Saeko last_name: Kitakura - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Yuki full_name: Matsuura, Yuki last_name: Matsuura - first_name: Luca full_name: Santuari, Luca last_name: Santuari - first_name: Hirotaka full_name: Kouno, Hirotaka last_name: Kouno - first_name: Kohei full_name: Arima, Kohei last_name: Arima - first_name: Christian full_name: Hardtke, Christian last_name: Hardtke - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Tatsuo full_name: Kakimoto, Tatsuo last_name: Kakimoto - first_name: Hirokazu full_name: Tanaka, Hirokazu last_name: Tanaka citation: ama: Kitakura S, Adamowski M, Matsuura Y, et al. BEN3/BIG2 ARF GEF is involved in brefeldin a-sensitive trafficking at the trans-Golgi network/early endosome in Arabidopsis thaliana. Plant and Cell Physiology. 2017;58(10). doi:10.1093/pcp/pcx118 apa: Kitakura, S., Adamowski, M., Matsuura, Y., Santuari, L., Kouno, H., Arima, K., … Tanaka, H. (2017). BEN3/BIG2 ARF GEF is involved in brefeldin a-sensitive trafficking at the trans-Golgi network/early endosome in Arabidopsis thaliana. Plant and Cell Physiology. Oxford University Press. https://doi.org/10.1093/pcp/pcx118 chicago: Kitakura, Saeko, Maciek Adamowski, Yuki Matsuura, Luca Santuari, Hirotaka Kouno, Kohei Arima, Christian Hardtke, Jiří Friml, Tatsuo Kakimoto, and Hirokazu Tanaka. “BEN3/BIG2 ARF GEF Is Involved in Brefeldin a-Sensitive Trafficking at the Trans-Golgi Network/Early Endosome in Arabidopsis Thaliana.” Plant and Cell Physiology. Oxford University Press, 2017. https://doi.org/10.1093/pcp/pcx118. ieee: S. Kitakura et al., “BEN3/BIG2 ARF GEF is involved in brefeldin a-sensitive trafficking at the trans-Golgi network/early endosome in Arabidopsis thaliana,” Plant and Cell Physiology, vol. 58, no. 10. Oxford University Press, 2017. ista: Kitakura S, Adamowski M, Matsuura Y, Santuari L, Kouno H, Arima K, Hardtke C, Friml J, Kakimoto T, Tanaka H. 2017. BEN3/BIG2 ARF GEF is involved in brefeldin a-sensitive trafficking at the trans-Golgi network/early endosome in Arabidopsis thaliana. Plant and Cell Physiology. 58(10), 1801–1811. mla: Kitakura, Saeko, et al. “BEN3/BIG2 ARF GEF Is Involved in Brefeldin a-Sensitive Trafficking at the Trans-Golgi Network/Early Endosome in Arabidopsis Thaliana.” Plant and Cell Physiology, vol. 58, no. 10, 1801–1811, Oxford University Press, 2017, doi:10.1093/pcp/pcx118. short: S. Kitakura, M. Adamowski, Y. Matsuura, L. Santuari, H. Kouno, K. Arima, C. Hardtke, J. Friml, T. Kakimoto, H. Tanaka, Plant and Cell Physiology 58 (2017). date_created: 2018-12-11T11:48:34Z date_published: 2017-08-21T00:00:00Z date_updated: 2023-09-27T11:00:19Z day: '21' ddc: - '581' department: - _id: JiFr doi: 10.1093/pcp/pcx118 external_id: isi: - '000413220400019' pmid: - '29016942' file: - access_level: open_access checksum: bd3e3a94d55416739cbb19624bb977f8 content_type: application/pdf creator: dernst date_created: 2019-04-17T07:52:34Z date_updated: 2020-07-14T12:48:06Z file_id: '6333' file_name: 2017_PlantCellPhysio_Kitakura.pdf file_size: 1352913 relation: main_file file_date_updated: 2020-07-14T12:48:06Z has_accepted_license: '1' intvolume: ' 58' isi: 1 issue: '10' language: - iso: eng month: '08' oa: 1 oa_version: Submitted Version pmid: 1 publication: Plant and Cell Physiology publication_identifier: issn: - '00320781' publication_status: published publisher: Oxford University Press publist_id: '6854' pubrep_id: '1009' quality_controlled: '1' scopus_import: '1' status: public title: BEN3/BIG2 ARF GEF is involved in brefeldin a-sensitive trafficking at the trans-Golgi network/early endosome in Arabidopsis thaliana type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 58 year: '2017' ... --- _id: '545' abstract: - lang: eng text: Development of vascular tissue is a remarkable example of intercellular communication and coordinated development involving hormonal signaling and tissue polarity. Thus far, studies on vascular patterning and regeneration have been conducted mainly in trees—woody plants—with a well-developed layer of vascular cambium and secondary tissues. Trees are difficult to use as genetic models, i.e., due to long generation time, unstable environmental conditions, and lack of available mutants and transgenic lines. Therefore, the use of the main genetic model plant Arabidopsis thaliana (L.) Heynh., with a wealth of available marker and transgenic lines, provides a unique opportunity to address molecular mechanism of vascular tissue formation and regeneration. With specific treatments, the tiny weed Arabidopsis can serve as a model to understand the growth of mighty trees and interconnect a tree physiology with molecular genetics and cell biology of Arabidopsis. alternative_title: - Agricultural and Biological Sciences author: - first_name: Ewa full_name: Mazur, Ewa last_name: Mazur - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Mazur E, Friml J. Vascular tissue development and regeneration in the model plant arabidopsis. In: Jurić S, ed. Plant Engineering. Plant Engineering. InTech; 2017:113-140. doi:10.5772/intechopen.69712' apa: Mazur, E., & Friml, J. (2017). Vascular tissue development and regeneration in the model plant arabidopsis. In S. Jurić (Ed.), Plant Engineering (pp. 113–140). InTech. https://doi.org/10.5772/intechopen.69712 chicago: Mazur, Ewa, and Jiří Friml. “Vascular Tissue Development and Regeneration in the Model Plant Arabidopsis.” In Plant Engineering, edited by Snježana Jurić, 113–40. Plant Engineering. InTech, 2017. https://doi.org/10.5772/intechopen.69712. ieee: E. Mazur and J. Friml, “Vascular tissue development and regeneration in the model plant arabidopsis,” in Plant Engineering, S. Jurić, Ed. InTech, 2017, pp. 113–140. ista: 'Mazur E, Friml J. 2017.Vascular tissue development and regeneration in the model plant arabidopsis. In: Plant Engineering. Agricultural and Biological Sciences, , 113–140.' mla: Mazur, Ewa, and Jiří Friml. “Vascular Tissue Development and Regeneration in the Model Plant Arabidopsis.” Plant Engineering, edited by Snježana Jurić, InTech, 2017, pp. 113–40, doi:10.5772/intechopen.69712. short: E. Mazur, J. Friml, in:, S. Jurić (Ed.), Plant Engineering, InTech, 2017, pp. 113–140. date_created: 2018-12-11T11:47:05Z date_published: 2017-11-17T00:00:00Z date_updated: 2024-02-12T12:03:42Z day: '17' ddc: - '581' department: - _id: JiFr doi: 10.5772/intechopen.69712 ec_funded: 1 editor: - first_name: Snježana full_name: Jurić, Snježana last_name: Jurić file: - access_level: open_access checksum: e1f05e5850dfd9f9434d2d373ca61941 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:49Z date_updated: 2020-07-14T12:46:58Z file_id: '4969' file_name: IST-2018-929-v1+1_56106.pdf file_size: 7443683 relation: main_file file_date_updated: 2020-07-14T12:46:58Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 113 - 140 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Plant Engineering publication_status: published publisher: InTech publist_id: '7269' pubrep_id: '929' quality_controlled: '1' related_material: record: - id: '1274' relation: earlier_version status: public series_title: Plant Engineering status: public title: Vascular tissue development and regeneration in the model plant arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: book_chapter user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '946' abstract: - lang: eng text: Roots navigate through soil integrating environmental signals to orient their growth. The Arabidopsis root is a widely used model for developmental, physiological and cell biological studies. Live imaging greatly aids these efforts, but the horizontal sample position and continuous root tip displacement present significant difficulties. Here, we develop a confocal microscope setup for vertical sample mounting and integrated directional illumination. We present TipTracker – a custom software for automatic tracking of diverse moving objects usable on various microscope setups. Combined, this enables observation of root tips growing along the natural gravity vector over prolonged periods of time, as well as the ability to induce rapid gravity or light stimulation. We also track migrating cells in the developing zebrafish embryo, demonstrating the utility of this system in the acquisition of high-resolution data sets of dynamic samples. We provide detailed descriptions of the tools enabling the easy implementation on other microscopes. acknowledged_ssus: - _id: M-Shop - _id: Bio acknowledgement: "Funding: Marie Curie Actions (FP7/2007-2013 no 291734) to Daniel von Wangenheim; Austrian Science Fund (M 2128-B21) to Matyáš Fendrych; Austrian Science Fund (FWF01_I1774S) to Eva Benková; European Research Council (FP7/2007-2013 no 282300) to Jiří Friml. \r\nThe authors are grateful to the Miba Machine Shop at IST Austria for their contribution to the microscope setup and to Yvonne Kemper for reading, understanding and correcting the manuscript.\r\n#BioimagingFacility" article_number: e26792 article_processing_charge: Yes author: - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Vanessa full_name: Barone, Vanessa id: 419EECCC-F248-11E8-B48F-1D18A9856A87 last_name: Barone orcid: 0000-0003-2676-3367 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife. 2017;6. doi:10.7554/eLife.26792 apa: von Wangenheim, D., Hauschild, R., Fendrych, M., Barone, V., Benková, E., & Friml, J. (2017). Live tracking of moving samples in confocal microscopy for vertically grown roots. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.26792 chicago: Wangenheim, Daniel von, Robert Hauschild, Matyas Fendrych, Vanessa Barone, Eva Benková, and Jiří Friml. “Live Tracking of Moving Samples in Confocal Microscopy for Vertically Grown Roots.” ELife. eLife Sciences Publications, 2017. https://doi.org/10.7554/eLife.26792. ieee: D. von Wangenheim, R. Hauschild, M. Fendrych, V. Barone, E. Benková, and J. Friml, “Live tracking of moving samples in confocal microscopy for vertically grown roots,” eLife, vol. 6. eLife Sciences Publications, 2017. ista: von Wangenheim D, Hauschild R, Fendrych M, Barone V, Benková E, Friml J. 2017. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife. 6, e26792. mla: von Wangenheim, Daniel, et al. “Live Tracking of Moving Samples in Confocal Microscopy for Vertically Grown Roots.” ELife, vol. 6, e26792, eLife Sciences Publications, 2017, doi:10.7554/eLife.26792. short: D. von Wangenheim, R. Hauschild, M. Fendrych, V. Barone, E. Benková, J. Friml, ELife 6 (2017). date_created: 2018-12-11T11:49:21Z date_published: 2017-06-19T00:00:00Z date_updated: 2024-02-21T13:49:34Z day: '19' ddc: - '570' department: - _id: JiFr - _id: Bio - _id: CaHe - _id: EvBe doi: 10.7554/eLife.26792 ec_funded: 1 external_id: isi: - '000404728300001' file: - access_level: open_access checksum: 9af3398cb0d81f99d79016a616df22e9 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:57Z date_updated: 2020-07-14T12:48:15Z file_id: '5315' file_name: IST-2017-847-v1+1_elife-26792-v2.pdf file_size: 19581847 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 6' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2572ED28-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02128 name: Molecular basis of root growth inhibition by auxin - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '6471' pubrep_id: '847' quality_controlled: '1' related_material: record: - id: '5566' relation: popular_science status: public scopus_import: '1' status: public title: Live tracking of moving samples in confocal microscopy for vertically grown roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 6 year: '2017' ... --- _id: '1078' abstract: - lang: eng text: 'One of the key questions in understanding plant development is how single cells behave in a larger context of the tissue. Therefore, it requires the observation of the whole organ with a high spatial- as well as temporal resolution over prolonged periods of time, which may cause photo-toxic effects. This protocol shows a plant sample preparation method for light-sheet microscopy, which is characterized by mounting the plant vertically on the surface of a gel. The plant is mounted in such a way that the roots are submerged in a liquid medium while the leaves remain in the air. In order to ensure photosynthetic activity of the plant, a custom-made lighting system illuminates the leaves. To keep the roots in darkness the water surface is covered with sheets of black plastic foil. This method allows long-term imaging of plant organ development in standardized conditions. ' acknowledged_ssus: - _id: M-Shop - _id: Bio article_number: e55044 article_processing_charge: No author: - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: von Wangenheim D, Hauschild R, Friml J. Light sheet fluorescence microscopy of plant roots growing on the surface of a gel. Journal of visualized experiments JoVE. 2017;2017(119). doi:10.3791/55044 apa: von Wangenheim, D., Hauschild, R., & Friml, J. (2017). Light sheet fluorescence microscopy of plant roots growing on the surface of a gel. Journal of Visualized Experiments JoVE. Journal of Visualized Experiments. https://doi.org/10.3791/55044 chicago: Wangenheim, Daniel von, Robert Hauschild, and Jiří Friml. “Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel.” Journal of Visualized Experiments JoVE. Journal of Visualized Experiments, 2017. https://doi.org/10.3791/55044. ieee: D. von Wangenheim, R. Hauschild, and J. Friml, “Light sheet fluorescence microscopy of plant roots growing on the surface of a gel,” Journal of visualized experiments JoVE, vol. 2017, no. 119. Journal of Visualized Experiments, 2017. ista: von Wangenheim D, Hauschild R, Friml J. 2017. Light sheet fluorescence microscopy of plant roots growing on the surface of a gel. Journal of visualized experiments JoVE. 2017(119), e55044. mla: von Wangenheim, Daniel, et al. “Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel.” Journal of Visualized Experiments JoVE, vol. 2017, no. 119, e55044, Journal of Visualized Experiments, 2017, doi:10.3791/55044. short: D. von Wangenheim, R. Hauschild, J. Friml, Journal of Visualized Experiments JoVE 2017 (2017). date_created: 2018-12-11T11:50:01Z date_published: 2017-01-18T00:00:00Z date_updated: 2024-02-21T13:49:12Z day: '18' ddc: - '580' department: - _id: JiFr - _id: Bio doi: 10.3791/55044 ec_funded: 1 external_id: isi: - '000397847200041' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:16:31Z date_updated: 2018-12-12T10:16:31Z file_id: '5219' file_name: IST-2017-808-v1+1_2017_VWangenheim_list.pdf file_size: 57678 relation: main_file - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:16:32Z date_updated: 2018-12-12T10:16:32Z file_id: '5220' file_name: IST-2017-808-v1+2_2017_VWangenheim_article.pdf file_size: 1317820 relation: main_file file_date_updated: 2018-12-12T10:16:32Z has_accepted_license: '1' intvolume: ' 2017' isi: 1 issue: '119' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Journal of visualized experiments JoVE publication_status: published publisher: Journal of Visualized Experiments publist_id: '6302' pubrep_id: '808' related_material: record: - id: '5565' relation: popular_science status: public scopus_import: '1' status: public title: Light sheet fluorescence microscopy of plant roots growing on the surface of a gel type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2017 year: '2017' ... --- _id: '5565' abstract: - lang: eng text: "One of the key questions in understanding plant development is how single cells behave in a larger context of the tissue. Therefore, it requires the observation of the whole organ with a high spatial- as well as temporal resolution over prolonged periods of time, which may cause photo-toxic effects. This protocol shows a plant sample preparation method for light-sheet microscopy, which is characterized by mounting the plant vertically on the surface of a gel. The plant is mounted in such a way that the roots are submerged in a liquid medium while the leaves remain in the air. In order to ensure photosynthetic activity of the plant, a custom-made lighting system illuminates the leaves. To keep the roots in darkness the water surface is covered with sheets of black plastic foil. This method allows long-term imaging of plant organ development in standardized conditions. \r\nThe Video is licensed under a CC BY NC ND license. " acknowledgement: 'fund: FP7-ERC 0101109' article_processing_charge: No author: - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: von Wangenheim D, Hauschild R, Friml J. Light Sheet Fluorescence microscopy of plant roots growing on the surface of a gel. 2017. doi:10.15479/AT:ISTA:66 apa: von Wangenheim, D., Hauschild, R., & Friml, J. (2017). Light Sheet Fluorescence microscopy of plant roots growing on the surface of a gel. