--- _id: '8822' abstract: - lang: eng text: "Self-organization is a hallmark of plant development manifested e.g. by intricate leaf vein patterns, flexible formation of vasculature during organogenesis or its regeneration following wounding. Spontaneously arising channels transporting the phytohormone auxin, created by coordinated polar localizations of PIN-FORMED 1 (PIN1) auxin exporter, provide positional cues for these as well as other plant patterning processes. To find regulators acting downstream of auxin and the TIR1/AFB auxin signaling pathway essential for PIN1 coordinated polarization during auxin canalization, we performed microarray experiments. Besides the known components of general PIN polarity maintenance, such as PID and PIP5K kinases, we identified and characterized a new regulator of auxin canalization, the transcription factor WRKY DNA-BINDING PROTEIN 23 (WRKY23).\r\nNext, we designed a subsequent microarray experiment to further uncover other molecular players, downstream of auxin-TIR1/AFB-WRKY23 involved in the regulation of auxin-mediated PIN repolarization. We identified a novel and crucial part of the molecular machinery underlying auxin canalization. The auxin-regulated malectin-type receptor-like kinase CAMEL and the associated leucine-rich repeat receptor-like kinase CANAR target and directly phosphorylate PIN auxin transporters. camel and canar mutants are impaired in PIN1 subcellular trafficking and auxin-mediated repolarization leading to defects in auxin transport, ultimately to leaf venation and vasculature regeneration defects. Our results describe the CAMEL-CANAR receptor complex, which is required for auxin feed-back on its own transport and thus for coordinated tissue polarization during auxin canalization." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 citation: ama: Hajny J. Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration. 2020. doi:10.15479/AT:ISTA:8822 apa: Hajny, J. (2020). Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8822 chicago: Hajny, Jakub. “Identification and Characterization of the Molecular Machinery of Auxin-Dependent Canalization during Vasculature Formation and Regeneration.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8822. ieee: J. Hajny, “Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration,” Institute of Science and Technology Austria, 2020. ista: Hajny J. 2020. Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration. Institute of Science and Technology Austria. mla: Hajny, Jakub. Identification and Characterization of the Molecular Machinery of Auxin-Dependent Canalization during Vasculature Formation and Regeneration. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8822. short: J. Hajny, Identification and Characterization of the Molecular Machinery of Auxin-Dependent Canalization during Vasculature Formation and Regeneration, Institute of Science and Technology Austria, 2020. date_created: 2020-12-01T12:38:18Z date_published: 2020-12-01T00:00:00Z date_updated: 2023-09-19T10:39:33Z day: '01' ddc: - '580' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:8822 file: - access_level: closed checksum: 210a9675af5e4c78b0b56d920ac82866 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: jhajny date_created: 2020-12-04T07:27:52Z date_updated: 2021-07-16T22:30:03Z embargo_to: open_access file_id: '8919' file_name: Jakub Hajný IST Austria final_JH.docx file_size: 91279806 relation: source_file - access_level: open_access checksum: 1781385b4aa73eba89cc76c6172f71d2 content_type: application/pdf creator: jhajny date_created: 2020-12-09T15:04:41Z date_updated: 2021-12-08T23:30:03Z embargo: 2021-12-07 file_id: '8933' file_name: Jakub Hajný IST Austria final_JH-merged without Science.pdf file_size: 68707697 relation: main_file file_date_updated: 2021-12-08T23:30:03Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '249' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '7427' relation: part_of_dissertation status: public - id: '6260' relation: part_of_dissertation status: public - id: '7500' relation: part_of_dissertation status: public - id: '191' relation: part_of_dissertation status: public - id: '449' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Identification and characterization of the molecular machinery of auxin-dependent canalization during vasculature formation and regeneration type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '8986' abstract: - lang: eng text: 'Flowering plants display the highest diversity among plant species and have notably shaped terrestrial landscapes. Nonetheless, the evolutionary origin of their unprecedented morphological complexity remains largely an enigma. Here, we show that the coevolution of cis-regulatory and coding regions of PIN-FORMED (PIN) auxin transporters confined their expression to certain cell types and directed their subcellular localization to particular cell sides, which together enabled dynamic auxin gradients across tissues critical to the complex architecture of flowering plants. Extensive intraspecies and interspecies genetic complementation experiments with PINs from green alga up to flowering plant lineages showed that PIN genes underwent three subsequent, critical evolutionary innovations and thus acquired a triple function to regulate the development of three essential components of the flowering plant Arabidopsis: shoot/root, inflorescence, and floral organ. Our work highlights the critical role of functional innovations within the PIN gene family as essential prerequisites for the origin of flowering plants.' acknowledgement: 'We thank C.Löhne (Botanic Gardens, University of Bonn) for providing us with A. trichopoda. We would like to thank T.Han, A.Mally (IST, Austria), and C.Hartinger (University of Oxford) for constructive comment and careful reading. Funding: The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (ERC grant agreement number 742985), Austrian Science Fund (FWF, grant number I 3630-B25), DOC Fellowship of the Austrian Academy of Sciences, and IST Fellow program. ' article_number: eabc8895 article_processing_charge: No article_type: original author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang Y, Rodriguez Solovey L, Li L, Zhang X, Friml J. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Science Advances. 2020;6(50). doi:10.1126/sciadv.abc8895 apa: Zhang, Y., Rodriguez Solovey, L., Li, L., Zhang, X., & Friml, J. (2020). Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Science Advances. AAAS. https://doi.org/10.1126/sciadv.abc8895 chicago: Zhang, Yuzhou, Lesia Rodriguez Solovey, Lanxin Li, Xixi Zhang, and Jiří Friml. “Functional Innovations of PIN Auxin Transporters Mark Crucial Evolutionary Transitions during Rise of Flowering Plants.” Science Advances. AAAS, 2020. https://doi.org/10.1126/sciadv.abc8895. ieee: Y. Zhang, L. Rodriguez Solovey, L. Li, X. Zhang, and J. Friml, “Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants,” Science Advances, vol. 6, no. 50. AAAS, 2020. ista: Zhang Y, Rodriguez Solovey L, Li L, Zhang X, Friml J. 2020. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Science Advances. 6(50), eabc8895. mla: Zhang, Yuzhou, et al. “Functional Innovations of PIN Auxin Transporters Mark Crucial Evolutionary Transitions during Rise of Flowering Plants.” Science Advances, vol. 6, no. 50, eabc8895, AAAS, 2020, doi:10.1126/sciadv.abc8895. short: Y. Zhang, L. Rodriguez Solovey, L. Li, X. Zhang, J. Friml, Science Advances 6 (2020). date_created: 2021-01-03T23:01:23Z date_published: 2020-12-11T00:00:00Z date_updated: 2024-03-18T23:30:45Z day: '11' ddc: - '580' department: - _id: JiFr doi: 10.1126/sciadv.abc8895 ec_funded: 1 external_id: isi: - '000599903600014' pmid: - '33310852' file: - access_level: open_access checksum: 5ac2500b191c08ef6dab5327f40ff663 content_type: application/pdf creator: dernst date_created: 2021-01-07T12:44:33Z date_updated: 2021-01-07T12:44:33Z file_id: '8994' file_name: 2020_ScienceAdvances_Zhang.pdf file_size: 10578145 relation: main_file success: 1 file_date_updated: 2021-01-07T12:44:33Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '50' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Science Advances publication_identifier: eissn: - 2375-2548 publication_status: published publisher: AAAS quality_controlled: '1' related_material: record: - id: '10083' relation: dissertation_contains status: public scopus_import: '1' status: public title: Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2020' ... --- _id: '8283' abstract: - lang: eng text: 'Drought and salt stress are the main environmental cues affecting the survival, development, distribution, and yield of crops worldwide. MYB transcription factors play a crucial role in plants’ biological processes, but the function of pineapple MYB genes is still obscure. In this study, one of the pineapple MYB transcription factors, AcoMYB4, was isolated and characterized. The results showed that AcoMYB4 is localized in the cell nucleus, and its expression is induced by low temperature, drought, salt stress, and hormonal stimulation, especially by abscisic acid (ABA). Overexpression of AcoMYB4 in rice and Arabidopsis enhanced plant sensitivity to osmotic stress; it led to an increase in the number stomata on leaf surfaces and lower germination rate under salt and drought stress. Furthermore, in AcoMYB4 OE lines, the membrane oxidation index, free proline, and soluble sugar contents were decreased. In contrast, electrolyte leakage and malondialdehyde (MDA) content increased significantly due to membrane injury, indicating higher sensitivity to drought and salinity stresses. Besides the above, both the expression level and activities of several antioxidant enzymes were decreased, indicating lower antioxidant activity in AcoMYB4 transgenic plants. Moreover, under osmotic stress, overexpression of AcoMYB4 inhibited ABA biosynthesis through a decrease in the transcription of genes responsible for ABA synthesis (ABA1 and ABA2) and ABA signal transduction factor ABI5. These results suggest that AcoMYB4 negatively regulates osmotic stress by attenuating cellular ABA biosynthesis and signal transduction pathways. ' acknowledgement: 'We would like to thank the reviewers for their helpful comments on the original manuscript. ' article_number: '5272' article_processing_charge: No article_type: original author: - first_name: Huihuang full_name: Chen, Huihuang last_name: Chen - first_name: Linyi full_name: Lai, Linyi last_name: Lai - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Liping full_name: Liu, Liping last_name: Liu - first_name: Bello Hassan full_name: Jakada, Bello Hassan last_name: Jakada - first_name: Youmei full_name: Huang, Youmei last_name: Huang - first_name: Qing full_name: He, Qing last_name: He - first_name: Mengnan full_name: Chai, Mengnan last_name: Chai - first_name: Xiaoping full_name: Niu, Xiaoping last_name: Niu - first_name: Yuan full_name: Qin, Yuan last_name: Qin citation: ama: Chen H, Lai L, Li L, et al. AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling. International Journal of Molecular Sciences. 2020;21(16). doi:10.3390/ijms21165727 apa: Chen, H., Lai, L., Li, L., Liu, L., Jakada, B. H., Huang, Y., … Qin, Y. (2020). AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms21165727 chicago: Chen, Huihuang, Linyi Lai, Lanxin Li, Liping Liu, Bello Hassan Jakada, Youmei Huang, Qing He, Mengnan Chai, Xiaoping Niu, and Yuan Qin. “AcoMYB4, an Ananas Comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling.” International Journal of Molecular Sciences. MDPI, 2020. https://doi.org/10.3390/ijms21165727. ieee: H. Chen et al., “AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling,” International Journal of Molecular Sciences, vol. 21, no. 16. MDPI, 2020. ista: Chen H, Lai L, Li L, Liu L, Jakada BH, Huang Y, He Q, Chai M, Niu X, Qin Y. 2020. AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling. International Journal of Molecular Sciences. 21(16), 5272. mla: Chen, Huihuang, et al. “AcoMYB4, an Ananas Comosus L. MYB Transcription Factor, Functions in Osmotic Stress through Negative Regulation of ABA Signaling.” International Journal of Molecular Sciences, vol. 21, no. 16, 5272, MDPI, 2020, doi:10.3390/ijms21165727. short: H. Chen, L. Lai, L. Li, L. Liu, B.H. Jakada, Y. Huang, Q. He, M. Chai, X. Niu, Y. Qin, International Journal of Molecular Sciences 21 (2020). date_created: 2020-08-24T06:24:03Z date_published: 2020-08-10T00:00:00Z date_updated: 2024-03-18T23:30:45Z day: '10' ddc: - '570' department: - _id: JiFr doi: 10.3390/ijms21165727 external_id: isi: - '000565090300001' pmid: - '32785037' file: - access_level: open_access checksum: 03b039244e6ae80580385fd9f577e2b2 content_type: application/pdf creator: cziletti date_created: 2020-08-25T09:53:50Z date_updated: 2020-08-25T09:53:50Z file_id: '8292' file_name: 2020_IntMolecSciences_Chen.pdf file_size: 5718755 relation: main_file success: 1 file_date_updated: 2020-08-25T09:53:50Z has_accepted_license: '1' intvolume: ' 21' isi: 1 issue: '16' language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 publication: International Journal of Molecular Sciences publication_identifier: eissn: - '14220067' issn: - '16616596' publication_status: published publisher: MDPI quality_controlled: '1' related_material: record: - id: '10083' relation: dissertation_contains status: public scopus_import: '1' status: public title: AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2020' ... --- _id: '8139' abstract: - lang: eng text: 'Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and inter-cellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how it functions in planta. In order to facilitate the direct quantitative study of plant CME, here we review current routinely used methods and present refined, standardized quantitative imaging protocols which allow the detailed characterization of CME at multiple scales in plant tissues. These include: (i) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultra-structure of clathrin-coated vesicles; (ii) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (iii) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (iv) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.' acknowledged_ssus: - _id: EM-Fac - _id: Bio acknowledgement: "This paper is dedicated to the memory of Christien Merrifield. He pioneered quantitative\r\nimaging approaches in mammalian CME and his mentorship inspired the development of all\r\nthe analysis methods presented here. His joy in research, pure scientific curiosity and\r\nmicroscopy excellence remain a constant inspiration. We thank Daniel Van Damme for gifting\r\nus the CLC2-GFP x TPLATE-TagRFP plants used in this manuscript. We further thank the\r\nScientific Service Units at IST Austria; specifically, the Electron Microscopy Facility for\r\ntechnical assistance (in particular Vanessa Zheden) and the BioImaging Facility BioImaging\r\nFacility for access to equipment. " article_number: jcs248062 article_processing_charge: No article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: G full_name: Vert, G last_name: Vert - first_name: SY full_name: Bednarek, SY last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Gnyliukh N, Kaufmann W, et al. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. Journal of Cell Science. 2020;133(15). doi:10.1242/jcs.248062 apa: Johnson, A. J., Gnyliukh, N., Kaufmann, W., Narasimhan, M., Vert, G., Bednarek, S., & Friml, J. (2020). Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.248062 chicago: Johnson, Alexander J, Nataliia Gnyliukh, Walter Kaufmann, Madhumitha Narasimhan, G Vert, SY Bednarek, and Jiří Friml. “Experimental Toolbox for Quantitative Evaluation of Clathrin-Mediated Endocytosis in the Plant Model Arabidopsis.” Journal of Cell Science. The Company of Biologists, 2020. https://doi.org/10.1242/jcs.248062. ieee: A. J. Johnson et al., “Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis,” Journal of Cell Science, vol. 133, no. 15. The Company of Biologists, 2020. ista: Johnson AJ, Gnyliukh N, Kaufmann W, Narasimhan M, Vert G, Bednarek S, Friml J. 2020. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. Journal of Cell Science. 133(15), jcs248062. mla: Johnson, Alexander J., et al. “Experimental Toolbox for Quantitative Evaluation of Clathrin-Mediated Endocytosis in the Plant Model Arabidopsis.” Journal of Cell Science, vol. 133, no. 15, jcs248062, The Company of Biologists, 2020, doi:10.1242/jcs.248062. short: A.J. Johnson, N. Gnyliukh, W. Kaufmann, M. Narasimhan, G. Vert, S. Bednarek, J. Friml, Journal of Cell Science 133 (2020). date_created: 2020-07-21T08:58:19Z date_published: 2020-08-06T00:00:00Z date_updated: 2023-12-01T13:51:07Z day: '06' ddc: - '575' department: - _id: JiFr - _id: EM-Fac doi: 10.1242/jcs.248062 ec_funded: 1 external_id: isi: - '000561047900021' pmid: - '32616560' file: - access_level: open_access checksum: 2d11f79a0b4e0a380fb002b933da331a content_type: application/pdf creator: ajohnson date_created: 2020-11-26T17:12:51Z date_updated: 2021-08-08T22:30:03Z embargo: 2021-08-07 file_id: '8815' file_name: 2020 - Johnson - JSC - plant CME toolbox.pdf file_size: 15150403 relation: main_file file_date_updated: 2021-08-08T22:30:03Z has_accepted_license: '1' intvolume: ' 133' isi: 1 issue: '15' language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Journal of Cell Science publication_identifier: eissn: - 1477-9137 issn: - 0021-9533 publication_status: published publisher: The Company of Biologists quality_controlled: '1' related_material: record: - id: '14510' relation: dissertation_contains status: public scopus_import: '1' status: public title: Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 133 year: '2020' ... --- _id: '5908' abstract: - lang: eng text: The interorganelle communication mediated by membrane contact sites (MCSs) is an evolutionary hallmark of eukaryotic cells. MCS connections enable the nonvesicular exchange of information between organelles and allow them to coordinate responses to changing cellular environments. In plants, the importance of MCS components in the responses to environmental stress has been widely established, but the molecular mechanisms regulating interorganelle connectivity during stress still remain opaque. In this report, we use the model plant Arabidopsis thaliana to show that ionic stress increases endoplasmic reticulum (ER)–plasma membrane (PM) connectivity by promoting the cortical expansion of synaptotagmin 1 (SYT1)-enriched ER–PM contact sites (S-EPCSs). We define differential roles for the cortical cytoskeleton in the regulation of S-EPCS dynamics and ER–PM connectivity, and we identify the accumulation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] at the PM as a molecular signal associated with the ER–PM connectivity changes. Our study highlights the functional conservation of EPCS components and PM phosphoinositides as modulators of ER–PM connectivity in eukaryotes, and uncovers unique aspects of the spatiotemporal regulation of ER–PM connectivity in plants. article_processing_charge: No article_type: original author: - first_name: Eunkyoung full_name: Lee, Eunkyoung last_name: Lee - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Jessica full_name: Pérez-Sancho, Jessica last_name: Pérez-Sancho - first_name: Francisco full_name: Benitez-Fuente, Francisco last_name: Benitez-Fuente - first_name: Matthew full_name: Strelau, Matthew last_name: Strelau - first_name: Alberto P. full_name: Macho, Alberto P. last_name: Macho - first_name: Miguel A. full_name: Botella, Miguel A. last_name: Botella - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Abel full_name: Rosado, Abel last_name: Rosado citation: ama: Lee E, Vanneste S, Pérez-Sancho J, et al. Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(4):1420-1429. doi:10.1073/pnas.1818099116 apa: Lee, E., Vanneste, S., Pérez-Sancho, J., Benitez-Fuente, F., Strelau, M., Macho, A. P., … Rosado, A. (2019). Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.1818099116 chicago: Lee, Eunkyoung, Steffen Vanneste, Jessica Pérez-Sancho, Francisco Benitez-Fuente, Matthew Strelau, Alberto P. Macho, Miguel A. Botella, Jiří Friml, and Abel Rosado. “Ionic Stress Enhances ER–PM Connectivity via Phosphoinositide-Associated SYT1 Contact Site Expansion in Arabidopsis.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2019. https://doi.org/10.1073/pnas.1818099116. ieee: E. Lee et al., “Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 4. National Academy of Sciences, pp. 1420–1429, 2019. ista: Lee E, Vanneste S, Pérez-Sancho J, Benitez-Fuente F, Strelau M, Macho AP, Botella MA, Friml J, Rosado A. 2019. Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 116(4), 1420–1429. mla: Lee, Eunkyoung, et al. “Ionic Stress Enhances ER–PM Connectivity via Phosphoinositide-Associated SYT1 Contact Site Expansion in Arabidopsis.” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 4, National Academy of Sciences, 2019, pp. 1420–29, doi:10.1073/pnas.1818099116. short: E. Lee, S. Vanneste, J. Pérez-Sancho, F. Benitez-Fuente, M. Strelau, A.P. Macho, M.A. Botella, J. Friml, A. Rosado, Proceedings of the National Academy of Sciences of the United States of America 116 (2019) 1420–1429. date_created: 2019-02-03T22:59:14Z date_published: 2019-01-22T00:00:00Z date_updated: 2023-08-24T14:31:09Z day: '22' department: - _id: JiFr doi: 10.1073/pnas.1818099116 external_id: isi: - '000456336100050' pmid: - '30610176' intvolume: ' 116' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1073/pnas.1818099116 month: '01' oa: 1 oa_version: Published Version page: 1420-1429 pmid: 1 publication: Proceedings of the National Academy of Sciences of the United States of America publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Ionic stress enhances ER–PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 116 year: '2019' ... --- _id: '6023' abstract: - lang: eng text: Multicellular development requires coordinated cell polarization relative to body axes, and translation to oriented cell division 1–3 . In plants, it is unknown how cell polarities are connected to organismal axes and translated to division. Here, we identify Arabidopsis SOSEKI proteins that integrate apical–basal and radial organismal axes to localize to polar cell edges. Localization does not depend on tissue context, requires cell wall integrity and is defined by a transferrable, protein-specific motif. A Domain of Unknown Function in SOSEKI proteins resembles the DIX oligomerization domain in the animal Dishevelled polarity regulator. The DIX-like domain self-interacts and is required for edge localization and for influencing division orientation, together with a second domain that defines the polar membrane domain. Our work shows that SOSEKI proteins locally interpret global polarity cues and can influence cell division orientation. Furthermore, this work reveals that, despite fundamental differences, cell polarity mechanisms in plants and animals converge on a similar protein domain. article_processing_charge: No author: - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Alja full_name: Van Der Schuren, Alja last_name: Van Der Schuren - first_name: Maritza full_name: Van Dop, Maritza last_name: Van Dop - first_name: Luc full_name: Van Galen, Luc last_name: Van Galen - first_name: Shunsuke full_name: Saiga, Shunsuke last_name: Saiga - first_name: Milad full_name: Adibi, Milad last_name: Adibi - first_name: Barbara full_name: Möller, Barbara last_name: Möller - first_name: Colette A. full_name: Ten Hove, Colette A. last_name: Ten Hove - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Richard full_name: Smith, Richard last_name: Smith - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers citation: ama: Yoshida S, Van Der Schuren A, Van Dop M, et al. A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis. Nature Plants. 2019;5(2):160-166. doi:10.1038/s41477-019-0363-6 apa: Yoshida, S., Van Der Schuren, A., Van Dop, M., Van Galen, L., Saiga, S., Adibi, M., … Weijers, D. (2019). A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-019-0363-6 chicago: Yoshida, Saiko, Alja Van Der Schuren, Maritza Van Dop, Luc Van Galen, Shunsuke Saiga, Milad Adibi, Barbara Möller, et al. “A SOSEKI-Based Coordinate System Interprets Global Polarity Cues in Arabidopsis.” Nature Plants. Springer Nature, 2019. https://doi.org/10.1038/s41477-019-0363-6. ieee: S. Yoshida et al., “A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis,” Nature Plants, vol. 5, no. 2. Springer Nature, pp. 160–166, 2019. ista: Yoshida S, Van Der Schuren A, Van Dop M, Van Galen L, Saiga S, Adibi M, Möller B, Ten Hove CA, Marhavý P, Smith R, Friml J, Weijers D. 2019. A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis. Nature Plants. 5(2), 160–166. mla: Yoshida, Saiko, et al. “A SOSEKI-Based Coordinate System Interprets Global Polarity Cues in Arabidopsis.” Nature Plants, vol. 5, no. 2, Springer Nature, 2019, pp. 160–66, doi:10.1038/s41477-019-0363-6. short: S. Yoshida, A. Van Der Schuren, M. Van Dop, L. Van Galen, S. Saiga, M. Adibi, B. Möller, C.A. Ten Hove, P. Marhavý, R. Smith, J. Friml, D. Weijers, Nature Plants 5 (2019) 160–166. date_created: 2019-02-17T22:59:21Z date_published: 2019-02-08T00:00:00Z date_updated: 2023-08-24T14:46:47Z day: '08' department: - _id: JiFr - _id: EvBe doi: 10.1038/s41477-019-0363-6 ec_funded: 1 external_id: isi: - '000460479600014' intvolume: ' 5' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/479113v1.abstract month: '02' oa: 1 oa_version: Submitted Version page: 160-166 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Plants publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: A SOSEKI-based coordinate system interprets global polarity cues in arabidopsis type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 5 year: '2019' ... --- _id: '6104' abstract: - lang: eng text: Abiotic stress poses constant challenges for plant survival and is a serious problem for global agricultural productivity. On a molecular level, stress conditions result in elevation of reactive oxygen species (ROS) production causing oxidative stress associated with oxidation of proteins and nucleic acids as well as impairment of membrane functions. Adaptation of root growth to ROS accumulation is facilitated through modification of auxin and cytokinin hormone homeostasis. Here, we report that in Arabidopsis root meristem, ROS-induced changes of auxin levels correspond to decreased abundance of PIN auxin efflux carriers at the plasma membrane (PM). Specifically, increase in H2O2 levels affects PIN2 endocytic recycling. We show that the PIN2 intracellular trafficking during adaptation to oxidative stress requires the function of the ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factor (GEF) BEN1, an actin-associated regulator of the trafficking from the PM to early endosomes and, presumably, indirectly, trafficking to the vacuoles. We propose that H2O2 levels affect the actin dynamics thus modulating ARF-GEF-dependent trafficking of PIN2. This mechanism provides a way how root growth acclimates to stress and adapts to a changing environment. article_processing_charge: No author: - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Agnieszka full_name: Bielach, Agnieszka last_name: Bielach - first_name: Prashanth full_name: Tamizhselvan, Prashanth last_name: Tamizhselvan - first_name: Sharmila full_name: Madhavan, Sharmila last_name: Madhavan - first_name: Eman Elrefaay full_name: Ryad, Eman Elrefaay last_name: Ryad - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Petre full_name: Dobrev, Petre last_name: Dobrev - first_name: Radomira full_name: Vanková, Radomira last_name: Vanková - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Vanesa B. full_name: Tognetti, Vanesa B. last_name: Tognetti citation: ama: Zwiewka M, Bielach A, Tamizhselvan P, et al. Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking. Plant and Cell Physiology. 2019;60(2):255-273. doi:10.1093/pcp/pcz001 apa: Zwiewka, M., Bielach, A., Tamizhselvan, P., Madhavan, S., Ryad, E. E., Tan, S., … Tognetti, V. B. (2019). Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking. Plant and Cell Physiology. Oxford University Press. https://doi.org/10.1093/pcp/pcz001 chicago: Zwiewka, Marta, Agnieszka Bielach, Prashanth Tamizhselvan, Sharmila Madhavan, Eman Elrefaay Ryad, Shutang Tan, Mónika Hrtyan, et al. “Root Adaptation to H2O2-Induced Oxidative Stress by ARF-GEF BEN1- and Cytoskeleton-Mediated PIN2 Trafficking.” Plant and Cell Physiology. Oxford University Press, 2019. https://doi.org/10.1093/pcp/pcz001. ieee: M. Zwiewka et al., “Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking,” Plant and Cell Physiology, vol. 60, no. 2. Oxford University Press, pp. 255–273, 2019. ista: Zwiewka M, Bielach A, Tamizhselvan P, Madhavan S, Ryad EE, Tan S, Hrtyan M, Dobrev P, Vanková R, Friml J, Tognetti VB. 2019. Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking. Plant and Cell Physiology. 60(2), 255–273. mla: Zwiewka, Marta, et al. “Root Adaptation to H2O2-Induced Oxidative Stress by ARF-GEF BEN1- and Cytoskeleton-Mediated PIN2 Trafficking.” Plant and Cell Physiology, vol. 60, no. 2, Oxford University Press, 2019, pp. 255–73, doi:10.1093/pcp/pcz001. short: M. Zwiewka, A. Bielach, P. Tamizhselvan, S. Madhavan, E.E. Ryad, S. Tan, M. Hrtyan, P. Dobrev, R. Vanková, J. Friml, V.B. Tognetti, Plant and Cell Physiology 60 (2019) 255–273. date_created: 2019-03-17T22:59:14Z date_published: 2019-02-01T00:00:00Z date_updated: 2023-08-25T08:05:28Z day: '01' department: - _id: JiFr doi: 10.1093/pcp/pcz001 external_id: isi: - '000459634300002' pmid: - '30668780' intvolume: ' 60' isi: 1 issue: '2' language: - iso: eng month: '02' oa_version: None page: 255-273 pmid: 1 publication: Plant and Cell Physiology publication_identifier: eissn: - 1471-9053 issn: - 0032-0781 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 60 year: '2019' ... --- _id: '6262' abstract: - lang: eng text: "Gravitropism is an adaptive response that orients plant growth parallel to the gravity vector. Asymmetric\r\ndistribution of the phytohormone auxin is a necessary prerequisite to the tropic bending both in roots and\r\nshoots. During hypocotyl gravitropic response, the PIN3 auxin transporter polarizes within gravity-sensing\r\ncells to redirect intercellular auxin fluxes. First gravity-induced PIN3 polarization to the bottom cell mem-\r\nbranes leads to the auxin accumulation at the lower side of the organ, initiating bending and, later, auxin\r\nfeedback-mediated repolarization restores symmetric auxin distribution to terminate bending. Here, we per-\r\nformed a forward genetic screen to identify regulators of both PIN3 polarization events during gravitropic\r\nresponse. We searched for mutants with defective PIN3 polarizations based on easy-to-score morphological\r\noutputs of decreased or increased gravity-induced hypocotyl bending. We identified the number of\r\nhypocotyl reduced bending (hrb) and hypocotyl hyperbending (hhb) mutants, revealing that reduced bending corre-\r\nlated typically with defective gravity-induced PIN3 relocation whereas all analyzed hhb mutants showed\r\ndefects in the second, auxin-mediated PIN3 relocation. Next-generation sequencing-aided mutation map-\r\nping identified several candidate genes, including SCARECROW and ACTIN2, revealing roles of endodermis\r\nspecification and actin cytoskeleton in the respective gravity- and auxin-induced PIN polarization events.\r\nThe hypocotyl gravitropism screen thus promises to provide novel insights into mechanisms underlying cell\r\npolarity and plant adaptive development." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Hana full_name: Rakusová, Hana last_name: Rakusová - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Petr full_name: Valošek, Petr id: 3CDB6F94-F248-11E8-B48F-1D18A9856A87 last_name: Valošek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Rakusová H, Han H, Valošek P, Friml J. Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls. The Plant Journal. 2019;98(6):1048-1059. doi:10.1111/tpj.14301 apa: Rakusová, H., Han, H., Valošek, P., & Friml, J. (2019). Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls. The Plant Journal. Wiley. https://doi.org/10.1111/tpj.14301 chicago: Rakusová, Hana, Huibin Han, Petr Valošek, and Jiří Friml. “Genetic Screen for Factors Mediating PIN Polarization in Gravistimulated Arabidopsis Thaliana Hypocotyls.” The Plant Journal. Wiley, 2019. https://doi.org/10.1111/tpj.14301. ieee: H. Rakusová, H. Han, P. Valošek, and J. Friml, “Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls,” The Plant Journal, vol. 98, no. 6. Wiley, pp. 1048–1059, 2019. ista: Rakusová H, Han H, Valošek P, Friml J. 2019. Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls. The Plant Journal. 98(6), 1048–1059. mla: Rakusová, Hana, et al. “Genetic Screen for Factors Mediating PIN Polarization in Gravistimulated Arabidopsis Thaliana Hypocotyls.” The Plant Journal, vol. 98, no. 6, Wiley, 2019, pp. 1048–59, doi:10.1111/tpj.14301. short: H. Rakusová, H. Han, P. Valošek, J. Friml, The Plant Journal 98 (2019) 1048–1059. date_created: 2019-04-09T08:46:44Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-08-25T10:11:03Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/tpj.14301 ec_funded: 1 external_id: isi: - '000473644100008' pmid: - '30821050' file: - access_level: open_access checksum: ad3b5e270b67ba2a45f894ce3be27920 content_type: application/pdf creator: dernst date_created: 2019-04-15T09:38:43Z date_updated: 2020-07-14T12:47:25Z file_id: '6304' file_name: 2019_PlantJournal_Rakusov.pdf file_size: 1383100 relation: main_file file_date_updated: 2020-07-14T12:47:25Z has_accepted_license: '1' intvolume: ' 98' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1048-1059 pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: The Plant Journal publication_identifier: eissn: - 1365-313x issn: - 0960-7412 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Genetic screen for factors mediating PIN polarization in gravistimulated Arabidopsis thaliana hypocotyls tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 98 year: '2019' ... --- _id: '6261' abstract: - lang: eng text: Nitrate regulation of root stem cell activity is auxin-dependent. article_processing_charge: No article_type: letter_note author: - first_name: Y full_name: Wang, Y last_name: Wang - first_name: Z full_name: Gong, Z last_name: Gong - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Zhang, J last_name: Zhang citation: ama: Wang Y, Gong Z, Friml J, Zhang J. Nitrate modulates the differentiation of root distal stem cells. Plant Physiology. 2019;180(1):22-25. doi:10.1104/pp.18.01305 apa: Wang, Y., Gong, Z., Friml, J., & Zhang, J. (2019). Nitrate modulates the differentiation of root distal stem cells. Plant Physiology. ASPB. https://doi.org/10.1104/pp.18.01305 chicago: Wang, Y, Z Gong, Jiří Friml, and J Zhang. “Nitrate Modulates the Differentiation of Root Distal Stem Cells.” Plant Physiology. ASPB, 2019. https://doi.org/10.1104/pp.18.01305. ieee: Y. Wang, Z. Gong, J. Friml, and J. Zhang, “Nitrate modulates the differentiation of root distal stem cells,” Plant Physiology, vol. 180, no. 1. ASPB, pp. 22–25, 2019. ista: Wang Y, Gong Z, Friml J, Zhang J. 2019. Nitrate modulates the differentiation of root distal stem cells. Plant Physiology. 180(1), 22–25. mla: Wang, Y., et al. “Nitrate Modulates the Differentiation of Root Distal Stem Cells.” Plant Physiology, vol. 180, no. 1, ASPB, 2019, pp. 22–25, doi:10.1104/pp.18.01305. short: Y. Wang, Z. Gong, J. Friml, J. Zhang, Plant Physiology 180 (2019) 22–25. date_created: 2019-04-09T08:46:17Z date_published: 2019-05-01T00:00:00Z date_updated: 2023-08-25T10:10:23Z day: '01' department: - _id: JiFr doi: 10.1104/pp.18.01305 external_id: isi: - '000466860800010' pmid: - '30787134' intvolume: ' 180' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1104/pp.18.01305 month: '05' oa: 1 oa_version: Published Version page: 22-25 pmid: 1 publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: ASPB quality_controlled: '1' scopus_import: '1' status: public title: Nitrate modulates the differentiation of root distal stem cells type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 180 year: '2019' ... --- _id: '6504' abstract: - lang: eng text: "Root gravitropism is one of the most important processes allowing plant adaptation to the land environment. Auxin plays a central role in mediating root gravitropism, but how auxin contributes to gravitational perception and the subsequent response is still unclear.\r\n\r\nHere, we showed that the local auxin maximum/gradient within the root apex, which is generated by the PIN directional auxin transporters, regulates the expression of three key starch granule synthesis genes, SS4, PGM and ADG1, which in turn influence the accumulation of starch granules that serve as a statolith perceiving gravity.\r\n\r\nMoreover, using the cvxIAA‐ccvTIR1 system, we also showed that TIR1‐mediated auxin signaling is required for starch granule formation and gravitropic response within root tips. In addition, axr3 mutants showed reduced auxin‐mediated starch granule accumulation and disruption of gravitropism within the root apex.\r\n\r\nOur results indicate that auxin‐mediated statolith production relies on the TIR1/AFB‐AXR3‐mediated auxin signaling pathway. In summary, we propose a dual role for auxin in gravitropism: the regulation of both gravity perception and response." article_processing_charge: No article_type: original author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: P full_name: He, P last_name: He - first_name: X full_name: Ma, X last_name: Ma - first_name: Z full_name: Yang, Z last_name: Yang - first_name: C full_name: Pang, C last_name: Pang - first_name: J full_name: Yu, J last_name: Yu - first_name: G full_name: Wang, G last_name: Wang - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: G full_name: Xiao, G last_name: Xiao citation: ama: Zhang Y, He P, Ma X, et al. Auxin-mediated statolith production for root gravitropism. New Phytologist. 2019;224(2):761-774. doi:10.1111/nph.15932 apa: Zhang, Y., He, P., Ma, X., Yang, Z., Pang, C., Yu, J., … Xiao, G. (2019). Auxin-mediated statolith production for root gravitropism. New Phytologist. Wiley. https://doi.org/10.1111/nph.15932 chicago: Zhang, Yuzhou, P He, X Ma, Z Yang, C Pang, J Yu, G Wang, Jiří Friml, and G Xiao. “Auxin-Mediated Statolith Production for Root Gravitropism.” New Phytologist. Wiley, 2019. https://doi.org/10.1111/nph.15932. ieee: Y. Zhang et al., “Auxin-mediated statolith production for root gravitropism,” New Phytologist, vol. 224, no. 2. Wiley, pp. 761–774, 2019. ista: Zhang Y, He P, Ma X, Yang Z, Pang C, Yu J, Wang G, Friml J, Xiao G. 2019. Auxin-mediated statolith production for root gravitropism. New Phytologist. 224(2), 761–774. mla: Zhang, Yuzhou, et al. “Auxin-Mediated Statolith Production for Root Gravitropism.” New Phytologist, vol. 224, no. 2, Wiley, 2019, pp. 761–74, doi:10.1111/nph.15932. short: Y. Zhang, P. He, X. Ma, Z. Yang, C. Pang, J. Yu, G. Wang, J. Friml, G. Xiao, New Phytologist 224 (2019) 761–774. date_created: 2019-05-28T14:33:26Z date_published: 2019-10-01T00:00:00Z date_updated: 2023-08-28T08:40:13Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.15932 external_id: isi: - '000487184200024' pmid: - '31111487' file: - access_level: open_access checksum: 6488243334538f5c39099a701cbf76b9 content_type: application/pdf creator: dernst date_created: 2020-10-14T08:59:33Z date_updated: 2020-10-14T08:59:33Z file_id: '8661' file_name: 2019_NewPhytologist_Zhang_accepted.pdf file_size: 1099061 relation: main_file success: 1 file_date_updated: 2020-10-14T08:59:33Z has_accepted_license: '1' intvolume: ' 224' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version page: 761-774 pmid: 1 publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Auxin-mediated statolith production for root gravitropism type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 224 year: '2019' ... --- _id: '6611' abstract: - lang: eng text: 'Cell polarity is crucial for the coordinated development of all multicellular organisms. In plants, this is exemplified by the PIN-FORMED (PIN) efflux carriers of the phytohormone auxin: The polar subcellular localization of the PINs is instructive to the directional intercellular auxin transport, and thus to a plethora of auxin-regulated growth and developmental processes. Despite its importance, the regulation of PIN polar subcellular localization remains poorly understood. Here, we have employed advanced live-cell imaging techniques to study the roles of microtubules and actin microfilaments in the establishment of apical polar localization of PIN2 in the epidermis of the Arabidopsis root meristem. We report that apical PIN2 polarity requires neither intact actin microfilaments nor microtubules, suggesting that the primary spatial cue for polar PIN distribution is likely independent of cytoskeleton-guided endomembrane trafficking.' acknowledged_ssus: - _id: Bio article_number: '222' article_processing_charge: No author: - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Glanc M, Fendrych M, Friml J. PIN2 polarity establishment in arabidopsis in the absence of an intact cytoskeleton. Biomolecules. 2019;9(6). doi:10.3390/biom9060222 apa: Glanc, M., Fendrych, M., & Friml, J. (2019). PIN2 polarity establishment in arabidopsis in the absence of an intact cytoskeleton. Biomolecules. MDPI. https://doi.org/10.3390/biom9060222 chicago: Glanc, Matous, Matyas Fendrych, and Jiří Friml. “PIN2 Polarity Establishment in Arabidopsis in the Absence of an Intact Cytoskeleton.” Biomolecules. MDPI, 2019. https://doi.org/10.3390/biom9060222. ieee: M. Glanc, M. Fendrych, and J. Friml, “PIN2 polarity establishment in arabidopsis in the absence of an intact cytoskeleton,” Biomolecules, vol. 9, no. 6. MDPI, 2019. ista: Glanc M, Fendrych M, Friml J. 2019. PIN2 polarity establishment in arabidopsis in the absence of an intact cytoskeleton. Biomolecules. 9(6), 222. mla: Glanc, Matous, et al. “PIN2 Polarity Establishment in Arabidopsis in the Absence of an Intact Cytoskeleton.” Biomolecules, vol. 9, no. 6, 222, MDPI, 2019, doi:10.3390/biom9060222. short: M. Glanc, M. Fendrych, J. Friml, Biomolecules 9 (2019). date_created: 2019-07-07T21:59:21Z date_published: 2019-06-07T00:00:00Z date_updated: 2023-08-28T12:30:24Z day: '07' ddc: - '580' department: - _id: JiFr doi: 10.3390/biom9060222 ec_funded: 1 external_id: isi: - '000475301500018' pmid: - '31181636' file: - access_level: open_access checksum: 1ce1bd36038fe5381057a1bcc6760083 content_type: application/pdf creator: kschuh date_created: 2019-07-08T15:46:32Z date_updated: 2020-07-14T12:47:34Z file_id: '6625' file_name: biomolecules-2019-Matous.pdf file_size: 1066773 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Biomolecules publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: PIN2 polarity establishment in arabidopsis in the absence of an intact cytoskeleton tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 9 year: '2019' ... --- _id: '6778' abstract: - lang: eng text: "An important adaptation during colonization of land by plants is gravitropic growth of roots, which enabled roots to reach water and nutrients, and firmly anchor plants in the ground. Here we provide insights into the evolution of an efficient root gravitropic mechanism in the seed plants. Architectural innovation, with gravity perception constrained in the root tips\r\nalong with a shootward transport route for the phytohormone auxin, appeared only upon the emergence of seed plants. Interspecies complementation and protein domain swapping revealed functional innovations within the PIN family of auxin transporters leading to the evolution of gravitropism-specific PINs. The unique apical/shootward subcellular localization of PIN proteins is the major evolutionary innovation that connected the anatomically separated sites of gravity perception and growth response via the mobile auxin signal. We conclude that the crucial anatomical and functional components emerged hand-in-hand to facilitate the evolution of fast gravitropic response, which is one of the major adaptations of seed plants to dry land." article_number: '3480' article_processing_charge: No article_type: original author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: G full_name: Xiao, G last_name: Xiao - first_name: X full_name: Wang, X last_name: Wang - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zhang Y, Xiao G, Wang X, Zhang X, Friml J. Evolution of fast root gravitropism in seed plants. Nature Communications. 2019;10. doi:10.1038/s41467-019-11471-8 apa: Zhang, Y., Xiao, G., Wang, X., Zhang, X., & Friml, J. (2019). Evolution of fast root gravitropism in seed plants. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-019-11471-8 chicago: Zhang, Yuzhou, G Xiao, X Wang, Xixi Zhang, and Jiří Friml. “Evolution of Fast Root Gravitropism in Seed Plants.” Nature Communications. Springer Nature, 2019. https://doi.org/10.1038/s41467-019-11471-8. ieee: Y. Zhang, G. Xiao, X. Wang, X. Zhang, and J. Friml, “Evolution of fast root gravitropism in seed plants,” Nature Communications, vol. 10. Springer Nature, 2019. ista: Zhang Y, Xiao G, Wang X, Zhang X, Friml J. 2019. Evolution of fast root gravitropism in seed plants. Nature Communications. 10, 3480. mla: Zhang, Yuzhou, et al. “Evolution of Fast Root Gravitropism in Seed Plants.” Nature Communications, vol. 10, 3480, Springer Nature, 2019, doi:10.1038/s41467-019-11471-8. short: Y. Zhang, G. Xiao, X. Wang, X. Zhang, J. Friml, Nature Communications 10 (2019). date_created: 2019-08-09T08:46:26Z date_published: 2019-08-02T00:00:00Z date_updated: 2023-08-29T07:02:44Z day: '02' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-019-11471-8 ec_funded: 1 external_id: isi: - '000478576500012' pmid: - '31375675' file: - access_level: open_access checksum: d2c654fdb97f33078f606fe0c298bf6e content_type: application/pdf creator: dernst date_created: 2019-08-12T07:09:20Z date_updated: 2020-07-14T12:47:40Z file_id: '6798' file_name: 2019_NatureComm_Zhang.pdf file_size: 6406141 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 10' isi: 1 language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/when-plant-roots-learned-to-follow-gravity/ scopus_import: '1' status: public title: Evolution of fast root gravitropism in seed plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 10 year: '2019' ... --- _id: '6366' abstract: - lang: eng text: Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures, and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl. article_processing_charge: No article_type: original author: - first_name: Julia full_name: Bellstaedt, Julia last_name: Bellstaedt - first_name: Jana full_name: Trenner, Jana last_name: Trenner - first_name: Rebecca full_name: Lippmann, Rebecca last_name: Lippmann - first_name: Yvonne full_name: Poeschl, Yvonne last_name: Poeschl - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Marcel full_name: Quint, Marcel last_name: Quint - first_name: Carolin full_name: Delker, Carolin last_name: Delker citation: ama: Bellstaedt J, Trenner J, Lippmann R, et al. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiology. 2019;180(2):757-766. doi:10.1104/pp.18.01377 apa: Bellstaedt, J., Trenner, J., Lippmann, R., Poeschl, Y., Zhang, X., Friml, J., … Delker, C. (2019). A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiology. ASPB. https://doi.org/10.1104/pp.18.01377 chicago: Bellstaedt, Julia, Jana Trenner, Rebecca Lippmann, Yvonne Poeschl, Xixi Zhang, Jiří Friml, Marcel Quint, and Carolin Delker. “A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls.” Plant Physiology. ASPB, 2019. https://doi.org/10.1104/pp.18.01377. ieee: J. Bellstaedt et al., “A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls,” Plant Physiology, vol. 180, no. 2. ASPB, pp. 757–766, 2019. ista: Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, Quint M, Delker C. 2019. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiology. 180(2), 757–766. mla: Bellstaedt, Julia, et al. “A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls.” Plant Physiology, vol. 180, no. 2, ASPB, 2019, pp. 757–66, doi:10.1104/pp.18.01377. short: J. Bellstaedt, J. Trenner, R. Lippmann, Y. Poeschl, X. Zhang, J. Friml, M. Quint, C. Delker, Plant Physiology 180 (2019) 757–766. date_created: 2019-04-30T15:24:22Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-09-05T12:25:19Z day: '01' department: - _id: JiFr doi: 10.1104/pp.18.01377 external_id: isi: - '000470086100019' pmid: - '31000634' intvolume: ' 180' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: www.doi.org/10.1104/pp.18.01377 month: '06' oa: 1 oa_version: Published Version page: 757-766 pmid: 1 publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: ASPB quality_controlled: '1' scopus_import: '1' status: public title: A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 180 year: '2019' ... --- _id: '6259' abstract: - lang: eng text: The plant hormone auxin has crucial roles in almost all aspects of plant growth and development. Concentrations of auxin vary across different tissues, mediating distinct developmental outcomes and contributing to the functional diversity of auxin. However, the mechanisms that underlie these activities are poorly understood. Here we identify an auxin signalling mechanism, which acts in parallel to the canonical auxin pathway based on the transport inhibitor response1 (TIR1) and other auxin receptor F-box (AFB) family proteins (TIR1/AFB receptors)1,2, that translates levels of cellular auxin to mediate differential growth during apical-hook development. This signalling mechanism operates at the concave side of the apical hook, and involves auxin-mediated C-terminal cleavage of transmembrane kinase 1 (TMK1). The cytosolic and nucleus-translocated C terminus of TMK1 specifically interacts with and phosphorylates two non-canonical transcriptional repressors of the auxin or indole-3-acetic acid (Aux/IAA) family (IAA32 and IAA34), thereby regulating ARF transcription factors. In contrast to the degradation of Aux/IAA transcriptional repressors in the canonical pathway, the newly identified mechanism stabilizes the non-canonical IAA32 and IAA34 transcriptional repressors to regulate gene expression and ultimately inhibit growth. The auxin–TMK1 signalling pathway originates at the cell surface, is triggered by high levels of auxin and shares a partially overlapping set of transcription factors with the TIR1/AFB signalling pathway. This allows distinct interpretations of different concentrations of cellular auxin, and thus enables this versatile signalling molecule to mediate complex developmental outcomes. article_processing_charge: No article_type: original author: - first_name: Min full_name: Cao, Min last_name: Cao - first_name: Rong full_name: Chen, Rong last_name: Chen - first_name: Pan full_name: Li, Pan last_name: Li - first_name: Yongqiang full_name: Yu, Yongqiang last_name: Yu - first_name: Rui full_name: Zheng, Rui last_name: Zheng - first_name: Danfeng full_name: Ge, Danfeng last_name: Ge - first_name: Wei full_name: Zheng, Wei last_name: Zheng - first_name: Xuhui full_name: Wang, Xuhui last_name: Wang - first_name: Yangtao full_name: Gu, Yangtao last_name: Gu - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Heng full_name: Zhang, Heng last_name: Zhang - first_name: Renyi full_name: Liu, Renyi last_name: Liu - first_name: Jun full_name: He, Jun last_name: He - first_name: Tongda full_name: Xu, Tongda last_name: Xu citation: ama: Cao M, Chen R, Li P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. 2019;568:240-243. doi:10.1038/s41586-019-1069-7 apa: Cao, M., Chen, R., Li, P., Yu, Y., Zheng, R., Ge, D., … Xu, T. (2019). TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. Springer Nature. https://doi.org/10.1038/s41586-019-1069-7 chicago: Cao, Min, Rong Chen, Pan Li, Yongqiang Yu, Rui Zheng, Danfeng Ge, Wei Zheng, et al. “TMK1-Mediated Auxin Signalling Regulates Differential Growth of the Apical Hook.” Nature. Springer Nature, 2019. https://doi.org/10.1038/s41586-019-1069-7. ieee: M. Cao et al., “TMK1-mediated auxin signalling regulates differential growth of the apical hook,” Nature, vol. 568. Springer Nature, pp. 240–243, 2019. ista: Cao M, Chen R, Li P, Yu Y, Zheng R, Ge D, Zheng W, Wang X, Gu Y, Gelová Z, Friml J, Zhang H, Liu R, He J, Xu T. 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature. 