--- _id: '14826' abstract: - lang: eng text: The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage. acknowledgement: 'We are grateful to Asuka Shitaku and Eri Koide for generating and sharing the Marchantia PRAF-mCitrine line and Peng-Cheng Wang for sharing the Arabidopsis raf mutant. We are grateful to our team members for discussions and helpful advice. This work was supported by funding from the Netherlands Organization for Scientific Research (NWO): VICI grant 865.14.001 and ENW-KLEIN OCENW.KLEIN.027 grants to D.W.; VENI grant VI.VENI.212.003 to A.K.; the European Research Council AdG DIRNDL (contract number 833867) to D.W.; CoG CATCH to J.S.; StG CELLONGATE (contract 803048) to M.F.; and AdG ETAP (contract 742985) to J.F.; MEXT KAKENHI grant number JP19H05675 to T.K.; JSPS KAKENHI grant number JP20H03275 to R.N.; Takeda Science Foundation to R.N.; and the Austrian Science Fund (FWF, P29988) to J.F.' article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Andre full_name: Kuhn, Andre last_name: Kuhn - first_name: Mark full_name: Roosjen, Mark last_name: Roosjen - first_name: Sumanth full_name: Mutte, Sumanth last_name: Mutte - first_name: Shiv Mani full_name: Dubey, Shiv Mani last_name: Dubey - first_name: Vanessa Polet full_name: Carrillo Carrasco, Vanessa Polet last_name: Carrillo Carrasco - first_name: Sjef full_name: Boeren, Sjef last_name: Boeren - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Jasper full_name: Koehorst, Jasper last_name: Koehorst - first_name: Takayuki full_name: Kohchi, Takayuki last_name: Kohchi - first_name: Ryuichi full_name: Nishihama, Ryuichi last_name: Nishihama - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Joris full_name: Sprakel, Joris last_name: Sprakel - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers citation: ama: Kuhn A, Roosjen M, Mutte S, et al. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. 2024;187(1):130-148.e17. doi:10.1016/j.cell.2023.11.021 apa: Kuhn, A., Roosjen, M., Mutte, S., Dubey, S. M., Carrillo Carrasco, V. P., Boeren, S., … Weijers, D. (2024). RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. Elsevier. https://doi.org/10.1016/j.cell.2023.11.021 chicago: Kuhn, Andre, Mark Roosjen, Sumanth Mutte, Shiv Mani Dubey, Vanessa Polet Carrillo Carrasco, Sjef Boeren, Aline Monzer, et al. “RAF-like Protein Kinases Mediate a Deeply Conserved, Rapid Auxin Response.” Cell. Elsevier, 2024. https://doi.org/10.1016/j.cell.2023.11.021. ieee: A. Kuhn et al., “RAF-like protein kinases mediate a deeply conserved, rapid auxin response,” Cell, vol. 187, no. 1. Elsevier, p. 130–148.e17, 2024. ista: Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. 2024. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell. 187(1), 130–148.e17. mla: Kuhn, Andre, et al. “RAF-like Protein Kinases Mediate a Deeply Conserved, Rapid Auxin Response.” Cell, vol. 187, no. 1, Elsevier, 2024, p. 130–148.e17, doi:10.1016/j.cell.2023.11.021. short: A. Kuhn, M. Roosjen, S. Mutte, S.M. Dubey, V.P. Carrillo Carrasco, S. Boeren, A. Monzer, J. Koehorst, T. Kohchi, R. Nishihama, M. Fendrych, J. Sprakel, J. Friml, D. Weijers, Cell 187 (2024) 130–148.e17. date_created: 2024-01-17T12:45:40Z date_published: 2024-01-04T00:00:00Z date_updated: 2024-01-22T13:43:40Z day: '04' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.cell.2023.11.021 ec_funded: 1 external_id: pmid: - '38128538' file: - access_level: open_access checksum: 06fd236a9ee0b46ccb05f44695bfc34b content_type: application/pdf creator: dernst date_created: 2024-01-22T13:41:41Z date_updated: 2024-01-22T13:41:41Z file_id: '14874' file_name: 2024_Cell_Kuhn.pdf file_size: 13194060 relation: main_file success: 1 file_date_updated: 2024-01-22T13:41:41Z has_accepted_license: '1' intvolume: ' 187' issue: '1' keyword: - General Biochemistry - Genetics and Molecular Biology language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '01' oa: 1 oa_version: Published Version page: 130-148.e17 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: Cell publication_identifier: eissn: - 1097-4172 issn: - 0092-8674 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: RAF-like protein kinases mediate a deeply conserved, rapid auxin response tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 187 year: '2024' ... --- _id: '14251' abstract: - lang: eng text: The phytohormone auxin and its directional transport through tissues play a fundamental role in development of higher plants. This polar auxin transport predominantly relies on PIN-FORMED (PIN) auxin exporters. Hence, PIN polarization is crucial for development, but its evolution during the rise of morphological complexity in land plants remains unclear. Here, we performed a cross-species investigation by observing the trafficking and localization of endogenous and exogenous PINs in two bryophytes, Physcomitrium patens and Marchantia polymorpha, and in the flowering plant Arabidopsis thaliana. We confirmed that the GFP fusion did not compromise the auxin export function of all examined PINs by using radioactive auxin export assay and by observing the phenotypic changes in transgenic bryophytes. Endogenous PINs polarize to filamentous apices, while exogenous Arabidopsis PINs distribute symmetrically on the membrane in both bryophytes. In Arabidopsis root epidermis, bryophytic PINs show no defined polarity. Pharmacological interference revealed a strong cytoskeleton dependence of bryophytic but not Arabidopsis PIN polarization. The divergence of PIN polarization and trafficking is also observed within the bryophyte clade and between tissues of individual species. These results collectively reveal a divergence of PIN trafficking and polarity mechanisms throughout land plant evolution and a co-evolution of PIN sequence-based and cell-based polarity mechanisms. acknowledgement: This work was supported by the ERC grant (PR1023ERC02) to H. T. and J. F., and by the ministry of science and technology (grant number 110-2636-B-005-001) to K. J. L. article_number: '100669' article_processing_charge: Yes article_type: original author: - first_name: Han full_name: Tang, Han id: 19BDF720-25A0-11EA-AC6E-928F3DDC885E last_name: Tang orcid: 0000-0001-6152-6637 - first_name: KJ full_name: Lu, KJ last_name: Lu - first_name: Y full_name: Zhang, Y last_name: Zhang - first_name: YL full_name: Cheng, YL last_name: Cheng - first_name: SL full_name: Tu, SL last_name: Tu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Tang H, Lu K, Zhang Y, Cheng Y, Tu S, Friml J. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. Plant Communications. 2024;5(1). doi:10.1016/j.xplc.2023.100669 apa: Tang, H., Lu, K., Zhang, Y., Cheng, Y., Tu, S., & Friml, J. (2024). Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. Plant Communications. Elsevier. https://doi.org/10.1016/j.xplc.2023.100669 chicago: Tang, Han, KJ Lu, Y Zhang, YL Cheng, SL Tu, and Jiří Friml. “Divergence of Trafficking and Polarization Mechanisms for PIN Auxin Transporters during Land Plant Evolution.” Plant Communications. Elsevier, 2024. https://doi.org/10.1016/j.xplc.2023.100669. ieee: H. Tang, K. Lu, Y. Zhang, Y. Cheng, S. Tu, and J. Friml, “Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution,” Plant Communications, vol. 5, no. 1. Elsevier, 2024. ista: Tang H, Lu K, Zhang Y, Cheng Y, Tu S, Friml J. 2024. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. Plant Communications. 5(1), 100669. mla: Tang, Han, et al. “Divergence of Trafficking and Polarization Mechanisms for PIN Auxin Transporters during Land Plant Evolution.” Plant Communications, vol. 5, no. 1, 100669, Elsevier, 2024, doi:10.1016/j.xplc.2023.100669. short: H. Tang, K. Lu, Y. Zhang, Y. Cheng, S. Tu, J. Friml, Plant Communications 5 (2024). date_created: 2023-09-01T11:32:02Z date_published: 2024-01-08T00:00:00Z date_updated: 2024-01-30T13:00:47Z day: '08' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.xplc.2023.100669 ec_funded: 1 external_id: pmid: - '37528584' file: - access_level: open_access checksum: edbc44c6d4a394d2bf70f92fdbb08f0a content_type: application/pdf creator: dernst date_created: 2024-01-30T12:59:57Z date_updated: 2024-01-30T12:59:57Z file_id: '14911' file_name: 2023_PlantCommunications_Tang.pdf file_size: 2825565 relation: main_file success: 1 file_date_updated: 2024-01-30T12:59:57Z has_accepted_license: '1' intvolume: ' 5' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Communications