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:66 chicago: Wangenheim, Daniel von, Robert Hauschild, and Jiří Friml. “Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel.” Institute of Science and Technology Austria, 2017. https://doi.org/10.15479/AT:ISTA:66. ieee: D. von Wangenheim, R. Hauschild, and J. Friml, “Light Sheet Fluorescence microscopy of plant roots growing on the surface of a gel.” Institute of Science and Technology Austria, 2017. ista: von Wangenheim D, Hauschild R, Friml J. 2017. Light Sheet Fluorescence microscopy of plant roots growing on the surface of a gel, Institute of Science and Technology Austria, 10.15479/AT:ISTA:66. mla: von Wangenheim, Daniel, et al. Light Sheet Fluorescence Microscopy of Plant Roots Growing on the Surface of a Gel. Institute of Science and Technology Austria, 2017, doi:10.15479/AT:ISTA:66. short: D. von Wangenheim, R. Hauschild, J. Friml, (2017). datarep_id: '66' date_created: 2018-12-12T12:31:34Z date_published: 2017-04-10T00:00:00Z date_updated: 2024-02-21T13:49:13Z day: '10' ddc: - '580' department: - _id: JiFr - _id: Bio doi: 10.15479/AT:ISTA:66 ec_funded: 1 file: - access_level: open_access checksum: b7552fc23540a85dc5a22fd4484eae71 content_type: video/mp4 creator: system date_created: 2018-12-12T13:02:33Z date_updated: 2020-07-14T12:47:03Z file_id: '5599' file_name: IST-2017-66-v1+1_WangenheimHighResolution55044-NEW_1.mp4 file_size: 101497758 relation: main_file file_date_updated: 2020-07-14T12:47:03Z has_accepted_license: '1' month: '04' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publisher: Institute of Science and Technology Austria publist_id: '6302' related_material: record: - id: '1078' relation: research_paper status: public status: public title: Light Sheet Fluorescence microscopy of plant roots growing on the surface of a gel type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '1081' abstract: - lang: eng text: The asymmetric localization of proteins in the plasma membrane domains of eukaryotic cells is a fundamental manifestation of cell polarity that is central to multicellular organization and developmental patterning. In plants, the mechanisms underlying the polar localization of cargo proteins are still largely unknown and appear to be fundamentally distinct from those operating in mammals. Here, we present a systematic, quantitative comparative analysis of the polar delivery and subcellular localization of proteins that characterize distinct polar plasma membrane domains in plant cells. The combination of microscopic analyses and computational modeling revealed a mechanistic framework common to diverse polar cargos and underlying the establishment and maintenance of apical, basal, and lateral polar domains in plant cells. This mechanism depends on the polar secretion, constitutive endocytic recycling, and restricted lateral diffusion of cargos within the plasma membrane. Moreover, our observations suggest that polar cargo distribution involves the individual protein potential to form clusters within the plasma membrane and interact with the extracellular matrix. Our observations provide insights into the shared cellular mechanisms of polar cargo delivery and polarity maintenance in plant cells. acknowledgement: "We thank Bonnie Bartel, Jenny Russinova and Niko Geldner\r\nfor sharing published material, Martine de Cock and Annick\r\nBleys for help in preparing the manuscript. This work was\r\nsupported by the European Research Council (project\r\nERC-2011-StG-20101109-PSDP); Czech Science Foundation\r\nGAČR (GA13-40637S); project CEITEC—Central European\r\nInstitute of Technology (CZ.1.05/1.1.00/02.0068). SV is a\r\npostdoctoral fellow of the Research Foundation-Flanders.\r\nSN is a Project Assistant Professor supported by the Japanese\r\nSociety for the Promotion of Science (JSPS; 30612022 to SN),\r\nthe NC-CARP project of the Ministry of Education, Culture,\r\nSports, Science and Technology in Japan to SN." article_number: '16018' author: - first_name: Łukasz full_name: Łangowski, Łukasz last_name: Łangowski - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Hongjiang full_name: Li, Hongjiang id: 33CA54A6-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0001-5039-9660 - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Satoshi full_name: Naramoto, Satoshi last_name: Naramoto - first_name: Hirokazu full_name: Tanaka, Hirokazu last_name: Tanaka - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Łangowski Ł, Wabnik KT, Li H, et al. Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discovery. 2016;2. doi:10.1038/celldisc.2016.18 apa: Łangowski, Ł., Wabnik, K. T., Li, H., Vanneste, S., Naramoto, S., Tanaka, H., & Friml, J. (2016). Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discovery. Nature Publishing Group. https://doi.org/10.1038/celldisc.2016.18 chicago: Łangowski, Łukasz, Krzysztof T Wabnik, Hongjiang Li, Steffen Vanneste, Satoshi Naramoto, Hirokazu Tanaka, and Jiří Friml. “Cellular Mechanisms for Cargo Delivery and Polarity Maintenance at Different Polar Domains in Plant Cells.” Cell Discovery. Nature Publishing Group, 2016. https://doi.org/10.1038/celldisc.2016.18. ieee: Ł. Łangowski et al., “Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells,” Cell Discovery, vol. 2. Nature Publishing Group, 2016. ista: Łangowski Ł, Wabnik KT, Li H, Vanneste S, Naramoto S, Tanaka H, Friml J. 2016. Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discovery. 2, 16018. mla: Łangowski, Łukasz, et al. “Cellular Mechanisms for Cargo Delivery and Polarity Maintenance at Different Polar Domains in Plant Cells.” Cell Discovery, vol. 2, 16018, Nature Publishing Group, 2016, doi:10.1038/celldisc.2016.18. short: Ł. Łangowski, K.T. Wabnik, H. Li, S. Vanneste, S. Naramoto, H. Tanaka, J. Friml, Cell Discovery 2 (2016). date_created: 2018-12-11T11:50:02Z date_published: 2016-07-19T00:00:00Z date_updated: 2021-01-12T06:48:08Z day: '19' ddc: - '580' department: - _id: EvBe - _id: JiFr doi: 10.1038/celldisc.2016.18 ec_funded: 1 file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:13:33Z date_updated: 2018-12-12T10:13:33Z file_id: '5017' file_name: IST-2017-757-v1+1_celldisc201618.pdf file_size: 5261671 relation: main_file file_date_updated: 2018-12-12T10:13:33Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Cell Discovery publication_status: published publisher: Nature Publishing Group publist_id: '6299' pubrep_id: '757' quality_controlled: '1' scopus_import: 1 status: public title: Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2016' ... --- _id: '1145' abstract: - lang: eng text: Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure–function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants. © 2016 The Authors acknowledgement: This research has been financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) (T.N., M.Z., M.P., J.H.), Czech Science Foundation (13-40637S [J.F., M.Z.], 13-39982S [J.H.]); Research Foundation Flanders (Grant number FWO09/PDO/196) (S.V.) and the European Research Council (project ERC-2011-StG-20101109-PSDP) (J.F.). We thank David G. Robinson and Ranjan Swarup for sharing published material; Maria Šimášková, Mamoona Khan, Eva Benková for technical assistance; and R. Tejos, J. Kleine-Vehn, and E. Feraru for helpful discussions. author: - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Markéta full_name: Pernisová, Markéta last_name: Pernisová - first_name: Jan full_name: Hejátko, Jan last_name: Hejátko - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Nodzyński T, Vanneste S, Zwiewka M, Pernisová M, Hejátko J, Friml J. Enquiry into the topology of plasma membrane localized PIN auxin transport components. Molecular Plant. 2016;9(11):1504-1519. doi:10.1016/j.molp.2016.08.010 apa: Nodzyński, T., Vanneste, S., Zwiewka, M., Pernisová, M., Hejátko, J., & Friml, J. (2016). Enquiry into the topology of plasma membrane localized PIN auxin transport components. Molecular Plant. Cell Press. https://doi.org/10.1016/j.molp.2016.08.010 chicago: Nodzyński, Tomasz, Steffen Vanneste, Marta Zwiewka, Markéta Pernisová, Jan Hejátko, and Jiří Friml. “Enquiry into the Topology of Plasma Membrane Localized PIN Auxin Transport Components.” Molecular Plant. Cell Press, 2016. https://doi.org/10.1016/j.molp.2016.08.010. ieee: T. Nodzyński, S. Vanneste, M. Zwiewka, M. Pernisová, J. Hejátko, and J. Friml, “Enquiry into the topology of plasma membrane localized PIN auxin transport components,” Molecular Plant, vol. 9, no. 11. Cell Press, pp. 1504–1519, 2016. ista: Nodzyński T, Vanneste S, Zwiewka M, Pernisová M, Hejátko J, Friml J. 2016. Enquiry into the topology of plasma membrane localized PIN auxin transport components. Molecular Plant. 9(11), 1504–1519. mla: Nodzyński, Tomasz, et al. “Enquiry into the Topology of Plasma Membrane Localized PIN Auxin Transport Components.” Molecular Plant, vol. 9, no. 11, Cell Press, 2016, pp. 1504–19, doi:10.1016/j.molp.2016.08.010. short: T. Nodzyński, S. Vanneste, M. Zwiewka, M. Pernisová, J. Hejátko, J. Friml, Molecular Plant 9 (2016) 1504–1519. date_created: 2018-12-11T11:50:23Z date_published: 2016-11-07T00:00:00Z date_updated: 2021-01-12T06:48:37Z day: '07' ddc: - '581' department: - _id: JiFr doi: 10.1016/j.molp.2016.08.010 ec_funded: 1 file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:13:22Z date_updated: 2018-12-12T10:13:22Z file_id: '5004' file_name: IST-2017-746-v1+1_1-s2.0-S1674205216301915-main.pdf file_size: 5005876 relation: main_file file_date_updated: 2018-12-12T10:13:22Z has_accepted_license: '1' intvolume: ' 9' issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1504 - 1519 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Molecular Plant publication_status: published publisher: Cell Press publist_id: '6213' pubrep_id: '746' quality_controlled: '1' scopus_import: 1 status: public title: Enquiry into the topology of plasma membrane localized PIN auxin transport components tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2016' ... --- _id: '1147' abstract: - lang: eng text: Apical dominance is one of the fundamental developmental phenomena in plant biology, which determines the overall architecture of aerial plant parts. Here we show apex decapitation activated competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels, and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid (NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the outgrowing and dominant shoot. The obtained results proved that competition between upper and lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that operates between the shoot apex and axillary bud. © The Author(s) 2016. acknowledgement: This research was carried out under the project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II., supported by the project “CEITEC–Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) and the Agronomy faculty grant from Mendel University “IGA AF MENDELU” (IP 14/2013). article_number: '35955' author: - first_name: Jozef full_name: Balla, Jozef last_name: Balla - first_name: Zuzana full_name: Medved'Ová, Zuzana last_name: Medved'Ová - first_name: Petr full_name: Kalousek, Petr last_name: Kalousek - first_name: Natálie full_name: Matiješčuková, Natálie last_name: Matiješčuková - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Vilém full_name: Reinöhl, Vilém last_name: Reinöhl - first_name: Stanislav full_name: Procházka, Stanislav last_name: Procházka citation: ama: Balla J, Medved’Ová Z, Kalousek P, et al. Auxin flow mediated competition between axillary buds to restore apical dominance. Scientific Reports. 2016;6. doi:10.1038/srep35955 apa: Balla, J., Medved’Ová, Z., Kalousek, P., Matiješčuková, N., Friml, J., Reinöhl, V., & Procházka, S. (2016). Auxin flow mediated competition between axillary buds to restore apical dominance. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep35955 chicago: Balla, Jozef, Zuzana Medved’Ová, Petr Kalousek, Natálie Matiješčuková, Jiří Friml, Vilém Reinöhl, and Stanislav Procházka. “Auxin Flow Mediated Competition between Axillary Buds to Restore Apical Dominance.” Scientific Reports. Nature Publishing Group, 2016. https://doi.org/10.1038/srep35955. ieee: J. Balla et al., “Auxin flow mediated competition between axillary buds to restore apical dominance,” Scientific Reports, vol. 6. Nature Publishing Group, 2016. ista: Balla J, Medved’Ová Z, Kalousek P, Matiješčuková N, Friml J, Reinöhl V, Procházka S. 2016. Auxin flow mediated competition between axillary buds to restore apical dominance. Scientific Reports. 6, 35955. mla: Balla, Jozef, et al. “Auxin Flow Mediated Competition between Axillary Buds to Restore Apical Dominance.” Scientific Reports, vol. 6, 35955, Nature Publishing Group, 2016, doi:10.1038/srep35955. short: J. Balla, Z. Medved’Ová, P. Kalousek, N. Matiješčuková, J. Friml, V. Reinöhl, S. Procházka, Scientific Reports 6 (2016). date_created: 2018-12-11T11:50:24Z date_published: 2016-11-08T00:00:00Z date_updated: 2021-01-12T06:48:38Z day: '08' ddc: - '581' department: - _id: JiFr doi: 10.1038/srep35955 file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:09:28Z date_updated: 2018-12-12T10:09:28Z file_id: '4752' file_name: IST-2017-745-v1+1_srep35955.pdf file_size: 1587544 relation: main_file file_date_updated: 2018-12-12T10:09:28Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Scientific Reports publication_status: published publisher: Nature Publishing Group publist_id: '6211' pubrep_id: '745' quality_controlled: '1' scopus_import: 1 status: public title: Auxin flow mediated competition between axillary buds to restore apical dominance tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2016' ... --- _id: '1151' abstract: - lang: eng text: Tissue patterning in multicellular organisms is the output of precise spatio–temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant’s life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormonesensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants. © 2016 Simonini et al. acknowledgement: "We thank Norwich Research Park Bioimaging, Grant Calder, Roy\r\nDunford, Caroline Smith, Paul Thomas, and Mark Youles for\r\ntechnical support; Charlie Scutt, Alejandro Ferrando, and George\r\nLomonossoff for plasmids; Toshiro Ito for seeds; Brendan Davies\r\nand Barry Causier for the REGIA library; and Mark Buttner,\r\nSimona Masiero, Fabio Rossi, Doris Wagner, and Jun Xiao for\r\nhelp and material. We are also grateful to Stefano Bencivenga,\r\nMarie Brüser, Friederike Jantzen, Lukasz Langowski, Xinran Li,\r\nand Nicola Stacey for discussions and helpful comments on the\r\nmanuscript. This work was supported by grants BB/M004112/1\r\nand BB/I017232/1 (Crop Improvement Research Club) to L.Ø.\r\nfrom the Biotechnological and Biological Sciences Research\r\nCouncil, and Institute Strategic Programme grant (BB/J004553/\r\n1) to the John Innes Centre. S.S., J.D., and L.Ø conceived the ex-\r\nperiments. " author: - first_name: Sara full_name: Simonini, Sara last_name: Simonini - first_name: Joyita full_name: Deb, Joyita last_name: Deb - first_name: Laila full_name: Moubayidin, Laila last_name: Moubayidin - first_name: Pauline full_name: Stephenson, Pauline last_name: Stephenson - first_name: Manoj full_name: Valluru, Manoj last_name: Valluru - first_name: Alejandra full_name: Freire Rios, Alejandra last_name: Freire Rios - first_name: Karim full_name: Sorefan, Karim last_name: Sorefan - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Lars full_name: Östergaard, Lars last_name: Östergaard citation: ama: Simonini S, Deb J, Moubayidin L, et al. A noncanonical auxin sensing mechanism is required for organ morphogenesis in arabidopsis. Genes and Development. 2016;30(20):2286-2296. doi:10.1101/gad.285361.116 apa: Simonini, S., Deb, J., Moubayidin, L., Stephenson, P., Valluru, M., Freire Rios, A., … Östergaard, L. (2016). A noncanonical auxin sensing mechanism is required for organ morphogenesis in arabidopsis. Genes and Development. Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/gad.285361.116 chicago: Simonini, Sara, Joyita Deb, Laila Moubayidin, Pauline Stephenson, Manoj Valluru, Alejandra Freire Rios, Karim Sorefan, Dolf Weijers, Jiří Friml, and Lars Östergaard. “A Noncanonical Auxin Sensing Mechanism Is Required for Organ Morphogenesis in Arabidopsis.” Genes and Development. Cold Spring Harbor Laboratory Press, 2016. https://doi.org/10.1101/gad.285361.116. ieee: S. Simonini et al., “A noncanonical auxin sensing mechanism is required for organ morphogenesis in arabidopsis,” Genes and Development, vol. 30, no. 20. Cold Spring Harbor Laboratory Press, pp. 2286–2296, 2016. ista: Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, Freire Rios A, Sorefan K, Weijers D, Friml J, Östergaard L. 2016. A noncanonical auxin sensing mechanism is required for organ morphogenesis in arabidopsis. Genes and Development. 30(20), 2286–2296. mla: Simonini, Sara, et al. “A Noncanonical Auxin Sensing Mechanism Is Required for Organ Morphogenesis in Arabidopsis.” Genes and Development, vol. 30, no. 20, Cold Spring Harbor Laboratory Press, 2016, pp. 2286–96, doi:10.1101/gad.285361.116. short: S. Simonini, J. Deb, L. Moubayidin, P. Stephenson, M. Valluru, A. Freire Rios, K. Sorefan, D. Weijers, J. Friml, L. Östergaard, Genes and Development 30 (2016) 2286–2296. date_created: 2018-12-11T11:50:25Z date_published: 2016-10-15T00:00:00Z date_updated: 2021-01-12T06:48:39Z day: '15' ddc: - '570' department: - _id: JiFr doi: 10.1101/gad.285361.116 external_id: pmid: - '27898393' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-01-25T09:32:55Z date_updated: 2019-01-25T09:32:55Z file_id: '5882' file_name: 2016_GeneDev_Simonini.pdf file_size: 1419263 relation: main_file success: 1 file_date_updated: 2019-01-25T09:32:55Z has_accepted_license: '1' intvolume: ' 30' issue: '20' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 2286 - 2296 pmid: 1 publication: Genes and Development publication_status: published publisher: Cold Spring Harbor Laboratory Press publist_id: '6207' quality_controlled: '1' scopus_import: 1 status: public title: A noncanonical auxin sensing mechanism is required for organ morphogenesis in arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 30 year: '2016' ... --- _id: '1153' abstract: - lang: eng text: Differential cell growth enables flexible organ bending in the presence of environmental signals such as light or gravity. A prominent example of the developmental processes based on differential cell growth is the formation of the apical hook that protects the fragile shoot apical meristem when it breaks through the soil during germination. Here, we combined in silico and in vivo approaches to identify a minimal mechanism producing auxin gradient-guided differential growth during the establishment of the apical hook in the model plant Arabidopsis thaliana. Computer simulation models based on experimental data demonstrate that asymmetric expression of the PIN-FORMED auxin efflux carrier at the concave (inner) versus convex (outer) side of the hook suffices to establish an auxin maximum in the epidermis at the concave side of the apical hook. Furthermore, we propose a mechanism that translates this maximum into differential growth, and thus curvature, of the apical hook. Through a combination of experimental and in silico computational approaches, we have identified the individual contributions of differential cell elongation and proliferation to defining the apical hook and reveal the role of auxin-ethylene crosstalk in balancing these two processes. © 2016 American Society of Plant Biologists. All rights reserved. acknowledgement: "We thank Martine De Cock and Annick Bleys for help in preparing the manuscript, Daniel Van Damme for sharing material and stimulating discussion, and Rudiger Simon for support during revision of the manuscript.