568, 240–243. mla: Cao, Min, et al. “TMK1-Mediated Auxin Signalling Regulates Differential Growth of the Apical Hook.” Nature, vol. 568, Springer Nature, 2019, pp. 240–43, doi:10.1038/s41586-019-1069-7. short: M. Cao, R. Chen, P. Li, Y. Yu, R. Zheng, D. Ge, W. Zheng, X. Wang, Y. Gu, Z. Gelová, J. Friml, H. Zhang, R. Liu, J. He, T. Xu, Nature 568 (2019) 240–243. date_created: 2019-04-09T08:37:05Z date_published: 2019-04-11T00:00:00Z date_updated: 2023-09-05T14:58:41Z day: '11' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41586-019-1069-7 ec_funded: 1 external_id: isi: - '000464412700050' pmid: - '30944466' file: - access_level: open_access checksum: 6b84ab602a34382cf0340a37a1378c75 content_type: application/pdf creator: dernst date_created: 2020-11-13T07:37:41Z date_updated: 2020-11-13T07:37:41Z file_id: '8751' file_name: 2019_Nature _Cao_accepted.pdf file_size: 4321328 relation: main_file success: 1 file_date_updated: 2020-11-13T07:37:41Z has_accepted_license: '1' intvolume: ' 568' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Submitted Version page: 240-243 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/newly-discovered-mechanism-of-plant-hormone-auxin-acts-the-opposite-way/ scopus_import: '1' status: public title: TMK1-mediated auxin signalling regulates differential growth of the apical hook type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 568 year: '2019' ... --- _id: '7106' abstract: - lang: eng text: PIN-FORMED (PIN) transporters mediate directional, intercellular movement of the phytohormone auxin in land plants. To elucidate the evolutionary origins of this developmentally crucial mechanism, we analysed the single PIN homologue of a simple green alga Klebsormidium flaccidum. KfPIN functions as a plasma membrane-localized auxin exporter in land plants and heterologous models. While its role in algae remains unclear, PIN-driven auxin export is probably an ancient and conserved trait within streptophytes. article_processing_charge: No article_type: original author: - first_name: Roman full_name: Skokan, Roman last_name: Skokan - first_name: Eva full_name: Medvecká, Eva last_name: Medvecká - first_name: Tom full_name: Viaene, Tom last_name: Viaene - first_name: Stanislav full_name: Vosolsobě, Stanislav last_name: Vosolsobě - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Karel full_name: Müller, Karel last_name: Müller - first_name: Petr full_name: Skůpa, Petr last_name: Skůpa - first_name: Michal full_name: Karady, Michal last_name: Karady - first_name: Yuzhou full_name: Zhang, Yuzhou last_name: Zhang - first_name: Dorina P. full_name: Janacek, Dorina P. last_name: Janacek - first_name: Ulrich Z. full_name: Hammes, Ulrich Z. last_name: Hammes - first_name: Karin full_name: Ljung, Karin last_name: Ljung - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Skokan R, Medvecká E, Viaene T, et al. PIN-driven auxin transport emerged early in streptophyte evolution. Nature Plants. 2019;5(11):1114-1119. doi:10.1038/s41477-019-0542-5 apa: Skokan, R., Medvecká, E., Viaene, T., Vosolsobě, S., Zwiewka, M., Müller, K., … Friml, J. (2019). PIN-driven auxin transport emerged early in streptophyte evolution. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-019-0542-5 chicago: Skokan, Roman, Eva Medvecká, Tom Viaene, Stanislav Vosolsobě, Marta Zwiewka, Karel Müller, Petr Skůpa, et al. “PIN-Driven Auxin Transport Emerged Early in Streptophyte Evolution.” Nature Plants. Springer Nature, 2019. https://doi.org/10.1038/s41477-019-0542-5. ieee: R. Skokan et al., “PIN-driven auxin transport emerged early in streptophyte evolution,” Nature Plants, vol. 5, no. 11. Springer Nature, pp. 1114–1119, 2019. ista: Skokan R, Medvecká E, Viaene T, Vosolsobě S, Zwiewka M, Müller K, Skůpa P, Karady M, Zhang Y, Janacek DP, Hammes UZ, Ljung K, Nodzyński T, Petrášek J, Friml J. 2019. PIN-driven auxin transport emerged early in streptophyte evolution. Nature Plants. 5(11), 1114–1119. mla: Skokan, Roman, et al. “PIN-Driven Auxin Transport Emerged Early in Streptophyte Evolution.” Nature Plants, vol. 5, no. 11, Springer Nature, 2019, pp. 1114–19, doi:10.1038/s41477-019-0542-5. short: R. Skokan, E. Medvecká, T. Viaene, S. Vosolsobě, M. Zwiewka, K. Müller, P. Skůpa, M. Karady, Y. Zhang, D.P. Janacek, U.Z. Hammes, K. Ljung, T. Nodzyński, J. Petrášek, J. Friml, Nature Plants 5 (2019) 1114–1119. date_created: 2019-11-25T09:08:04Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-09-06T11:09:49Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41477-019-0542-5 ec_funded: 1 external_id: isi: - '000496526100010' pmid: - '31712756' file: - access_level: open_access checksum: 94e0426856aad9a9bd0135d5436efbf1 content_type: application/pdf creator: dernst date_created: 2020-10-14T08:54:49Z date_updated: 2020-10-14T08:54:49Z file_id: '8660' file_name: 2019_NaturePlants_Skokan_accepted.pdf file_size: 1980851 relation: main_file success: 1 file_date_updated: 2020-10-14T08:54:49Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Submitted Version page: 1114-1119 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature Plants publication_identifier: issn: - 2055-0278 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: PIN-driven auxin transport emerged early in streptophyte evolution type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2019' ... --- _id: '7143' abstract: - lang: eng text: Roots grow downwards parallel to the gravity vector, to anchor a plant in soil and acquire water and nutrients, using a gravitropic mechanism dependent on the asymmetric distribution of the phytohormone auxin. Recently, Chang et al. demonstrate that asymmetric distribution of another phytohormone, cytokinin, directs root growth towards higher water content. article_processing_charge: No article_type: original author: - first_name: Scott A full_name: Sinclair, Scott A id: 2D99FE6A-F248-11E8-B48F-1D18A9856A87 last_name: Sinclair orcid: 0000-0002-4566-0593 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Sinclair SA, Friml J. Defying gravity: a plant’s quest for moisture. Cell Research. 2019;29:965-966. doi:10.1038/s41422-019-0254-4' apa: 'Sinclair, S. A., & Friml, J. (2019). Defying gravity: a plant’s quest for moisture. Cell Research. Springer Nature. https://doi.org/10.1038/s41422-019-0254-4' chicago: 'Sinclair, Scott A, and Jiří Friml. “Defying Gravity: A Plant’s Quest for Moisture.” Cell Research. Springer Nature, 2019. https://doi.org/10.1038/s41422-019-0254-4.' ieee: 'S. A. Sinclair and J. Friml, “Defying gravity: a plant’s quest for moisture,” Cell Research, vol. 29. Springer Nature, pp. 965–966, 2019.' ista: 'Sinclair SA, Friml J. 2019. Defying gravity: a plant’s quest for moisture. Cell Research. 29, 965–966.' mla: 'Sinclair, Scott A., and Jiří Friml. “Defying Gravity: A Plant’s Quest for Moisture.” Cell Research, vol. 29, Springer Nature, 2019, pp. 965–66, doi:10.1038/s41422-019-0254-4.' short: S.A. Sinclair, J. Friml, Cell Research 29 (2019) 965–966. date_created: 2019-12-02T12:30:48Z date_published: 2019-12-01T00:00:00Z date_updated: 2023-09-06T11:20:58Z day: '01' department: - _id: JiFr doi: 10.1038/s41422-019-0254-4 external_id: isi: - '000500749600001' pmid: - '31745287' intvolume: ' 29' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1038/s41422-019-0254-4 month: '12' oa: 1 oa_version: Published Version page: 965-966 pmid: 1 publication: Cell Research publication_identifier: eissn: - 1748-7838 issn: - 1001-0602 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'Defying gravity: a plant''s quest for moisture' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 29 year: '2019' ... --- _id: '7182' abstract: - lang: eng text: During infection pathogens secrete small molecules, termed effectors, to manipulate and control the interaction with their specific hosts. Both the pathogen and the plant are under high selective pressure to rapidly adapt and co-evolve in what is usually referred to as molecular arms race. Components of the host’s immune system form a network that processes information about molecules with a foreign origin and damage-associated signals, integrating them with developmental and abiotic cues to adapt the plant’s responses. Both in the case of nucleotide-binding leucine-rich repeat receptors and leucine-rich repeat receptor kinases interaction networks have been extensively characterized. However, little is known on whether pathogenic effectors form complexes to overcome plant immunity and promote disease. Ustilago maydis, a biotrophic fungal pathogen that infects maize plants, produces effectors that target hubs in the immune network of the host cell. Here we assess the capability of U. maydis effector candidates to interact with each other, which may play a crucial role during the infection process. Using a systematic yeast-two-hybrid approach and based on a preliminary pooled screen, we selected 63 putative effectors for one-on-one matings with a library of nearly 300 effector candidates. We found that 126 of these effector candidates interacted either with themselves or other predicted effectors. Although the functional relevance of the observed interactions remains elusive, we propose that the observed abundance in complex formation between effectors adds an additional level of complexity to effector research and should be taken into consideration when studying effector evolution and function. Based on this fundamental finding, we suggest various scenarios which could evolutionarily drive the formation and stabilization of an effector interactome. article_number: '1437' article_processing_charge: No article_type: original author: - first_name: André full_name: Alcântara, André last_name: Alcântara - first_name: Jason full_name: Bosch, Jason last_name: Bosch - first_name: Fahimeh full_name: Nazari, Fahimeh last_name: Nazari - first_name: Gesa full_name: Hoffmann, Gesa last_name: Hoffmann - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Simon full_name: Uhse, Simon last_name: Uhse - first_name: Martin A. full_name: Darino, Martin A. last_name: Darino - first_name: Toluwase full_name: Olukayode, Toluwase last_name: Olukayode - first_name: Daniel full_name: Reumann, Daniel last_name: Reumann - first_name: Laura full_name: Baggaley, Laura last_name: Baggaley - first_name: Armin full_name: Djamei, Armin last_name: Djamei citation: ama: Alcântara A, Bosch J, Nazari F, et al. Systematic Y2H screening reveals extensive effector-complex formation. Frontiers in Plant Science. 2019;10(11). doi:10.3389/fpls.2019.01437 apa: Alcântara, A., Bosch, J., Nazari, F., Hoffmann, G., Gallei, M. C., Uhse, S., … Djamei, A. (2019). Systematic Y2H screening reveals extensive effector-complex formation. Frontiers in Plant Science. Frontiers. https://doi.org/10.3389/fpls.2019.01437 chicago: Alcântara, André, Jason Bosch, Fahimeh Nazari, Gesa Hoffmann, Michelle C Gallei, Simon Uhse, Martin A. Darino, et al. “Systematic Y2H Screening Reveals Extensive Effector-Complex Formation.” Frontiers in Plant Science. Frontiers, 2019. https://doi.org/10.3389/fpls.2019.01437. ieee: A. Alcântara et al., “Systematic Y2H screening reveals extensive effector-complex formation,” Frontiers in Plant Science, vol. 10, no. 11. Frontiers, 2019. ista: Alcântara A, Bosch J, Nazari F, Hoffmann G, Gallei MC, Uhse S, Darino MA, Olukayode T, Reumann D, Baggaley L, Djamei A. 2019. Systematic Y2H screening reveals extensive effector-complex formation. Frontiers in Plant Science. 10(11), 1437. mla: Alcântara, André, et al. “Systematic Y2H Screening Reveals Extensive Effector-Complex Formation.” Frontiers in Plant Science, vol. 10, no. 11, 1437, Frontiers, 2019, doi:10.3389/fpls.2019.01437. short: A. Alcântara, J. Bosch, F. Nazari, G. Hoffmann, M.C. Gallei, S. Uhse, M.A. Darino, T. Olukayode, D. Reumann, L. Baggaley, A. Djamei, Frontiers in Plant Science 10 (2019). date_created: 2019-12-15T23:00:43Z date_published: 2019-11-14T00:00:00Z date_updated: 2023-09-06T14:33:46Z day: '14' ddc: - '580' department: - _id: JiFr doi: 10.3389/fpls.2019.01437 external_id: isi: - '000499821700001' pmid: - '31803201' file: - access_level: open_access checksum: 995aa838aec2064d93550de82b40bbd1 content_type: application/pdf creator: dernst date_created: 2019-12-16T07:58:43Z date_updated: 2020-07-14T12:47:52Z file_id: '7185' file_name: 2019_FrontiersPlant_Alcantara.pdf file_size: 1532505 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' intvolume: ' 10' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Plant Science publication_identifier: eissn: - 1664462X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: Systematic Y2H screening reveals extensive effector-complex formation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 10 year: '2019' ... --- _id: '6377' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) is a highly conserved and essential cellular process in eukaryotic cells, but its dynamic and vital nature makes it challenging to study using classical genetics tools. In contrast, although small molecules can acutely and reversibly perturb CME, the few chemical CME inhibitors that have been applied to plants are either ineffective or show undesirable side effects. Here, we identify the previously described endosidin9 (ES9) as an inhibitor of clathrin heavy chain (CHC) function in both Arabidopsis and human cells through affinity-based target isolation, in vitro binding studies and X-ray crystallography. Moreover, we present a chemically improved ES9 analog, ES9-17, which lacks the undesirable side effects of ES9 while retaining the ability to target CHC. ES9 and ES9-17 have expanded the chemical toolbox used to probe CHC function, and present chemical scaffolds for further design of more specific and potent CHC inhibitors across different systems. article_processing_charge: No article_type: original author: - first_name: Wim full_name: Dejonghe, Wim last_name: Dejonghe - first_name: Isha full_name: Sharma, Isha last_name: Sharma - first_name: Bram full_name: Denoo, Bram last_name: Denoo - first_name: Steven full_name: De Munck, Steven last_name: De Munck - first_name: Qing full_name: Lu, Qing last_name: Lu - first_name: Kiril full_name: Mishev, Kiril last_name: Mishev - first_name: Haydar full_name: Bulut, Haydar last_name: Bulut - first_name: Evelien full_name: Mylle, Evelien last_name: Mylle - first_name: Riet full_name: De Rycke, Riet last_name: De Rycke - first_name: Mina K full_name: Vasileva, Mina K id: 3407EB18-F248-11E8-B48F-1D18A9856A87 last_name: Vasileva - first_name: Daniel V. full_name: Savatin, Daniel V. last_name: Savatin - first_name: Wim full_name: Nerinckx, Wim last_name: Nerinckx - first_name: An full_name: Staes, An last_name: Staes - first_name: Andrzej full_name: Drozdzecki, Andrzej last_name: Drozdzecki - first_name: Dominique full_name: Audenaert, Dominique last_name: Audenaert - first_name: Klaas full_name: Yperman, Klaas last_name: Yperman - first_name: Annemieke full_name: Madder, Annemieke last_name: Madder - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Daniël full_name: Van Damme, Daniël last_name: Van Damme - first_name: Kris full_name: Gevaert, Kris last_name: Gevaert - first_name: Volker full_name: Haucke, Volker last_name: Haucke - first_name: Savvas N. full_name: Savvides, Savvas N. last_name: Savvides - first_name: Johan full_name: Winne, Johan last_name: Winne - first_name: Eugenia full_name: Russinova, Eugenia last_name: Russinova citation: ama: Dejonghe W, Sharma I, Denoo B, et al. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nature Chemical Biology. 2019;15(6):641–649. doi:10.1038/s41589-019-0262-1 apa: Dejonghe, W., Sharma, I., Denoo, B., De Munck, S., Lu, Q., Mishev, K., … Russinova, E. (2019). Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nature Chemical Biology. Springer Nature. https://doi.org/10.1038/s41589-019-0262-1 chicago: Dejonghe, Wim, Isha Sharma, Bram Denoo, Steven De Munck, Qing Lu, Kiril Mishev, Haydar Bulut, et al. “Disruption of Endocytosis through Chemical Inhibition of Clathrin Heavy Chain Function.” Nature Chemical Biology. Springer Nature, 2019. https://doi.org/10.1038/s41589-019-0262-1. ieee: W. Dejonghe et al., “Disruption of endocytosis through chemical inhibition of clathrin heavy chain function,” Nature Chemical Biology, vol. 15, no. 6. Springer Nature, pp. 641–649, 2019. ista: Dejonghe W, Sharma I, Denoo B, De Munck S, Lu Q, Mishev K, Bulut H, Mylle E, De Rycke R, Vasileva MK, Savatin DV, Nerinckx W, Staes A, Drozdzecki A, Audenaert D, Yperman K, Madder A, Friml J, Van Damme D, Gevaert K, Haucke V, Savvides SN, Winne J, Russinova E. 2019. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nature Chemical Biology. 15(6), 641–649. mla: Dejonghe, Wim, et al. “Disruption of Endocytosis through Chemical Inhibition of Clathrin Heavy Chain Function.” Nature Chemical Biology, vol. 15, no. 6, Springer Nature, 2019, pp. 641–649, doi:10.1038/s41589-019-0262-1. short: W. Dejonghe, I. Sharma, B. Denoo, S. De Munck, Q. Lu, K. Mishev, H. Bulut, E. Mylle, R. De Rycke, M.K. Vasileva, D.V. Savatin, W. Nerinckx, A. Staes, A. Drozdzecki, D. Audenaert, K. Yperman, A. Madder, J. Friml, D. Van Damme, K. Gevaert, V. Haucke, S.N. Savvides, J. Winne, E. Russinova, Nature Chemical Biology 15 (2019) 641–649. date_created: 2019-05-05T21:59:11Z date_published: 2019-06-01T00:00:00Z date_updated: 2023-09-07T12:54:35Z day: '01' department: - _id: JiFr doi: 10.1038/s41589-019-0262-1 external_id: isi: - '000468195600018' intvolume: ' 15' isi: 1 issue: '6' language: - iso: eng month: '06' oa_version: None page: 641–649 publication: Nature Chemical Biology publication_identifier: eissn: - '15524469' issn: - '15524450' publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '7172' relation: dissertation_contains status: public scopus_import: '1' status: public title: Disruption of endocytosis through chemical inhibition of clathrin heavy chain function type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2019' ... --- _id: '7172' abstract: - lang: eng text: "The development and growth of Arabidopsis thaliana is regulated by a combination of genetic programing and also by the environmental influences. An important role in these processes play the phytohormones and among them, auxin is crucial as it controls many important functions. It is transported through the whole plant body by creating local and temporal concentration maxima and minima, which have an impact on the cell status, tissue and organ identity. Auxin has the property to undergo a directional and finely regulated cell-to-cell transport, which is enabled by the transport proteins, localized on the plasma membrane. An important role in this process have the PIN auxin efflux proteins, which have an asymmetric/polar subcellular localization and determine the directionality of the auxin transport. During the last years, there were significant advances in understanding how the trafficking molecular machineries function, including studies on molecular interactions, function, subcellular localization and intracellular distribution. However, there is still a lack of detailed characterization on the steps of endocytosis, exocytosis, endocytic recycling and degradation. Due to this fact, I focused on the identification of novel trafficking factors and better characterization of the intracellular trafficking pathways. My PhD thesis consists of an introductory chapter, three experimental chapters, a chapter containing general discussion, conclusions and perspectives and also an appendix chapter with published collaborative papers.\r\nThe first chapter is separated in two different parts: I start by a general introduction to auxin biology and then I introduce the trafficking pathways in the model plant Arabidopsis thaliana. Then, I explain also the phosphorylation-signals for polar targeting and also the roles of the phytohormone strigolactone.\r\nThe second chapter includes the characterization of bar1/sacsin mutant, which was identified in a forward genetic screen for novel trafficking components in Arabidopsis thaliana, where by the implementation of an EMS-treated pPIN1::PIN1-GFP marker line and by using the established inhibitor of ARF-GEFs, Brefeldin A (BFA) as a tool to study trafficking processes, we identified a novel factor, which is mediating the adaptation of the plant cell to ARF-GEF inhibition. The mutation is in a previously uncharacterized gene, encoding a very big protein that we, based on its homologies, called SACSIN with domains suggesting roles as a molecular chaperon or as a component of the ubiquitin-proteasome system. Our physiology and imaging studies revealed that SACSIN is a crucial plant cell component of the adaptation to the ARF-GEF inhibition.\r\nThe third chapter includes six subchapters, where I focus on the role of the phytohormone strigolactone, which interferes with auxin feedback on PIN internalization. Strigolactone moderates the polar auxin transport by increasing the internalization of the PIN auxin efflux carriers, which reduces the canalization related growth responses. In addition, I also studied the role of phosphorylation in the strigolactone regulation of auxin feedback on PIN internalization. In this chapter I also present my results on the MAX2-dependence of strigolactone-mediated root growth inhibition and I also share my results on the auxin metabolomics profiling after application of GR24.\r\nIn the fourth chapter I studied the effect of two small molecules ES-9 and ES9-17, which were identified from a collection of small molecules with the property to impair the clathrin-mediated endocytosis.\r\nIn the fifth chapter, I discuss all my observations and experimental findings and suggest alternative hypothesis to interpret my results.\r\nIn the appendix there are three collaborative published projects. In the first, I participated in the characterization of the role of ES9 as a small molecule, which is inhibitor of clathrin- mediated endocytosis in different model organisms. In the second paper, I contributed to the characterization of another small molecule ES9-17, which is a non-protonophoric analog of ES9 and also impairs the clathrin-mediated endocytosis not only in plant cells, but also in mammalian HeLa cells. Last but not least, I also attach another paper, where I tried to establish the grafting method as a technique in our lab to study canalization related processes." acknowledged_ssus: - _id: LifeSc - _id: Bio alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Mina K full_name: Vasileva, Mina K id: 3407EB18-F248-11E8-B48F-1D18A9856A87 last_name: Vasileva citation: ama: Vasileva MK. Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. 2019. doi:10.15479/AT:ISTA:7172 apa: Vasileva, M. K. (2019). Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:7172 chicago: Vasileva, Mina K. “Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/AT:ISTA:7172. ieee: M. K. Vasileva, “Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana,” Institute of Science and Technology Austria, 2019. ista: Vasileva MK. 2019. Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana. Institute of Science and Technology Austria. mla: Vasileva, Mina K. Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana. Institute of Science and Technology Austria, 2019, doi:10.15479/AT:ISTA:7172. short: M.K. Vasileva, Molecular Mechanisms of Endomembrane Trafficking in Arabidopsis Thaliana, Institute of Science and Technology Austria, 2019. date_created: 2019-12-11T21:24:39Z date_published: 2019-12-12T00:00:00Z date_updated: 2023-09-19T10:39:33Z day: '12' ddc: - '570' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/AT:ISTA:7172 file: - access_level: closed checksum: ef981c1a3b1d9da0edcbedcff4970d37 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mvasilev date_created: 2019-12-12T09:32:36Z date_updated: 2020-07-14T12:47:51Z file_id: '7175' file_name: Thesis_Mina_final_upload_7.docx file_size: 20454014 relation: source_file - access_level: open_access checksum: 3882c4585e46c9cfb486e4225cad54ab content_type: application/pdf creator: mvasilev date_created: 2019-12-12T09:33:10Z date_updated: 2020-07-14T12:47:51Z file_id: '7176' file_name: Thesis_Mina_final_upload_7.pdf file_size: 11565025 relation: main_file file_date_updated: 2020-07-14T12:47:51Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '192' publication_identifier: eissn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1346' relation: part_of_dissertation status: public - id: '6377' relation: part_of_dissertation status: public - id: '449' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: Molecular mechanisms of endomembrane trafficking in Arabidopsis thaliana type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6999' abstract: - lang: eng text: Plasmodesmata (PD) are plant-specific membrane-lined channels that create cytoplasmic and membrane continuities between adjacent cells, thereby facilitating cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity in response to numerous environmental stimuli. In particular, during defense against plant pathogens, the defense hormone, salicylic acid (SA), plays a crucial role in the regulation of PD permeability in a callose-dependent manner. Here, we uncover a mechanism by which plants restrict the spreading of virus and PD cargoes using SA signaling by increasing lipid order and closure of PD. We showed that exogenous SA application triggered the compartmentalization of lipid raft nanodomains through a modulation of the lipid raft-regulatory protein, Remorin (REM). Genetic studies, superresolution imaging, and transmission electron microscopy observation together demonstrated that Arabidopsis REM1.2 and REM1.3 are crucial for plasma membrane nanodomain assembly to control PD aperture and functionality. In addition, we also found that a 14-3-3 epsilon protein modulates REM clustering and membrane nanodomain compartmentalization through its direct interaction with REM proteins. This study unveils a molecular mechanism by which the key plant defense hormone, SA, triggers membrane lipid nanodomain reorganization, thereby regulating PD closure to impede virus spreading. article_processing_charge: No article_type: original author: - first_name: D full_name: Huang, D last_name: Huang - first_name: Y full_name: Sun, Y last_name: Sun - first_name: Z full_name: Ma, Z last_name: Ma - first_name: M full_name: Ke, M last_name: Ke - first_name: Y full_name: Cui, Y last_name: Cui - first_name: Z full_name: Chen, Z last_name: Chen - first_name: C full_name: Chen, C last_name: Chen - first_name: C full_name: Ji, C last_name: Ji - first_name: TM full_name: Tran, TM last_name: Tran - first_name: L full_name: Yang, L last_name: Yang - first_name: SM full_name: Lam, SM last_name: Lam - first_name: Y full_name: Han, Y last_name: Han - first_name: G full_name: Shu, G last_name: Shu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Y full_name: Miao, Y last_name: Miao - first_name: L full_name: Jiang, L last_name: Jiang - first_name: X full_name: Chen, X last_name: Chen citation: ama: Huang D, Sun Y, Ma Z, et al. Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(42):21274-21284. doi:10.1073/pnas.1911892116 apa: Huang, D., Sun, Y., Ma, Z., Ke, M., Cui, Y., Chen, Z., … Chen, X. (2019). Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1911892116 chicago: Huang, D, Y Sun, Z Ma, M Ke, Y Cui, Z Chen, C Chen, et al. “Salicylic Acid-Mediated Plasmodesmal Closure via Remorin-Dependent Lipid Organization.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2019. https://doi.org/10.1073/pnas.1911892116. ieee: D. Huang et al., “Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 42. Proceedings of the National Academy of Sciences, pp. 21274–21284, 2019. ista: Huang D, Sun Y, Ma Z, Ke M, Cui Y, Chen Z, Chen C, Ji C, Tran T, Yang L, Lam S, Han Y, Shu G, Friml J, Miao Y, Jiang L, Chen X. 2019. Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proceedings of the National Academy of Sciences of the United States of America. 116(42), 21274–21284. mla: Huang, D., et al. “Salicylic Acid-Mediated Plasmodesmal Closure via Remorin-Dependent Lipid Organization.” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 42, Proceedings of the National Academy of Sciences, 2019, pp. 21274–84, doi:10.1073/pnas.1911892116. short: D. Huang, Y. Sun, Z. Ma, M. Ke, Y. Cui, Z. Chen, C. Chen, C. Ji, T. Tran, L. Yang, S. Lam, Y. Han, G. Shu, J. Friml, Y. Miao, L. Jiang, X. Chen, Proceedings of the National Academy of Sciences of the United States of America 116 (2019) 21274–21284. date_created: 2019-11-12T11:42:05Z date_published: 2019-10-15T00:00:00Z date_updated: 2023-10-17T12:32:37Z day: '15' ddc: - '580' department: - _id: JiFr doi: 10.1073/pnas.1911892116 external_id: isi: - '000490183000068' pmid: - '31575745' file: - access_level: open_access checksum: 258c666bc6253eab81961f61169eefae content_type: application/pdf creator: dernst date_created: 2019-11-13T08:22:28Z date_updated: 2020-07-14T12:47:46Z file_id: '7012' file_name: 2019_PNAS_Huang.pdf file_size: 3287466 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 116' isi: 1 issue: '42' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 21274-21284 pmid: 1 publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1073/pnas.2004738117 scopus_import: '1' status: public title: Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 116 year: '2019' ... --- _id: '6269' abstract: - lang: eng text: 'Clathrin-Mediated Endocytosis (CME) is an aspect of cellular trafficking that is constantly regulated for mediating developmental and physiological responses. The main aim of my thesis is to decipher the basic mechanisms of CME and post-endocytic trafficking in the whole multicellular organ systems of Arabidopsis. The first chapter of my thesis describes the search for new components involved in CME. Tandem affinity purification was conducted using CLC and its interacting partners were identified. Amongst the identified proteins were the Auxilin-likes1 and 2 (Axl1/2), putative uncoating factors, for which we made a full functional analysis. Over-expression of Axl1/2 causes extreme modifications in the dynamics of the machinery proteins and inhibition of endocytosis altogether. However the loss of function of the axl1/2 did not present any cellular or physiological phenotype, meaning Auxilin-likes do not form the major uncoating machinery. The second chapter of my thesis describes the establishment/utilisation of techniques to capture the dynamicity and the complexity of CME and post-endocytic trafficking. We have studied the development of endocytic pits at the PM – specifically, the mode of membrane remodeling during pit development and the role of actin in it, given plant cells possess high turgor pressure. Utilizing the improved z-resolution of TIRF and VAEM techniques, we captured the time-lapse of the endocytic events at the plasma membrane; and using particle detection software, we quantitatively analysed all the endocytic trajectories in an unbiased way to obtain the endocytic rate of the system. This together with the direct analysis of cargo internalisation from the PM provided an estimate on the endocytic potential of the cell. We also developed a methodology for ultrastructural analysis of different populations of Clathrin-Coated Structures (CCSs) in both PM and endomembranes in unroofed protoplasts. Structural analysis, together with the intensity profile of CCSs at the PM show that the mode of CCP development at the PM follows ‘Constant curvature model’; meaning that clathrin polymerisation energy is a major contributing factor of membrane remodeling. In addition, other analyses clearly show that actin is not required for membrane remodeling during invagination or any other step of CCP development, despite the prevalent high turgor pressure. However, actin is essential in orchestrating the post-endocytic trafficking of CCVs facilitating the EE formation. We also observed that the uncoating process post-endocytosis is not immediate; an alternative mechanism of uncoating – Sequential multi-step process – functions in the cell. Finally we also looked at one of the important physiological stimuli modulating the process – hormone, auxin. auxin has been known to influence CME before. We have made a detailed study on the concentration-time based effect of auxin on the machinery proteins, CCP development, and the specificity of cargoes endocytosed. To this end, we saw no general effect of auxin on CME at earlier time points. However, very low concentration of IAA, such as 50nM, accelerates endocytosis of specifically PIN2 through CME. Such a tight regulatory control with high specificity to PIN2 could be essential in modulating its polarity. ' acknowledged_ssus: - _id: Bio - _id: EM-Fac alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 citation: ama: Narasimhan M. Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . 2019. doi:10.15479/at:ista:th1075 apa: Narasimhan, M. (2019). Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th1075 chicago: Narasimhan, Madhumitha. “Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants .” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/at:ista:th1075. ieee: M. Narasimhan, “Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants ,” Institute of Science and Technology Austria, 2019. ista: Narasimhan M. 2019. Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants . Institute of Science and Technology Austria. mla: Narasimhan, Madhumitha. Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants . Institute of Science and Technology Austria, 2019, doi:10.15479/at:ista:th1075. short: M. Narasimhan, Clathrin-Mediated Endocytosis, Post-Endocytic Trafficking and Their Regulatory Controls in Plants , Institute of Science and Technology Austria, 2019. date_created: 2019-04-09T14:37:06Z date_published: 2019-02-04T00:00:00Z date_updated: 2023-09-08T11:43:03Z day: '04' ddc: - '575' degree_awarded: PhD department: - _id: JiFr doi: 10.15479/at:ista:th1075 file: - access_level: open_access checksum: c958f27dd752712886e7e2638b847a3c content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6270' file_name: Supplementary_movie_1.avi file_size: 5402078 relation: main_file - access_level: open_access checksum: 8786fdc29c62987c0aad3c866a4d3691 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6271' file_name: 3.7_supplementary_movie_10.avi file_size: 5927736 relation: main_file - access_level: open_access checksum: 25f784c5159d6f4d966b2f9b371ebaf6 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6272' file_name: 3.7_supplementary_movie_9.avi file_size: 9570210 relation: main_file - access_level: open_access checksum: 917069272a7a08d1f38224d5e12765d6 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6273' file_name: 3.7_supplementary_movie_8.avi file_size: 2827360 relation: main_file - access_level: open_access checksum: 81e74f5ca0ad70050504f18192236dc0 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6274' file_name: 3.7_supplementary_movie_7.avi file_size: 5771410 relation: main_file - access_level: open_access checksum: 47eb37b27a2930252713924307ea8c6f content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6275' file_name: 3.7_supplementary_movie_6.avi file_size: 1113486 relation: main_file - access_level: open_access checksum: f68f66721041ce84e331959c9a5779c3 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:18Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6276' file_name: 3.7_supplementary_movie_5.avi file_size: 1057232 relation: main_file - access_level: open_access checksum: 67c01cefab51b363c5e214fe4cd671f3 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:23Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6277' file_name: 3.7_supplementary_movie_3.avi file_size: 127472916 relation: main_file - access_level: open_access checksum: e5a397edbee05b8821e2b19b3c1a9260 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:19Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6278' file_name: 3.7_supplementary_movie_4.avi file_size: 3181238 relation: main_file - access_level: open_access checksum: 32d92b2a9277f956fdb0b42351d07c0b content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:19Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6279' file_name: 3.7_supplementary_movie_2.avi file_size: 5970952 relation: main_file - access_level: open_access checksum: efe7001f5d9a8c61e631e12d5f324ade content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6280' file_name: 3.7_Supplementary_movie_1.avi file_size: 39835236 relation: main_file - access_level: open_access checksum: eeb0a5603c6449c5f34eacd5ff0b3a16 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6281' file_name: 2.5_Suppl_Movie_4_AP2A1_TagRFP.avi file_size: 3696740 relation: main_file - access_level: open_access checksum: 8e7c00ef6223bf0e177deb168338af13 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:21Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6282' file_name: 2.5_Suppl_Movie_3_TPLATE_GFP.avi file_size: 6741232 relation: main_file - access_level: open_access checksum: 3636006a7cb709a7543d6581e359b28d content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:22Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6283' file_name: 2.5_Suppl_Movie_2_CLC_GFP.avi file_size: 2445946 relation: main_file - access_level: open_access checksum: 39ca5519a6e9a38356e7b3704004fea7 content_type: video/x-msvideo creator: dernst date_created: 2019-04-09T14:35:22Z date_updated: 2021-02-11T23:30:15Z embargo: 2020-02-11 file_id: '6284' file_name: 2.5_Suppl_Movie_1_CLC_GFPxAxl1_mcherry.avi file_size: 58594 relation: main_file - access_level: open_access checksum: 4fcdaa3a6c645514a3b3205f0f69dc76 content_type: application/pdf creator: dernst date_created: 2019-04-09T14:35:33Z date_updated: 2021-02-11T11:17:15Z embargo: 2020-02-11 file_id: '6285' file_name: 2019_Thesis_Narasimhan.pdf file_size: 10553937 relation: main_file - access_level: closed checksum: 268f0b6bad21d5f0d671e5d4b88104a7 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-09T14:35:36Z date_updated: 2020-07-14T12:47:26Z embargo_to: open_access file_id: '6286' file_name: 2019_Thesis_Narasimhan_source.docx file_size: 135291990 relation: source_file file_date_updated: 2021-02-11T23:30:15Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '138' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '412' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 title: 'Clathrin-Mediated endocytosis, post-endocytic trafficking and their regulatory controls in plants ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6351' abstract: - lang: eng text: "A process of restorative patterning in plant roots correctly replaces eliminated cells to heal local injuries despite the absence of cell migration, which underpins wound healing in animals. \r\n\r\nPatterning in plants relies on oriented cell divisions and acquisition of specific cell identities. Plants regularly endure wounds caused by abiotic or biotic environmental stimuli and have developed extraordinary abilities to restore their tissues after injuries. Here, we provide insight into a mechanism of restorative patterning that repairs tissues after wounding. Laser-assisted elimination of different cells in Arabidopsis root combined with live-imaging tracking during vertical growth allowed analysis of the regeneration processes in vivo. Specifically, the cells adjacent to the inner side of the injury re-activated their stem cell transcriptional programs. They accelerated their progression through cell cycle, coordinately changed the cell division orientation, and ultimately acquired de novo the correct cell fates to replace missing cells. These observations highlight existence of unknown intercellular positional signaling and demonstrate the capability of specified cells to re-acquire stem cell programs as a crucial part of the plant-specific mechanism of wound healing." acknowledged_ssus: - _id: Bio article_processing_charge: No author: - first_name: Petra full_name: Marhavá, Petra id: 44E59624-F248-11E8-B48F-1D18A9856A87 last_name: Marhavá - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Marhavá P, Hörmayer L, Yoshida S, Marhavý P, Benková E, Friml J. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. 2019;177(4):957-969.e13. doi:10.1016/j.cell.2019.04.015 apa: Marhavá, P., Hörmayer, L., Yoshida, S., Marhavý, P., Benková, E., & Friml, J. (2019). Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. Elsevier. https://doi.org/10.1016/j.cell.2019.04.015 chicago: Marhavá, Petra, Lukas Hörmayer, Saiko Yoshida, Peter Marhavý, Eva Benková, and Jiří Friml. “Re-Activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing.” Cell. Elsevier, 2019. https://doi.org/10.1016/j.cell.2019.04.015. ieee: P. Marhavá, L. Hörmayer, S. Yoshida, P. Marhavý, E. Benková, and J. Friml, “Re-activation of stem cell pathways for pattern restoration in plant wound healing,” Cell, vol. 177, no. 4. Elsevier, p. 957–969.e13, 2019. ista: Marhavá P, Hörmayer L, Yoshida S, Marhavý P, Benková E, Friml J. 2019. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell. 177(4), 957–969.e13. mla: Marhavá, Petra, et al. “Re-Activation of Stem Cell Pathways for Pattern Restoration in Plant Wound Healing.” Cell, vol. 177, no. 4, Elsevier, 2019, p. 957–969.e13, doi:10.1016/j.cell.2019.04.015. short: P. Marhavá, L. Hörmayer, S. Yoshida, P. Marhavý, E. Benková, J. Friml, Cell 177 (2019) 957–969.e13. date_created: 2019-04-28T21:59:14Z date_published: 2019-05-02T00:00:00Z date_updated: 2024-03-18T23:30:10Z day: '02' ddc: - '570' department: - _id: JiFr - _id: EvBe doi: 10.1016/j.cell.2019.04.015 ec_funded: 1 external_id: isi: - '000466843000015' pmid: - '31051107' file: - access_level: open_access checksum: 4ceba04a96a74f5092ec3ce2c579a0c7 content_type: application/pdf creator: dernst date_created: 2019-05-13T06:12:45Z date_updated: 2020-07-14T12:47:28Z file_id: '6411' file_name: 2019_Cell_Marhava.pdf file_size: 10272032 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' intvolume: ' 177' isi: 1 issue: '4' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 957-969.e13 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Cell publication_identifier: eissn: - '10974172' issn: - '00928674' publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/specialized-plant-cells-regain-stem-cell-features-to-heal-wounds/ record: - id: '9992' relation: dissertation_contains status: public scopus_import: '1' status: public title: Re-activation of stem cell pathways for pattern restoration in plant wound healing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 177 year: '2019' ... --- _id: '6943' abstract: - lang: eng text: Plants as sessile organisms are constantly under attack by herbivores, rough environmental situations, or mechanical pressure. These challenges often lead to the induction of wounds or destruction of already specified and developed tissues. Additionally, wounding makes plants vulnerable to invasion by pathogens, which is why wound signalling often triggers specific defence responses. To stay competitive or, eventually, survive under these circumstances, plants need to regenerate efficiently, which in rigid, tissue migration-incompatible plant tissues requires post-embryonic patterning and organogenesis. Now, several studies used laser-assisted single cell ablation in the Arabidopsis root tip as a minimal wounding proxy. Here, we discuss their findings and put them into context of a broader spectrum of wound signalling, pathogen responses and tissue as well as organ regeneration. article_processing_charge: No article_type: original author: - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Hörmayer L, Friml J. Targeted cell ablation-based insights into wound healing and restorative patterning. Current Opinion in Plant Biology. 2019;52:124-130. doi:10.1016/j.pbi.2019.08.006 apa: Hörmayer, L., & Friml, J. (2019). Targeted cell ablation-based insights into wound healing and restorative patterning. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2019.08.006 chicago: Hörmayer, Lukas, and Jiří Friml. “Targeted Cell Ablation-Based Insights into Wound Healing and Restorative Patterning.” Current Opinion in Plant Biology. Elsevier, 2019. https://doi.org/10.1016/j.pbi.2019.08.006. ieee: L. Hörmayer and J. Friml, “Targeted cell ablation-based insights into wound healing and restorative patterning,” Current Opinion in Plant Biology, vol. 52. Elsevier, pp. 124–130, 2019. ista: Hörmayer L, Friml J. 2019. Targeted cell ablation-based insights into wound healing and restorative patterning. Current Opinion in Plant Biology. 52, 124–130. mla: Hörmayer, Lukas, and Jiří Friml. “Targeted Cell Ablation-Based Insights into Wound Healing and Restorative Patterning.” Current Opinion in Plant Biology, vol. 52, Elsevier, 2019, pp. 124–30, doi:10.1016/j.pbi.2019.08.006. short: L. Hörmayer, J. Friml, Current Opinion in Plant Biology 52 (2019) 124–130. date_created: 2019-10-14T07:00:24Z date_published: 2019-12-01T00:00:00Z date_updated: 2024-03-18T23:30:10Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.pbi.2019.08.006 ec_funded: 1 external_id: isi: - '000502890600017' pmid: - '31585333' file: - access_level: open_access checksum: d6fd68a6e965f1efe3f0bf2d2070a616 content_type: application/pdf creator: dernst date_created: 2019-10-14T14:48:21Z date_updated: 2020-07-14T12:47:45Z file_id: '6946' file_name: 2019_CurrentOpinionPlant_Hoermayer.pdf file_size: 1659288 relation: main_file file_date_updated: 2020-07-14T12:47:45Z has_accepted_license: '1' intvolume: ' 52' isi: 1 language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 124-130 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Current Opinion in Plant Biology publication_identifier: issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '9992' relation: dissertation_contains status: public scopus_import: '1' status: public title: Targeted cell ablation-based insights into wound healing and restorative patterning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 52 year: '2019' ... --- _id: '6260' abstract: - lang: eng text: Polar auxin transport plays a pivotal role in plant growth and development. PIN auxin efflux carriers regulate directional auxin movement by establishing local auxin maxima, minima, and gradients that drive multiple developmental processes and responses to environmental signals. Auxin has been proposed to modulate its own transport by regulating subcellular PIN trafficking via processes such as clathrin-mediated PIN endocytosis and constitutive recycling. Here, we further investigated the mechanisms by which auxin affects PIN trafficking by screening auxin analogs and identified pinstatic acid (PISA) as a positive modulator of polar auxin transport in Arabidopsis thaliana. PISA had an auxin-like effect on hypocotyl elongation and adventitious root formation via positive regulation of auxin transport. PISA did not activate SCFTIR1/AFB signaling and yet induced PIN accumulation at the cell surface by inhibiting PIN internalization from the plasma membrane. This work demonstrates PISA to be a promising chemical tool to dissect the regulatory mechanisms behind subcellular PIN trafficking and auxin transport. acknowledgement: "We thank Dr. H. Fukaki (University of Kobe), Dr. R. Offringa (Leiden University), Dr. Jianwei Pan (Zhejiang Normal University), and Dr. M. Estelle (University of California at San Diego) for providing mutants and transgenic line seeds.\r\nThis work was supported by the Ministry of Education, Culture, Sports, Science, and Technology (Grant-in-Aid for Scientific Research no. JP25114518 to K.H.), the Biotechnology and Biological Sciences Research Council (award no. BB/L009366/1 to R.N. and S.K.), and the European Union’s Horizon2020 program (European Research Council grant agreement no. 742985 to J.F.)." article_processing_charge: No article_type: original author: - first_name: A full_name: Oochi, A last_name: Oochi - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: K full_name: Fukui, K last_name: Fukui - first_name: Y full_name: Nakao, Y last_name: Nakao - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: M full_name: Quareshy, M last_name: Quareshy - first_name: K full_name: Takahashi, K last_name: Takahashi - first_name: T full_name: Kinoshita, T last_name: Kinoshita - first_name: SR full_name: Harborough, SR last_name: Harborough - first_name: S full_name: Kepinski, S last_name: Kepinski - first_name: H full_name: Kasahara, H last_name: Kasahara - first_name: RM full_name: Napier, RM last_name: Napier - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: KI full_name: Hayashi, KI last_name: Hayashi citation: ama: Oochi A, Hajny J, Fukui K, et al. Pinstatic acid promotes auxin transport by inhibiting PIN internalization. Plant Physiology. 2019;180(2):1152-1165. doi:10.1104/pp.19.00201 apa: Oochi, A., Hajny, J., Fukui, K., Nakao, Y., Gallei, M. C., Quareshy, M., … Hayashi, K. (2019). Pinstatic acid promotes auxin transport by inhibiting PIN internalization. Plant Physiology. ASPB. https://doi.org/10.1104/pp.19.00201 chicago: Oochi, A, Jakub Hajny, K Fukui, Y Nakao, Michelle C Gallei, M Quareshy, K Takahashi, et al. “Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization.” Plant Physiology. ASPB, 2019. https://doi.org/10.1104/pp.19.00201. ieee: A. Oochi et al., “Pinstatic acid promotes auxin transport by inhibiting PIN internalization,” Plant Physiology, vol. 180, no. 2. ASPB, pp. 1152–1165, 2019. ista: Oochi A, Hajny J, Fukui K, Nakao Y, Gallei MC, Quareshy M, Takahashi K, Kinoshita T, Harborough S, Kepinski S, Kasahara H, Napier R, Friml J, Hayashi K. 2019. Pinstatic acid promotes auxin transport by inhibiting PIN internalization. Plant Physiology. 180(2), 1152–1165. mla: Oochi, A., et al. “Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization.” Plant Physiology, vol. 180, no. 2, ASPB, 2019, pp. 1152–65, doi:10.1104/pp.19.00201. short: A. Oochi, J. Hajny, K. Fukui, Y. Nakao, M.C. Gallei, M. Quareshy, K. Takahashi, T. Kinoshita, S. Harborough, S. Kepinski, H. Kasahara, R. Napier, J. Friml, K. Hayashi, Plant Physiology 180 (2019) 1152–1165. date_created: 2019-04-09T08:38:20Z date_published: 2019-06-01T00:00:00Z date_updated: 2024-03-18T23:30:39Z day: '01' department: - _id: JiFr doi: 10.1104/pp.19.00201 ec_funded: 1 external_id: isi: - '000470086100045' pmid: - '30936248' intvolume: ' 180' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1104/pp.19.00201 month: '06' oa: 1 oa_version: Published Version page: 1152-1165 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: ASPB quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public - id: '8822' relation: dissertation_contains status: public scopus_import: '1' status: public title: Pinstatic acid promotes auxin transport by inhibiting PIN internalization type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 180 year: '2019' ... --- _id: '6627' abstract: - lang: eng text: Cortical microtubule arrays in elongating epidermal cells in both the root and stem of plants have the propensity of dynamic reorientations that are correlated with the activation or inhibition of growth. Factors regulating plant growth, among them the hormone auxin, have been recognized as regulators of microtubule array orientations. Some previous work in the field has aimed at elucidating the causal relationship between cell growth, the signaling of auxin or other growth-regulating factors, and microtubule array reorientations, with various conclusions. Here, we revisit this problem of causality with a comprehensive set of experiments in Arabidopsis thaliana, using the now available pharmacological and genetic tools. We use isolated, auxin-depleted hypocotyls, an experimental system allowing for full control of both growth and auxin signaling. We demonstrate that reorientation of microtubules is not directly triggered by an auxin signal during growth activation. Instead, reorientation is triggered by the activation of the growth process itself and is auxin-independent in its nature. We discuss these findings in the context of previous relevant work, including that on the mechanical regulation of microtubule array orientation. article_number: '3337' article_processing_charge: Yes article_type: original author: - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Adamowski M, Li L, Friml J. Reorientation of cortical microtubule arrays in the hypocotyl of arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. International Journal of Molecular Sciences. 2019;20(13). doi:10.3390/ijms20133337 apa: Adamowski, M., Li, L., & Friml, J. (2019). Reorientation of cortical microtubule arrays in the hypocotyl of arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms20133337 chicago: Adamowski, Maciek, Lanxin Li, and Jiří Friml. “Reorientation of Cortical Microtubule Arrays in the Hypocotyl of Arabidopsis Thaliana Is Induced by the Cell Growth Process and Independent of Auxin Signaling.” International Journal of Molecular Sciences. MDPI, 2019. https://doi.org/10.3390/ijms20133337. ieee: M. Adamowski, L. Li, and J. Friml, “Reorientation of cortical microtubule arrays in the hypocotyl of arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling,” International Journal of Molecular Sciences, vol. 20, no. 13. MDPI, 2019. ista: Adamowski M, Li L, Friml J. 2019. Reorientation of cortical microtubule arrays in the hypocotyl of arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. International Journal of Molecular Sciences. 