\r\nThis work was supported by grants from the European Research Council (StartingIndependentResearchGrantERC-2007-Stg-207362-HCPO)and the Czech Science Foundation (GACR CZ.1.07/2.3.00/20.0043) to E.B.\r\nand Natural Sciences and Engineering Research Council of Canada Discovery Grant 2014-05325 to P.P. K.W. acknowledges funding from a Human Frontier Science Program Long-Term Fellowship (LT-000209-2014)." author: - first_name: Petra full_name: Žádníková, Petra last_name: Žádníková - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Anas full_name: Abuzeineh, Anas last_name: Abuzeineh - first_name: Marçal full_name: Gallemí, Marçal last_name: Gallemí - first_name: Dominique full_name: Van Der Straeten, Dominique last_name: Van Der Straeten - first_name: Richard full_name: Smith, Richard last_name: Smith - first_name: Dirk full_name: Inze, Dirk last_name: Inze - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Przemysław full_name: Prusinkiewicz, Przemysław last_name: Prusinkiewicz - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Žádníková P, Wabnik KT, Abuzeineh A, et al. A model of differential growth guided apical hook formation in plants. Plant Cell. 2016;28(10):2464-2477. doi:10.1105/tpc.15.00569 apa: Žádníková, P., Wabnik, K. T., Abuzeineh, A., Gallemí, M., Van Der Straeten, D., Smith, R., … Benková, E. (2016). A model of differential growth guided apical hook formation in plants. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.15.00569 chicago: Žádníková, Petra, Krzysztof T Wabnik, Anas Abuzeineh, Marçal Gallemí, Dominique Van Der Straeten, Richard Smith, Dirk Inze, Jiří Friml, Przemysław Prusinkiewicz, and Eva Benková. “A Model of Differential Growth Guided Apical Hook Formation in Plants.” Plant Cell. American Society of Plant Biologists, 2016. https://doi.org/10.1105/tpc.15.00569. ieee: P. Žádníková et al., “A model of differential growth guided apical hook formation in plants,” Plant Cell, vol. 28, no. 10. American Society of Plant Biologists, pp. 2464–2477, 2016. ista: Žádníková P, Wabnik KT, Abuzeineh A, Gallemí M, Van Der Straeten D, Smith R, Inze D, Friml J, Prusinkiewicz P, Benková E. 2016. A model of differential growth guided apical hook formation in plants. Plant Cell. 28(10), 2464–2477. mla: Žádníková, Petra, et al. “A Model of Differential Growth Guided Apical Hook Formation in Plants.” Plant Cell, vol. 28, no. 10, American Society of Plant Biologists, 2016, pp. 2464–77, doi:10.1105/tpc.15.00569. short: P. Žádníková, K.T. Wabnik, A. Abuzeineh, M. Gallemí, D. Van Der Straeten, R. Smith, D. Inze, J. Friml, P. Prusinkiewicz, E. Benková, Plant Cell 28 (2016) 2464–2477. date_created: 2018-12-11T11:50:26Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:48:40Z day: '01' department: - _id: EvBe - _id: JiFr doi: 10.1105/tpc.15.00569 ec_funded: 1 intvolume: ' 28' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134968/ month: '10' oa: 1 oa_version: Submitted Version page: 2464 - 2477 project: - _id: 253FCA6A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '207362' name: Hormonal cross-talk in plant organogenesis publication: Plant Cell publication_status: published publisher: American Society of Plant Biologists publist_id: '6205' quality_controlled: '1' scopus_import: 1 status: public title: A model of differential growth guided apical hook formation in plants type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2016' ... --- _id: '1212' abstract: - lang: eng text: 'Plants adjust their growth according to gravity. Gravitropism involves gravity perception, signal transduction, and asymmetric growth response, with organ bending as a consequence [1]. Asymmetric growth results from the asymmetric distribution of the plant-specific signaling molecule auxin [2] that is generated by lateral transport, mediated in the hypocotyl predominantly by the auxin transporter PIN-FORMED3 (PIN3) [3–5]. Gravity stimulation polarizes PIN3 to the bottom sides of endodermal cells, correlating with increased auxin accumulation in adjacent tissues at the lower side of the stimulated organ, where auxin induces cell elongation and, hence, organ bending. A curvature response allows the hypocotyl to resume straight growth at a defined angle [6], implying that at some point auxin symmetry is restored to prevent overbending. Here, we present initial insights into cellular and molecular mechanisms that lead to the termination of the tropic response. We identified an auxin feedback on PIN3 polarization as underlying mechanism that restores symmetry of the PIN3-dependent auxin flow. Thus, two mechanistically distinct PIN3 polarization events redirect auxin fluxes at different time points of the gravity response: first, gravity-mediated redirection of PIN3-mediated auxin flow toward the lower hypocotyl side, where auxin gradually accumulates and promotes growth, and later PIN3 polarization to the opposite cell side, depleting this auxin maximum to end the bending. Accordingly, genetic or pharmacological interference with the late PIN3 polarization prevents termination of the response and leads to hypocotyl overbending. This observation reveals a role of auxin feedback on PIN polarity in the termination of the tropic response. © 2016 Elsevier Ltd' acknowledgement: "We thank Dr. Jie Li (Key Laboratory of Plant Molecular Physiology, Chinese Academy of Science, China) for the pPIN3::PIN3-GFP/DII::VENUS line and Martine De Cock for help in preparing the manuscript. This work was supported by the European Research Council (project ERC-2011-StG-20101109-PSDP), by the Czech Science Foundation GAČR (GA13-40637S) to J.F., and by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) to H.S.R. H.R. is indebted to the Agency for Innovation by Science and Technology (IWT) for a predoctoral fellowship.\r\n" author: - first_name: Hana full_name: Rakusová, Hana last_name: Rakusová - first_name: Mohamad full_name: Abbas, Mohamad id: 47E8FC1C-F248-11E8-B48F-1D18A9856A87 last_name: Abbas - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Siyuan full_name: Song, Siyuan last_name: Song - first_name: Hélène full_name: Robert, Hélène last_name: Robert - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Rakusová H, Abbas M, Han H, Song S, Robert H, Friml J. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Current Biology. 2016;26(22):3026-3032. doi:10.1016/j.cub.2016.08.067 apa: Rakusová, H., Abbas, M., Han, H., Song, S., Robert, H., & Friml, J. (2016). Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2016.08.067 chicago: Rakusová, Hana, Mohamad Abbas, Huibin Han, Siyuan Song, Hélène Robert, and Jiří Friml. “Termination of Shoot Gravitropic Responses by Auxin Feedback on PIN3 Polarity.” Current Biology. Cell Press, 2016. https://doi.org/10.1016/j.cub.2016.08.067. ieee: H. Rakusová, M. Abbas, H. Han, S. Song, H. Robert, and J. Friml, “Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity,” Current Biology, vol. 26, no. 22. Cell Press, pp. 3026–3032, 2016. ista: Rakusová H, Abbas M, Han H, Song S, Robert H, Friml J. 2016. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Current Biology. 26(22), 3026–3032. mla: Rakusová, Hana, et al. “Termination of Shoot Gravitropic Responses by Auxin Feedback on PIN3 Polarity.” Current Biology, vol. 26, no. 22, Cell Press, 2016, pp. 3026–32, doi:10.1016/j.cub.2016.08.067. short: H. Rakusová, M. Abbas, H. Han, S. Song, H. Robert, J. Friml, Current Biology 26 (2016) 3026–3032. date_created: 2018-12-11T11:50:44Z date_published: 2016-11-21T00:00:00Z date_updated: 2021-01-12T06:49:08Z day: '21' ddc: - '581' department: - _id: JiFr doi: 10.1016/j.cub.2016.08.067 ec_funded: 1 file: - access_level: open_access checksum: 79ed2498185a027cf51a8f88100379e6 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:33Z date_updated: 2020-07-14T12:44:39Z file_id: '4757' file_name: IST-2018-1008-v1+1_Rakusova_CurrBiol_2016_proof.pdf file_size: 5391923 relation: main_file file_date_updated: 2020-07-14T12:44:39Z has_accepted_license: '1' intvolume: ' 26' issue: '22' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 3026 - 3032 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Current Biology publication_status: published publisher: Cell Press publist_id: '6138' pubrep_id: '1008' quality_controlled: '1' scopus_import: 1 status: public title: Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2016' ... --- _id: '1221' abstract: - lang: eng text: The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles. acknowledgement: "This work was supported by ERC Independent Research grant (ERC-2011-StG-20101109-PSDP to JF). JM internship was supported by the grant “Action Austria – Slovakia”. MG was supported by the scholarship \"Stipendien der Stipendienstiftung der Republik Österreich\". Work by EH and CPR were supported by ANR blanc ANR-14-CE11-0018. We would like to thank Mark Estelle and Yunde Zhao for provid\r\n-\r\ning \r\nabp1-c1\r\n, \r\nabp1-TD1 \r\nand \r\nabp1-WTc1 \r\nseeds. We thank Emeline \r\nHuault for technical assistance." article_number: '86' article_processing_charge: No article_type: original author: - first_name: Jaroslav full_name: Michalko, Jaroslav id: 483727CA-F248-11E8-B48F-1D18A9856A87 last_name: Michalko - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Catherine full_name: Perrot Rechenmann, Catherine last_name: Perrot Rechenmann - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Michalko J, Glanc M, Perrot Rechenmann C, Friml J. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000 Research . 2016;5. doi:10.12688/f1000research.7654.1 apa: Michalko, J., Glanc, M., Perrot Rechenmann, C., & Friml, J. (2016). Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000 Research . F1000 Research. https://doi.org/10.12688/f1000research.7654.1 chicago: Michalko, Jaroslav, Matous Glanc, Catherine Perrot Rechenmann, and Jiří Friml. “Strong Morphological Defects in Conditional Arabidopsis Abp1 Knock-down Mutants Generated in Absence of Functional ABP1 Protein.” F1000 Research . F1000 Research, 2016. https://doi.org/10.12688/f1000research.7654.1. ieee: J. Michalko, M. Glanc, C. Perrot Rechenmann, and J. Friml, “Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein,” F1000 Research , vol. 5. F1000 Research, 2016. ista: Michalko J, Glanc M, Perrot Rechenmann C, Friml J. 2016. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000 Research . 5, 86. mla: Michalko, Jaroslav, et al. “Strong Morphological Defects in Conditional Arabidopsis Abp1 Knock-down Mutants Generated in Absence of Functional ABP1 Protein.” F1000 Research , vol. 5, 86, F1000 Research, 2016, doi:10.12688/f1000research.7654.1. short: J. Michalko, M. Glanc, C. Perrot Rechenmann, J. Friml, F1000 Research 5 (2016). date_created: 2018-12-11T11:50:47Z date_published: 2016-01-20T00:00:00Z date_updated: 2022-03-24T09:12:49Z day: '20' ddc: - '581' department: - _id: JiFr doi: 10.12688/f1000research.7654.1 ec_funded: 1 file: - access_level: open_access checksum: c9e50bb6096a7ba4a832969935820f19 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:33Z date_updated: 2020-07-14T12:44:39Z file_id: '5154' file_name: IST-2016-711-v1+1_770cf1e0-612f-4e85-a500-54b6349fbbab_7654_-_jaroslav_michalko.pdf file_size: 2990459 relation: main_file file_date_updated: 2020-07-14T12:44:39Z has_accepted_license: '1' intvolume: ' 5' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: 'F1000 Research ' publication_status: published publisher: F1000 Research publist_id: '6113' pubrep_id: '711' quality_controlled: '1' scopus_import: '1' status: public title: Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2016' ... --- _id: '1238' abstract: - lang: eng text: The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. acknowledgement: "This work was supported by National Program for Sustainability I (grant no. LO1204) provided by the Czech Ministry of Education and by Institutional Fund of Palacký University Olomouc (GK and OŠ).\r\nWe thank Sabine Fischer for help with the statistics." article_number: '1262' author: - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Amparo full_name: Rosero, Amparo last_name: Rosero - first_name: George full_name: Komis, George last_name: Komis - first_name: Olga full_name: Šamajová, Olga last_name: Šamajová - first_name: Miroslav full_name: Ovečka, Miroslav last_name: Ovečka - first_name: Boris full_name: Voigt, Boris last_name: Voigt - first_name: Jozef full_name: Šamaj, Jozef last_name: Šamaj citation: ama: von Wangenheim D, Rosero A, Komis G, et al. Endosomal interactions during root hair growth. Frontiers in Plant Science. 2016;6(JAN2016). doi:10.3389/fpls.2015.01262 apa: von Wangenheim, D., Rosero, A., Komis, G., Šamajová, O., Ovečka, M., Voigt, B., & Šamaj, J. (2016). Endosomal interactions during root hair growth. Frontiers in Plant Science. Frontiers Research Foundation. https://doi.org/10.3389/fpls.2015.01262 chicago: Wangenheim, Daniel von, Amparo Rosero, George Komis, Olga Šamajová, Miroslav Ovečka, Boris Voigt, and Jozef Šamaj. “Endosomal Interactions during Root Hair Growth.” Frontiers in Plant Science. Frontiers Research Foundation, 2016. https://doi.org/10.3389/fpls.2015.01262. ieee: D. von Wangenheim et al., “Endosomal interactions during root hair growth,” Frontiers in Plant Science, vol. 6, no. JAN2016. Frontiers Research Foundation, 2016. ista: von Wangenheim D, Rosero A, Komis G, Šamajová O, Ovečka M, Voigt B, Šamaj J. 2016. Endosomal interactions during root hair growth. Frontiers in Plant Science. 6(JAN2016), 1262. mla: von Wangenheim, Daniel, et al. “Endosomal Interactions during Root Hair Growth.” Frontiers in Plant Science, vol. 6, no. JAN2016, 1262, Frontiers Research Foundation, 2016, doi:10.3389/fpls.2015.01262. short: D. von Wangenheim, A. Rosero, G. Komis, O. Šamajová, M. Ovečka, B. Voigt, J. Šamaj, Frontiers in Plant Science 6 (2016). date_created: 2018-12-11T11:50:53Z date_published: 2016-01-29T00:00:00Z date_updated: 2021-01-12T06:49:18Z day: '29' ddc: - '581' department: - _id: JiFr doi: 10.3389/fpls.2015.01262 file: - access_level: open_access checksum: 3127eab844d53564bf47e2b6b42f1ca0 content_type: application/pdf creator: system date_created: 2018-12-12T10:09:36Z date_updated: 2020-07-14T12:44:41Z file_id: '4760' file_name: IST-2016-710-v1+1_fpls-06-01262.pdf file_size: 1640550 relation: main_file file_date_updated: 2020-07-14T12:44:41Z has_accepted_license: '1' intvolume: ' 6' issue: JAN2016 language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Frontiers in Plant Science publication_status: published publisher: Frontiers Research Foundation publist_id: '6094' pubrep_id: '710' quality_controlled: '1' scopus_import: 1 status: public title: Endosomal interactions during root hair growth tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2016' ... --- _id: '1247' abstract: - lang: eng text: The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity. acknowledgement: "This work was supported by the Ghent University Special Research Fund (M.K.), the European Research Council (Project ERC-2011-StG-20101109-PSDP) (to J.F.), and the Körber European Science Foun-\r\ndation (J.F.). S.D.G. is indebted to the Agency for Science and Technology for\r\na predoctoral fellowship." author: - first_name: Michael full_name: Karampelias, Michael last_name: Karampelias - first_name: Pia full_name: Neyt, Pia last_name: Neyt - first_name: Steven full_name: De Groeve, Steven last_name: De Groeve - first_name: Stijn full_name: Aesaert, Stijn last_name: Aesaert - first_name: Griet full_name: Coussens, Griet last_name: Coussens - first_name: Jakub full_name: Rolčík, Jakub last_name: Rolčík - first_name: Leonardo full_name: Bruno, Leonardo last_name: Bruno - first_name: Nancy full_name: De Winne, Nancy last_name: De Winne - first_name: Annemie full_name: Van Minnebruggen, Annemie last_name: Van Minnebruggen - first_name: Marc full_name: Van Montagu, Marc last_name: Van Montagu - first_name: Maria full_name: Ponce, Maria last_name: Ponce - first_name: José full_name: Micol, José last_name: Micol - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Geert full_name: De Jaeger, Geert last_name: De Jaeger - first_name: Mieke full_name: Van Lijsebettens, Mieke last_name: Van Lijsebettens citation: ama: Karampelias M, Neyt P, De Groeve S, et al. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. PNAS. 2016;113(10):2768-2773. doi:10.1073/pnas.1501343112 apa: Karampelias, M., Neyt, P., De Groeve, S., Aesaert, S., Coussens, G., Rolčík, J., … Van Lijsebettens, M. (2016). ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1501343112 chicago: Karampelias, Michael, Pia Neyt, Steven De Groeve, Stijn Aesaert, Griet Coussens, Jakub Rolčík, Leonardo Bruno, et al. “ROTUNDA3 Function in Plant Development by Phosphatase 2A-Mediated Regulation of Auxin Transporter Recycling.” PNAS. National Academy of Sciences, 2016. https://doi.org/10.1073/pnas.1501343112. ieee: M. Karampelias et al., “ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling,” PNAS, vol. 113, no. 10. National Academy of Sciences, pp. 2768–2773, 2016. ista: Karampelias M, Neyt P, De Groeve S, Aesaert S, Coussens G, Rolčík J, Bruno L, De Winne N, Van Minnebruggen A, Van Montagu M, Ponce M, Micol J, Friml J, De Jaeger G, Van Lijsebettens M. 2016. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling. PNAS. 113(10), 2768–2773. mla: Karampelias, Michael, et al. “ROTUNDA3 Function in Plant Development by Phosphatase 2A-Mediated Regulation of Auxin Transporter Recycling.” PNAS, vol. 113, no. 10, National Academy of Sciences, 2016, pp. 2768–73, doi:10.1073/pnas.1501343112. short: M. Karampelias, P. Neyt, S. De Groeve, S. Aesaert, G. Coussens, J. Rolčík, L. Bruno, N. De Winne, A. Van Minnebruggen, M. Van Montagu, M. Ponce, J. Micol, J. Friml, G. De Jaeger, M. Van Lijsebettens, PNAS 113 (2016) 2768–2773. date_created: 2018-12-11T11:50:56Z date_published: 2016-03-08T00:00:00Z date_updated: 2021-01-12T06:49:22Z day: '08' department: - _id: JiFr doi: 10.1073/pnas.1501343112 ec_funded: 1 intvolume: ' 113' issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791031/ month: '03' oa: 1 oa_version: Submitted Version page: 2768 - 2773 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '6081' quality_controlled: '1' scopus_import: 1 status: public title: ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 113 year: '2016' ... --- _id: '1251' abstract: - lang: eng text: Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxinactin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-Nnaphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1).We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstreamlocations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. acknowledgement: ' This work was supported by grants from the European Social Fund (CZ.1.07/2.3.00/20.0043), the Czech Science Foundation GAČR (GA13-40637S) to J.F. and M.Z., the Ministry of Education, Youth, and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) to M.Z., the Ministry for Higher Education and Research of Luxembourg (REC-LOCM-20140703) to C.T., the Partial Funding Program for Short Stays Abroad of CONICET Argentina (to N.I.B.), Swiss National Funds, the Pool de Recherche of the University of Fribourg, and the Novartis Foundation (all to M.G.). ' author: - first_name: Jinsheng full_name: Zhu, Jinsheng last_name: Zhu - first_name: Aurélien full_name: Bailly, Aurélien last_name: Bailly - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Valpuri full_name: Sovero, Valpuri last_name: Sovero - first_name: Martin full_name: Di Donato, Martin last_name: Di Donato - first_name: Pei full_name: Ge, Pei last_name: Ge - first_name: Jacqueline full_name: Oehri, Jacqueline last_name: Oehri - first_name: Bibek full_name: Aryal, Bibek last_name: Aryal - first_name: Pengchao full_name: Hao, Pengchao last_name: Hao - first_name: Miriam full_name: Linnert, Miriam last_name: Linnert - first_name: Noelia full_name: Burgardt, Noelia last_name: Burgardt - first_name: Christian full_name: Lücke, Christian last_name: Lücke - first_name: Matthias full_name: Weiwad, Matthias last_name: Weiwad - first_name: Max full_name: Michel, Max last_name: Michel - first_name: Oliver full_name: Weiergräber, Oliver last_name: Weiergräber - first_name: Stephan full_name: Pollmann, Stephan last_name: Pollmann - first_name: Elisa full_name: Azzarello, Elisa last_name: Azzarello - first_name: Stefano full_name: Mancuso, Stefano last_name: Mancuso - first_name: Noel full_name: Ferro, Noel last_name: Ferro - first_name: Yoichiro full_name: Fukao, Yoichiro last_name: Fukao - first_name: Céline full_name: Hoffmann, Céline last_name: Hoffmann - first_name: Roland full_name: Wedlich Söldner, Roland last_name: Wedlich Söldner - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Clément full_name: Thomas, Clément last_name: Thomas - first_name: Markus full_name: Geisler, Markus last_name: Geisler citation: ama: Zhu J, Bailly A, Zwiewka M, et al. TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell. 2016;28(4):930-948. doi:10.1105/tpc.15.00726 apa: Zhu, J., Bailly, A., Zwiewka, M., Sovero, V., Di Donato, M., Ge, P., … Geisler, M. (2016). TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.15.00726 chicago: Zhu, Jinsheng, Aurélien Bailly, Marta Zwiewka, Valpuri Sovero, Martin Di Donato, Pei Ge, Jacqueline Oehri, et al. “TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics.” Plant Cell. American Society of Plant Biologists, 2016. https://doi.org/10.1105/tpc.15.00726. ieee: J. Zhu et al., “TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics,” Plant Cell, vol. 28, no. 4. American Society of Plant Biologists, pp. 930–948, 2016. ista: Zhu J, Bailly A, Zwiewka M, Sovero V, Di Donato M, Ge P, Oehri J, Aryal B, Hao P, Linnert M, Burgardt N, Lücke C, Weiwad M, Michel M, Weiergräber O, Pollmann S, Azzarello E, Mancuso S, Ferro N, Fukao Y, Hoffmann C, Wedlich Söldner R, Friml J, Thomas C, Geisler M. 2016. TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell. 28(4), 930–948. mla: Zhu, Jinsheng, et al. “TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics.” Plant Cell, vol. 28, no. 4, American Society of Plant Biologists, 2016, pp. 930–48, doi:10.1105/tpc.15.00726. short: J. Zhu, A. Bailly, M. Zwiewka, V. Sovero, M. Di Donato, P. Ge, J. Oehri, B. Aryal, P. Hao, M. Linnert, N. Burgardt, C. Lücke, M. Weiwad, M. Michel, O. Weiergräber, S. Pollmann, E. Azzarello, S. Mancuso, N. Ferro, Y. Fukao, C. Hoffmann, R. Wedlich Söldner, J. Friml, C. Thomas, M. Geisler, Plant Cell 28 (2016) 930–948. date_created: 2018-12-11T11:50:57Z date_published: 2016-04-01T00:00:00Z date_updated: 2021-01-12T06:49:24Z day: '01' department: - _id: JiFr doi: 10.1105/tpc.15.00726 intvolume: ' 28' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4863381/ month: '04' oa: 1 oa_version: Submitted Version page: 930 - 948 publication: Plant Cell publication_status: published publisher: American Society of Plant Biologists publist_id: '6078' quality_controlled: '1' scopus_import: 1 status: public title: TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2016' ... --- _id: '1264' abstract: - lang: eng text: n contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found to be essential for PIN1 trafficking and localization in vivo. The PIN1:GFP-F165A mutant showed reduced endocytosis but also localized to intracellular structures containing several layers of membranes and endoplasmic reticulum (ER) markers, suggesting that they correspond to ER or ER-derived membranes. While PIN1:GFP localized normally in a μA (μ2)-adaptin mutant, it accumulated in big intracellular structures containing LysoTracker in a μD (μ3)-adaptin mutant, consistent with previous results obtained with mutants of other subunits of the AP-3 complex. Our data suggest that Phe-165, through the binding of μA (μ2)- and μD (μ3)-adaptin, is important for PIN1 endocytosis and for PIN1 trafficking along the secretory pathway, respectively. acknowledgement: "We thank Dr. R. Offringa (Leiden University) for providing the GST-\r\nPIN-CL construct; Sandra Richter and Gerd Jurgens (University of Tübin-\r\ngen) for providing the estradiol-inducible PIN1-RFP construct and the\r\ngnl1 mutant expressing BFA-sensitive GNL1; F.J. Santonja (University of Valencia)\r\nfor help with the statistical analysis; Jurgen Kleine-Vehn, Elke Barbez, and\r\nEva Benkova for helpful discussions; the Salk Institute Genomic Analysis\r\nLaboratory for providing the sequence-indexed Arabidopsis T-DNA in-\r\nsertion mutants; and the greenhouse section and the microscopy section\r\nof SCSIE (University of Valencia) and Pilar Selvi for excellent technical\r\nassistance." author: - first_name: Gloria full_name: Sancho Andrés, Gloria last_name: Sancho Andrés - first_name: Esther full_name: Soriano Ortega, Esther last_name: Soriano Ortega - first_name: Caiji full_name: Gao, Caiji last_name: Gao - first_name: Joan full_name: Bernabé Orts, Joan last_name: Bernabé Orts - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Anna full_name: Müller, Anna id: 420AB15A-F248-11E8-B48F-1D18A9856A87 last_name: Müller - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Liwen full_name: Jiang, Liwen last_name: Jiang - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Fernando full_name: Aniento, Fernando last_name: Aniento - first_name: Maria full_name: Marcote, Maria last_name: Marcote citation: ama: Sancho Andrés G, Soriano Ortega E, Gao C, et al. Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier. Plant Physiology. 2016;171(3):1965-1982. doi:10.1104/pp.16.00373 apa: Sancho Andrés, G., Soriano Ortega, E., Gao, C., Bernabé Orts, J., Narasimhan, M., Müller, A., … Marcote, M. (2016). Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.16.00373 chicago: Sancho Andrés, Gloria, Esther Soriano Ortega, Caiji Gao, Joan Bernabé Orts, Madhumitha Narasimhan, Anna Müller, Ricardo Tejos, et al. “Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier.” Plant Physiology. American Society of Plant Biologists, 2016. https://doi.org/10.1104/pp.16.00373. ieee: G. Sancho Andrés et al., “Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier,” Plant Physiology, vol. 171, no. 3. American Society of Plant Biologists, pp. 1965–1982, 2016. ista: Sancho Andrés G, Soriano Ortega E, Gao C, Bernabé Orts J, Narasimhan M, Müller A, Tejos R, Jiang L, Friml J, Aniento F, Marcote M. 2016. Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier. Plant Physiology. 171(3), 1965–1982. mla: Sancho Andrés, Gloria, et al. “Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier.” Plant Physiology, vol. 171, no. 3, American Society of Plant Biologists, 2016, pp. 1965–82, doi:10.1104/pp.16.00373. short: G. Sancho Andrés, E. Soriano Ortega, C. Gao, J. Bernabé Orts, M. Narasimhan, A. Müller, R. Tejos, L. Jiang, J. Friml, F. Aniento, M. Marcote, Plant Physiology 171 (2016) 1965–1982. date_created: 2018-12-11T11:51:01Z date_published: 2016-07-01T00:00:00Z date_updated: 2021-01-12T06:49:29Z day: '01' department: - _id: JiFr - _id: EvBe doi: 10.1104/pp.16.00373 ec_funded: 1 intvolume: ' 171' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4936568/ month: '07' oa: 1 oa_version: Submitted Version page: 1965 - 1982 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Plant Physiology publication_status: published publisher: American Society of Plant Biologists publist_id: '6059' quality_controlled: '1' scopus_import: 1 status: public title: Sorting motifs involved in the trafficking and localization of the PIN1 auxin efflux carrier type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2016' ... --- _id: '1277' abstract: - lang: eng text: "The Arabidopsis thaliana endogenous elicitor peptides (AtPeps) are released into the apoplast after cellular damage caused by pathogens or wounding to induce innate immunity by direct binding to the membrane-localized leucine-rich repeat receptor kinases, PEP RECEPTOR1 (PEPR1) and PEPR2. Although the PEPR-mediated signaling components and responses have been studied extensively, the contributions of the subcellular localization and dynamics of the active PEPRs remain largely unknown. We used live-cell imaging of the fluorescently labeled and bioactive pep1 to visualize the intracellular behavior of the PEPRs in the Arabidopsis root meristem. We found that AtPep1 decorated the plasma membrane (PM) in a receptor-dependent manner and cointernalized with PEPRs. Trafficking of the AtPep1-PEPR1 complexes to the vacuole required neither the trans-Golgi network/early endosome (TGN/EE)-localized vacuolar H+ -ATPase activity nor the function of the brefeldin A-sensitive ADP-ribosylation factor-guanine exchange factors (ARF-GEFs). In addition, AtPep1 and different TGN/EE markers colocalized only rarely, implying that the intracellular route of this receptor-ligand pair is largely independent of the TGN/EE. Inducible overexpression of the Arabidopsis clathrin coat disassembly factor, Auxilin2, which inhibits clathrin-mediated endocytosis (CME), impaired the AtPep1-PEPR1 internalization and compromised AtPep1-mediated responses. Our results show that clathrin function at the PM is required to induce plant defense responses, likely through CME of cell surface-located signaling components.\r\n" acknowledgement: "F.A.O.-M. was supported by special\r\nresearch funding from the Flemish Government for a joint doctorate fellowship\r\nat Ghent University, and funding from the Student Program\r\n–\r\nGraduate Studies\r\nPlan Program from the Coordination for the Improvement of Higher Educa-\r\ntion Personnel, Brazil, for a doctorate fellowship at the University of São Paulo.\r\nX.Z. and Q.L. are indebted to the China Science Council and G.P.d.O. to the\r\n“\r\nCiência sem Fronteiras\r\n”\r\nfor predoctoral fellowships. R.K. and Y.L. have re-\r\nceived postdoctoral fellowships from the Belgian Science Policy Office. This\r\nresearch was supported by Flanders Research Foundation Grant G008416N\r\n(to E.R.) and by the São Paulo Research Foundation and the National Council\r\nfor Scientific and Technological Development (CNPq) (D.S.d.M.). D.S.d.M. is a\r\nresearch fellow of CNPq.\r\nWe thank D. Van Damme, E. Mylle, M. Castro Silva-Filho,\r\nand J. Goeman for providing usefu\r\nl advice and technical assistance;\r\nI. Hara-Nishimura, J. Lin, G. Jürgens, M. A. Johnson, and P. Bozhkov for sharing\r\npublished materials; and M. Nowack and M. Fendrych for kindly donating the\r\npUBQ10::ATG8-YFP\r\n-expressing marker line." author: - first_name: Fausto full_name: Ortiz Morea, Fausto last_name: Ortiz Morea - first_name: Daniel full_name: Savatin, Daniel last_name: Savatin - first_name: Wim full_name: Dejonghe, Wim last_name: Dejonghe - first_name: Rahul full_name: Kumar, Rahul last_name: Kumar - first_name: Yu full_name: Luo, Yu last_name: Luo - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Jos full_name: Van Begin, Jos last_name: Van Begin - first_name: Keini full_name: Dressano, Keini last_name: Dressano - first_name: Guilherme full_name: De Oliveira, Guilherme last_name: De Oliveira - first_name: Xiuyang full_name: Zhao, Xiuyang last_name: Zhao - first_name: Qing full_name: Lu, Qing last_name: Lu - first_name: Annemieke full_name: Madder, Annemieke last_name: Madder - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Daniel full_name: De Moura, Daniel last_name: De Moura - first_name: Eugenia full_name: Russinova, Eugenia last_name: Russinova citation: ama: Ortiz Morea F, Savatin D, Dejonghe W, et al. Danger-associated peptide signaling in Arabidopsis requires clathrin. PNAS. 2016;113(39):11028-11033. doi:10.1073/pnas.1605588113 apa: Ortiz Morea, F., Savatin, D., Dejonghe, W., Kumar, R., Luo, Y., Adamowski, M., … Russinova, E. (2016). Danger-associated peptide signaling in Arabidopsis requires clathrin. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1605588113 chicago: Ortiz Morea, Fausto, Daniel Savatin, Wim Dejonghe, Rahul Kumar, Yu Luo, Maciek Adamowski, Jos Van Begin, et al. “Danger-Associated Peptide Signaling in Arabidopsis Requires Clathrin.” PNAS. National Academy of Sciences, 2016. https://doi.org/10.1073/pnas.1605588113. ieee: F. Ortiz Morea et al., “Danger-associated peptide signaling in Arabidopsis requires clathrin,” PNAS, vol. 113, no. 39. National Academy of Sciences, pp. 11028–11033, 2016. ista: Ortiz Morea F, Savatin D, Dejonghe W, Kumar R, Luo Y, Adamowski M, Van Begin J, Dressano K, De Oliveira G, Zhao X, Lu Q, Madder A, Friml J, De Moura D, Russinova E. 2016. Danger-associated peptide signaling in Arabidopsis requires clathrin. PNAS. 113(39), 11028–11033. mla: Ortiz Morea, Fausto, et al. “Danger-Associated Peptide Signaling in Arabidopsis Requires Clathrin.” PNAS, vol. 113, no. 39, National Academy of Sciences, 2016, pp. 11028–33, doi:10.1073/pnas.1605588113. short: F. Ortiz Morea, D. Savatin, W. Dejonghe, R. Kumar, Y. Luo, M. Adamowski, J. Van Begin, K. Dressano, G. De Oliveira, X. Zhao, Q. Lu, A. Madder, J. Friml, D. De Moura, E. Russinova, PNAS 113 (2016) 11028–11033. date_created: 2018-12-11T11:51:06Z date_published: 2016-09-27T00:00:00Z date_updated: 2021-01-12T06:49:34Z day: '27' department: - _id: JiFr doi: 10.1073/pnas.1605588113 intvolume: ' 113' issue: '39' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047203/ month: '09' oa: 1 oa_version: Preprint page: 11028 - 11033 publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '6039' quality_controlled: '1' scopus_import: 1 status: public title: Danger-associated peptide signaling in Arabidopsis requires clathrin type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 113 year: '2016' ... --- _id: '1344' abstract: - lang: eng text: Despite being composed of immobile cells, plants reorient along directional stimuli. The hormone auxin is redistributed in stimulated organs leading to differential growth and bending. Auxin application triggers rapid cell wall acidification and elongation of aerial organs of plants, but the molecular players mediating these effects are still controversial. Here we use genetically-encoded pH and auxin signaling sensors, pharmacological and genetic manipulations available for Arabidopsis etiolated hypocotyls to clarify how auxin is perceived and the downstream growth executed. We show that auxin-induced acidification occurs by local activation of H+-ATPases, which in the context of gravity response is restricted to the lower organ side. This auxin-stimulated acidification and growth require TIR1/AFB-Aux/IAA nuclear auxin perception. In addition, auxin-induced gene transcription and specifically SAUR proteins are crucial downstream mediators of this growth. Our study provides strong experimental support for the acid growth theory and clarified the contribution of the upstream auxin perception mechanisms. acknowledgement: "The authors express their gratitude to Veronika Bierbaum, Robert Hauschild for help with MATLAB,\r\nDaniel von Wangenheim for the gravitropism assay. We are thankful to Bill Gray, Mark Estelle,\r\nMichael Prigge, Ottoline Leyser, Claudia Oecking for sharing the seeds with us. We thank Katelyn\r\nSageman-Furnas and the members of the Friml lab for critical reading of the manuscript. The\r\nresearch leading to these results has received funding from the People Programme (Marie Curie\r\nActions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant\r\nagreement n° 291734. This work was also supported by the European Research Council (project\r\nERC-2011-StG-20101109-PSDP)." article_number: e19048 author: - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Jeffrey full_name: Leung, Jeffrey last_name: Leung - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Fendrych M, Leung J, Friml J. TIR1 AFB Aux IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife. 2016;5. doi:10.7554/eLife.19048 apa: Fendrych, M., Leung, J., & Friml, J. (2016). TIR1 AFB Aux IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.19048 chicago: Fendrych, Matyas, Jeffrey Leung, and Jiří Friml. “TIR1 AFB Aux IAA Auxin Perception Mediates Rapid Cell Wall Acidification and Growth of Arabidopsis Hypocotyls.” ELife. eLife Sciences Publications, 2016. https://doi.org/10.7554/eLife.19048. ieee: M. Fendrych, J. Leung, and J. Friml, “TIR1 AFB Aux IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls,” eLife, vol. 5. eLife Sciences Publications, 2016. ista: Fendrych M, Leung J, Friml J. 2016. TIR1 AFB Aux IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife. 5, e19048. mla: Fendrych, Matyas, et al. “TIR1 AFB Aux IAA Auxin Perception Mediates Rapid Cell Wall Acidification and Growth of Arabidopsis Hypocotyls.” ELife, vol. 5, e19048, eLife Sciences Publications, 2016, doi:10.7554/eLife.19048. short: M. Fendrych, J. Leung, J. Friml, ELife 5 (2016). date_created: 2018-12-11T11:51:29Z date_published: 2016-09-14T00:00:00Z date_updated: 2021-01-12T06:50:01Z day: '14' ddc: - '581' department: - _id: JiFr doi: 10.7554/eLife.19048 ec_funded: 1 file: - access_level: open_access checksum: 9209541fbba00f24daad21a5d568540d content_type: application/pdf creator: system date_created: 2018-12-12T10:09:24Z date_updated: 2020-07-14T12:44:45Z file_id: '4748' file_name: IST-2016-693-v1+1_e19048-download.pdf file_size: 5666343 relation: main_file file_date_updated: 2020-07-14T12:44:45Z has_accepted_license: '1' intvolume: ' 5' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '5908' pubrep_id: '654' quality_controlled: '1' scopus_import: 1 status: public title: TIR1 AFB Aux IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2016' ... --- _id: '1345' abstract: - lang: eng text: The electrostatic charge at the inner surface of the plasma membrane is strongly negative in higher organisms. A new study shows that phosphatidylinositol-4-phosphate plays a critical role in establishing plasma membrane surface charge in Arabidopsis, which regulates the correct localization of signalling components. article_number: '16102' author: - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Molnar G, Fendrych M, Friml J. Plasma membrane: Negative attraction. Nature Plants. 