20(13), 3337. mla: Adamowski, Maciek, et al. “Reorientation of Cortical Microtubule Arrays in the Hypocotyl of Arabidopsis Thaliana Is Induced by the Cell Growth Process and Independent of Auxin Signaling.” International Journal of Molecular Sciences, vol. 20, no. 13, 3337, MDPI, 2019, doi:10.3390/ijms20133337. short: M. Adamowski, L. Li, J. Friml, International Journal of Molecular Sciences 20 (2019). date_created: 2019-07-11T12:00:32Z date_published: 2019-07-07T00:00:00Z date_updated: 2024-03-18T23:30:45Z day: '07' ddc: - '580' department: - _id: JiFr doi: 10.3390/ijms20133337 ec_funded: 1 external_id: isi: - '000477041100221' pmid: - '31284661' file: - access_level: open_access checksum: dd9d1cbb933a72ceb666c9667890ac51 content_type: application/pdf creator: dernst date_created: 2019-07-17T06:17:15Z date_updated: 2020-07-14T12:47:34Z file_id: '6645' file_name: 2019_JournalMolecularScience_Adamowski.pdf file_size: 3330291 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' intvolume: ' 20' isi: 1 issue: '13' language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: B67AFEDC-15C9-11EA-A837-991A96BB2854 name: IST Austria Open Access Fund publication: International Journal of Molecular Sciences publication_identifier: eissn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' related_material: record: - id: '10083' relation: dissertation_contains status: public scopus_import: '1' status: public title: Reorientation of cortical microtubule arrays in the hypocotyl of arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 20 year: '2019' ... --- _id: '408' abstract: - lang: eng text: Adventitious roots (AR) are de novo formed roots that emerge from any part of the plant or from callus in tissue culture, except root tissue. The plant tissue origin and the method by which they are induced determine the physiological properties of emerged ARs. Hence, a standard method encompassing all types of AR does not exist. Here we describe a method for the induction and analysis of AR that emerge from the etiolated hypocotyl of dicot plants. The hypocotyl is formed during embryogenesis and shows a determined developmental pattern which usually does not involve AR formation. However, the hypocotyl shows propensity to form de novo roots under specific circumstances such as removal of the root system, high humidity or flooding, or during de-etiolation. The hypocotyl AR emerge from a pericycle-like cell layer surrounding the vascular tissue of the central cylinder, which is reminiscent to the developmental program of lateral roots. Here we propose an easy protocol for in vitro hypocotyl AR induction from etiolated Arabidopsis seedlings. alternative_title: - MIMB article_processing_charge: No author: - first_name: Hoang full_name: Trinh, Hoang last_name: Trinh - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Danny full_name: Geelen, Danny last_name: Geelen citation: ama: 'Trinh H, Verstraeten I, Geelen D. In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls. In: Root Development . Vol 1761. Springer Nature; 2018:95-102. doi:10.1007/978-1-4939-7747-5_7' apa: Trinh, H., Verstraeten, I., & Geelen, D. (2018). In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls. In Root Development (Vol. 1761, pp. 95–102). Springer Nature. https://doi.org/10.1007/978-1-4939-7747-5_7 chicago: Trinh, Hoang, Inge Verstraeten, and Danny Geelen. “In Vitro Assay for Induction of Adventitious Rooting on Intact Arabidopsis Hypocotyls.” In Root Development , 1761:95–102. Springer Nature, 2018. https://doi.org/10.1007/978-1-4939-7747-5_7. ieee: H. Trinh, I. Verstraeten, and D. Geelen, “In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls,” in Root Development , vol. 1761, Springer Nature, 2018, pp. 95–102. ista: 'Trinh H, Verstraeten I, Geelen D. 2018.In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls. In: Root Development . MIMB, vol. 1761, 95–102.' mla: Trinh, Hoang, et al. “In Vitro Assay for Induction of Adventitious Rooting on Intact Arabidopsis Hypocotyls.” Root Development , vol. 1761, Springer Nature, 2018, pp. 95–102, doi:10.1007/978-1-4939-7747-5_7. short: H. Trinh, I. Verstraeten, D. Geelen, in:, Root Development , Springer Nature, 2018, pp. 95–102. date_created: 2018-12-11T11:46:18Z date_published: 2018-03-01T00:00:00Z date_updated: 2021-01-12T07:54:21Z day: '01' department: - _id: JiFr doi: 10.1007/978-1-4939-7747-5_7 external_id: pmid: - '29525951' intvolume: ' 1761' language: - iso: eng month: '03' oa_version: None page: 95 - 102 pmid: 1 publication: 'Root Development ' publication_identifier: issn: - 1064-3745 publication_status: published publisher: Springer Nature publist_id: '7421' quality_controlled: '1' scopus_import: '1' status: public title: In vitro assay for induction of adventitious rooting on intact arabidopsis hypocotyls type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1761 year: '2018' ... --- _id: '411' abstract: - lang: eng text: Immunolocalization is a valuable tool for cell biology research that allows to rapidly determine the localization and expression levels of endogenous proteins. In plants, whole-mount in situ immunolocalization remains a challenging method, especially in tissues protected by waxy layers and complex cell wall carbohydrates. Here, we present a robust method for whole-mount in situ immunolocalization in primary root meristems and lateral root primordia in Arabidopsis thaliana. For good epitope preservation, fixation is done in an alkaline paraformaldehyde/glutaraldehyde mixture. This fixative is suitable for detecting a wide range of proteins, including integral transmembrane proteins and proteins peripherally attached to the plasma membrane. From initiation until emergence from the primary root, lateral root primordia are surrounded by several layers of differentiated tissues with a complex cell wall composition that interferes with the efficient penetration of all buffers. Therefore, immunolocalization in early lateral root primordia requires a modified method, including a strong solvent treatment for removal of hydrophobic barriers and a specific cocktail of cell wall-degrading enzymes. The presented method allows for easy, reliable, and high-quality in situ detection of the subcellular localization of endogenous proteins in primary and lateral root meristems without the need of time-consuming crosses or making translational fusions to fluorescent proteins. alternative_title: - Methods in Molecular Biology author: - first_name: Michael full_name: Karampelias, Michael last_name: Karampelias - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste citation: ama: 'Karampelias M, Tejos R, Friml J, Vanneste S. Optimized whole mount in situ immunolocalization for Arabidopsis thaliana  root meristems and lateral root primordia. In: Ristova D, Barbez E, eds. Root Development. Methods and Protocols. Vol 1761. MIMB. Springer; 2018:131-143. doi:10.1007/978-1-4939-7747-5_10' apa: Karampelias, M., Tejos, R., Friml, J., & Vanneste, S. (2018). Optimized whole mount in situ immunolocalization for Arabidopsis thaliana  root meristems and lateral root primordia. In D. Ristova & E. Barbez (Eds.), Root Development. Methods and Protocols (Vol. 1761, pp. 131–143). Springer. https://doi.org/10.1007/978-1-4939-7747-5_10 chicago: Karampelias, Michael, Ricardo Tejos, Jiří Friml, and Steffen Vanneste. “Optimized Whole Mount in Situ Immunolocalization for Arabidopsis Thaliana  Root Meristems and Lateral Root Primordia.” In Root Development. Methods and Protocols, edited by Daniela Ristova and Elke Barbez, 1761:131–43. MIMB. Springer, 2018. https://doi.org/10.1007/978-1-4939-7747-5_10. ieee: M. Karampelias, R. Tejos, J. Friml, and S. Vanneste, “Optimized whole mount in situ immunolocalization for Arabidopsis thaliana  root meristems and lateral root primordia,” in Root Development. Methods and Protocols, vol. 1761, D. Ristova and E. Barbez, Eds. Springer, 2018, pp. 131–143. ista: 'Karampelias M, Tejos R, Friml J, Vanneste S. 2018.Optimized whole mount in situ immunolocalization for Arabidopsis thaliana  root meristems and lateral root primordia. In: Root Development. Methods and Protocols. Methods in Molecular Biology, vol. 1761, 131–143.' mla: Karampelias, Michael, et al. “Optimized Whole Mount in Situ Immunolocalization for Arabidopsis Thaliana  Root Meristems and Lateral Root Primordia.” Root Development. Methods and Protocols, edited by Daniela Ristova and Elke Barbez, vol. 1761, Springer, 2018, pp. 131–43, doi:10.1007/978-1-4939-7747-5_10. short: M. Karampelias, R. Tejos, J. Friml, S. Vanneste, in:, D. Ristova, E. Barbez (Eds.), Root Development. Methods and Protocols, Springer, 2018, pp. 131–143. date_created: 2018-12-11T11:46:20Z date_published: 2018-03-11T00:00:00Z date_updated: 2021-01-12T07:54:34Z day: '11' department: - _id: JiFr doi: 10.1007/978-1-4939-7747-5_10 editor: - first_name: Daniela full_name: Ristova, Daniela last_name: Ristova - first_name: Elke full_name: Barbez, Elke last_name: Barbez intvolume: ' 1761' language: - iso: eng month: '03' oa_version: None page: 131 - 143 publication: Root Development. Methods and Protocols publication_status: published publisher: Springer publist_id: '7418' quality_controlled: '1' scopus_import: 1 series_title: MIMB status: public title: Optimized whole mount in situ immunolocalization for Arabidopsis thaliana root meristems and lateral root primordia type: book_chapter user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 1761 year: '2018' ... --- _id: '203' abstract: - lang: eng text: Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses. article_processing_charge: No author: - first_name: Mohamad full_name: Abbas, Mohamad id: 47E8FC1C-F248-11E8-B48F-1D18A9856A87 last_name: Abbas - first_name: García J full_name: Hernández, García J last_name: Hernández - first_name: Stephan full_name: Pollmann, Stephan last_name: Pollmann - first_name: Sophia L full_name: Samodelov, Sophia L last_name: Samodelov - first_name: Martina full_name: Kolb, Martina last_name: Kolb - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Ulrich Z full_name: Hammes, Ulrich Z last_name: Hammes - first_name: Matias D full_name: Zurbriggen, Matias D last_name: Zurbriggen - first_name: Miguel full_name: Blázquez, Miguel last_name: Blázquez - first_name: David full_name: Alabadí, David last_name: Alabadí citation: ama: Abbas M, Hernández GJ, Pollmann S, et al. Auxin methylation is required for differential growth in Arabidopsis. PNAS. 2018;115(26):6864-6869. doi:10.1073/pnas.1806565115 apa: Abbas, M., Hernández, G. J., Pollmann, S., Samodelov, S. L., Kolb, M., Friml, J., … Alabadí, D. (2018). Auxin methylation is required for differential growth in Arabidopsis. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1806565115 chicago: Abbas, Mohamad, García J Hernández, Stephan Pollmann, Sophia L Samodelov, Martina Kolb, Jiří Friml, Ulrich Z Hammes, Matias D Zurbriggen, Miguel Blázquez, and David Alabadí. “Auxin Methylation Is Required for Differential Growth in Arabidopsis.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1806565115. ieee: M. Abbas et al., “Auxin methylation is required for differential growth in Arabidopsis,” PNAS, vol. 115, no. 26. National Academy of Sciences, pp. 6864–6869, 2018. ista: Abbas M, Hernández GJ, Pollmann S, Samodelov SL, Kolb M, Friml J, Hammes UZ, Zurbriggen MD, Blázquez M, Alabadí D. 2018. Auxin methylation is required for differential growth in Arabidopsis. PNAS. 115(26), 6864–6869. mla: Abbas, Mohamad, et al. “Auxin Methylation Is Required for Differential Growth in Arabidopsis.” PNAS, vol. 115, no. 26, National Academy of Sciences, 2018, pp. 6864–69, doi:10.1073/pnas.1806565115. short: M. Abbas, G.J. Hernández, S. Pollmann, S.L. Samodelov, M. Kolb, J. Friml, U.Z. Hammes, M.D. Zurbriggen, M. Blázquez, D. Alabadí, PNAS 115 (2018) 6864–6869. date_created: 2018-12-11T11:45:11Z date_published: 2018-06-26T00:00:00Z date_updated: 2023-09-08T13:24:40Z day: '26' department: - _id: JiFr doi: 10.1073/pnas.1806565115 ec_funded: 1 external_id: isi: - '000436245000096' intvolume: ' 115' isi: 1 issue: '26' language: - iso: eng main_file_link: - open_access: '1' url: http://eprints.nottingham.ac.uk/52388/ month: '06' oa: 1 oa_version: None page: 6864-6869 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '7710' quality_controlled: '1' scopus_import: '1' status: public title: Auxin methylation is required for differential growth in Arabidopsis type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '5830' abstract: - lang: eng text: CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss-of-function mutants were sensitivity to drought stress. CLE9-induced stomatal closure was impaired in abscisic acid (ABA)-deficient mutants, indicating that ABA is required for CLE9-medaited guard cell signalling. We further deciphered that two guard cell ABA-signalling components, OST1 and SLAC1, were responsible for CLE9-induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2O2) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase-deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA-dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants. article_processing_charge: No author: - first_name: Luosha full_name: Zhang, Luosha last_name: Zhang - first_name: Xiong full_name: Shi, Xiong last_name: Shi - first_name: Yutao full_name: Zhang, Yutao last_name: Zhang - first_name: Jiajing full_name: Wang, Jiajing last_name: Wang - first_name: Jingwei full_name: Yang, Jingwei last_name: Yang - first_name: Takashi full_name: Ishida, Takashi last_name: Ishida - first_name: Wenqian full_name: Jiang, Wenqian last_name: Jiang - first_name: Xiangyu full_name: Han, Xiangyu last_name: Han - first_name: Jingke full_name: Kang, Jingke last_name: Kang - first_name: Xuening full_name: Wang, Xuening last_name: Wang - first_name: Lixia full_name: Pan, Lixia last_name: Pan - first_name: Shuo full_name: Lv, Shuo last_name: Lv - first_name: Bing full_name: Cao, Bing last_name: Cao - first_name: Yonghong full_name: Zhang, Yonghong last_name: Zhang - first_name: Jinbin full_name: Wu, Jinbin last_name: Wu - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Zhubing full_name: Hu, Zhubing last_name: Hu - first_name: Langjun full_name: Cui, Langjun last_name: Cui - first_name: Shinichiro full_name: Sawa, Shinichiro last_name: Sawa - first_name: Junmin full_name: He, Junmin last_name: He - first_name: Guodong full_name: Wang, Guodong last_name: Wang citation: ama: Zhang L, Shi X, Zhang Y, et al. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana. Plant Cell and Environment. 2018. doi:10.1111/pce.13475 apa: Zhang, L., Shi, X., Zhang, Y., Wang, J., Yang, J., Ishida, T., … Wang, G. (2018). CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana. Plant Cell and Environment. Wiley. https://doi.org/10.1111/pce.13475 chicago: Zhang, Luosha, Xiong Shi, Yutao Zhang, Jiajing Wang, Jingwei Yang, Takashi Ishida, Wenqian Jiang, et al. “CLE9 Peptide-Induced Stomatal Closure Is Mediated by Abscisic Acid, Hydrogen Peroxide, and Nitric Oxide in Arabidopsis Thaliana.” Plant Cell and Environment. Wiley, 2018. https://doi.org/10.1111/pce.13475. ieee: L. Zhang et al., “CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana,” Plant Cell and Environment. Wiley, 2018. ista: Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G. 2018. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana. Plant Cell and Environment. mla: Zhang, Luosha, et al. “CLE9 Peptide-Induced Stomatal Closure Is Mediated by Abscisic Acid, Hydrogen Peroxide, and Nitric Oxide in Arabidopsis Thaliana.” Plant Cell and Environment, Wiley, 2018, doi:10.1111/pce.13475. short: L. Zhang, X. Shi, Y. Zhang, J. Wang, J. Yang, T. Ishida, W. Jiang, X. Han, J. Kang, X. Wang, L. Pan, S. Lv, B. Cao, Y. Zhang, J. Wu, H. Han, Z. Hu, L. Cui, S. Sawa, J. He, G. Wang, Plant Cell and Environment (2018). date_created: 2019-01-13T22:59:11Z date_published: 2018-10-31T00:00:00Z date_updated: 2023-09-11T12:43:31Z day: '31' department: - _id: JiFr doi: 10.1111/pce.13475 external_id: isi: - '000459014800021' pmid: - '30378140' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30378140 month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: Plant Cell and Environment publication_identifier: issn: - '01407791' publication_status: epub_ahead publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in arabidopsis thaliana type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '428' abstract: - lang: eng text: The plant hormone gibberellic acid (GA) is a crucial regulator of growth and development. The main paradigm of GA signaling puts forward transcriptional regulation via the degradation of DELLA transcriptional repressors. GA has also been shown to regulate tropic responses by modulation of the plasma membrane incidence of PIN auxin transporters by an unclear mechanism. Here we uncovered the cellular and molecular mechanisms by which GA redirects protein trafficking and thus regulates cell surface functionality. Photoconvertible reporters revealed that GA balances the protein traffic between the vacuole degradation route and recycling back to the cell surface. Low GA levels promote vacuolar delivery and degradation of multiple cargos, including PIN proteins, whereas high GA levels promote their recycling to the plasma membrane. This GA effect requires components of the retromer complex, such as Sorting Nexin 1 (SNX1) and its interacting, microtubule (MT)-associated protein, the Cytoplasmic Linker-Associated Protein (CLASP1). Accordingly, GA regulates the subcellular distribution of SNX1 and CLASP1, and the intact MT cytoskeleton is essential for the GA effect on trafficking. This GA cellular action occurs through DELLA proteins that regulate the MT and retromer presumably via their interaction partners Prefoldins (PFDs). Our study identified a branching of the GA signaling pathway at the level of DELLA proteins, which, in parallel to regulating transcription, also target by a nontranscriptional mechanism the retromer complex acting at the intersection of the degradation and recycling trafficking routes. By this mechanism, GA can redirect receptors and transporters to the cell surface, thus coregulating multiple processes, including PIN-dependent auxin fluxes during tropic responses. acknowledgement: "We gratefully acknowledge M. Blázquez (Instituto de Biología Molecular y Celular de Plantas), M. Fendrych, C. Cuesta Moliner (Institute of Science and Technology Austria), M. Vanstraelen, M. Nowack (Center for Plant Systems Biology, Ghent), C. Luschnig (Universitat fur Bodenkultur Wien, Vienna), S. Simon (Central European Institute of Technology, Brno), C. Sommerville (Carnegie Institution for Science), and Y. Gu (Penn State University) for making available the materials used in this study;\r\n...funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 282300.\r\nCC BY NC ND" article_processing_charge: No author: - first_name: Yuliya full_name: Salanenka, Yuliya id: 46DAAE7E-F248-11E8-B48F-1D18A9856A87 last_name: Salanenka - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Christian full_name: Löfke, Christian last_name: Löfke - first_name: Kaori full_name: Tabata, Kaori id: 7DAAEDA4-02D0-11E9-B11A-A5A4D7DFFFD0 last_name: Tabata - first_name: Satoshi full_name: Naramoto, Satoshi last_name: Naramoto - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Salanenka Y, Verstraeten I, Löfke C, et al. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. PNAS. 2018;115(14):3716-3721. doi:10.1073/pnas.1721760115 apa: Salanenka, Y., Verstraeten, I., Löfke, C., Tabata, K., Naramoto, S., Glanc, M., & Friml, J. (2018). Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1721760115 chicago: Salanenka, Yuliya, Inge Verstraeten, Christian Löfke, Kaori Tabata, Satoshi Naramoto, Matous Glanc, and Jiří Friml. “Gibberellin DELLA Signaling Targets the Retromer Complex to Redirect Protein Trafficking to the Plasma Membrane.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1721760115. ieee: Y. Salanenka et al., “Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane,” PNAS, vol. 115, no. 14. National Academy of Sciences, pp. 3716–3721, 2018. ista: Salanenka Y, Verstraeten I, Löfke C, Tabata K, Naramoto S, Glanc M, Friml J. 2018. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. PNAS. 115(14), 3716–3721. mla: Salanenka, Yuliya, et al. “Gibberellin DELLA Signaling Targets the Retromer Complex to Redirect Protein Trafficking to the Plasma Membrane.” PNAS, vol. 115, no. 14, National Academy of Sciences, 2018, pp. 3716–21, doi:10.1073/pnas.1721760115. short: Y. Salanenka, I. Verstraeten, C. Löfke, K. Tabata, S. Naramoto, M. Glanc, J. Friml, PNAS 115 (2018) 3716–3721. date_created: 2018-12-11T11:46:25Z date_published: 2018-04-03T00:00:00Z date_updated: 2023-09-11T14:06:34Z day: '03' ddc: - '580' department: - _id: JiFr doi: 10.1073/pnas.1721760115 ec_funded: 1 external_id: isi: - '000429012500073' file: - access_level: open_access checksum: 1fcf7223fb8f99559cfa80bd6f24ce44 content_type: application/pdf creator: dernst date_created: 2018-12-17T12:30:14Z date_updated: 2020-07-14T12:46:26Z file_id: '5700' file_name: 2018_PNAS_Salanenka.pdf file_size: 1924101 relation: main_file file_date_updated: 2020-07-14T12:46:26Z has_accepted_license: '1' intvolume: ' 115' isi: 1 issue: '14' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: ' 3716 - 3721' project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '7395' quality_controlled: '1' scopus_import: '1' status: public title: Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '280' abstract: - lang: eng text: Flowers have a species-specific functional life span that determines the time window in which pollination, fertilization and seed set can occur. The stigma tissue plays a key role in flower receptivity by intercepting pollen and initiating pollen tube growth toward the ovary. In this article, we show that a developmentally controlled cell death programme terminates the functional life span of stigma cells in Arabidopsis. We identified the leaf senescence regulator ORESARA1 (also known as ANAC092) and the previously uncharacterized KIRA1 (also known as ANAC074) as partially redundant transcription factors that modulate stigma longevity by controlling the expression of programmed cell death-associated genes. KIRA1 expression is sufficient to induce cell death and terminate floral receptivity, whereas lack of both KIRA1 and ORESARA1 substantially increases stigma life span. Surprisingly, the extension of stigma longevity is accompanied by only a moderate extension of flower receptivity, suggesting that additional processes participate in the control of the flower's receptive life span. acknowledgement: We gratefully acknowledge funding from the Chinese Scholarship Council (CSC; project number 201206910025 to Z.G.), the Fonds Wetenschappelijk Onderzoek (FWO; project number G005112N to A.D.; fellowship number 12I7417N to Z.L.), the Belgian Federal Science Policy Office (BELSPO; to Y.S.), the Agency for Innovation by Science and Technology of Belgium (IWT; fellowship number 121110 to M.V.D.), the Hercules foundation (grant AUGE-09-029 to K.D.), and the ERC StG PROCELLDEATH (project number 639234 to M.K.N.). article_processing_charge: No author: - first_name: Zhen full_name: Gao, Zhen last_name: Gao - first_name: Anna full_name: Daneva, Anna last_name: Daneva - first_name: Yuliya full_name: Salanenka, Yuliya id: 46DAAE7E-F248-11E8-B48F-1D18A9856A87 last_name: Salanenka - first_name: Matthias full_name: Van Durme, Matthias last_name: Van Durme - first_name: Marlies full_name: Huysmans, Marlies last_name: Huysmans - first_name: Zongcheng full_name: Lin, Zongcheng last_name: Lin - first_name: Freya full_name: De Winter, Freya last_name: De Winter - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Mansour full_name: Karimi, Mansour last_name: Karimi - first_name: Jan full_name: Van De Velde, Jan last_name: Van De Velde - first_name: Klaas full_name: Vandepoele, Klaas last_name: Vandepoele - first_name: Davy full_name: Van De Walle, Davy last_name: Van De Walle - first_name: Koen full_name: Dewettinck, Koen last_name: Dewettinck - first_name: Bart full_name: Lambrecht, Bart last_name: Lambrecht - first_name: Moritz full_name: Nowack, Moritz last_name: Nowack citation: ama: Gao Z, Daneva A, Salanenka Y, et al. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nature Plants. 2018;4(6):365-375. doi:10.1038/s41477-018-0160-7 apa: Gao, Z., Daneva, A., Salanenka, Y., Van Durme, M., Huysmans, M., Lin, Z., … Nowack, M. (2018). KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nature Plants. Nature Publishing Group. https://doi.org/10.1038/s41477-018-0160-7 chicago: Gao, Zhen, Anna Daneva, Yuliya Salanenka, Matthias Van Durme, Marlies Huysmans, Zongcheng Lin, Freya De Winter, et al. “KIRA1 and ORESARA1 Terminate Flower Receptivity by Promoting Cell Death in the Stigma of Arabidopsis.” Nature Plants. Nature Publishing Group, 2018. https://doi.org/10.1038/s41477-018-0160-7. ieee: Z. Gao et al., “KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis,” Nature Plants, vol. 4, no. 6. Nature Publishing Group, pp. 365–375, 2018. ista: Gao Z, Daneva A, Salanenka Y, Van Durme M, Huysmans M, Lin Z, De Winter F, Vanneste S, Karimi M, Van De Velde J, Vandepoele K, Van De Walle D, Dewettinck K, Lambrecht B, Nowack M. 2018. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nature Plants. 4(6), 365–375. mla: Gao, Zhen, et al. “KIRA1 and ORESARA1 Terminate Flower Receptivity by Promoting Cell Death in the Stigma of Arabidopsis.” Nature Plants, vol. 4, no. 6, Nature Publishing Group, 2018, pp. 365–75, doi:10.1038/s41477-018-0160-7. short: Z. Gao, A. Daneva, Y. Salanenka, M. Van Durme, M. Huysmans, Z. Lin, F. De Winter, S. Vanneste, M. Karimi, J. Van De Velde, K. Vandepoele, D. Van De Walle, K. Dewettinck, B. Lambrecht, M. Nowack, Nature Plants 4 (2018) 365–375. date_created: 2018-12-11T11:45:35Z date_published: 2018-05-28T00:00:00Z date_updated: 2023-09-13T08:24:17Z day: '28' department: - _id: JiFr doi: 10.1038/s41477-018-0160-7 external_id: isi: - '000435571000017' intvolume: ' 4' isi: 1 issue: '6' language: - iso: eng month: '05' oa_version: None page: 365 - 375 publication: Nature Plants publication_status: published publisher: Nature Publishing Group publist_id: '7619' quality_controlled: '1' scopus_import: '1' status: public title: KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 4 year: '2018' ... --- _id: '158' abstract: - lang: eng text: 'The angiosperm seed is composed of three genetically distinct tissues: the diploid embryo that originates from the fertilized egg cell, the triploid endosperm that is produced from the fertilized central cell, and the maternal sporophytic integuments that develop into the seed coat1. At the onset of embryo development in Arabidopsis thaliana, the zygote divides asymmetrically, producing a small apical embryonic cell and a larger basal cell that connects the embryo to the maternal tissue2. The coordinated and synchronous development of the embryo and the surrounding integuments, and the alignment of their growth axes, suggest communication between maternal tissues and the embryo. In contrast to animals, however, where a network of maternal factors that direct embryo patterning have been identified3,4, only a few maternal mutations have been described to affect embryo development in plants5–7. Early embryo patterning in Arabidopsis requires accumulation of the phytohormone auxin in the apical cell by directed transport from the suspensor8–10. However, the origin of this auxin has remained obscure. Here we investigate the source of auxin for early embryogenesis and provide evidence that the mother plant coordinates seed development by supplying auxin to the early embryo from the integuments of the ovule. We show that auxin response increases in ovules after fertilization, due to upregulated auxin biosynthesis in the integuments, and this maternally produced auxin is required for correct embryo development.' acknowledgement: This work was further supported by the Czech Science Foundation GACR (GA13-40637S) to J.F.; article_processing_charge: No author: - first_name: Hélène full_name: Robert, Hélène last_name: Robert - first_name: Chulmin full_name: Park, Chulmin last_name: Park - first_name: Carla full_name: Gutièrrez, Carla last_name: Gutièrrez - first_name: Barbara full_name: Wójcikowska, Barbara last_name: Wójcikowska - first_name: Aleš full_name: Pěnčík, Aleš last_name: Pěnčík - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Junyi full_name: Chen, Junyi last_name: Chen - first_name: Wim full_name: Grunewald, Wim last_name: Grunewald - first_name: Thomas full_name: Dresselhaus, Thomas last_name: Dresselhaus - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Thomas full_name: Laux, Thomas last_name: Laux citation: ama: Robert H, Park C, Gutièrrez C, et al. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nature Plants. 2018;4(8):548-553. doi:10.1038/s41477-018-0204-z apa: Robert, H., Park, C., Gutièrrez, C., Wójcikowska, B., Pěnčík, A., Novák, O., … Laux, T. (2018). Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nature Plants. Nature Publishing Group. https://doi.org/10.1038/s41477-018-0204-z chicago: Robert, Hélène, Chulmin Park, Carla Gutièrrez, Barbara Wójcikowska, Aleš Pěnčík, Ondřej Novák, Junyi Chen, et al. “Maternal Auxin Supply Contributes to Early Embryo Patterning in Arabidopsis.” Nature Plants. Nature Publishing Group, 2018. https://doi.org/10.1038/s41477-018-0204-z. ieee: H. Robert et al., “Maternal auxin supply contributes to early embryo patterning in Arabidopsis,” Nature Plants, vol. 4, no. 8. Nature Publishing Group, pp. 548–553, 2018. ista: Robert H, Park C, Gutièrrez C, Wójcikowska B, Pěnčík A, Novák O, Chen J, Grunewald W, Dresselhaus T, Friml J, Laux T. 2018. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nature Plants. 4(8), 548–553. mla: Robert, Hélène, et al. “Maternal Auxin Supply Contributes to Early Embryo Patterning in Arabidopsis.” Nature Plants, vol. 4, no. 8, Nature Publishing Group, 2018, pp. 548–53, doi:10.1038/s41477-018-0204-z. short: H. Robert, C. Park, C. Gutièrrez, B. Wójcikowska, A. Pěnčík, O. Novák, J. Chen, W. Grunewald, T. Dresselhaus, J. Friml, T. Laux, Nature Plants 4 (2018) 548–553. date_created: 2018-12-11T11:44:56Z date_published: 2018-07-16T00:00:00Z date_updated: 2023-09-13T08:53:28Z day: '16' department: - _id: JiFr doi: 10.1038/s41477-018-0204-z ec_funded: 1 external_id: isi: - '000443861300011' pmid: - '30013211' intvolume: ' 4' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30013211 month: '07' oa: 1 oa_version: Submitted Version page: 548 - 553 pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Nature Plants publication_status: published publisher: Nature Publishing Group publist_id: '7763' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/plant-mothers-talk-to-their-embryos-via-the-hormone-auxin/ scopus_import: '1' status: public title: Maternal auxin supply contributes to early embryo patterning in Arabidopsis type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 4 year: '2018' ... --- _id: '462' abstract: - lang: eng text: 'AtNHX5 and AtNHX6 are endosomal Na+,K+/H+ antiporters that are critical for growth and development in Arabidopsis, but the mechanism behind their action remains unknown. Here, we report that AtNHX5 and AtNHX6, functioning as H+ leak, control auxin homeostasis and auxin-mediated development. We found that nhx5 nhx6 exhibited growth variations of auxin-related defects. We further showed that nhx5 nhx6 was affected in auxin homeostasis. Genetic analysis showed that AtNHX5 and AtNHX6 were required for the function of the ER-localized auxin transporter PIN5. Although AtNHX5 and AtNHX6 were co-localized with PIN5 at ER, they did not interact directly. Instead, the conserved acidic residues in AtNHX5 and AtNHX6, which are essential for exchange activity, were required for PIN5 function. AtNHX5 and AtNHX6 regulated the pH in ER. Overall, AtNHX5 and AtNHX6 may regulate auxin transport across the ER via the pH gradient created by their transport activity. H+-leak pathway provides a fine-tuning mechanism that controls cellular auxin fluxes. ' acknowledgement: 'This work was supported by the National Natural Science Foundation of China (31571464, 31371438 and 31070222 to Q.S.Q.), the National Basic Research Program of China (973 project, 2013CB429904 to Q.S.Q.), the Research Fund for the Doctoral Program of Higher Education of China (20130211110001 to Q.S.Q.), the Ministry of Education, Youth and Sports of the Czech Republic (the National Program for Sustainability I, LO1204), and The Czech Science Foundation GAČR (GA13–40637S) to JF. We thank Dr. Tom J. Guilfoyle for DR5::GUS line and Dr. Jia Li for pBIB‐RFP vector and DR5::GFP line. We thank Liping Guan and Yang Zhao for their help with the confocal microscope assay. ' article_processing_charge: No article_type: original author: - first_name: Ligang full_name: Fan, Ligang last_name: Fan - first_name: Lei full_name: Zhao, Lei last_name: Zhao - first_name: Wei full_name: Hu, Wei last_name: Hu - first_name: Weina full_name: Li, Weina last_name: Li - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Miroslav full_name: Strnad, Miroslav last_name: Strnad - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jinbo full_name: Shen, Jinbo last_name: Shen - first_name: Liwen full_name: Jiang, Liwen last_name: Jiang - first_name: Quan full_name: Qiu, Quan last_name: Qiu citation: ama: Fan L, Zhao L, Hu W, et al. NHX antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development. Plant, Cell and Environment. 2018;41:850-864. doi:10.1111/pce.13153 apa: Fan, L., Zhao, L., Hu, W., Li, W., Novák, O., Strnad, M., … Qiu, Q. (2018). NHX antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development. Plant, Cell and Environment. Wiley-Blackwell. https://doi.org/10.1111/pce.13153 chicago: Fan, Ligang, Lei Zhao, Wei Hu, Weina Li, Ondřej Novák, Miroslav Strnad, Sibu Simon, et al. “NHX Antiporters Regulate the PH of Endoplasmic Reticulum and Auxin-Mediated Development.” Plant, Cell and Environment. Wiley-Blackwell, 2018. https://doi.org/10.1111/pce.13153. ieee: L. Fan et al., “NHX antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development,” Plant, Cell and Environment, vol. 41. Wiley-Blackwell, pp. 850–864, 2018. ista: Fan L, Zhao L, Hu W, Li W, Novák O, Strnad M, Simon S, Friml J, Shen J, Jiang L, Qiu Q. 2018. NHX antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development. Plant, Cell and Environment. 41, 850–864. mla: Fan, Ligang, et al. “NHX Antiporters Regulate the PH of Endoplasmic Reticulum and Auxin-Mediated Development.” Plant, Cell and Environment, vol. 41, Wiley-Blackwell, 2018, pp. 850–64, doi:10.1111/pce.13153. short: L. Fan, L. Zhao, W. Hu, W. Li, O. Novák, M. Strnad, S. Simon, J. Friml, J. Shen, L. Jiang, Q. Qiu, Plant, Cell and Environment 41 (2018) 850–864. date_created: 2018-12-11T11:46:36Z date_published: 2018-05-01T00:00:00Z date_updated: 2023-09-13T09:03:18Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/pce.13153 external_id: isi: - '000426870500012' pmid: - '29360148' file: - access_level: open_access checksum: 6a20f843565f962cb20281cdf5e40914 content_type: application/pdf creator: dernst date_created: 2019-11-18T16:22:22Z date_updated: 2020-07-14T12:46:32Z file_id: '7042' file_name: 2018_PlantCellEnv_Fan.pdf file_size: 1937976 relation: main_file file_date_updated: 2020-07-14T12:46:32Z has_accepted_license: '1' intvolume: ' 41' isi: 1 language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 850 - 864 pmid: 1 publication: Plant, Cell and Environment publication_status: published publisher: Wiley-Blackwell publist_id: '7359' quality_controlled: '1' scopus_import: '1' status: public title: NHX antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 41 year: '2018' ... --- _id: '192' abstract: - lang: eng text: The phytohormone auxin is the information carrier in a plethora of developmental and physiological processes in plants(1). It has been firmly established that canonical, nuclear auxin signalling acts through regulation of gene transcription(2). Here, we combined microfluidics, live imaging, genetic engineering and computational modelling to reanalyse the classical case of root growth inhibition(3) by auxin. We show that Arabidopsis roots react to addition and removal of auxin by extremely rapid adaptation of growth rate. This process requires intracellular auxin perception but not transcriptional reprogramming. The formation of the canonical TIR1/AFB-Aux/IAA co-receptor complex is required for the growth regulation, hinting to a novel, non-transcriptional branch of this signalling pathway. Our results challenge the current understanding of root growth regulation by auxin and suggest another, presumably non-transcriptional, signalling output of the canonical auxin pathway. article_processing_charge: No article_type: original author: - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Maria full_name: Akhmanova, Maria id: 3425EC26-F248-11E8-B48F-1D18A9856A87 last_name: Akhmanova orcid: 0000-0003-1522-3162 - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Matous full_name: Glanc, Matous last_name: Glanc - first_name: Shinya full_name: Hagihara, Shinya last_name: Hagihara - first_name: Koji full_name: Takahashi, Koji last_name: Takahashi - first_name: Naoyuki full_name: Uchida, Naoyuki last_name: Uchida - first_name: Keiko U full_name: Torii, Keiko U last_name: Torii - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Fendrych M, Akhmanova M, Merrin J, et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants. 2018;4(7):453-459. doi:10.1038/s41477-018-0190-1 apa: Fendrych, M., Akhmanova, M., Merrin, J., Glanc, M., Hagihara, S., Takahashi, K., … Friml, J. (2018). Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-018-0190-1 chicago: Fendrych, Matyas, Maria Akhmanova, Jack Merrin, Matous Glanc, Shinya Hagihara, Koji Takahashi, Naoyuki Uchida, Keiko U Torii, and Jiří Friml. “Rapid and Reversible Root Growth Inhibition by TIR1 Auxin Signalling.” Nature Plants. Springer Nature, 2018. https://doi.org/10.1038/s41477-018-0190-1. ieee: M. Fendrych et al., “Rapid and reversible root growth inhibition by TIR1 auxin signalling,” Nature Plants, vol. 4, no. 7. Springer Nature, pp. 453–459, 2018. ista: Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N, Torii KU, Friml J. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nature Plants. 4(7), 453–459. mla: Fendrych, Matyas, et al. “Rapid and Reversible Root Growth Inhibition by TIR1 Auxin Signalling.” Nature Plants, vol. 4, no. 7, Springer Nature, 2018, pp. 453–59, doi:10.1038/s41477-018-0190-1. short: M. Fendrych, M. Akhmanova, J. Merrin, M. Glanc, S. Hagihara, K. Takahashi, N. Uchida, K.U. Torii, J. Friml, Nature Plants 4 (2018) 453–459. date_created: 2018-12-11T11:45:07Z date_published: 2018-06-25T00:00:00Z date_updated: 2023-09-15T12:11:03Z day: '25' department: - _id: JiFr - _id: DaSi - _id: NanoFab doi: 10.1038/s41477-018-0190-1 external_id: isi: - '000443221200017' pmid: - '29942048' intvolume: ' 4' isi: 1 issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/29942048 month: '06' oa: 1 oa_version: Submitted Version page: 453 - 459 pmid: 1 publication: Nature Plants publication_status: published publisher: Springer Nature publist_id: '7728' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-mechanism-for-the-plant-hormone-auxin-discovered/ scopus_import: '1' status: public title: Rapid and reversible root growth inhibition by TIR1 auxin signalling type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 4 year: '2018' ... --- _id: '14' abstract: - lang: eng text: The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping auxin into secretory vesicles (SVs), leading to its secretory release upon fusion with the PM. Which of these two mechanisms dominates is a matter of debate. Here, we addressed the issue with a mathematical modeling approach. We demonstrate that the efficiency of secretory transport depends on SV size, half-life of PINs on the PM, pH, exocytosis frequency and PIN density. 3D structured illumination microscopy (SIM) was used to determine PIN density on the PM. Combining this data with published values of the other parameters, we show that the transport activity of PINs in SVs would have to be at least 1000× greater than on the PM in order to produce a comparable macroscopic auxin transport. If both transport mechanisms operated simultaneously and PINs were equally active on SVs and PM, the contribution of secretion to the total auxin flux would be negligible. In conclusion, while secretory vesicle-mediated transport of auxin is an intriguing and theoretically possible model, it is unlikely to be a major mechanism of auxin transport inplanta. acknowledgement: 'European Research Council (ERC): 742985 to Jiri Friml; M.A. was supported by the Austrian Science Fund (FWF) (M2379-B28); AJ was supported by the Austria Science Fund (FWF): I03630 to Jiri Friml.' article_processing_charge: No article_type: original author: - first_name: Sander full_name: Hille, Sander last_name: Hille - first_name: Maria full_name: Akhmanova, Maria id: 3425EC26-F248-11E8-B48F-1D18A9856A87 last_name: Akhmanova orcid: 0000-0003-1522-3162 - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Hille S, Akhmanova M, Glanc M, Johnson AJ, Friml J. Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: Theoretical estimation. International Journal of Molecular Sciences. 2018;19(11). doi:10.3390/ijms19113566' apa: 'Hille, S., Akhmanova, M., Glanc, M., Johnson, A. J., & Friml, J. (2018). Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: Theoretical estimation. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms19113566' chicago: 'Hille, Sander, Maria Akhmanova, Matous Glanc, Alexander J Johnson, and Jiří Friml. “Relative Contribution of PIN-Containing Secretory Vesicles and Plasma Membrane PINs to the Directed Auxin Transport: Theoretical Estimation.” International Journal of Molecular Sciences. MDPI, 2018. https://doi.org/10.3390/ijms19113566.' ieee: 'S. Hille, M. Akhmanova, M. Glanc, A. J. Johnson, and J. Friml, “Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: Theoretical estimation,” International Journal of Molecular Sciences, vol. 19, no. 11. MDPI, 2018.' ista: 'Hille S, Akhmanova M, Glanc M, Johnson AJ, Friml J. 2018. Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: Theoretical estimation. International Journal of Molecular Sciences. 19(11).' mla: 'Hille, Sander, et al. “Relative Contribution of PIN-Containing Secretory Vesicles and Plasma Membrane PINs to the Directed Auxin Transport: Theoretical Estimation.” International Journal of Molecular Sciences, vol. 19, no. 11, MDPI, 2018, doi:10.3390/ijms19113566.' short: S. Hille, M. Akhmanova, M. Glanc, A.J. Johnson, J. Friml, International Journal of Molecular Sciences 19 (2018). date_created: 2018-12-11T11:44:09Z date_published: 2018-11-12T00:00:00Z date_updated: 2023-09-18T08:09:32Z day: '12' ddc: - '580' department: - _id: DaSi - _id: JiFr doi: 10.3390/ijms19113566 ec_funded: 1 external_id: isi: - '000451528500282' file: - access_level: open_access checksum: e4b59c2599b0ca26ebf5b8434bcde94a content_type: application/pdf creator: dernst date_created: 2018-12-17T16:04:11Z date_updated: 2020-07-14T12:44:50Z file_id: '5719' file_name: 2018_IJMS_Hille.pdf file_size: 2200593 relation: main_file file_date_updated: 2020-07-14T12:44:50Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: International Journal of Molecular Sciences publication_identifier: eissn: - 1422-0067 publication_status: published publisher: MDPI publist_id: '8042' quality_controlled: '1' scopus_import: '1' status: public title: 'Relative contribution of PIN-containing secretory vesicles and plasma membrane PINs to the directed auxin transport: Theoretical estimation' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 19 year: '2018' ... --- _id: '36' abstract: - lang: eng text: Wheat (Triticum ssp.) is one of the most important human food sources. However, this crop is very sensitive to temperature changes. Specifically, processes during wheat leaf, flower, and seed development and photosynthesis, which all contribute to the yield of this crop, are affected by high temperature. While this has to some extent been investigated on physiological, developmental, and molecular levels, very little is known about early signalling events associated with an increase in temperature. Phosphorylation-mediated signalling mechanisms, which are quick and dynamic, are associated with plant growth and development, also under abiotic stress conditions. Therefore, we probed the impact of a short-term and mild increase in temperature on the wheat leaf and spikelet phosphoproteome. In total, 3822 (containing 5178 phosphosites) and 5581 phosphopeptides (containing 7023 phosphosites) were identified in leaf and spikelet samples, respectively. Following statistical analysis, the resulting data set provides the scientific community with a first large-scale plant phosphoproteome under the control of higher ambient temperature. This community resource on the high temperature-mediated wheat phosphoproteome will be valuable for future studies. Our analyses also revealed a core set of common proteins between leaf and spikelet, suggesting some level of conserved regulatory mechanisms. Furthermore, we observed temperature-regulated interconversion of phosphoforms, which probably impacts protein activity. acknowledgement: TZ is supported by a grant from the Chinese Scholarship Council. article_processing_charge: No author: - first_name: Lam full_name: Vu, Lam last_name: Vu - first_name: Tingting full_name: Zhu, Tingting last_name: Zhu - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Brigitte full_name: Van De Cotte, Brigitte last_name: Van De Cotte - first_name: Kris full_name: Gevaert, Kris last_name: Gevaert - first_name: Ive full_name: De Smet, Ive last_name: De Smet citation: ama: Vu L, Zhu T, Verstraeten I, Van De Cotte B, Gevaert K, De Smet I. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. Journal of Experimental Botany. 2018;69(19):4609-4624. doi:10.1093/jxb/ery204 apa: Vu, L., Zhu, T., Verstraeten, I., Van De Cotte, B., Gevaert, K., & De Smet, I. (2018). Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/ery204 chicago: Vu, Lam, Tingting Zhu, Inge Verstraeten, Brigitte Van De Cotte, Kris Gevaert, and Ive De Smet. “Temperature-Induced Changes in the Wheat Phosphoproteome Reveal Temperature-Regulated Interconversion of Phosphoforms.” Journal of Experimental Botany. Oxford University Press, 2018. https://doi.org/10.1093/jxb/ery204. ieee: L. Vu, T. Zhu, I. Verstraeten, B. Van De Cotte, K. Gevaert, and I. De Smet, “Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms,” Journal of Experimental Botany, vol. 69, no. 19. Oxford University Press, pp. 4609–4624, 2018. ista: Vu L, Zhu T, Verstraeten I, Van De Cotte B, Gevaert K, De Smet I. 2018. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. Journal of Experimental Botany. 69(19), 4609–4624. mla: Vu, Lam, et al. “Temperature-Induced Changes in the Wheat Phosphoproteome Reveal Temperature-Regulated Interconversion of Phosphoforms.” Journal of Experimental Botany, vol. 69, no. 19, Oxford University Press, 2018, pp. 4609–24, doi:10.1093/jxb/ery204. short: L. Vu, T. Zhu, I. Verstraeten, B. Van De Cotte, K. Gevaert, I. De Smet, Journal of Experimental Botany 69 (2018) 4609–4624. date_created: 2018-12-11T11:44:17Z date_published: 2018-08-31T00:00:00Z date_updated: 2023-09-19T10:00:46Z day: '31' ddc: - '581' department: - _id: JiFr doi: 10.1093/jxb/ery204 external_id: isi: - '000443568700010' file: - access_level: open_access checksum: 34cb0a1611588b75bd6f4913fb4e30f1 content_type: application/pdf creator: dernst date_created: 2018-12-18T09:47:51Z date_updated: 2020-07-14T12:46:13Z file_id: '5741' file_name: 2018_JournalExperimBotany_Vu.pdf file_size: 3359316 relation: main_file file_date_updated: 2020-07-14T12:46:13Z has_accepted_license: '1' intvolume: ' 69' isi: 1 issue: '19' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 4609 - 4624 publication: Journal of Experimental Botany publication_status: published publisher: Oxford University Press publist_id: '8019' quality_controlled: '1' scopus_import: '1' status: public title: Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 69 year: '2018' ... --- _id: '148' abstract: - lang: eng text: 'Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.' acknowledgement: In-Data-Review article_processing_charge: No author: - first_name: Tomoaki full_name: Nishiyama, Tomoaki last_name: Nishiyama - first_name: Hidetoshi full_name: Sakayama, Hidetoshi last_name: Sakayama - first_name: Jan full_name: De Vries, Jan last_name: De Vries - first_name: Henrik full_name: Buschmann, Henrik last_name: Buschmann - first_name: Denis full_name: Saint Marcoux, Denis last_name: Saint Marcoux - first_name: Kristian full_name: Ullrich, Kristian last_name: Ullrich - first_name: Fabian full_name: Haas, Fabian last_name: Haas - first_name: Lisa full_name: Vanderstraeten, Lisa last_name: Vanderstraeten - first_name: Dirk full_name: Becker, Dirk last_name: Becker - first_name: Daniel full_name: Lang, Daniel last_name: Lang - first_name: Stanislav full_name: Vosolsobě, Stanislav last_name: Vosolsobě - first_name: Stephane full_name: Rombauts, Stephane last_name: Rombauts - first_name: Per full_name: Wilhelmsson, Per last_name: Wilhelmsson - first_name: Philipp full_name: Janitza, Philipp last_name: Janitza - first_name: Ramona full_name: Kern, Ramona last_name: Kern - first_name: Alexander full_name: Heyl, Alexander last_name: Heyl - first_name: Florian full_name: Rümpler, Florian last_name: Rümpler - first_name: Luz full_name: Calderón Villalobos, Luz last_name: Calderón Villalobos - first_name: John full_name: Clay, John last_name: Clay - first_name: Roman full_name: Skokan, Roman last_name: Skokan - first_name: Atsushi full_name: Toyoda, Atsushi last_name: Toyoda - first_name: Yutaka full_name: Suzuki, Yutaka last_name: Suzuki - first_name: Hiroshi full_name: Kagoshima, Hiroshi last_name: Kagoshima - first_name: Elio full_name: Schijlen, Elio last_name: Schijlen - first_name: Navindra full_name: Tajeshwar, Navindra last_name: Tajeshwar - first_name: Bruno full_name: Catarino, Bruno last_name: Catarino - first_name: Alexander full_name: Hetherington, Alexander last_name: Hetherington - first_name: Assia full_name: Saltykova, Assia last_name: Saltykova - first_name: Clemence full_name: Bonnot, Clemence last_name: Bonnot - first_name: Holger full_name: Breuninger, Holger last_name: Breuninger - first_name: Aikaterini full_name: Symeonidi, Aikaterini last_name: Symeonidi - first_name: Guru full_name: Radhakrishnan, Guru last_name: Radhakrishnan - first_name: Filip full_name: Van Nieuwerburgh, Filip last_name: Van Nieuwerburgh - first_name: Dieter full_name: Deforce, Dieter last_name: Deforce - first_name: Caren full_name: Chang, Caren last_name: Chang - first_name: Kenneth full_name: Karol, Kenneth last_name: Karol - first_name: Rainer full_name: Hedrich, Rainer last_name: Hedrich - first_name: Peter full_name: Ulvskov, Peter last_name: Ulvskov - first_name: Gernot full_name: Glöckner, Gernot last_name: Glöckner - first_name: Charles full_name: Delwiche, Charles last_name: Delwiche - first_name: Jan full_name: Petrášek, Jan last_name: Petrášek - first_name: Yves full_name: Van De Peer, Yves last_name: Van De Peer - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Mary full_name: Beilby, Mary last_name: Beilby - first_name: Liam full_name: Dolan, Liam last_name: Dolan - first_name: Yuji full_name: Kohara, Yuji last_name: Kohara - first_name: Sumio full_name: Sugano, Sumio last_name: Sugano - first_name: Asao full_name: Fujiyama, Asao last_name: Fujiyama - first_name: Pierre Marc full_name: Delaux, Pierre Marc last_name: Delaux - first_name: Marcel full_name: Quint, Marcel last_name: Quint - first_name: Gunter full_name: Theissen, Gunter last_name: Theissen - first_name: Martin full_name: Hagemann, Martin last_name: Hagemann - first_name: Jesper full_name: Harholt, Jesper last_name: Harholt - first_name: Christophe full_name: Dunand, Christophe last_name: Dunand - first_name: Sabine full_name: Zachgo, Sabine last_name: Zachgo - first_name: Jane full_name: Langdale, Jane last_name: Langdale - first_name: Florian full_name: Maumus, Florian last_name: Maumus - first_name: Dominique full_name: Van Der Straeten, Dominique last_name: Van Der Straeten - first_name: Sven B full_name: Gould, Sven B last_name: Gould - first_name: Stefan full_name: Rensing, Stefan last_name: Rensing citation: ama: 'Nishiyama T, Sakayama H, De Vries J, et al. The Chara genome: Secondary complexity and implications for plant terrestrialization. Cell. 2018;174(2):448-464.e24. doi:10.1016/j.cell.2018.06.033' apa: 'Nishiyama, T., Sakayama, H., De Vries, J., Buschmann, H., Saint Marcoux, D., Ullrich, K., … Rensing, S. (2018). The Chara genome: Secondary complexity and implications for plant terrestrialization. Cell. Cell Press. https://doi.org/10.1016/j.cell.2018.06.033' chicago: 'Nishiyama, Tomoaki, Hidetoshi Sakayama, Jan De Vries, Henrik Buschmann, Denis Saint Marcoux, Kristian Ullrich, Fabian Haas, et al. “The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization.” Cell. Cell Press, 2018. https://doi.org/10.1016/j.cell.2018.06.033.' ieee: 'T. Nishiyama et al., “The Chara genome: Secondary complexity and implications for plant terrestrialization,” Cell, vol. 174, no. 2. Cell Press, p. 448–464.e24, 2018.' ista: 'Nishiyama T, Sakayama H, De Vries J, Buschmann H, Saint Marcoux D, Ullrich K, Haas F, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson P, Janitza P, Kern R, Heyl A, Rümpler F, Calderón Villalobos L, Clay J, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington A, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan G, Van Nieuwerburgh F, Deforce D, Chang C, Karol K, Hedrich R, Ulvskov P, Glöckner G, Delwiche C, Petrášek J, Van De Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Theissen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing S. 2018. The Chara genome: Secondary complexity and implications for plant terrestrialization. Cell. 174(2), 448–464.e24.' mla: 'Nishiyama, Tomoaki, et al. “The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization.” Cell, vol. 174, no. 2, Cell Press, 2018, p. 448–464.e24, doi:10.1016/j.cell.2018.06.033.' short: T. Nishiyama, H. Sakayama, J. De Vries, H. Buschmann, D. Saint Marcoux, K. Ullrich, F. Haas, L. Vanderstraeten, D. Becker, D. Lang, S. Vosolsobě, S. Rombauts, P. Wilhelmsson, P. Janitza, R. Kern, A. Heyl, F. Rümpler, L. Calderón