2016;2. doi:10.1038/nplants.2016.102' apa: 'Molnar, G., Fendrych, M., & Friml, J. (2016). Plasma membrane: Negative attraction. Nature Plants. Nature Publishing Group. https://doi.org/10.1038/nplants.2016.102' chicago: 'Molnar, Gergely, Matyas Fendrych, and Jiří Friml. “Plasma Membrane: Negative Attraction.” Nature Plants. Nature Publishing Group, 2016. https://doi.org/10.1038/nplants.2016.102.' ieee: 'G. Molnar, M. Fendrych, and J. Friml, “Plasma membrane: Negative attraction,” Nature Plants, vol. 2. Nature Publishing Group, 2016.' ista: 'Molnar G, Fendrych M, Friml J. 2016. Plasma membrane: Negative attraction. Nature Plants. 2, 16102.' mla: 'Molnar, Gergely, et al. “Plasma Membrane: Negative Attraction.” Nature Plants, vol. 2, 16102, Nature Publishing Group, 2016, doi:10.1038/nplants.2016.102.' short: G. Molnar, M. Fendrych, J. Friml, Nature Plants 2 (2016). date_created: 2018-12-11T11:51:30Z date_published: 2016-07-01T00:00:00Z date_updated: 2021-01-12T06:50:02Z day: '01' ddc: - '581' department: - _id: JiFr doi: 10.1038/nplants.2016.102 file: - access_level: open_access checksum: 9ba65f558563b287f875f48fa9f30fb2 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:36Z date_updated: 2020-07-14T12:44:45Z file_id: '4954' file_name: IST-2018-1007-v1+1_Molnar_NatPlants_2016.pdf file_size: 127781 relation: main_file - access_level: open_access checksum: 550d252be808d8ca2b43e83dddb4212f content_type: application/pdf creator: system date_created: 2018-12-12T10:12:37Z date_updated: 2020-07-14T12:44:45Z file_id: '4955' file_name: IST-2018-1007-v1+2_Molnar_NatPlants_2016_editor_statement.pdf file_size: 430556 relation: main_file file_date_updated: 2020-07-14T12:44:45Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Nature Plants publication_status: published publisher: Nature Publishing Group publist_id: '5907' pubrep_id: '1007' quality_controlled: '1' scopus_import: 1 status: public title: 'Plasma membrane: Negative attraction' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2016' ... --- _id: '1372' abstract: - lang: eng text: Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism. acknowledgement: 'Funded by Ministry of Education, Youth and Sports Czech Republic. Grant Numbers: CEITEC 2020, LQ1601, LO1204, LH14104 and The European Research Council. Grant Number: ERC-2011-StG-20101109-PSDP and The Czech Science Foundation. Grant Numbers: GAP501/11/1150, GA13-40637S, GP14-30004P' author: - first_name: Markéta full_name: Pernisová, Markéta last_name: Pernisová - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Danka full_name: Haruštiaková, Danka last_name: Haruštiaková - first_name: Martina full_name: Matonohova, Martina last_name: Matonohova - first_name: Lukáš full_name: Spíchal, Lukáš last_name: Spíchal - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jan full_name: Hejátko, Jan last_name: Hejátko citation: ama: Pernisová M, Prat T, Grones P, et al. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. New Phytologist. 2016;212(2):497-509. doi:10.1111/nph.14049 apa: Pernisová, M., Prat, T., Grones, P., Haruštiaková, D., Matonohova, M., Spíchal, L., … Hejátko, J. (2016). Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. New Phytologist. Wiley-Blackwell. https://doi.org/10.1111/nph.14049 chicago: Pernisová, Markéta, Tomas Prat, Peter Grones, Danka Haruštiaková, Martina Matonohova, Lukáš Spíchal, Tomasz Nodzyński, Jiří Friml, and Jan Hejátko. “Cytokinins Influence Root Gravitropism via Differential Regulation of Auxin Transporter Expression and Localization in Arabidopsis.” New Phytologist. Wiley-Blackwell, 2016. https://doi.org/10.1111/nph.14049. ieee: M. Pernisová et al., “Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis,” New Phytologist, vol. 212, no. 2. Wiley-Blackwell, pp. 497–509, 2016. ista: Pernisová M, Prat T, Grones P, Haruštiaková D, Matonohova M, Spíchal L, Nodzyński T, Friml J, Hejátko J. 2016. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. New Phytologist. 212(2), 497–509. mla: Pernisová, Markéta, et al. “Cytokinins Influence Root Gravitropism via Differential Regulation of Auxin Transporter Expression and Localization in Arabidopsis.” New Phytologist, vol. 212, no. 2, Wiley-Blackwell, 2016, pp. 497–509, doi:10.1111/nph.14049. short: M. Pernisová, T. Prat, P. Grones, D. Haruštiaková, M. Matonohova, L. Spíchal, T. Nodzyński, J. Friml, J. Hejátko, New Phytologist 212 (2016) 497–509. date_created: 2018-12-11T11:51:38Z date_published: 2016-10-01T00:00:00Z date_updated: 2021-01-12T06:50:13Z day: '01' ddc: - '581' department: - _id: JiFr doi: 10.1111/nph.14049 file: - access_level: open_access checksum: 27fd841ceaf0403559d7048ef51500f9 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:53Z date_updated: 2020-07-14T12:44:47Z file_id: '5108' file_name: IST-2018-1006-v1+1_Pernisova_NewPhytol_2016_peer_review.pdf file_size: 972763 relation: main_file file_date_updated: 2020-07-14T12:44:47Z has_accepted_license: '1' intvolume: ' 212' issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 497 - 509 publication: New Phytologist publication_status: published publisher: Wiley-Blackwell publist_id: '5839' pubrep_id: '1006' quality_controlled: '1' scopus_import: 1 status: public title: Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 212 year: '2016' ... --- _id: '1410' abstract: - lang: eng text: The pollen grains arise after meiosis of pollen mother cells within the anthers. A series of complex structural changes follows, generating mature pollen grains capable of performing the double fertilization of the female megasporophyte. Several signaling molecules, including hormones and lipids, have been involved in the regulation and appropriate control of pollen development. Phosphatidylinositol 4-phophate 5-kinases (PIP5K), which catalyze the biosynthesis of the phosphoinositide PtdIns(4,5)P2, are important for tip polar growth of root hairs and pollen tubes, embryo development, vegetative plant growth, and responses to the environment. Here, we report a role of PIP5Ks during microgametogenesis. PIP5K1 and PIP5K2 are expressed during early stages of pollen development and their transcriptional activity respond to auxin in pollen grains. Early male gametophytic lethality to certain grade was observed in both pip5k1-/- and pip5k2-/- single mutants. The number of pip5k mutant alleles is directly related to the frequency of aborted pollen grains suggesting the two genes are involved in the same function. Indeed PIP5K1 and PIP5K2 are functionally redundant since homozygous double mutants did not render viable pollen grains. The loss of function of PIP5K1 and PIP5K2results in defects in vacuole morphology in pollen at the later stages and epidermal root cells. Our results show that PIP5K1, PIP5K2 and phosphoinositide signaling are important cues for early developmental stages and vacuole formation during microgametogenesis. acknowledgement: the Odysseus Program of the Research Foundation-Flanders [G091608] to JF. author: - first_name: José full_name: Ugalde, José last_name: Ugalde - first_name: Cecilia full_name: Rodríguez Furlán, Cecilia last_name: Rodríguez Furlán - first_name: Riet full_name: De Rycke, Riet last_name: De Rycke - first_name: Lorena full_name: Norambuena, Lorena last_name: Norambuena - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Gabriel full_name: León, Gabriel last_name: León - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos citation: ama: Ugalde J, Rodríguez Furlán C, De Rycke R, et al. Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. Plant Science. 2016;250:10-19. doi:10.1016/j.plantsci.2016.05.014 apa: Ugalde, J., Rodríguez Furlán, C., De Rycke, R., Norambuena, L., Friml, J., León, G., & Tejos, R. (2016). Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. Plant Science. Elsevier. https://doi.org/10.1016/j.plantsci.2016.05.014 chicago: Ugalde, José, Cecilia Rodríguez Furlán, Riet De Rycke, Lorena Norambuena, Jiří Friml, Gabriel León, and Ricardo Tejos. “Phosphatidylinositol 4-Phosphate 5-Kinases 1 and 2 Are Involved in the Regulation of Vacuole Morphology during Arabidopsis Thaliana Pollen Development.” Plant Science. Elsevier, 2016. https://doi.org/10.1016/j.plantsci.2016.05.014. ieee: J. Ugalde et al., “Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development,” Plant Science, vol. 250. Elsevier, pp. 10–19, 2016. ista: Ugalde J, Rodríguez Furlán C, De Rycke R, Norambuena L, Friml J, León G, Tejos R. 2016. Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. Plant Science. 250, 10–19. mla: Ugalde, José, et al. “Phosphatidylinositol 4-Phosphate 5-Kinases 1 and 2 Are Involved in the Regulation of Vacuole Morphology during Arabidopsis Thaliana Pollen Development.” Plant Science, vol. 250, Elsevier, 2016, pp. 10–19, doi:10.1016/j.plantsci.2016.05.014. short: J. Ugalde, C. Rodríguez Furlán, R. De Rycke, L. Norambuena, J. Friml, G. León, R. Tejos, Plant Science 250 (2016) 10–19. date_created: 2018-12-11T11:51:51Z date_published: 2016-09-01T00:00:00Z date_updated: 2021-01-12T06:50:33Z day: '01' ddc: - '581' department: - _id: JiFr doi: 10.1016/j.plantsci.2016.05.014 external_id: pmid: - '27457979' file: - access_level: open_access checksum: ca08de036e6ddc81e6f760e0ccdebd3f content_type: application/pdf creator: dernst date_created: 2019-04-17T07:41:57Z date_updated: 2020-07-14T12:44:53Z file_id: '6331' file_name: 2016_PlantScience_Ugalde.pdf file_size: 4338545 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 250' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 10 - 19 pmid: 1 publication: Plant Science publication_status: published publisher: Elsevier publist_id: '5797' pubrep_id: '1005' quality_controlled: '1' scopus_import: 1 status: public title: Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 250 year: '2016' ... --- _id: '1417' abstract: - lang: eng text: Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport. acknowledgement: This work was supported by the European Research Council (project ERC-2011-StG-20101109-PSDP, project CEITEC (CZ.1.05/1.1.00/02.0068) and the Czech Science Foundation GACR (project no. 13-4063 7S to J.F.) author: - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 - first_name: Petr full_name: Skůpa, Petr last_name: Skůpa - first_name: Tom full_name: Viaene, Tom last_name: Viaene - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Petr full_name: Klíma, Petr last_name: Klíma - first_name: Mária full_name: Čarná, Mária last_name: Čarná - first_name: Jakub full_name: Rolčík, Jakub last_name: Rolčík - first_name: Riet full_name: De Rycke, Riet last_name: De Rycke - first_name: Ignacio full_name: Moreno, Ignacio last_name: Moreno - first_name: Petre full_name: Dobrev, Petre last_name: Dobrev - first_name: Ariel full_name: Orellana, Ariel last_name: Orellana - first_name: Eva full_name: Zažímalová, Eva last_name: Zažímalová - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Simon S, Skůpa P, Viaene T, et al. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist. 2016;211(1):65-74. doi:10.1111/nph.14019 apa: Simon, S., Skůpa, P., Viaene, T., Zwiewka, M., Tejos, R., Klíma, P., … Friml, J. (2016). PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist. Wiley-Blackwell. https://doi.org/10.1111/nph.14019 chicago: Simon, Sibu, Petr Skůpa, Tom Viaene, Marta Zwiewka, Ricardo Tejos, Petr Klíma, Mária Čarná, et al. “PIN6 Auxin Transporter at Endoplasmic Reticulum and Plasma Membrane Mediates Auxin Homeostasis and Organogenesis in Arabidopsis.” New Phytologist. Wiley-Blackwell, 2016. https://doi.org/10.1111/nph.14019. ieee: S. Simon et al., “PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis,” New Phytologist, vol. 211, no. 1. Wiley-Blackwell, pp. 65–74, 2016. ista: Simon S, Skůpa P, Viaene T, Zwiewka M, Tejos R, Klíma P, Čarná M, Rolčík J, De Rycke R, Moreno I, Dobrev P, Orellana A, Zažímalová E, Friml J. 2016. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis. New Phytologist. 211(1), 65–74. mla: Simon, Sibu, et al. “PIN6 Auxin Transporter at Endoplasmic Reticulum and Plasma Membrane Mediates Auxin Homeostasis and Organogenesis in Arabidopsis.” New Phytologist, vol. 211, no. 1, Wiley-Blackwell, 2016, pp. 65–74, doi:10.1111/nph.14019. short: S. Simon, P. Skůpa, T. Viaene, M. Zwiewka, R. Tejos, P. Klíma, M. Čarná, J. Rolčík, R. De Rycke, I. Moreno, P. Dobrev, A. Orellana, E. Zažímalová, J. Friml, New Phytologist 211 (2016) 65–74. date_created: 2018-12-11T11:51:54Z date_published: 2016-07-01T00:00:00Z date_updated: 2021-01-12T06:50:36Z day: '01' ddc: - '581' department: - _id: JiFr doi: 10.1111/nph.14019 file: - access_level: open_access checksum: 23522ced3508ffe7a4f247c4230e6493 content_type: application/pdf creator: system date_created: 2018-12-12T10:13:32Z date_updated: 2020-07-14T12:44:53Z file_id: '5016' file_name: IST-2018-1004-v1+1_Simon_NewPhytol_2016_proof.pdf file_size: 3828383 relation: main_file file_date_updated: 2020-07-14T12:44:53Z has_accepted_license: '1' intvolume: ' 211' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 65 - 74 publication: New Phytologist publication_status: published publisher: Wiley-Blackwell publist_id: '5790' pubrep_id: '1004' quality_controlled: '1' scopus_import: 1 status: public title: PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 211 year: '2016' ... --- _id: '1482' abstract: - lang: eng text: Plants have the ability to continously generate new organs by maintaining populations of stem cells throught their lives. The shoot apical meristem (SAM) provides a stable environment for the maintenance of stem cells. All cells inside the SAM divide, yet boundaries and patterns are maintained. Experimental evidence indicates that patterning is independent of cell lineage, thus a dynamic self-regulatory mechanism is required. A pivotal role in the organization of the SAM is played by the WUSCHEL gene (WUS). An important question in this regard is that how WUS expression is positioned in the SAM via a cell-lineage independent signaling mechanism. In this study we demonstrate via mathematical modeling that a combination of an inhibitor of the Cytokinin (CK) receptor, Arabidopsis histidine kinase 4 (AHK4) and two morphogens originating from the top cell layer, can plausibly account for the cell lineage-independent centering of WUS expression within SAM. Furthermore, our laser ablation and microsurgical experiments support the hypothesis that patterning in SAM occurs at the level of CK reception and signaling. The model suggests that the interplay between CK signaling, WUS/CLV feedback loop and boundary signals can account for positioning of the WUS expression, and provides directions for further experimental investigation. acknowledgement: We thank J. Traas, B. Müller and V. Reddy for providing seed materials and Y. Deb for advice regarding the laser ablation experiments. We specially thank Thomas Laux for stimulating discussions and support in the initial phase of this project. article_number: e0147830 author: - first_name: Milad full_name: Adibi, Milad last_name: Adibi - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Christian full_name: Fleck, Christian last_name: Fleck citation: ama: Adibi M, Yoshida S, Weijers D, Fleck C. Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLoS One. 2016;11(2). doi:10.1371/journal.pone.0147830 apa: Adibi, M., Yoshida, S., Weijers, D., & Fleck, C. (2016). Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0147830 chicago: Adibi, Milad, Saiko Yoshida, Dolf Weijers, and Christian Fleck. “Centering the Organizing Center in the Arabidopsis Thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization.” PLoS One. Public Library of Science, 2016. https://doi.org/10.1371/journal.pone.0147830. ieee: M. Adibi, S. Yoshida, D. Weijers, and C. Fleck, “Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization,” PLoS One, vol. 11, no. 2. Public Library of Science, 2016. ista: Adibi M, Yoshida S, Weijers D, Fleck C. 2016. Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLoS One. 11(2), e0147830. mla: Adibi, Milad, et al. “Centering the Organizing Center in the Arabidopsis Thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization.” PLoS One, vol. 11, no. 2, e0147830, Public Library of Science, 2016, doi:10.1371/journal.pone.0147830. short: M. Adibi, S. Yoshida, D. Weijers, C. Fleck, PLoS One 11 (2016). date_created: 2018-12-11T11:52:17Z date_published: 2016-02-01T00:00:00Z date_updated: 2021-01-12T06:51:03Z day: '01' ddc: - '570' department: - _id: JiFr doi: 10.1371/journal.pone.0147830 file: - access_level: open_access checksum: 6066146e527335030f83aa5924ab72a6 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:16Z date_updated: 2020-07-14T12:44:57Z file_id: '5066' file_name: IST-2016-521-v1+1_journal.pone.0147830.PDF file_size: 4297148 relation: main_file file_date_updated: 2020-07-14T12:44:57Z has_accepted_license: '1' intvolume: ' 11' issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '5711' pubrep_id: '521' quality_controlled: '1' scopus_import: 1 status: public title: Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2016' ... --- _id: '1484' acknowledgement: We thank Maciek Adamowski for helpful discussions and Qiang Zhu and Israel Ausin for critical reading of the manuscript. We sincerely apologize to colleagues whose work we could not include owing to space limitations. article_type: review author: - first_name: Xu full_name: Chen, Xu id: 4E5ADCAA-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Shuang full_name: Wu, Shuang last_name: Wu - first_name: Zengyu full_name: Liu, Zengyu last_name: Liu - first_name: Jiřĺ full_name: Friml, Jiřĺ id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Chen X, Wu S, Liu Z, Friml J. Environmental and endogenous control of cortical microtubule orientation. Trends in Cell Biology. 2016;26(6):409-419. doi:10.1016/j.tcb.2016.02.003 apa: Chen, X., Wu, S., Liu, Z., & Friml, J. (2016). Environmental and endogenous control of cortical microtubule orientation. Trends in Cell Biology. Cell Press. https://doi.org/10.1016/j.tcb.2016.02.003 chicago: Chen, Xu, Shuang Wu, Zengyu Liu, and Jiří Friml. “Environmental and Endogenous Control of Cortical Microtubule Orientation.” Trends in Cell Biology. Cell Press, 2016. https://doi.org/10.1016/j.tcb.2016.02.003. ieee: X. Chen, S. Wu, Z. Liu, and J. Friml, “Environmental and endogenous control of cortical microtubule orientation,” Trends in Cell Biology, vol. 26, no. 6. Cell Press, pp. 409–419, 2016. ista: Chen X, Wu S, Liu Z, Friml J. 2016. Environmental and endogenous control of cortical microtubule orientation. Trends in Cell Biology. 26(6), 409–419. mla: Chen, Xu, et al. “Environmental and Endogenous Control of Cortical Microtubule Orientation.” Trends in Cell Biology, vol. 26, no. 6, Cell Press, 2016, pp. 409–19, doi:10.1016/j.tcb.2016.02.003. short: X. Chen, S. Wu, Z. Liu, J. Friml, Trends in Cell Biology 26 (2016) 409–419. date_created: 2018-12-11T11:52:17Z date_published: 2016-06-01T00:00:00Z date_updated: 2021-01-12T06:51:04Z day: '01' ddc: - '581' department: - _id: JiFr doi: 10.1016/j.tcb.2016.02.003 file: - access_level: open_access checksum: b229e5bb4676ec3e27b7b9ea603b3a63 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:34Z date_updated: 2020-07-14T12:44:57Z file_id: '5155' file_name: IST-2018-1002-v1+1_Chen_TICB_2016_proofs.pdf file_size: 2329117 relation: main_file file_date_updated: 2020-07-14T12:44:57Z has_accepted_license: '1' intvolume: ' 26' issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Submitted Version page: 409 - 419 publication: Trends in Cell Biology publication_status: published publisher: Cell Press publist_id: '5704' pubrep_id: '1002' quality_controlled: '1' scopus_import: 1 status: public title: Environmental and endogenous control of cortical microtubule orientation type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 26 year: '2016' ... --- _id: '1641' abstract: - lang: eng text: The plant hormone auxin (indole-3-acetic acid) is a major regulator of plant growth and development including embryo and root patterning, lateral organ formation and growth responses to environmental stimuli. Auxin is directionally transported from cell to cell by the action of specific auxin influx [AUXIN-RESISTANT1 (AUX1)] and efflux [PIN-FORMED (PIN)] transport regulators, whose polar, subcellular localizations are aligned with the direction of the auxin flow. Auxin itself regulates its own transport by modulation of the expression and subcellular localization of the auxin transporters. Increased auxin levels promote the transcription of PIN2 and AUX1 genes as well as stabilize PIN proteins at the plasma membrane, whereas prolonged auxin exposure increases the turnover of PIN proteins and their degradation in the vacuole. In this study, we applied a forward genetic approach, to identify molecular components playing a role in the auxin-mediated degradation. We generated EMS-mutagenized Arabidopsis PIN2::PIN2:GFP, AUX1::AUX1:YFP eir1aux1 populations and designed a screen for mutants with persistently strong fluorescent signals of the tagged PIN2 and AUX1 after prolonged treatment with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D). This approach yielded novel auxin degradation mutants defective in trafficking and degradation of PIN2 and AUX1 proteins and established a role for auxin-mediated degradation in plant development. acknowledgement: 'European Social Fund (CZ.1.07/2.3.00/20.0043) and the Czech Science Foundation GAČR (GA13-40637S) to JF. ' author: - first_name: Radka full_name: Zemová, Radka last_name: Zemová - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Agnieszka full_name: Bielach, Agnieszka last_name: Bielach - first_name: Hélène full_name: Robert, Hélène last_name: Robert - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zemová R, Zwiewka M, Bielach A, Robert H, Friml J. A forward genetic screen for new regulators of auxin mediated degradation of auxin transport proteins in Arabidopsis thaliana. Journal of Plant Growth Regulation. 2016;35(2):465-476. doi:10.1007/s00344-015-9553-2 apa: Zemová, R., Zwiewka, M., Bielach, A., Robert, H., & Friml, J. (2016). A forward genetic screen for new regulators of auxin mediated degradation of auxin transport proteins in Arabidopsis thaliana. Journal of Plant Growth Regulation. Springer. https://doi.org/10.1007/s00344-015-9553-2 chicago: Zemová, Radka, Marta Zwiewka, Agnieszka Bielach, Hélène Robert, and Jiří Friml. “A Forward Genetic Screen for New Regulators of Auxin Mediated Degradation of Auxin Transport Proteins in Arabidopsis Thaliana.” Journal of Plant Growth Regulation. Springer, 2016. https://doi.org/10.1007/s00344-015-9553-2. ieee: R. Zemová, M. Zwiewka, A. Bielach, H. Robert, and J. Friml, “A forward genetic screen for new regulators of auxin mediated degradation of auxin transport proteins in Arabidopsis thaliana,” Journal of Plant Growth Regulation, vol. 35, no. 2. Springer, pp. 465–476, 2016. ista: Zemová R, Zwiewka M, Bielach A, Robert H, Friml J. 2016. A forward genetic screen for new regulators of auxin mediated degradation of auxin transport proteins in Arabidopsis thaliana. Journal of Plant Growth Regulation. 35(2), 465–476. mla: Zemová, Radka, et al. “A Forward Genetic Screen for New Regulators of Auxin Mediated Degradation of Auxin Transport Proteins in Arabidopsis Thaliana.” Journal of Plant Growth Regulation, vol. 35, no. 2, Springer, 2016, pp. 465–76, doi:10.1007/s00344-015-9553-2. short: R. Zemová, M. Zwiewka, A. Bielach, H. Robert, J. Friml, Journal of Plant Growth Regulation 35 (2016) 465–476. date_created: 2018-12-11T11:53:12Z date_published: 2016-06-01T00:00:00Z date_updated: 2021-01-12T06:52:11Z day: '01' ddc: - '581' department: - _id: JiFr doi: 10.1007/s00344-015-9553-2 file: - access_level: open_access checksum: 0dc6a300cde6536ceedd2bcdd2060efb content_type: application/pdf creator: system date_created: 2018-12-12T10:08:34Z date_updated: 2020-07-14T12:45:08Z file_id: '4695' file_name: IST-2018-1001-v1+1_Zemova_JPlantGrowthRegul_2016_proofs.pdf file_size: 5637591 relation: main_file file_date_updated: 2020-07-14T12:45:08Z has_accepted_license: '1' intvolume: ' 35' issue: '2' language: - iso: eng month: '06' oa: 1 oa_version: Preprint page: 465 - 476 publication: Journal of Plant Growth Regulation publication_status: published publisher: Springer publist_id: '5512' pubrep_id: '1001' quality_controlled: '1' scopus_import: 1 status: public title: A forward genetic screen for new regulators of auxin mediated degradation of auxin transport proteins in Arabidopsis thaliana type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 35 year: '2016' ... --- _id: '1346' abstract: - lang: eng text: ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane. acknowledgement: "We thank Yvon Jaillais, Ikuko Hara-Nishimura, Akihiko Nakano, Takashi Ueda and Jinxing Lin for providing materials, Natasha Raikhel, Glenn Hicks, Steffen Vanneste, and Ricardo Tejos for useful suggestions, Patrick Callaerts for providing S2 Drosophila cell cultures, Michael Sixt for providing HeLa cells, Annick Bleys for literature searches, VIB Bio Imaging Core for help with imaging conditions and Martine De Cock for help in preparing the article. This work was supported by the Agency for Innovation by Science\r\nand Technology for a pre-doctoral fellowship to W.D.; the Research fund KU Leuven\r\n(GOA), a Methusalem grant of the Flemish government and VIB to S.K., J.K. and P.V.;\r\nby the Netherlands Organisation for Scientific Research (NWO) for ALW grants\r\n846.11.002 (C.T.) and 867.15.020 (T.M.); the European Research Council (project\r\nERC-2011-StG-20101109 PSDP) (to J.F.); a European Research Council (ERC) Starting\r\nGrant (grant 260678) (to P.V.), the Research Foundation-Flanders (grants G.0747.09,\r\nG094011 and G095511) (to P.V.), the Hercules Foundation, an Interuniversity Attraction\r\nPoles Poles Program, initiated by the Belgian State, Science Policy Office (to P.V.),\r\nthe Swedish VetenskapsRådet grant to O.K., the Ghent University ‘Bijzonder\r\nOnderzoek Fonds’ (BOF) for a predoctoral fellowship to F.A.O.-M., the Research\r\nFoundation-Flanders (FWO) to K.M. and E.R." article_number: '11710' author: - first_name: Wim full_name: Dejonghe, Wim last_name: Dejonghe - first_name: Sabine full_name: Kuenen, Sabine last_name: Kuenen - first_name: Evelien full_name: Mylle, Evelien last_name: Mylle - first_name: Mina K full_name: Vasileva, Mina K id: 3407EB18-F248-11E8-B48F-1D18A9856A87 last_name: Vasileva - first_name: Olivier full_name: Keech, Olivier last_name: Keech - first_name: Corrado full_name: Viotti, Corrado last_name: Viotti - first_name: Jef full_name: Swerts, Jef last_name: Swerts - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Fausto full_name: Ortiz Morea, Fausto last_name: Ortiz Morea - first_name: Kiril full_name: Mishev, Kiril last_name: Mishev - first_name: Simon full_name: Delang, Simon last_name: Delang - first_name: Stefan full_name: Scholl, Stefan last_name: Scholl - first_name: Xavier full_name: Zarza, Xavier last_name: Zarza - first_name: Mareike full_name: Heilmann, Mareike last_name: Heilmann - first_name: Jiorgos full_name: Kourelis, Jiorgos last_name: Kourelis - first_name: Jaroslaw full_name: Kasprowicz, Jaroslaw last_name: Kasprowicz - first_name: Le full_name: Nguyen, Le last_name: Nguyen - first_name: Andrzej full_name: Drozdzecki, Andrzej last_name: Drozdzecki - first_name: Isabelle full_name: Van Houtte, Isabelle last_name: Van Houtte - first_name: Anna full_name: Szatmári, Anna last_name: Szatmári - first_name: Mateusz full_name: Majda, Mateusz last_name: Majda - first_name: Gary full_name: Baisa, Gary last_name: Baisa - first_name: Sebastian full_name: Bednarek, Sebastian last_name: Bednarek - first_name: Stéphanie full_name: Robert, Stéphanie last_name: Robert - first_name: Dominique full_name: Audenaert, Dominique last_name: Audenaert - first_name: Christa full_name: Testerink, Christa last_name: Testerink - first_name: Teun full_name: Munnik, Teun last_name: Munnik - first_name: Daniël full_name: Van Damme, Daniël last_name: Van Damme - first_name: Ingo full_name: Heilmann, Ingo last_name: Heilmann - first_name: Karin full_name: Schumacher, Karin last_name: Schumacher - first_name: Johan full_name: Winne, Johan last_name: Winne - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Patrik full_name: Verstreken, Patrik last_name: Verstreken - first_name: Eugenia full_name: Russinova, Eugenia last_name: Russinova citation: ama: Dejonghe W, Kuenen S, Mylle E, et al. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nature Communications. 2016;7. doi:10.1038/ncomms11710 apa: Dejonghe, W., Kuenen, S., Mylle, E., Vasileva, M. K., Keech, O., Viotti, C., … Russinova, E. (2016). Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms11710 chicago: Dejonghe, Wim, Sabine Kuenen, Evelien Mylle, Mina K Vasileva, Olivier Keech, Corrado Viotti, Jef Swerts, et al. “Mitochondrial Uncouplers Inhibit Clathrin-Mediated Endocytosis Largely through Cytoplasmic Acidification.” Nature Communications. Nature Publishing Group, 2016. https://doi.org/10.1038/ncomms11710. ieee: W. Dejonghe et al., “Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification,” Nature Communications, vol. 7. Nature Publishing Group, 2016. ista: Dejonghe W, Kuenen S, Mylle E, Vasileva MK, Keech O, Viotti C, Swerts J, Fendrych M, Ortiz Morea F, Mishev K, Delang S, Scholl S, Zarza X, Heilmann M, Kourelis J, Kasprowicz J, Nguyen L, Drozdzecki A, Van Houtte I, Szatmári A, Majda M, Baisa G, Bednarek S, Robert S, Audenaert D, Testerink C, Munnik T, Van Damme D, Heilmann I, Schumacher K, Winne J, Friml J, Verstreken P, Russinova E. 2016. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nature Communications. 7, 11710. mla: Dejonghe, Wim, et al. “Mitochondrial Uncouplers Inhibit Clathrin-Mediated Endocytosis Largely through Cytoplasmic Acidification.” Nature Communications, vol. 7, 11710, Nature Publishing Group, 2016, doi:10.1038/ncomms11710. short: W. Dejonghe, S. Kuenen, E. Mylle, M.K. Vasileva, O. Keech, C. Viotti, J. Swerts, M. Fendrych, F. Ortiz Morea, K. Mishev, S. Delang, S. Scholl, X. Zarza, M. Heilmann, J. Kourelis, J. Kasprowicz, L. Nguyen, A. Drozdzecki, I. Van Houtte, A. Szatmári, M. Majda, G. Baisa, S. Bednarek, S. Robert, D. Audenaert, C. Testerink, T. Munnik, D. Van Damme, I. Heilmann, K. Schumacher, J. Winne, J. Friml, P. Verstreken, E. Russinova, Nature Communications 7 (2016). date_created: 2018-12-11T11:51:30Z date_published: 2016-06-08T00:00:00Z date_updated: 2023-09-07T12:54:35Z day: '08' ddc: - '570' department: - _id: JiFr doi: 10.1038/ncomms11710 ec_funded: 1 file: - access_level: open_access checksum: e8dc81b3e44db5a7718d7f1501ce1aa7 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:47Z date_updated: 2020-07-14T12:44:45Z file_id: '5369' file_name: IST-2016-653-v1+1_ncomms11710_1_.pdf file_size: 3532505 relation: main_file file_date_updated: 2020-07-14T12:44:45Z has_accepted_license: '1' intvolume: ' 7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5906' pubrep_id: '653' quality_controlled: '1' related_material: record: - id: '7172' relation: dissertation_contains status: public scopus_import: 1 status: public title: Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2016' ... --- _id: '510' abstract: - lang: eng text: 'The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa . The potential roles of PtCLE genes were studied by comparative analysis and transcriptional pro fi ling. Among fi fty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These fi ndings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants. ' acknowledgement: 'We are grateful to Dr. Long (Laboratoire de Reproduction et Developpement des Plantes,CNRS,INRA,ENSLyon,UCBL,Universite de Lyon,France)for critical reading of the article. Work in our group is supported by the National Natural Science Foundation of China (31271575; 31200902), the Fundamental Research Funds for the Central Univ ersities (GK201103005), the Specialized Research Fund for the Doctoral Program of Higher Education from the Ministry of Education of China (20120202120009), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Natural Science Basic Research Plan in Shaanxi Province of China (2014JM3064). ' article_number: e1191734 article_processing_charge: No author: - first_name: Zhijun full_name: Liu, Zhijun last_name: Liu - first_name: 'Nan' full_name: Yang, Nan last_name: Yang - first_name: Yanting full_name: Lv, Yanting last_name: Lv - first_name: Lixia full_name: Pan, Lixia last_name: Pan - first_name: Shuo full_name: Lv, Shuo last_name: Lv - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Guodong full_name: Wang, Guodong last_name: Wang citation: ama: Liu Z, Yang N, Lv Y, et al. The CLE gene family in Populus trichocarpa. Plant Signaling & Behavior. 2016;11(6). doi:10.1080/15592324.2016.1191734 apa: Liu, Z., Yang, N., Lv, Y., Pan, L., Lv, S., Han, H., & Wang, G. (2016). The CLE gene family in Populus trichocarpa. Plant Signaling & Behavior. Taylor & Francis. https://doi.org/10.1080/15592324.2016.1191734 chicago: Liu, Zhijun, Nan Yang, Yanting Lv, Lixia Pan, Shuo Lv, Huibin Han, and Guodong Wang. “The CLE Gene Family in Populus Trichocarpa.” Plant Signaling & Behavior. Taylor & Francis, 2016. https://doi.org/10.1080/15592324.2016.1191734. ieee: Z. Liu et al., “The CLE gene family in Populus trichocarpa,” Plant Signaling & Behavior, vol. 11, no. 6. Taylor & Francis, 2016. ista: Liu Z, Yang N, Lv Y, Pan L, Lv S, Han H, Wang G. 2016. The CLE gene family in Populus trichocarpa. Plant Signaling & Behavior. 11(6), e1191734. mla: Liu, Zhijun, et al. “The CLE Gene Family in Populus Trichocarpa.” Plant Signaling & Behavior, vol. 11, no. 6, e1191734, Taylor & Francis, 2016, doi:10.1080/15592324.2016.1191734. short: Z. Liu, N. Yang, Y. Lv, L. Pan, S. Lv, H. Han, G. Wang, Plant Signaling & Behavior 11 (2016). date_created: 2018-12-11T11:46:53Z date_published: 2016-06-02T00:00:00Z date_updated: 2023-10-17T11:13:40Z day: '02' department: - _id: JiFr doi: 10.1080/15592324.2016.1191734 intvolume: ' 11' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973754/ month: '06' oa: 1 oa_version: Submitted Version publication: Plant Signaling & Behavior publication_status: published publisher: Taylor & Francis publist_id: '7308' quality_controlled: '1' scopus_import: '1' status: public title: The CLE gene family in Populus trichocarpa type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2016' ... --- _id: '1274' abstract: - lang: eng text: Synchronized tissue polarization during regeneration or de novo vascular tissue formation is a plant-specific example of intercellular communication and coordinated development. According to the canalization hypothesis, the plant hormone auxin serves as polarizing signal that mediates directional channel formation underlying the spatio-temporal vasculature patterning. A necessary part of canalization is a positive feedback between auxin signaling and polarity of the intercellular auxin flow. The cellular and molecular mechanisms of this process are still poorly understood, not the least, because of a lack of a suitable model system. We show that the main genetic model plant, Arabidopsis (Arabidopsis thaliana) can be used to study the canalization during vascular cambium regeneration and new vasculature formation. We monitored localized auxin responses, directional auxin-transport channels formation, and establishment of new vascular cambium polarity during regenerative processes after stem wounding. The increased auxin response above and around the wound preceded the formation of PIN1 auxin transporter-marked channels from the primarily homogenous tissue and the transient, gradual changes in PIN1 localization preceded the polarity of newly formed vascular tissue. Thus, Arabidopsis is a useful model for studies of coordinated tissue polarization and vasculature formation after wounding allowing for genetic and mechanistic dissection of the canalization hypothesis. acknowledgement: We wish to thank Prof. Ewa U. Kurczyńska for initiation of this work and valuable advices. We thank Martine De Cock for help in preparing the manuscript. This work was supported by the European Research Council (project ERC-2011-StG-20101109-PSDP), the European Social Fund (CZ.1.07/2.3.00/20.0043), and the Czech Science Foundation GAČR (GA13-40637 S) to J.F., (GA 13-39982S) to E.B. and E.M. and in part by the European Regional Development Fund (project “CEITEC, Central European Institute of Technology”, CZ.1.05/1.1.00/02.0068). article_number: '33754' article_processing_charge: No author: - first_name: Ewa full_name: Mazur, Ewa last_name: Mazur - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Mazur E, Benková E, Friml J. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports. 2016;6. doi:10.1038/srep33754 apa: Mazur, E., Benková, E., & Friml, J. (2016). Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep33754 chicago: Mazur, Ewa, Eva Benková, and Jiří Friml. “Vascular Cambium Regeneration and Vessel Formation in Wounded Inflorescence Stems of Arabidopsis.” Scientific Reports. Nature Publishing Group, 2016. https://doi.org/10.1038/srep33754. ieee: E. Mazur, E. Benková, and J. Friml, “Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis,” Scientific Reports, vol. 6. Nature Publishing Group, 2016. ista: Mazur E, Benková E, Friml J. 2016. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports. 6, 33754. mla: Mazur, Ewa, et al. “Vascular Cambium Regeneration and Vessel Formation in Wounded Inflorescence Stems of Arabidopsis.” Scientific Reports, vol. 6, 33754, Nature Publishing Group, 2016, doi:10.1038/srep33754. short: E. Mazur, E. Benková, J. Friml, Scientific Reports 6 (2016). date_created: 2018-12-11T11:51:05Z date_published: 2016-09-21T00:00:00Z date_updated: 2024-02-12T12:03:42Z day: '21' ddc: - '581' department: - _id: EvBe - _id: JiFr doi: 10.1038/srep33754 external_id: pmid: - '27649687' file: - access_level: open_access checksum: ee371fbc9124ad93157a95829264e4fe content_type: application/pdf creator: system date_created: 2018-12-12T10:13:25Z date_updated: 2020-07-14T12:44:42Z file_id: '5008' file_name: IST-2016-692-v1+1_srep33754.pdf file_size: 2895147 relation: main_file file_date_updated: 2020-07-14T12:44:42Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 publication: Scientific Reports publication_status: published publisher: Nature Publishing Group publist_id: '6042' pubrep_id: '692' quality_controlled: '1' related_material: record: - id: '545' relation: later_version status: public scopus_import: '1' status: public title: Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2016' ... --- _id: '1383' abstract: - lang: eng text: In plants, vacuolar H+-ATPase (V-ATPase) activity acidifies both the trans-Golgi network/early endosome (TGN/EE) and the vacuole. This dual V-ATPase function has impeded our understanding of how the pH homeostasis within the plant TGN/EE controls exo- and endocytosis. Here, we show that the weak V-ATPase mutant deetiolated3 (det3) displayed a pH increase in the TGN/EE, but not in the vacuole, strongly impairing secretion and recycling of the brassinosteroid receptor and the cellulose synthase complexes to the plasma membrane, in contrast to mutants lacking tonoplast-localized V-ATPase activity only. The brassinosteroid insensitivity and the cellulose deficiency defects in det3 were tightly correlated with reduced Golgi and TGN/EE motility. Thus, our results provide strong evidence that acidification of the TGN/EE, but not of the vacuole, is indispensable for functional secretion and recycling in plants. article_number: '15094' article_processing_charge: No article_type: original author: - first_name: Luo full_name: Yu, Luo last_name: Yu - first_name: Stefan full_name: Scholl, Stefan last_name: Scholl - first_name: Anett full_name: Doering, Anett last_name: Doering - first_name: Zhang full_name: Yi, Zhang last_name: Yi - first_name: Niloufer full_name: Irani, Niloufer last_name: Irani - first_name: Simone full_name: Di Rubbo, Simone last_name: Di Rubbo - first_name: Lutz full_name: Neumetzler, Lutz last_name: Neumetzler - first_name: Praveen full_name: Krishnamoorthy, Praveen last_name: Krishnamoorthy - first_name: Isabelle full_name: Van Houtte, Isabelle last_name: Van Houtte - first_name: Evelien full_name: Mylle, Evelien last_name: Mylle - first_name: Volker full_name: Bischoff, Volker last_name: Bischoff - first_name: Samantha full_name: Vernhettes, Samantha last_name: Vernhettes - first_name: Johan full_name: Winne, Johan last_name: Winne - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: York full_name: Stierhof, York last_name: Stierhof - first_name: Karin full_name: Schumacher, Karin last_name: Schumacher - first_name: Staffan full_name: Persson, Staffan last_name: Persson - first_name: Eugenia full_name: Russinova, Eugenia last_name: Russinova citation: ama: Yu L, Scholl S, Doering A, et al. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nature Plants. 2015;1(7). doi:10.1038/nplants.2015.94 apa: Yu, L., Scholl, S., Doering, A., Yi, Z., Irani, N., Di Rubbo, S., … Russinova, E. (2015). V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nature Plants. Nature Publishing Group. https://doi.org/10.1038/nplants.2015.94 chicago: Yu, Luo, Stefan Scholl, Anett Doering, Zhang Yi, Niloufer Irani, Simone Di Rubbo, Lutz Neumetzler, et al. “V-ATPase Activity in the TGN/EE Is Required for Exocytosis and Recycling in Arabidopsis.” Nature Plants. Nature Publishing Group, 2015. https://doi.org/10.1038/nplants.2015.94. ieee: L. Yu et al., “V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis,” Nature Plants, vol. 1, no. 7. Nature Publishing Group, 2015. ista: Yu L, Scholl S, Doering A, Yi Z, Irani N, Di Rubbo S, Neumetzler L, Krishnamoorthy P, Van Houtte I, Mylle E, Bischoff V, Vernhettes S, Winne J, Friml J, Stierhof Y, Schumacher K, Persson S, Russinova E. 2015. V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. Nature Plants. 1(7), 15094. mla: Yu, Luo, et al. “V-ATPase Activity in the TGN/EE Is Required for Exocytosis and Recycling in Arabidopsis.” Nature Plants, vol. 1, no. 7, 15094, Nature Publishing Group, 2015, doi:10.1038/nplants.2015.94. short: L. Yu, S. Scholl, A. Doering, Z. Yi, N. Irani, S. Di Rubbo, L. Neumetzler, P. Krishnamoorthy, I. Van Houtte, E. Mylle, V. Bischoff, S. Vernhettes, J. Winne, J. Friml, Y. Stierhof, K. Schumacher, S. Persson, E. Russinova, Nature Plants 1 (2015). date_created: 2018-12-11T11:51:42Z date_published: 2015-07-06T00:00:00Z date_updated: 2021-01-12T06:50:18Z day: '06' department: - _id: JiFr doi: 10.1038/nplants.2015.94 external_id: pmid: - '27250258' intvolume: ' 1' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905525/ month: '07' oa: 1 oa_version: Submitted Version pmid: 1 publication: Nature Plants publication_status: published publisher: Nature Publishing Group publist_id: '5827' quality_controlled: '1' scopus_import: 1 status: public title: V-ATPase activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2015' ... --- _id: '1532' abstract: - lang: eng text: Ammonium is the major nitrogen source in some plant ecosystems but is toxic at high concentrations, especially when available as the exclusive nitrogen source. Ammonium stress rapidly leads to various metabolic and hormonal imbalances that ultimately inhibit root and shoot growth in many plant species, including Arabidopsis thaliana (L.) Heynh. To identify molecular and genetic factors involved in seedling survival with prolonged exclusive NH4+ nutrition, a transcriptomic analysis with microarrays was used. Substantial transcriptional differences were most pronounced in (NH4)2SO4-grown seedlings, compared with plants grown on KNO3 or NH4NO3. Consistent with previous physiological analyses, major differences in the expression modules of photosynthesis-related genes, an altered mitochondrial metabolism, differential expression of the primary NH4+ assimilation, alteration of transporter gene expression and crucial changes in cell wall biosynthesis were found. A major difference in plant hormone responses, particularly of auxin but not cytokinin, was striking. The activity of the DR5::GUS reporter revealed a dramatically decreased auxin response in (NH4)2SO4-grown primary roots. The impaired root growth on (NH4)2SO4 was partially rescued by exogenous auxin or in specific mutants in the auxin pathway. The data suggest that NH4+-induced nutritional and metabolic imbalances can be partially overcome by elevated auxin levels. article_processing_charge: No article_type: original author: - first_name: Huaiyu full_name: Yang, Huaiyu last_name: Yang - first_name: Jenny full_name: Von Der Fecht Bartenbach, Jenny last_name: Von Der Fecht Bartenbach - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jan full_name: Lohmann, Jan last_name: Lohmann - first_name: Benjamin full_name: Neuhäuser, Benjamin last_name: Neuhäuser - first_name: Uwe full_name: Ludewig, Uwe last_name: Ludewig citation: ama: Yang H, Von Der Fecht Bartenbach J, Friml J, Lohmann J, Neuhäuser B, Ludewig U. Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source. Functional Plant Biology. 2015;42(3):239-251. doi:10.1071/FP14171 apa: Yang, H., Von Der Fecht Bartenbach, J., Friml, J., Lohmann, J., Neuhäuser, B., & Ludewig, U. (2015). Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source. Functional Plant Biology. CSIRO. https://doi.org/10.1071/FP14171 chicago: Yang, Huaiyu, Jenny Von Der Fecht Bartenbach, Jiří Friml, Jan Lohmann, Benjamin Neuhäuser, and Uwe Ludewig. “Auxin-Modulated Root Growth Inhibition in Arabidopsis Thaliana Seedlings with Ammonium as the Sole Nitrogen Source.” Functional Plant Biology. CSIRO, 2015. https://doi.org/10.1071/FP14171. ieee: H. Yang, J. Von Der Fecht Bartenbach, J. Friml, J. Lohmann, B. Neuhäuser, and U. Ludewig, “Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source,” Functional Plant Biology, vol. 42, no. 3. CSIRO, pp. 239–251, 2015. ista: Yang H, Von Der Fecht Bartenbach J, Friml J, Lohmann J, Neuhäuser B, Ludewig U. 2015. Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source. Functional Plant Biology. 42(3), 239–251. mla: Yang, Huaiyu, et al. “Auxin-Modulated Root Growth Inhibition in Arabidopsis Thaliana Seedlings with Ammonium as the Sole Nitrogen Source.” Functional Plant Biology, vol. 42, no. 3, CSIRO, 2015, pp. 239–51, doi:10.1071/FP14171. short: H. Yang, J. Von Der Fecht Bartenbach, J. Friml, J. Lohmann, B. Neuhäuser, U. Ludewig, Functional Plant Biology 42 (2015) 239–251. date_created: 2018-12-11T11:52:34Z date_published: 2015-03-01T00:00:00Z date_updated: 2022-05-24T09:02:24Z day: '01' department: - _id: JiFr doi: 10.1071/FP14171 external_id: pmid: - '32480670' intvolume: ' 42' issue: '3' language: - iso: eng month: '03' oa_version: None page: 239 - 251 pmid: 1 publication: Functional Plant Biology publication_identifier: issn: - 1445-4408 publication_status: published publisher: CSIRO publist_id: '5639' quality_controlled: '1' scopus_import: '1' status: public title: Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 42 year: '2015' ... --- _id: '1534' abstract: - lang: eng text: PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate many aspects of plant growth and development including responses to environmental changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 regulate terminal divisions during stomatal development, as well as female reproductive development and stress responses. Here we show that FLP and MYB88 act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88 function complementarily in establishing the gravitropic set-point angles of lateral roots. Our results support a model in which FLP and MYB88 expression specifically determines the temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their preferential functions during root responses to gravity. article_number: '8822' author: - first_name: Hongzhe full_name: Wang, Hongzhe last_name: Wang - first_name: Kezhen full_name: Yang, Kezhen last_name: Yang - first_name: Junjie full_name: Zou, Junjie last_name: Zou - first_name: Lingling full_name: Zhu, Lingling last_name: Zhu - first_name: Zidian full_name: Xie, Zidian last_name: Xie - first_name: Miyoterao full_name: Morita, Miyoterao last_name: Morita - first_name: Masao full_name: Tasaka, Masao last_name: Tasaka - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Erich full_name: Grotewold, Erich last_name: Grotewold - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Fred full_name: Sack, Fred last_name: Sack - first_name: Jie full_name: Le, Jie last_name: Le citation: ama: Wang H, Yang K, Zou J, et al. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications. 2015;6. doi:10.1038/ncomms9822 apa: Wang, H., Yang, K., Zou, J., Zhu, L., Xie, Z., Morita, M., … Le, J. (2015). Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms9822 chicago: Wang, Hongzhe, Kezhen Yang, Junjie Zou, Lingling Zhu, Zidian Xie, Miyoterao Morita, Masao Tasaka, et al. “Transcriptional Regulation of PIN Genes by FOUR LIPS and MYB88 during Arabidopsis Root Gravitropism.” Nature Communications. Nature Publishing Group, 2015. https://doi.org/10.1038/ncomms9822. ieee: H. Wang et al., “Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism,” Nature Communications, vol. 6. Nature Publishing Group, 2015. ista: Wang H, Yang K, Zou J, Zhu L, Xie Z, Morita M, Tasaka M, Friml J, Grotewold E, Beeckman T, Vanneste S, Sack F, Le J. 2015. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nature Communications. 6, 8822. mla: Wang, Hongzhe, et al. “Transcriptional Regulation of PIN Genes by FOUR LIPS and MYB88 during Arabidopsis Root Gravitropism.” Nature Communications, vol. 6, 8822, Nature Publishing Group, 2015, doi:10.1038/ncomms9822. short: H. Wang, K. Yang, J. Zou, L. Zhu, Z. Xie, M. Morita, M. Tasaka, J. Friml, E. Grotewold, T. Beeckman, S. Vanneste, F. Sack, J. Le, Nature Communications 6 (2015). date_created: 2018-12-11T11:52:34Z date_published: 2015-11-18T00:00:00Z date_updated: 2021-01-12T06:51:26Z day: '18' ddc: - '570' department: - _id: JiFr doi: 10.1038/ncomms9822 ec_funded: 1 file: - access_level: open_access checksum: 3c06735fc7cd7e482ca830cbd26001bf content_type: application/pdf creator: system date_created: 2018-12-12T10:17:07Z date_updated: 2020-07-14T12:45:01Z file_id: '5259' file_name: IST-2016-485-v1+1_ncomms9822.pdf file_size: 1852268 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5637' pubrep_id: '485' quality_controlled: '1' scopus_import: 1 status: public title: Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ... --- _id: '1536' abstract: - lang: eng text: Strigolactones, first discovered as germination stimulants for parasitic weeds [1], are carotenoid-derived phytohormones that play major roles in inhibiting lateral bud outgrowth and promoting plant-mycorrhizal symbiosis [2-4]. Furthermore, strigolactones are involved in the regulation of lateral and adventitious root development, root cell division [5, 6], secondary growth [7], and leaf senescence [8]. Recently, we discovered the strigolactone transporter Petunia axillaris PLEIOTROPIC DRUG RESISTANCE 1 (PaPDR1), which is required for efficient mycorrhizal colonization and inhibition of lateral bud outgrowth [9]. However, how strigolactones are transported through the plant remained unknown. Here we show that PaPDR1 exhibits a cell-type-specific asymmetric localization in different root tissues. In root tips, PaPDR1 is co-expressed with the strigolactone biosynthetic gene DAD1 (CCD8), and it is localized at the apical membrane of root hypodermal cells, presumably mediating the shootward transport of strigolactone. Above the root tip, in the hypodermal passage cells that form gates for the entry of mycorrhizal fungi, PaPDR1 is present in the outer-lateral membrane, compatible with its postulated function as strigolactone exporter from root to soil. Transport studies are in line with our localization studies since (1) a papdr1 mutant displays impaired transport of strigolactones out of the root tip to the shoot as well as into the rhizosphere and (2) DAD1 expression and PIN1/PIN2 levels change in plants deregulated for PDR1 expression, suggestive of variations in endogenous strigolactone contents. In conclusion, our results indicate that the polar localizations of PaPDR1 mediate directional shootward strigolactone transport as well as localized exudation into the soil. acknowledgement: "This work was funded by a grant of the Swiss National Foundation to E.M.