Villalobos, J. Clay, R. Skokan, A. Toyoda, Y. Suzuki, H. Kagoshima, E. Schijlen, N. Tajeshwar, B. Catarino, A. Hetherington, A. Saltykova, C. Bonnot, H. Breuninger, A. Symeonidi, G. Radhakrishnan, F. Van Nieuwerburgh, D. Deforce, C. Chang, K. Karol, R. Hedrich, P. Ulvskov, G. Glöckner, C. Delwiche, J. Petrášek, Y. Van De Peer, J. Friml, M. Beilby, L. Dolan, Y. Kohara, S. Sugano, A. Fujiyama, P.M. Delaux, M. Quint, G. Theissen, M. Hagemann, J. Harholt, C. Dunand, S. Zachgo, J. Langdale, F. Maumus, D. Van Der Straeten, S.B. Gould, S. Rensing, Cell 174 (2018) 448–464.e24. date_created: 2018-12-11T11:44:53Z date_published: 2018-07-12T00:00:00Z date_updated: 2023-09-19T10:02:47Z day: '12' department: - _id: JiFr doi: 10.1016/j.cell.2018.06.033 ec_funded: 1 external_id: isi: - '000438482800019' pmid: - '30007417' intvolume: ' 174' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30007417 month: '07' oa: 1 oa_version: Published Version page: 448 - 464.e24 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Cell publication_status: published publisher: Cell Press publist_id: '7774' quality_controlled: '1' scopus_import: '1' status: public title: 'The Chara genome: Secondary complexity and implications for plant terrestrialization' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 174 year: '2018' ... --- _id: '147' abstract: - lang: eng text: The trafficking of subcellular cargos in eukaryotic cells crucially depends on vesicle budding, a process mediated by ARF-GEFs (ADP-ribosylation factor guanine nucleotide exchange factors). In plants, ARF-GEFs play essential roles in endocytosis, vacuolar trafficking, recycling, secretion, and polar trafficking. Moreover, they are important for plant development, mainly through controlling the polar subcellular localization of PIN-FORMED (PIN) transporters of the plant hormone auxin. Here, using a chemical genetics screen in Arabidopsis thaliana, we identified Endosidin 4 (ES4), an inhibitor of eukaryotic ARF-GEFs. ES4 acts similarly to and synergistically with the established ARF-GEF inhibitor Brefeldin A and has broad effects on intracellular trafficking, including endocytosis, exocytosis, and vacuolar targeting. Additionally, Arabidopsis and yeast (Sacharomyces cerevisiae) mutants defective in ARF-GEF show altered sensitivity to ES4. ES4 interferes with the activation-based membrane association of the ARF1 GTPases, but not of their mutant variants that are activated independently of ARF-GEF activity. Biochemical approaches and docking simulations confirmed that ES4 specifically targets the SEC7 domain-containing ARF-GEFs. These observations collectively identify ES4 as a chemical tool enabling the study of ARF-GEF-mediated processes, including ARF-GEF-mediated plant development. acknowledgement: We thank Gerd Jürgens, Sandra Richter, and Sheng Yang He for providing antibodies; Maciek Adamowski, Fernando Aniento, Sebastian Bednarek, Nico Callewaert, Matyás Fendrych, Elena Feraru, and Mugurel I. Feraru for helpful suggestions; Siamsa Doyle for critical reading of the manuscript and helpful comments and suggestions; and Stephanie Smith and Martine De Cock for help in editing and language corrections. We acknowledge the core facility Cellular Imaging of CEITEC supported by the Czech-BioImaging large RI project (LM2015062 funded by MEYS CR) for their support with obtaining scientific data presented in this article. Plant Sciences Core Facility of CEITEC Masaryk University is gratefully acknowledged for obtaining part of the scientific data presented in this article. We acknowledge support from the Fondation pour la Recherche Médicale and from the Institut National du Cancer (J.C.). The research leading to these results was funded by the European Research Council under the European Union's 7th Framework Program (FP7/2007-2013)/ERC grant agreement numbers 282300 and 742985 and the Czech Science Foundation GAČR (GA18-26981S; J.F.); Ministry of Education, Youth, and Sports/MEYS of the Czech Republic under the Project CEITEC 2020 (LQ1601; T.N.); the China Science Council for a predoctoral fellowship (Q.L.); a joint research project within the framework of cooperation between the Research Foundation-Flanders and the Bulgarian Academy of Sciences (VS.025.13N; K.M. and E.R.); Vetenskapsrådet and Vinnova (Verket för Innovationssystem; S.R.), Knut och Alice Wallenbergs Stiftelse via “Shapesystem” Grant 2012.0050 (S.R.), Kempe stiftelserna (P.G.), Tryggers CTS410 (P.G.). article_processing_charge: No article_type: original author: - first_name: Urszula full_name: Kania, Urszula id: 4AE5C486-F248-11E8-B48F-1D18A9856A87 last_name: Kania - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Qing full_name: Lu, Qing last_name: Lu - first_name: Glenn R full_name: Hicks, Glenn R last_name: Hicks - first_name: Wim full_name: Nerinckx, Wim last_name: Nerinckx - first_name: Kiril full_name: Mishev, Kiril last_name: Mishev - first_name: Francois full_name: Peurois, Francois last_name: Peurois - first_name: Jacqueline full_name: Cherfils, Jacqueline last_name: Cherfils - first_name: Rycke Riet Maria full_name: De, Rycke Riet Maria last_name: De - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Stéphanie full_name: Robert, Stéphanie last_name: Robert - first_name: Eugenia full_name: Russinova, Eugenia last_name: Russinova - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Kania U, Nodzyński T, Lu Q, et al. The inhibitor Endosidin 4 targets SEC7 domain-type ARF GTPase exchange factors and interferes with sub cellular trafficking in eukaryotes. The Plant Cell. 2018;30(10):2553-2572. doi:10.1105/tpc.18.00127 apa: Kania, U., Nodzyński, T., Lu, Q., Hicks, G. R., Nerinckx, W., Mishev, K., … Friml, J. (2018). The inhibitor Endosidin 4 targets SEC7 domain-type ARF GTPase exchange factors and interferes with sub cellular trafficking in eukaryotes. The Plant Cell. Oxford University Press. https://doi.org/10.1105/tpc.18.00127 chicago: Kania, Urszula, Tomasz Nodzyński, Qing Lu, Glenn R Hicks, Wim Nerinckx, Kiril Mishev, Francois Peurois, et al. “The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes with Sub Cellular Trafficking in Eukaryotes.” The Plant Cell. Oxford University Press, 2018. https://doi.org/10.1105/tpc.18.00127. ieee: U. Kania et al., “The inhibitor Endosidin 4 targets SEC7 domain-type ARF GTPase exchange factors and interferes with sub cellular trafficking in eukaryotes,” The Plant Cell, vol. 30, no. 10. Oxford University Press, pp. 2553–2572, 2018. ista: Kania U, Nodzyński T, Lu Q, Hicks GR, Nerinckx W, Mishev K, Peurois F, Cherfils J, De RRM, Grones P, Robert S, Russinova E, Friml J. 2018. The inhibitor Endosidin 4 targets SEC7 domain-type ARF GTPase exchange factors and interferes with sub cellular trafficking in eukaryotes. The Plant Cell. 30(10), 2553–2572. mla: Kania, Urszula, et al. “The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes with Sub Cellular Trafficking in Eukaryotes.” The Plant Cell, vol. 30, no. 10, Oxford University Press, 2018, pp. 2553–72, doi:10.1105/tpc.18.00127. short: U. Kania, T. Nodzyński, Q. Lu, G.R. Hicks, W. Nerinckx, K. Mishev, F. Peurois, J. Cherfils, R.R.M. De, P. Grones, S. Robert, E. Russinova, J. Friml, The Plant Cell 30 (2018) 2553–2572. date_created: 2018-12-11T11:44:52Z date_published: 2018-11-12T00:00:00Z date_updated: 2023-09-19T10:09:12Z day: '12' department: - _id: JiFr doi: 10.1105/tpc.18.00127 ec_funded: 1 external_id: isi: - '000450000500023' pmid: - '30018156' intvolume: ' 30' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1105/tpc.18.00127 month: '11' oa: 1 oa_version: Published Version page: 2553 - 2572 pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: The Plant Cell publication_identifier: issn: - 1040-4651 publication_status: published publisher: Oxford University Press publist_id: '7776' quality_controlled: '1' scopus_import: '1' status: public title: The inhibitor Endosidin 4 targets SEC7 domain-type ARF GTPase exchange factors and interferes with sub cellular trafficking in eukaryotes type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 30 year: '2018' ... --- _id: '146' abstract: - lang: eng text: The root cap protects the stem cell niche of angiosperm roots from damage. In Arabidopsis, lateral root cap (LRC) cells covering the meristematic zone are regularly lost through programmed cell death, while the outermost layer of the root cap covering the tip is repeatedly sloughed. Efficient coordination with stem cells producing new layers is needed to maintain a constant size of the cap. We present a signalling pair, the peptide IDA-LIKE1 (IDL1) and its receptor HAESA-LIKE2 (HSL2), mediating such communication. Live imaging over several days characterized this process from initial fractures in LRC cell files to full separation of a layer. Enhanced expression of IDL1 in the separating root cap layers resulted in increased frequency of sloughing, balanced with generation of new layers in a HSL2-dependent manner. Transcriptome analyses linked IDL1-HSL2 signalling to the transcription factors BEARSKIN1/2 and genes associated with programmed cell death. Mutations in either IDL1 or HSL2 slowed down cell division, maturation and separation. Thus, IDL1-HSL2 signalling potentiates dynamic regulation of the homeostatic balance between stem cell division and sloughing activity. article_processing_charge: No article_type: original author: - first_name: Chun Lin full_name: Shi, Chun Lin last_name: Shi - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Ullrich full_name: Herrmann, Ullrich last_name: Herrmann - first_name: Mari full_name: Wildhagen, Mari last_name: Wildhagen - first_name: Ivan full_name: Kulik, Ivan id: F0AB3FCE-02D1-11E9-BD0E-99399A5D3DEB last_name: Kulik - first_name: Andreas full_name: Kopf, Andreas last_name: Kopf - first_name: Takashi full_name: Ishida, Takashi last_name: Ishida - first_name: Vilde full_name: Olsson, Vilde last_name: Olsson - first_name: Mari Kristine full_name: Anker, Mari Kristine last_name: Anker - first_name: Markus full_name: Albert, Markus last_name: Albert - first_name: Melinka A full_name: Butenko, Melinka A last_name: Butenko - first_name: Georg full_name: Felix, Georg last_name: Felix - first_name: Shinichiro full_name: Sawa, Shinichiro last_name: Sawa - first_name: Manfred full_name: Claassen, Manfred last_name: Claassen - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Reidunn B full_name: Aalen, Reidunn B last_name: Aalen citation: ama: Shi CL, von Wangenheim D, Herrmann U, et al. The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants. 2018;4(8):596-604. doi:10.1038/s41477-018-0212-z apa: Shi, C. L., von Wangenheim, D., Herrmann, U., Wildhagen, M., Kulik, I., Kopf, A., … Aalen, R. B. (2018). The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants. Nature Publishing Group. https://doi.org/10.1038/s41477-018-0212-z chicago: Shi, Chun Lin, Daniel von Wangenheim, Ullrich Herrmann, Mari Wildhagen, Ivan Kulik, Andreas Kopf, Takashi Ishida, et al. “The Dynamics of Root Cap Sloughing in Arabidopsis Is Regulated by Peptide Signalling.” Nature Plants. Nature Publishing Group, 2018. https://doi.org/10.1038/s41477-018-0212-z. ieee: C. L. Shi et al., “The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling,” Nature Plants, vol. 4, no. 8. Nature Publishing Group, pp. 596–604, 2018. ista: Shi CL, von Wangenheim D, Herrmann U, Wildhagen M, Kulik I, Kopf A, Ishida T, Olsson V, Anker MK, Albert M, Butenko MA, Felix G, Sawa S, Claassen M, Friml J, Aalen RB. 2018. The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling. Nature Plants. 4(8), 596–604. mla: Shi, Chun Lin, et al. “The Dynamics of Root Cap Sloughing in Arabidopsis Is Regulated by Peptide Signalling.” Nature Plants, vol. 4, no. 8, Nature Publishing Group, 2018, pp. 596–604, doi:10.1038/s41477-018-0212-z. short: C.L. Shi, D. von Wangenheim, U. Herrmann, M. Wildhagen, I. Kulik, A. Kopf, T. Ishida, V. Olsson, M.K. Anker, M. Albert, M.A. Butenko, G. Felix, S. Sawa, M. Claassen, J. Friml, R.B. Aalen, Nature Plants 4 (2018) 596–604. date_created: 2018-12-11T11:44:52Z date_published: 2018-07-30T00:00:00Z date_updated: 2023-09-19T10:08:45Z day: '30' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41477-018-0212-z external_id: isi: - '000443861300016' pmid: - '30061750' file: - access_level: open_access checksum: da33101c76ee1b2dc5ab28fd2ccba9d0 content_type: application/pdf creator: dernst date_created: 2019-11-18T16:24:07Z date_updated: 2020-07-14T12:44:56Z file_id: '7043' file_name: 2018_NaturePlants_Shi.pdf file_size: 226829 relation: main_file file_date_updated: 2020-07-14T12:44:56Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '8' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 596 - 604 pmid: 1 publication: Nature Plants publication_status: published publisher: Nature Publishing Group publist_id: '7777' quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/new-process-in-root-development-discovered/ scopus_import: '1' status: public title: The dynamics of root cap sloughing in Arabidopsis is regulated by peptide signalling type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 4 year: '2018' ... --- _id: '10881' abstract: - lang: eng text: Strigolactones (SLs) are a relatively recent addition to the list of plant hormones that control different aspects of plant development. SL signalling is perceived by an α/β hydrolase, DWARF 14 (D14). A close homolog of D14, KARRIKIN INSENSTIVE2 (KAI2), is involved in perception of an uncharacterized molecule called karrikin (KAR). Recent studies in Arabidopsis identified the SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE 7 (SMXL7) to be potential SCF–MAX2 complex-mediated proteasome targets of KAI2 and D14, respectively. Genetic studies on SMXL7 and SMAX1 demonstrated distinct developmental roles for each, but very little is known about these repressors in terms of their sequence features. In this study, we performed an extensive comparative analysis of SMXLs and determined their phylogenetic and evolutionary history in the plant lineage. Our results show that SMXL family members can be sub-divided into four distinct phylogenetic clades/classes, with an ancient SMAX1. Further, we identified the clade-specific motifs that have evolved and that might act as determinants of SL-KAR signalling specificity. These specificities resulted from functional diversities among the clades. Our results suggest that a gradual co-evolution of SMXL members with their upstream receptors D14/KAI2 provided an increased specificity to both the SL perception and response in land plants. acknowledgement: "This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions and it is co-financed by the South Moravian Region under grant agreement No. 665860 (SS). Access to computing and storage facilities owned by parties and projects contributing to the national grid infrastructure, MetaCentrum, provided under the program ‘Projects of Large Infrastructure for Research, Development, and Innovations’ (LM2010005) was greatly appreciated (RSV). The project was funded by The Ministry of Education, Youth and Sports/MES of the Czech Republic under the project CEITEC 2020 (LQ1601) (TN, TRM). JF was supported by the European Research Council (project ERC-2011-StG 20101109-PSDP) and the Czech Science Foundation GAČR (GA13-40637S). We thank Dr Kamel Chibani for active discussions on the evolutionary analysis and Nandan Mysore Vardarajan for his critical comments on the manuscript. This article reflects\r\nonly the authors’ views, and the EU is not responsible for any use that may be made of the information it contains. " article_processing_charge: No article_type: original author: - first_name: Taraka Ramji full_name: Moturu, Taraka Ramji last_name: Moturu - first_name: Sravankumar full_name: Thula, Sravankumar last_name: Thula - first_name: Ravi Kumar full_name: Singh, Ravi Kumar last_name: Singh - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Radka Svobodová full_name: Vařeková, Radka Svobodová last_name: Vařeková - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Sibu full_name: Simon, Sibu last_name: Simon citation: ama: Moturu TR, Thula S, Singh RK, et al. Molecular evolution and diversification of the SMXL gene family. Journal of Experimental Botany. 2018;69(9):2367-2378. doi:10.1093/jxb/ery097 apa: Moturu, T. R., Thula, S., Singh, R. K., Nodzyński, T., Vařeková, R. S., Friml, J., & Simon, S. (2018). Molecular evolution and diversification of the SMXL gene family. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/ery097 chicago: Moturu, Taraka Ramji, Sravankumar Thula, Ravi Kumar Singh, Tomasz Nodzyński, Radka Svobodová Vařeková, Jiří Friml, and Sibu Simon. “Molecular Evolution and Diversification of the SMXL Gene Family.” Journal of Experimental Botany. Oxford University Press, 2018. https://doi.org/10.1093/jxb/ery097. ieee: T. R. Moturu et al., “Molecular evolution and diversification of the SMXL gene family,” Journal of Experimental Botany, vol. 69, no. 9. Oxford University Press, pp. 2367–2378, 2018. ista: Moturu TR, Thula S, Singh RK, Nodzyński T, Vařeková RS, Friml J, Simon S. 2018. Molecular evolution and diversification of the SMXL gene family. Journal of Experimental Botany. 69(9), 2367–2378. mla: Moturu, Taraka Ramji, et al. “Molecular Evolution and Diversification of the SMXL Gene Family.” Journal of Experimental Botany, vol. 69, no. 9, Oxford University Press, 2018, pp. 2367–78, doi:10.1093/jxb/ery097. short: T.R. Moturu, S. Thula, R.K. Singh, T. Nodzyński, R.S. Vařeková, J. Friml, S. Simon, Journal of Experimental Botany 69 (2018) 2367–2378. date_created: 2022-03-18T12:43:22Z date_published: 2018-04-13T00:00:00Z date_updated: 2023-09-19T15:10:43Z day: '13' department: - _id: JiFr doi: 10.1093/jxb/ery097 ec_funded: 1 external_id: isi: - '000430727000016' pmid: - '29538714' intvolume: ' 69' isi: 1 issue: '9' keyword: - Plant Science - Physiology language: - iso: eng month: '04' oa_version: None page: 2367-2378 pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Journal of Experimental Botany publication_identifier: eissn: - 1460-2431 issn: - 0022-0957 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Molecular evolution and diversification of the SMXL gene family type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 69 year: '2018' ... --- _id: '913' abstract: - lang: eng text: Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We performed a microarray-based approach to find regulators of the auxin-induced PIN relocation in the Arabidopsis thaliana root. We identified a subset of a family of phosphatidylinositol transfer proteins (PITP), the PATELLINs (PATL). Here, we show that PATLs are expressed in partially overlapping cells types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia, and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests PATLs redundantly play a crucial role in polarity and patterning in Arabidopsis. article_number: jcs.204198 article_processing_charge: No author: - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Cecilia full_name: Rodríguez Furlán, Cecilia last_name: Rodríguez Furlán - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Michael full_name: Sauer, Michael last_name: Sauer - first_name: Lorena full_name: Norambuena, Lorena last_name: Norambuena - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tejos R, Rodríguez Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 2018;131(2). doi:10.1242/jcs.204198 apa: Tejos, R., Rodríguez Furlán, C., Adamowski, M., Sauer, M., Norambuena, L., & Friml, J. (2018). PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. Company of Biologists. https://doi.org/10.1242/jcs.204198 chicago: Tejos, Ricardo, Cecilia Rodríguez Furlán, Maciek Adamowski, Michael Sauer, Lorena Norambuena, and Jiří Friml. “PATELLINS Are Regulators of Auxin Mediated PIN1 Relocation and Plant Development in Arabidopsis Thaliana.” Journal of Cell Science. Company of Biologists, 2018. https://doi.org/10.1242/jcs.204198. ieee: R. Tejos, C. Rodríguez Furlán, M. Adamowski, M. Sauer, L. Norambuena, and J. Friml, “PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana,” Journal of Cell Science, vol. 131, no. 2. Company of Biologists, 2018. ista: Tejos R, Rodríguez Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. 2018. PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana. Journal of Cell Science. 131(2), jcs. 204198. mla: Tejos, Ricardo, et al. “PATELLINS Are Regulators of Auxin Mediated PIN1 Relocation and Plant Development in Arabidopsis Thaliana.” Journal of Cell Science, vol. 131, no. 2, jcs. 204198, Company of Biologists, 2018, doi:10.1242/jcs.204198. short: R. Tejos, C. Rodríguez Furlán, M. Adamowski, M. Sauer, L. Norambuena, J. Friml, Journal of Cell Science 131 (2018). date_created: 2018-12-11T11:49:10Z date_published: 2018-01-29T00:00:00Z date_updated: 2023-09-26T15:47:50Z day: '29' ddc: - '581' department: - _id: JiFr doi: 10.1242/jcs.204198 ec_funded: 1 external_id: isi: - '000424842400019' file: - access_level: open_access checksum: bf156c20a4f117b4b932370d54cbac8c content_type: application/pdf creator: dernst date_created: 2019-04-12T08:46:32Z date_updated: 2020-07-14T12:48:15Z file_id: '6299' file_name: 2017_adamowski_PATELLINS_are.pdf file_size: 14925985 relation: main_file file_date_updated: 2020-07-14T12:48:15Z has_accepted_license: '1' intvolume: ' 131' isi: 1 issue: '2' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Journal of Cell Science publication_identifier: issn: - '00219533' publication_status: published publisher: Company of Biologists publist_id: '6530' pubrep_id: '988' quality_controlled: '1' scopus_import: '1' status: public title: PATELLINS are regulators of auxin mediated PIN1 relocation and plant development in Arabidopsis thaliana type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 131 year: '2018' ... --- _id: '5673' abstract: - lang: eng text: Cell polarity, manifested by the localization of proteins to distinct polar plasma membrane domains, is a key prerequisite of multicellular life. In plants, PIN auxin transporters are prominent polarity markers crucial for a plethora of developmental processes. Cell polarity mechanisms in plants are distinct from other eukaryotes and still largely elusive. In particular, how the cell polarities are propagated and maintained following cell division remains unknown. Plant cytokinesis is orchestrated by the cell plate—a transient centrifugally growing endomembrane compartment ultimately forming the cross wall1. Trafficking of polar membrane proteins is typically redirected to the cell plate, and these will consequently have opposite polarity in at least one of the daughter cells2–5. Here, we provide mechanistic insights into post-cytokinetic re-establishment of cell polarity as manifested by the apical, polar localization of PIN2. We show that the apical domain is defined in a cell-intrinsic manner and that re-establishment of PIN2 localization to this domain requires de novo protein secretion and endocytosis, but not basal-to-apical transcytosis. Furthermore, we identify a PINOID-related kinase WAG1, which phosphorylates PIN2 in vitro6 and is transcriptionally upregulated specifically in dividing cells, as a crucial regulator of post-cytokinetic PIN2 polarity re-establishment. article_processing_charge: No author: - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Glanc M, Fendrych M, Friml J. Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division. Nature Plants. 2018;4(12):1082-1088. doi:10.1038/s41477-018-0318-3 apa: Glanc, M., Fendrych, M., & Friml, J. (2018). Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division. Nature Plants. Nature Research. https://doi.org/10.1038/s41477-018-0318-3 chicago: Glanc, Matous, Matyas Fendrych, and Jiří Friml. “Mechanistic Framework for Cell-Intrinsic Re-Establishment of PIN2 Polarity after Cell Division.” Nature Plants. Nature Research, 2018. https://doi.org/10.1038/s41477-018-0318-3. ieee: M. Glanc, M. Fendrych, and J. Friml, “Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division,” Nature Plants, vol. 4, no. 12. Nature Research, pp. 1082–1088, 2018. ista: Glanc M, Fendrych M, Friml J. 2018. Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division. Nature Plants. 4(12), 1082–1088. mla: Glanc, Matous, et al. “Mechanistic Framework for Cell-Intrinsic Re-Establishment of PIN2 Polarity after Cell Division.” Nature Plants, vol. 4, no. 12, Nature Research, 2018, pp. 1082–88, doi:10.1038/s41477-018-0318-3. short: M. Glanc, M. Fendrych, J. Friml, Nature Plants 4 (2018) 1082–1088. date_created: 2018-12-16T22:59:18Z date_published: 2018-12-03T00:00:00Z date_updated: 2023-10-17T12:19:28Z day: '03' department: - _id: JiFr doi: 10.1038/s41477-018-0318-3 ec_funded: 1 external_id: isi: - '000454576600017' pmid: - '30518833' intvolume: ' 4' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30518833 month: '12' oa: 1 oa_version: Submitted Version page: 1082-1088 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature Plants publication_identifier: issn: - 2055-0278 publication_status: published publisher: Nature Research quality_controlled: '1' scopus_import: '1' status: public title: Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2018' ... --- _id: '412' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterised compared to that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing Tandem Affinity Purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologues of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in A. thaliana caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like(1/2) loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the on-going characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in A. thaliana. acknowledgement: We thank James Matthew Watson, Monika Borowska, and Peggy Stolt-Bergner at ProTech Facility of the Vienna Biocenter Core Facilities for the CRISPR/CAS9 construct; Anna Müller for assistance with molecular cloning; Sebastian Bednarek, Liwen Jiang, and Daniël Van Damme for sharing published material; Matyáš Fendrych, Daniël Van Damme, and Lindy Abas for valuable discussions; and Martine De Cock for help with correcting the manuscript. This work was supported by the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013)/ERC Grant 282300 and by the Ministry of Education of the Czech Republic/MŠMT project NPUI-LO1417. article_processing_charge: No article_type: original author: - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Urszula full_name: Kania, Urszula id: 4AE5C486-F248-11E8-B48F-1D18A9856A87 last_name: Kania - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: Geert full_name: De Jaeger, Geert last_name: De Jaeger - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J. A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis. The Plant Cell. 2018;30(3):700-716. doi:10.1105/tpc.17.00785 apa: Adamowski, M., Narasimhan, M., Kania, U., Glanc, M., De Jaeger, G., & Friml, J. (2018). A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis. The Plant Cell. American Society of Plant Biologists. https://doi.org/10.1105/tpc.17.00785 chicago: Adamowski, Maciek, Madhumitha Narasimhan, Urszula Kania, Matous Glanc, Geert De Jaeger, and Jiří Friml. “A Functional Study of AUXILIN LIKE1 and 2 Two Putative Clathrin Uncoating Factors in Arabidopsis.” The Plant Cell. American Society of Plant Biologists, 2018. https://doi.org/10.1105/tpc.17.00785. ieee: M. Adamowski, M. Narasimhan, U. Kania, M. Glanc, G. De Jaeger, and J. Friml, “A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis,” The Plant Cell, vol. 30, no. 3. American Society of Plant Biologists, pp. 700–716, 2018. ista: Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J. 2018. A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis. The Plant Cell. 30(3), 700–716. mla: Adamowski, Maciek, et al. “A Functional Study of AUXILIN LIKE1 and 2 Two Putative Clathrin Uncoating Factors in Arabidopsis.” The Plant Cell, vol. 30, no. 3, American Society of Plant Biologists, 2018, pp. 700–16, doi:10.1105/tpc.17.00785. short: M. Adamowski, M. Narasimhan, U. Kania, M. Glanc, G. De Jaeger, J. Friml, The Plant Cell 30 (2018) 700–716. date_created: 2018-12-11T11:46:20Z date_published: 2018-04-09T00:00:00Z date_updated: 2024-03-18T23:30:06Z day: '09' ddc: - '580' department: - _id: JiFr doi: 10.1105/tpc.17.00785 ec_funded: 1 external_id: isi: - '000429441400018' pmid: - '29511054' file: - access_level: open_access checksum: 4e165e653b67d3f0684697f21aace5a1 content_type: application/pdf creator: dernst date_created: 2022-05-23T09:12:38Z date_updated: 2022-05-23T09:12:38Z file_id: '11406' file_name: 2018_PlantCell_Adamowski.pdf file_size: 4407538 relation: main_file success: 1 file_date_updated: 2022-05-23T09:12:38Z has_accepted_license: '1' intvolume: ' 30' isi: 1 issue: '3' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 700 - 716 pmid: 1 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: The Plant Cell publication_identifier: eissn: - 1532-298X issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists publist_id: '7417' quality_controlled: '1' related_material: record: - id: '6269' relation: dissertation_contains status: public scopus_import: '1' status: public title: A functional study of AUXILIN LIKE1 and 2 two putative clathrin uncoating factors in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 30 year: '2018' ... --- _id: '449' abstract: - lang: eng text: Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. article_processing_charge: Yes author: - first_name: Tomas full_name: Prat, Tomas id: 3DA3BFEE-F248-11E8-B48F-1D18A9856A87 last_name: Prat - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Wim full_name: Grunewald, Wim last_name: Grunewald - first_name: Mina K full_name: Vasileva, Mina K id: 3407EB18-F248-11E8-B48F-1D18A9856A87 last_name: Vasileva - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Markus full_name: Schmid, Markus last_name: Schmid - first_name: Michael full_name: Sauer, Michael last_name: Sauer - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Prat T, Hajny J, Grunewald W, et al. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics. 2018;14(1). doi:10.1371/journal.pgen.1007177 apa: Prat, T., Hajny, J., Grunewald, W., Vasileva, M. K., Molnar, G., Tejos, R., … Friml, J. (2018). WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics. Public Library of Science. https://doi.org/10.1371/journal.pgen.1007177 chicago: Prat, Tomas, Jakub Hajny, Wim Grunewald, Mina K Vasileva, Gergely Molnar, Ricardo Tejos, Markus Schmid, Michael Sauer, and Jiří Friml. “WRKY23 Is a Component of the Transcriptional Network Mediating Auxin Feedback on PIN Polarity.” PLoS Genetics. Public Library of Science, 2018. https://doi.org/10.1371/journal.pgen.1007177. ieee: T. Prat et al., “WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity,” PLoS Genetics, vol. 14, no. 1. Public Library of Science, 2018. ista: Prat T, Hajny J, Grunewald W, Vasileva MK, Molnar G, Tejos R, Schmid M, Sauer M, Friml J. 2018. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genetics. 14(1). mla: Prat, Tomas, et al. “WRKY23 Is a Component of the Transcriptional Network Mediating Auxin Feedback on PIN Polarity.” PLoS Genetics, vol. 14, no. 1, Public Library of Science, 2018, doi:10.1371/journal.pgen.1007177. short: T. Prat, J. Hajny, W. Grunewald, M.K. Vasileva, G. Molnar, R. Tejos, M. Schmid, M. Sauer, J. Friml, PLoS Genetics 14 (2018). date_created: 2018-12-11T11:46:32Z date_published: 2018-01-29T00:00:00Z date_updated: 2024-03-18T23:30:39Z day: '29' ddc: - '581' department: - _id: JiFr doi: 10.1371/journal.pgen.1007177 ec_funded: 1 external_id: isi: - '000423718600034' file: - access_level: open_access checksum: 0276d66788ec076f4924164a39e6a712 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:52Z date_updated: 2020-07-14T12:46:30Z file_id: '4843' file_name: IST-2018-967-v1+1_journal.pgen.1007177.pdf file_size: 24709062 relation: main_file file_date_updated: 2020-07-14T12:46:30Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: PLoS Genetics publication_status: published publisher: Public Library of Science publist_id: '7373' pubrep_id: '967' quality_controlled: '1' related_material: record: - id: '1127' relation: dissertation_contains status: public - id: '7172' relation: dissertation_contains status: public - id: '8822' relation: dissertation_contains status: public scopus_import: '1' status: public title: WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 14 year: '2018' ... --- _id: '191' abstract: - lang: eng text: Intercellular distribution of the plant hormone auxin largely depends on the polar subcellular distribution of the plasma membrane PIN-FORMED (PIN) auxin transporters. PIN polarity switches in response to different developmental and environmental signals have been shown to redirect auxin fluxes mediating certain developmental responses. PIN phosphorylation at different sites and by different kinases is crucial for PIN function. Here we investigate the role of PIN phosphorylation during gravitropic response. Loss- and gain-of-function mutants in PINOID and related kinases but not in D6PK kinase as well as mutations mimicking constitutive dephosphorylated or phosphorylated status of two clusters of predicted phosphorylation sites partially disrupted PIN3 phosphorylation and caused defects in gravitropic bending in roots and hypocotyls. In particular, they impacted PIN3 polarity rearrangements in response to gravity and during feed-back regulation by auxin itself. Thus PIN phosphorylation, besides regulating transport activity and apical-basal targeting, is also important for the rapid polarity switches in response to environmental and endogenous signals. article_number: '10279' article_processing_charge: No author: - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Melinda F full_name: Abas, Melinda F id: 3CFB3B1C-F248-11E8-B48F-1D18A9856A87 last_name: Abas - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Angharad full_name: Jones, Angharad last_name: Jones - first_name: Sascha full_name: Waidmann, Sascha last_name: Waidmann - first_name: Jürgen full_name: Kleine Vehn, Jürgen last_name: Kleine Vehn - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Grones P, Abas MF, Hajny J, et al. PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. 2018;8(1). doi:10.1038/s41598-018-28188-1 apa: Grones, P., Abas, M. F., Hajny, J., Jones, A., Waidmann, S., Kleine Vehn, J., & Friml, J. (2018). PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. Springer. https://doi.org/10.1038/s41598-018-28188-1 chicago: Grones, Peter, Melinda F Abas, Jakub Hajny, Angharad Jones, Sascha Waidmann, Jürgen Kleine Vehn, and Jiří Friml. “PID/WAG-Mediated Phosphorylation of the Arabidopsis PIN3 Auxin Transporter Mediates Polarity Switches during Gravitropism.” Scientific Reports. Springer, 2018. https://doi.org/10.1038/s41598-018-28188-1. ieee: P. Grones et al., “PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism,” Scientific Reports, vol. 8, no. 1. Springer, 2018. ista: Grones P, Abas MF, Hajny J, Jones A, Waidmann S, Kleine Vehn J, Friml J. 2018. PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Scientific Reports. 8(1), 10279. mla: Grones, Peter, et al. “PID/WAG-Mediated Phosphorylation of the Arabidopsis PIN3 Auxin Transporter Mediates Polarity Switches during Gravitropism.” Scientific Reports, vol. 8, no. 1, 10279, Springer, 2018, doi:10.1038/s41598-018-28188-1. short: P. Grones, M.F. Abas, J. Hajny, A. Jones, S. Waidmann, J. Kleine Vehn, J. Friml, Scientific Reports 8 (2018). date_created: 2018-12-11T11:45:06Z date_published: 2018-07-06T00:00:00Z date_updated: 2024-03-18T23:30:39Z day: '06' ddc: - '581' department: - _id: JiFr - _id: EvBe doi: 10.1038/s41598-018-28188-1 ec_funded: 1 external_id: isi: - '000437673200053' file: - access_level: open_access checksum: 266b03f4fb8198e83141617aaa99dcab content_type: application/pdf creator: dernst date_created: 2018-12-17T15:38:56Z date_updated: 2020-07-14T12:45:20Z file_id: '5714' file_name: 2018_ScientificReports_Grones.pdf file_size: 2413876 relation: main_file file_date_updated: 2020-07-14T12:45:20Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Scientific Reports publication_status: published publisher: Springer publist_id: '7729' quality_controlled: '1' related_material: record: - id: '8822' relation: dissertation_contains status: public scopus_import: '1' status: public title: PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 8 year: '2018' ... --- _id: '442' abstract: - lang: eng text: The rapid auxin-triggered growth of the Arabidopsis hypocotyls involves the nuclear TIR1/AFB-Aux/IAA signaling and is accompanied by acidification of the apoplast and cell walls (Fendrych et al., 2016). Here, we describe in detail the method for analysis of the elongation and the TIR1/AFB-Aux/IAA-dependent auxin response in hypocotyl segments as well as the determination of relative values of the cell wall pH. acknowledgement: 'This protocol was adapted from Fendrych et al., 2016. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385, and Austrian Science Fund (FWF) [M 2128-B21]. ' article_processing_charge: No article_type: original author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li L, Krens G, Fendrych M, Friml J. Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls. Bio-protocol. 2018;8(1). doi:10.21769/BioProtoc.2685 apa: Li, L., Krens, G., Fendrych, M., & Friml, J. (2018). Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls. Bio-Protocol. Bio-protocol. https://doi.org/10.21769/BioProtoc.2685 chicago: Li, Lanxin, Gabriel Krens, Matyas Fendrych, and Jiří Friml. “Real-Time Analysis of Auxin Response, Cell Wall PH and Elongation in Arabidopsis Thaliana Hypocotyls.” Bio-Protocol. Bio-protocol, 2018. https://doi.org/10.21769/BioProtoc.2685. ieee: L. Li, G. Krens, M. Fendrych, and J. Friml, “Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls,” Bio-protocol, vol. 8, no. 1. Bio-protocol, 2018. ista: Li L, Krens G, Fendrych M, Friml J. 2018. Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls. Bio-protocol. 8(1). mla: Li, Lanxin, et al. “Real-Time Analysis of Auxin Response, Cell Wall PH and Elongation in Arabidopsis Thaliana Hypocotyls.” Bio-Protocol, vol. 8, no. 1, Bio-protocol, 2018, doi:10.21769/BioProtoc.2685. short: L. Li, G. Krens, M. Fendrych, J. Friml, Bio-Protocol 8 (2018). date_created: 2018-12-11T11:46:30Z date_published: 2018-01-05T00:00:00Z date_updated: 2024-03-18T23:30:45Z day: '05' ddc: - '576' - '581' department: - _id: JiFr - _id: Bio doi: 10.21769/BioProtoc.2685 ec_funded: 1 file: - access_level: open_access checksum: 6644ba698206eda32b0abf09128e63e3 content_type: application/pdf creator: system date_created: 2018-12-12T10:17:43Z date_updated: 2020-07-14T12:46:29Z file_id: '5299' file_name: IST-2018-970-v1+1_2018_Lanxin_Real-time_analysis.pdf file_size: 11352389 relation: main_file file_date_updated: 2020-07-14T12:46:29Z has_accepted_license: '1' intvolume: ' 8' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Bio-protocol publication_identifier: eissn: - 2331-8325 publication_status: published publisher: Bio-protocol publist_id: '7381' pubrep_id: '970' quality_controlled: '1' related_material: record: - id: '10083' relation: dissertation_contains status: public status: public title: Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2018' ... --- _id: '572' abstract: - lang: eng text: In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture. article_number: '2587' article_processing_charge: No author: - first_name: Damilola full_name: Olatunji, Damilola last_name: Olatunji - first_name: Danny full_name: Geelen, Danny last_name: Geelen - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 citation: ama: Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences. 2017;18(12). doi:10.3390/ijms18122587 apa: Olatunji, D., Geelen, D., & Verstraeten, I. (2017). Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms18122587 chicago: Olatunji, Damilola, Danny Geelen, and Inge Verstraeten. “Control of Endogenous Auxin Levels in Plant Root Development.” International Journal of Molecular Sciences. MDPI, 2017. https://doi.org/10.3390/ijms18122587. ieee: D. Olatunji, D. Geelen, and I. Verstraeten, “Control of endogenous auxin levels in plant root development,” International Journal of Molecular Sciences, vol. 18, no. 12. MDPI, 2017. ista: Olatunji D, Geelen D, Verstraeten I. 2017. Control of endogenous auxin levels in plant root development. International Journal of Molecular Sciences. 18(12), 2587. mla: Olatunji, Damilola, et al. “Control of Endogenous Auxin Levels in Plant Root Development.” International Journal of Molecular Sciences, vol. 18, no. 12, 2587, MDPI, 2017, doi:10.3390/ijms18122587. short: D. Olatunji, D. Geelen, I. Verstraeten, International Journal of Molecular Sciences 18 (2017). date_created: 2018-12-11T11:47:15Z date_published: 2017-12-01T00:00:00Z date_updated: 2021-01-12T08:03:16Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.3390/ijms18122587 file: - access_level: open_access checksum: 82d51f11e493f7eec02976d9a9a9805e content_type: application/pdf creator: system date_created: 2018-12-12T10:08:55Z date_updated: 2020-07-14T12:47:10Z file_id: '4718' file_name: IST-2017-917-v1+1_ijms-18-02587.pdf file_size: 920962 relation: main_file file_date_updated: 2020-07-14T12:47:10Z has_accepted_license: '1' intvolume: ' 18' issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: International Journal of Molecular Sciences publication_status: published publisher: MDPI publist_id: '7242' pubrep_id: '917' quality_controlled: '1' scopus_import: '1' status: public title: Control of endogenous auxin levels in plant root development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 18 year: '2017' ... --- _id: '657' abstract: - lang: eng text: Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator. author: - first_name: Barbara full_name: Möller, Barbara last_name: Möller - first_name: Colette full_name: Ten Hove, Colette last_name: Ten Hove - first_name: Daoquan full_name: Xiang, Daoquan last_name: Xiang - first_name: Nerys full_name: Williams, Nerys last_name: Williams - first_name: Lorena full_name: López, Lorena last_name: López - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Margot full_name: Smit, Margot last_name: Smit - first_name: Raju full_name: Datla, Raju last_name: Datla - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers citation: ama: Möller B, Ten Hove C, Xiang D, et al. Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo. PNAS. 2017;114(12):E2533-E2539. doi:10.1073/pnas.1616493114 apa: Möller, B., Ten Hove, C., Xiang, D., Williams, N., López, L., Yoshida, S., … Weijers, D. (2017). Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1616493114 chicago: Möller, Barbara, Colette Ten Hove, Daoquan Xiang, Nerys Williams, Lorena López, Saiko Yoshida, Margot Smit, Raju Datla, and Dolf Weijers. “Auxin Response Cell Autonomously Controls Ground Tissue Initiation in the Early Arabidopsis Embryo.” PNAS. National Academy of Sciences, 2017. https://doi.org/10.1073/pnas.1616493114. ieee: B. Möller et al., “Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo,” PNAS, vol. 114, no. 12. National Academy of Sciences, pp. E2533–E2539, 2017. ista: Möller B, Ten Hove C, Xiang D, Williams N, López L, Yoshida S, Smit M, Datla R, Weijers D. 2017. Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo. PNAS. 114(12), E2533–E2539. mla: Möller, Barbara, et al. “Auxin Response Cell Autonomously Controls Ground Tissue Initiation in the Early Arabidopsis Embryo.” PNAS, vol. 114, no. 12, National Academy of Sciences, 2017, pp. E2533–39, doi:10.1073/pnas.1616493114. short: B. Möller, C. Ten Hove, D. Xiang, N. Williams, L. López, S. Yoshida, M. Smit, R. Datla, D. Weijers, PNAS 114 (2017) E2533–E2539. date_created: 2018-12-11T11:47:45Z date_published: 2017-03-21T00:00:00Z date_updated: 2021-01-12T08:08:02Z day: '21' department: - _id: JiFr doi: 10.1073/pnas.1616493114 external_id: pmid: - '28265057' intvolume: ' 114' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373392/ month: '03' oa: 1 oa_version: Submitted Version page: E2533 - E2539 pmid: 1 publication: PNAS publication_identifier: issn: - '00278424' publication_status: published publisher: National Academy of Sciences publist_id: '7076' quality_controlled: '1' scopus_import: 1 status: public title: Auxin response cell autonomously controls ground tissue initiation in the early arabidopsis embryo type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 114 year: '2017' ... --- _id: '669' abstract: - lang: eng text: 'The exocyst, a eukaryotic tethering complex, coregulates targeted exocytosis as an effector of small GTPases in polarized cell growth. In land plants, several exocyst subunits are encoded by double or triple paralogs, culminating in tens of EXO70 paralogs. Out of 23 Arabidopsis thaliana EXO70 isoforms, we analyzed seven isoforms expressed in pollen. Genetic and microscopic analyses of single mutants in EXO70A2, EXO70C1, EXO70C2, EXO70F1, EXO70H3, EXO70H5, and EXO70H6 genes revealed that only a loss-of-function EXO70C2 allele resulted in a significant male-specific transmission defect (segregation 40%:51%:9%) due to aberrant pollen tube growth. Mutant pollen tubes grown in vitro exhibited an enhanced growth rate and a decreased thickness of the tip cell wall, causing tip bursts. However, exo70C2 pollen tubes could frequently recover and restart their speedy elongation, resulting in a repetitive stop-and-go growth dynamics. A pollenspecific depletion of the closest paralog, EXO70C1, using artificial microRNA in the exo70C2 mutant background, resulted in a complete pollen-specific transmission defect, suggesting redundant functions of EXO70C1 and EXO70C2. Both EXO70C1 and EXO70C2, GFP tagged and expressed under the control of their native promoters, localized in the cytoplasm of pollen grains, pollen tubes, and also root trichoblast cells. The expression of EXO70C2-GFP complemented the aberrant growth of exo70C2 pollen tubes. The absent EXO70C2 interactions with core exocyst subunits in the yeast two-hybrid assay, cytoplasmic localization, and genetic effect suggest an unconventional EXO70 function possibly as a regulator of exocytosis outside the exocyst complex. In conclusion, EXO70C2 is a novel factor contributing to the regulation of optimal tip growth of Arabidopsis pollen tubes. ' article_processing_charge: No article_type: original author: - first_name: Lukáš full_name: Synek, Lukáš last_name: Synek - first_name: Nemanja full_name: Vukašinović, Nemanja last_name: Vukašinović - first_name: Ivan full_name: Kulich, Ivan last_name: Kulich - first_name: Michal full_name: Hála, Michal last_name: Hála - first_name: Klára full_name: Aldorfová, Klára last_name: Aldorfová - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Viktor full_name: Žárský, Viktor last_name: Žárský citation: ama: Synek L, Vukašinović N, Kulich I, et al. EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. 2017;174(1):223-240. doi:10.1104/pp.16.01282 apa: Synek, L., Vukašinović, N., Kulich, I., Hála, M., Aldorfová, K., Fendrych, M., & Žárský, V. (2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.16.01282 chicago: Synek, Lukáš, Nemanja Vukašinović, Ivan Kulich, Michal Hála, Klára Aldorfová, Matyas Fendrych, and Viktor Žárský. “EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen.” Plant Physiology. American Society of Plant Biologists, 2017. https://doi.org/10.1104/pp.16.01282. ieee: L. Synek et al., “EXO70C2 is a key regulatory factor for optimal tip growth of pollen,” Plant Physiology, vol. 174, no. 1. American Society of Plant Biologists, pp. 223–240, 2017. ista: Synek L, Vukašinović N, Kulich I, Hála M, Aldorfová K, Fendrych M, Žárský V. 2017. EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiology. 174(1), 223–240. mla: Synek, Lukáš, et al. “EXO70C2 Is a Key Regulatory Factor for Optimal Tip Growth of Pollen.” Plant Physiology, vol. 174, no. 1, American Society of Plant Biologists, 2017, pp. 223–40, doi:10.1104/pp.16.01282. short: L. Synek, N. Vukašinović, I. Kulich, M. Hála, K. Aldorfová, M. Fendrych, V. Žárský, Plant Physiology 174 (2017) 223–240. date_created: 2018-12-11T11:47:49Z date_published: 2017-05-01T00:00:00Z date_updated: 2021-01-12T08:08:35Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1104/pp.16.01282 external_id: pmid: - '28356503' file: - access_level: open_access checksum: 97155acc6aa5f0d0a78e0589a932fe02 content_type: application/pdf creator: dernst date_created: 2019-11-18T16:16:18Z date_updated: 2020-07-14T12:47:37Z file_id: '7041' file_name: 2017_PlantPhysio_Synek.pdf file_size: 2176903 relation: main_file file_date_updated: 2020-07-14T12:47:37Z has_accepted_license: '1' intvolume: ' 174' issue: '1' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 223 - 240 pmid: 1 publication: Plant Physiology publication_identifier: issn: - '00320889' publication_status: published publisher: American Society of Plant Biologists publist_id: '7058' quality_controlled: '1' scopus_import: 1 status: public title: EXO70C2 is a key regulatory factor for optimal tip growth of pollen type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 174 year: '2017' ... --- _id: '722' abstract: - lang: eng text: Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil signals. As a result, 3D root architecture is shaped by myriad environmental signals to ensure resource capture is optimised and unfavourable environments are avoided. The first signals sensed by newly germinating seeds — gravity and light — direct root growth into the soil to aid seedling establishment. Heterogeneous soil resources, such as water, nitrogen and phosphate, also act as signals that shape 3D root growth to optimise uptake. Root architecture is also modified through biotic interactions that include soil fungi and neighbouring plants. This developmental plasticity results in a ‘custom-made’ 3D root system that is best adapted to forage for resources in each soil environment that a plant colonises. author: - first_name: Emily full_name: Morris, Emily last_name: Morris - first_name: Marcus full_name: Griffiths, Marcus last_name: Griffiths - first_name: Agata full_name: Golebiowska, Agata last_name: Golebiowska - first_name: Stefan full_name: Mairhofer, Stefan last_name: Mairhofer - first_name: Jasmine full_name: Burr Hersey, Jasmine last_name: Burr Hersey - first_name: Tatsuaki full_name: Goh, Tatsuaki last_name: Goh - first_name: Daniel full_name: Von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: Von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Brian full_name: Atkinson, Brian last_name: Atkinson - first_name: Craig full_name: Sturrock, Craig last_name: Sturrock - first_name: Jonathan full_name: Lynch, Jonathan last_name: Lynch - first_name: Kris full_name: Vissenberg, Kris last_name: Vissenberg - first_name: Karl full_name: Ritz, Karl last_name: Ritz - first_name: Darren full_name: Wells, Darren last_name: Wells - first_name: Sacha full_name: Mooney, Sacha last_name: Mooney - first_name: Malcolm full_name: Bennett, Malcolm last_name: Bennett citation: ama: Morris E, Griffiths M, Golebiowska A, et al. Shaping 3D root system architecture. Current Biology. 2017;27(17):R919-R930. doi:10.1016/j.cub.2017.06.043 apa: Morris, E., Griffiths, M., Golebiowska, A., Mairhofer, S., Burr Hersey, J., Goh, T., … Bennett, M. (2017). Shaping 3D root system architecture. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2017.06.043 chicago: Morris, Emily, Marcus Griffiths, Agata Golebiowska, Stefan Mairhofer, Jasmine Burr Hersey, Tatsuaki Goh, Daniel von Wangenheim, et al. “Shaping 3D Root System Architecture.” Current Biology. Cell Press, 2017. https://doi.org/10.1016/j.cub.2017.06.043. ieee: E. Morris et al., “Shaping 3D root system architecture,” Current Biology, vol. 27, no. 17. Cell Press, pp. R919–R930, 2017. ista: Morris E, Griffiths M, Golebiowska A, Mairhofer S, Burr Hersey J, Goh T, von Wangenheim D, Atkinson B, Sturrock C, Lynch J, Vissenberg K, Ritz K, Wells D, Mooney S, Bennett M. 2017. Shaping 3D root system architecture. Current Biology. 27(17), R919–R930. mla: Morris, Emily, et al. “Shaping 3D Root System Architecture.” Current Biology, vol. 27, no. 17, Cell Press, 2017, pp. R919–30, doi:10.1016/j.cub.2017.06.043. short: E. Morris, M. Griffiths, A. Golebiowska, S. Mairhofer, J. Burr Hersey, T. Goh, D. von Wangenheim, B. Atkinson, C. Sturrock, J. Lynch, K. Vissenberg, K. Ritz, D. Wells, S. Mooney, M. Bennett, Current Biology 27 (2017) R919–R930. date_created: 2018-12-11T11:48:08Z date_published: 2017-09-11T00:00:00Z date_updated: 2021-01-12T08:12:29Z day: '11' ddc: - '581' department: - _id: JiFr doi: 10.1016/j.cub.2017.06.043 ec_funded: 1 external_id: pmid: - '28898665' file: - access_level: open_access checksum: e45588b21097b408da6276a3e5eedb2e content_type: application/pdf creator: dernst date_created: 2019-04-17T07:46:40Z date_updated: 2020-07-14T12:47:54Z file_id: '6332' file_name: 2017_CurrentBiology_Morris.pdf file_size: 1576593 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 27' issue: '17' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: R919 - R930 pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Current Biology publication_identifier: issn: - '09609822' publication_status: published publisher: Cell Press publist_id: '6956' pubrep_id: '982' quality_controlled: '1' scopus_import: 1 status: public title: Shaping 3D root system architecture tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2017' ...