\r\nWe thank Dr. José María Mateos (University of Zurich) for providing us with the vibratome, Prof. Dolf Weijers (Wageningen University, the Netherlands) for shipping us his set of ligation-independent cloning vectors, Prof. Bruno Humbel (University of Lausanne) for suggestions on GFP-PDR1 detection, and Dr. Undine Krügel (University of Zurich) and Prof. Michal Jasinski (Polish Academy of Science) for hints on protein quantification." author: - first_name: Joëlle full_name: Sasse, Joëlle last_name: Sasse - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 - first_name: Christian full_name: Gübeli, Christian last_name: Gübeli - first_name: Guowei full_name: Liu, Guowei last_name: Liu - first_name: Xi full_name: Cheng, Xi last_name: Cheng - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Harro full_name: Bouwmeester, Harro last_name: Bouwmeester - first_name: Enrico full_name: Martinoia, Enrico last_name: Martinoia - first_name: Lorenzo full_name: Borghi, Lorenzo last_name: Borghi citation: ama: Sasse J, Simon S, Gübeli C, et al. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. 2015;25(5):647-655. doi:10.1016/j.cub.2015.01.015 apa: Sasse, J., Simon, S., Gübeli, C., Liu, G., Cheng, X., Friml, J., … Borghi, L. (2015). Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2015.01.015 chicago: Sasse, Joëlle, Sibu Simon, Christian Gübeli, Guowei Liu, Xi Cheng, Jiří Friml, Harro Bouwmeester, Enrico Martinoia, and Lorenzo Borghi. “Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport.” Current Biology. Cell Press, 2015. https://doi.org/10.1016/j.cub.2015.01.015. ieee: J. Sasse et al., “Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport,” Current Biology, vol. 25, no. 5. Cell Press, pp. 647–655, 2015. ista: Sasse J, Simon S, Gübeli C, Liu G, Cheng X, Friml J, Bouwmeester H, Martinoia E, Borghi L. 2015. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. 25(5), 647–655. mla: Sasse, Joëlle, et al. “Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport.” Current Biology, vol. 25, no. 5, Cell Press, 2015, pp. 647–55, doi:10.1016/j.cub.2015.01.015. short: J. Sasse, S. Simon, C. Gübeli, G. Liu, X. Cheng, J. Friml, H. Bouwmeester, E. Martinoia, L. Borghi, Current Biology 25 (2015) 647–655. date_created: 2018-12-11T11:52:35Z date_published: 2015-02-12T00:00:00Z date_updated: 2021-01-12T06:51:27Z day: '12' department: - _id: JiFr doi: 10.1016/j.cub.2015.01.015 intvolume: ' 25' issue: '5' language: - iso: eng month: '02' oa_version: None page: 647 - 655 publication: Current Biology publication_status: published publisher: Cell Press publist_id: '5635' quality_controlled: '1' scopus_import: 1 status: public title: Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2015' ... --- _id: '1543' abstract: - lang: eng text: A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. author: - first_name: Yadira full_name: Olvera Carrillo, Yadira last_name: Olvera Carrillo - first_name: Michiel full_name: Van Bel, Michiel last_name: Van Bel - first_name: Tom full_name: Van Hautegem, Tom last_name: Van Hautegem - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Marlies full_name: Huysmans, Marlies last_name: Huysmans - first_name: Mária full_name: Šimášková, Mária last_name: Šimášková - first_name: Matthias full_name: Van Durme, Matthias last_name: Van Durme - first_name: Pierre full_name: Buscaill, Pierre last_name: Buscaill - first_name: Susana full_name: Rivas, Susana last_name: Rivas - first_name: Núria full_name: Coll, Núria last_name: Coll - first_name: Frederik full_name: Coppens, Frederik last_name: Coppens - first_name: Steven full_name: Maere, Steven last_name: Maere - first_name: Moritz full_name: Nowack, Moritz last_name: Nowack citation: ama: Olvera Carrillo Y, Van Bel M, Van Hautegem T, et al. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. 2015;169(4):2684-2699. doi:10.1104/pp.15.00769 apa: Olvera Carrillo, Y., Van Bel, M., Van Hautegem, T., Fendrych, M., Huysmans, M., Šimášková, M., … Nowack, M. (2015). A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.15.00769 chicago: Olvera Carrillo, Yadira, Michiel Van Bel, Tom Van Hautegem, Matyas Fendrych, Marlies Huysmans, Mária Šimášková, Matthias Van Durme, et al. “A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.” Plant Physiology. American Society of Plant Biologists, 2015. https://doi.org/10.1104/pp.15.00769. ieee: Y. Olvera Carrillo et al., “A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants,” Plant Physiology, vol. 169, no. 4. American Society of Plant Biologists, pp. 2684–2699, 2015. ista: Olvera Carrillo Y, Van Bel M, Van Hautegem T, Fendrych M, Huysmans M, Šimášková M, Van Durme M, Buscaill P, Rivas S, Coll N, Coppens F, Maere S, Nowack M. 2015. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. 169(4), 2684–2699. mla: Olvera Carrillo, Yadira, et al. “A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.” Plant Physiology, vol. 169, no. 4, American Society of Plant Biologists, 2015, pp. 2684–99, doi:10.1104/pp.15.00769. short: Y. Olvera Carrillo, M. Van Bel, T. Van Hautegem, M. Fendrych, M. Huysmans, M. Šimášková, M. Van Durme, P. Buscaill, S. Rivas, N. Coll, F. Coppens, S. Maere, M. Nowack, Plant Physiology 169 (2015) 2684–2699. date_created: 2018-12-11T11:52:38Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T06:51:30Z day: '01' department: - _id: JiFr doi: 10.1104/pp.15.00769 intvolume: ' 169' issue: '4' language: - iso: eng month: '12' oa_version: None page: 2684 - 2699 publication: Plant Physiology publication_status: published publisher: American Society of Plant Biologists publist_id: '5628' scopus_import: 1 status: public title: A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 169 year: '2015' ... --- _id: '1556' abstract: - lang: eng text: The elongator complex subunit 2 (ELP2) protein, one subunit of an evolutionarily conserved histone acetyltransferase complex, has been shown to participate in leaf patterning, plant immune and abiotic stress responses in Arabidopsis thaliana. Here, its role in root development was explored. Compared to the wild type, the elp2 mutant exhibited an accelerated differentiation of its root stem cells and cell division was more active in its quiescent centre (QC). The key transcription factors responsible for maintaining root stem cell and QC identity, such as AP2 transcription factors PLT1 (PLETHORA1) and PLT2 (PLETHORA2), GRAS transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX5 transcription factor WOX5, were all strongly down-regulated in the mutant. On the other hand, expression of the G2/M transition activator CYCB1 was substantially induced in elp2. The auxin efflux transporters PIN1 and PIN2 showed decreased protein levels and PIN1 also displayed mild polarity alterations in elp2, which resulted in a reduced auxin content in the root tip. Either the acetylation or methylation level of each of these genes differed between the mutant and the wild type, suggesting that the ELP2 regulation of root development involves the epigenetic modification of a range of transcription factors and other developmental regulators. author: - first_name: Yuebin full_name: Jia, Yuebin last_name: Jia - first_name: Huiyu full_name: Tian, Huiyu last_name: Tian - first_name: Hongjiang full_name: Li, Hongjiang id: 33CA54A6-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0001-5039-9660 - first_name: Qianqian full_name: Yu, Qianqian last_name: Yu - first_name: Lei full_name: Wang, Lei last_name: Wang - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Zhaojun full_name: Ding, Zhaojun last_name: Ding citation: ama: Jia Y, Tian H, Li H, et al. The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany. 2015;66(15):4631-4642. doi:10.1093/jxb/erv230 apa: Jia, Y., Tian, H., Li, H., Yu, Q., Wang, L., Friml, J., & Ding, Z. (2015). The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/erv230 chicago: Jia, Yuebin, Huiyu Tian, Hongjiang Li, Qianqian Yu, Lei Wang, Jiří Friml, and Zhaojun Ding. “The Arabidopsis Thaliana Elongator Complex Subunit 2 Epigenetically Affects Root Development.” Journal of Experimental Botany. Oxford University Press, 2015. https://doi.org/10.1093/jxb/erv230. ieee: Y. Jia et al., “The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development,” Journal of Experimental Botany, vol. 66, no. 15. Oxford University Press, pp. 4631–4642, 2015. ista: Jia Y, Tian H, Li H, Yu Q, Wang L, Friml J, Ding Z. 2015. The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany. 66(15), 4631–4642. mla: Jia, Yuebin, et al. “The Arabidopsis Thaliana Elongator Complex Subunit 2 Epigenetically Affects Root Development.” Journal of Experimental Botany, vol. 66, no. 15, Oxford University Press, 2015, pp. 4631–42, doi:10.1093/jxb/erv230. short: Y. Jia, H. Tian, H. Li, Q. Yu, L. Wang, J. Friml, Z. Ding, Journal of Experimental Botany 66 (2015) 4631–4642. date_created: 2018-12-11T11:52:42Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:35Z day: '01' ddc: - '570' department: - _id: JiFr doi: 10.1093/jxb/erv230 file: - access_level: open_access checksum: 257919be0ce3d306185d3891ad7acf39 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:02Z date_updated: 2020-07-14T12:45:02Z file_id: '5051' file_name: IST-2016-480-v1+1_J._Exp._Bot.-2015-Jia-4631-42.pdf file_size: 7753043 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 66' issue: '15' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 4631 - 4642 publication: Journal of Experimental Botany publication_status: published publisher: Oxford University Press publist_id: '5615' pubrep_id: '480' quality_controlled: '1' scopus_import: 1 status: public title: The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 66 year: '2015' ... --- _id: '1558' abstract: - lang: eng text: CyclophilinAis a conserved peptidyl-prolyl cis-trans isomerase (PPIase) best known as the cellular receptor of the immunosuppressant cyclosporine A. Despite significant effort, evidence of developmental functions of cyclophilin A in non-plant systems has remained obscure. Mutations in a tomato (Solanum lycopersicum) cyclophilin A ortholog, DIAGEOTROPICA (DGT), have been shown to abolish the organogenesis of lateral roots; however, a mechanistic explanation of the phenotype is lacking. Here, we show that the dgt mutant lacks auxin maxima relevant to priming and specification of lateral root founder cells. DGT is expressed in shoot and root, and localizes to both the nucleus and cytoplasm during lateral root organogenesis. Mutation of ENTIRE/ IAA9, a member of the auxin-responsive Aux/IAA protein family of transcriptional repressors, partially restores the inability of dgt to initiate lateral root primordia but not the primordia outgrowth. By comparison, grafting of a wild-type scion restores the process of lateral root formation, consistent with participation of a mobile signal. Antibodies do not detect movement of the DGT protein into the dgt rootstock; however, experiments with radiolabeled auxin and an auxin-specific microelectrode demonstrate abnormal auxin fluxes. Functional studies of DGT in heterologous yeast and tobacco-leaf auxin-transport systems demonstrate that DGT negatively regulates PIN-FORMED (PIN) auxin efflux transporters by affecting their plasma membrane localization. Studies in tomato support complex effects of the dgt mutation on PIN expression level, expression domain and plasma membrane localization. Our data demonstrate that DGT regulates auxin transport in lateral root formation. author: - first_name: Maria full_name: Ivanchenko, Maria last_name: Ivanchenko - first_name: Jinsheng full_name: Zhu, Jinsheng last_name: Zhu - first_name: Bangjun full_name: Wang, Bangjun last_name: Wang - first_name: Eva full_name: Medvecka, Eva id: 298814E2-F248-11E8-B48F-1D18A9856A87 last_name: Medvecka - first_name: Yunlong full_name: Du, Yunlong last_name: Du - first_name: Elisa full_name: Azzarello, Elisa last_name: Azzarello - first_name: Stefano full_name: Mancuso, Stefano last_name: Mancuso - first_name: Molly full_name: Megraw, Molly last_name: Megraw - first_name: Sergei full_name: Filichkin, Sergei last_name: Filichkin - first_name: Joseph full_name: Dubrovsky, Joseph last_name: Dubrovsky - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Markus full_name: Geisler, Markus last_name: Geisler citation: ama: Ivanchenko M, Zhu J, Wang B, et al. The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development. 2015;142(4):712-721. doi:10.1242/dev.113225 apa: Ivanchenko, M., Zhu, J., Wang, B., Medvecka, E., Du, Y., Azzarello, E., … Geisler, M. (2015). The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development. Company of Biologists. https://doi.org/10.1242/dev.113225 chicago: Ivanchenko, Maria, Jinsheng Zhu, Bangjun Wang, Eva Medvecka, Yunlong Du, Elisa Azzarello, Stefano Mancuso, et al. “The Cyclophilin a DIAGEOTROPICA Gene Affects Auxin Transport in Both Root and Shoot to Control Lateral Root Formation.” Development. Company of Biologists, 2015. https://doi.org/10.1242/dev.113225. ieee: M. Ivanchenko et al., “The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation,” Development, vol. 142, no. 4. Company of Biologists, pp. 712–721, 2015. ista: Ivanchenko M, Zhu J, Wang B, Medvecka E, Du Y, Azzarello E, Mancuso S, Megraw M, Filichkin S, Dubrovsky J, Friml J, Geisler M. 2015. The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development. 142(4), 712–721. mla: Ivanchenko, Maria, et al. “The Cyclophilin a DIAGEOTROPICA Gene Affects Auxin Transport in Both Root and Shoot to Control Lateral Root Formation.” Development, vol. 142, no. 4, Company of Biologists, 2015, pp. 712–21, doi:10.1242/dev.113225. short: M. Ivanchenko, J. Zhu, B. Wang, E. Medvecka, Y. Du, E. Azzarello, S. Mancuso, M. Megraw, S. Filichkin, J. Dubrovsky, J. Friml, M. Geisler, Development 142 (2015) 712–721. date_created: 2018-12-11T11:52:42Z date_published: 2015-02-15T00:00:00Z date_updated: 2021-01-12T06:51:35Z day: '15' department: - _id: JiFr doi: 10.1242/dev.113225 intvolume: ' 142' issue: '4' language: - iso: eng month: '02' oa_version: None page: 712 - 721 publication: Development publication_status: published publisher: Company of Biologists publist_id: '5613' quality_controlled: '1' scopus_import: 1 status: public title: The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 142 year: '2015' ... --- _id: '1554' abstract: - lang: eng text: The visualization of hormonal signaling input and output is key to understanding how multicellular development is regulated. The plant signaling molecule auxin triggers many growth and developmental responses, but current tools lack the sensitivity or precision to visualize these. We developed a set of fluorescent reporters that allow sensitive and semiquantitative readout of auxin responses at cellular resolution in Arabidopsis thaliana. These generic tools are suitable for any transformable plant species. author: - first_name: Cheyang full_name: Liao, Cheyang last_name: Liao - first_name: Wouter full_name: Smet, Wouter last_name: Smet - first_name: Géraldine full_name: Brunoud, Géraldine last_name: Brunoud - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Teva full_name: Vernoux, Teva last_name: Vernoux - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers citation: ama: Liao C, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods. 2015;12(3):207-210. doi:10.1038/nmeth.3279 apa: Liao, C., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., & Weijers, D. (2015). Reporters for sensitive and quantitative measurement of auxin response. Nature Methods. Nature Publishing Group. https://doi.org/10.1038/nmeth.3279 chicago: Liao, Cheyang, Wouter Smet, Géraldine Brunoud, Saiko Yoshida, Teva Vernoux, and Dolf Weijers. “Reporters for Sensitive and Quantitative Measurement of Auxin Response.” Nature Methods. Nature Publishing Group, 2015. https://doi.org/10.1038/nmeth.3279. ieee: C. Liao, W. Smet, G. Brunoud, S. Yoshida, T. Vernoux, and D. Weijers, “Reporters for sensitive and quantitative measurement of auxin response,” Nature Methods, vol. 12, no. 3. Nature Publishing Group, pp. 207–210, 2015. ista: Liao C, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 2015. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods. 12(3), 207–210. mla: Liao, Cheyang, et al. “Reporters for Sensitive and Quantitative Measurement of Auxin Response.” Nature Methods, vol. 12, no. 3, Nature Publishing Group, 2015, pp. 207–10, doi:10.1038/nmeth.3279. short: C. Liao, W. Smet, G. Brunoud, S. Yoshida, T. Vernoux, D. Weijers, Nature Methods 12 (2015) 207–210. date_created: 2018-12-11T11:52:41Z date_published: 2015-02-26T00:00:00Z date_updated: 2021-01-12T06:51:34Z day: '26' department: - _id: JiFr doi: 10.1038/nmeth.3279 external_id: pmid: - '25643149' intvolume: ' 12' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344836/ month: '02' oa: 1 oa_version: Submitted Version page: 207 - 210 pmid: 1 publication: Nature Methods publication_status: published publisher: Nature Publishing Group publist_id: '5617' quality_controlled: '1' scopus_import: 1 status: public title: Reporters for sensitive and quantitative measurement of auxin response type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12 year: '2015' ...