publication_identifier: issn: - 2590-3462 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2024' ... --- _id: '15033' abstract: - lang: eng text: The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM. acknowledgement: "The authors would like to gratefully acknowledge Dr Xixi Zhang for cloning the GNL1/pDONR221 construct and for useful discussions.H2020 European Research\r\nCouncil Advanced Grant ETAP742985 to Jiří Friml, Austrian Science Fund I 3630-B25 to Jiří Friml" article_processing_charge: Yes article_type: original author: - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Ivana full_name: Matijevic, Ivana id: 83c17ce3-15b2-11ec-abd3-f486545870bd last_name: Matijevic - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Adamowski M, Matijevic I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife. 2024;13. doi:10.7554/elife.68993 apa: Adamowski, M., Matijevic, I., & Friml, J. (2024). Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.68993 chicago: Adamowski, Maciek, Ivana Matijevic, and Jiří Friml. “Developmental Patterning Function of GNOM ARF-GEF Mediated from the Cell Periphery.” ELife. eLife Sciences Publications, 2024. https://doi.org/10.7554/elife.68993. ieee: M. Adamowski, I. Matijevic, and J. Friml, “Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery,” eLife, vol. 13. eLife Sciences Publications, 2024. ista: Adamowski M, Matijevic I, Friml J. 2024. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife. 13. mla: Adamowski, Maciek, et al. “Developmental Patterning Function of GNOM ARF-GEF Mediated from the Cell Periphery.” ELife, vol. 13, eLife Sciences Publications, 2024, doi:10.7554/elife.68993. short: M. Adamowski, I. Matijevic, J. Friml, ELife 13 (2024). date_created: 2024-02-27T07:10:11Z date_published: 2024-02-21T00:00:00Z date_updated: 2024-02-28T12:29:43Z day: '21' ddc: - '580' department: - _id: JiFr doi: 10.7554/elife.68993 ec_funded: 1 has_accepted_license: '1' intvolume: ' 13' keyword: - General Immunology and Microbiology - General Biochemistry - Genetics and Molecular Biology - General Medicine - General Neuroscience language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.7554/eLife.68993 month: '02' oa: 1 oa_version: Published Version project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: eLife publication_identifier: issn: - 2050-084X publication_status: epub_ahead publisher: eLife Sciences Publications quality_controlled: '1' status: public title: Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2024' ... --- _id: '12878' abstract: - lang: eng text: Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components. acknowledgement: The authors thank Professor Jianqiang Wu (Kunming Institute of Botany, Chinese Academy of Sciences) for support with phytohormone measurement. Thanks also go to Professor Pieter. B. F. Ouwerkerk (Leiden University) and Professor Jean-Benoit Morel (Plant Health Institute of Montpellier) for provision of the rice lines NB-7B-70 and NB-7B-76 and wild-type NB-61-WT, Professor Zuhua He (Chinese Academy of Sciences) for provision of the rice OsNPR1-RNAi mutant, and Professor Yinong Yang (The Pennsylvania State University) for provision of the rice line NahG. This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 32260085, 31460453, 31660501, 31860064, 31970609, 31801792 and 31960554), the Key Projects of the Applied Basic Research Plan of Yunnan Province (202301AS070082), the Major Special Program for Scientific Research, Education Department of Yunnan Province (Grant No. ZD2015005), the Start-up fund from Xishuangbanna Tropical Botanical Garden, and ‘Top Talents Program in Science and Technology’ from Yunnan Province, the SRF for ROCS, SEM (Grant No. [2013] 1792), and the Major Science and Technology Project in Yunnan Province (202102AE090042 and 202202AE090036); and the young and middle-aged academic and technical leaders reserve talent program in Yunnan Province (202205AC160076). article_processing_charge: No article_type: original author: - first_name: Lihui full_name: Jiang, Lihui last_name: Jiang - first_name: Baolin full_name: Yao, Baolin last_name: Yao - first_name: Xiaoyan full_name: Zhang, Xiaoyan last_name: Zhang - first_name: Lixia full_name: Wu, Lixia last_name: Wu - first_name: Qijing full_name: Fu, Qijing last_name: Fu - first_name: Yiting full_name: Zhao, Yiting last_name: Zhao - first_name: Yuxin full_name: Cao, Yuxin last_name: Cao - first_name: Ruomeng full_name: Zhu, Ruomeng last_name: Zhu - first_name: Xinqi full_name: Lu, Xinqi last_name: Lu - first_name: Wuying full_name: Huang, Wuying last_name: Huang - first_name: Jianping full_name: Zhao, Jianping last_name: Zhao - first_name: Kuixiu full_name: Li, Kuixiu last_name: Li - first_name: Shuanglu full_name: Zhao, Shuanglu last_name: Zhao - first_name: Li full_name: Han, Li last_name: Han - first_name: Xuan full_name: Zhou, Xuan last_name: Zhou - first_name: Chongyu full_name: Luo, Chongyu last_name: Luo - first_name: Haiyan full_name: Zhu, Haiyan last_name: Zhu - first_name: Jing full_name: Yang, Jing last_name: Yang - first_name: Huichuan full_name: Huang, Huichuan last_name: Huang - first_name: Zhengge full_name: Zhu, Zhengge last_name: Zhu - first_name: Xiahong full_name: He, Xiahong last_name: He - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Zhongkai full_name: Zhang, Zhongkai last_name: Zhang - first_name: Changning full_name: Liu, Changning last_name: Liu - first_name: Yunlong full_name: Du, Yunlong last_name: Du citation: ama: Jiang L, Yao B, Zhang X, et al. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. 2023;115(1):155-174. doi:10.1111/tpj.16218 apa: Jiang, L., Yao, B., Zhang, X., Wu, L., Fu, Q., Zhao, Y., … Du, Y. (2023). Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. Wiley. https://doi.org/10.1111/tpj.16218 chicago: Jiang, Lihui, Baolin Yao, Xiaoyan Zhang, Lixia Wu, Qijing Fu, Yiting Zhao, Yuxin Cao, et al. “Salicylic Acid Inhibits Rice Endocytic Protein Trafficking Mediated by OsPIN3t and Clathrin to Affect Root Growth.” Plant Journal. Wiley, 2023. https://doi.org/10.1111/tpj.16218. ieee: L. Jiang et al., “Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth,” Plant Journal, vol. 115, no. 1. Wiley, pp. 155–174, 2023. ista: Jiang L, Yao B, Zhang X, Wu L, Fu Q, Zhao Y, Cao Y, Zhu R, Lu X, Huang W, Zhao J, Li K, Zhao S, Han L, Zhou X, Luo C, Zhu H, Yang J, Huang H, Zhu Z, He X, Friml J, Zhang Z, Liu C, Du Y. 2023. Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth. Plant Journal. 115(1), 155–174. mla: Jiang, Lihui, et al. “Salicylic Acid Inhibits Rice Endocytic Protein Trafficking Mediated by OsPIN3t and Clathrin to Affect Root Growth.” Plant Journal, vol. 115, no. 1, Wiley, 2023, pp. 155–74, doi:10.1111/tpj.16218. short: L. Jiang, B. Yao, X. Zhang, L. Wu, Q. Fu, Y. Zhao, Y. Cao, R. Zhu, X. Lu, W. Huang, J. Zhao, K. Li, S. Zhao, L. Han, X. Zhou, C. Luo, H. Zhu, J. Yang, H. Huang, Z. Zhu, X. He, J. Friml, Z. Zhang, C. Liu, Y. Du, Plant Journal 115 (2023) 155–174. date_created: 2023-04-30T22:01:06Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-01T14:16:33Z day: '01' department: - _id: JiFr doi: 10.1111/tpj.16218 external_id: isi: - '000971861400001' pmid: - '37025008 ' intvolume: ' 115' isi: 1 issue: '1' language: - iso: eng month: '07' oa_version: None page: 155-174 pmid: 1 publication: Plant Journal publication_identifier: eissn: - 1365-313X issn: - 0960-7412 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Salicylic acid inhibits rice endocytic protein trafficking mediated by OsPIN3t and clathrin to affect root growth type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 115 year: '2023' ... --- _id: '13213' abstract: - lang: eng text: The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate the role of the Arabidopsis (Arabidopsis thaliana) multicopper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and reduced nicotinamide adeninedinucleotide phosphate (NADPH) oxidase-dependent ROS overproduction in the root epidermis–cortex and cortex–endodermis junctions. A decrease in ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between the root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth. acknowledgement: We thank Dong liu for offering iron staining technique; ZhiChang Chen and Zhenbiao Yang for discussion; Dandan Zheng for earlier attempt; Liwen Jiang and Dingquan Huang for initial tests of the TEM experiment; John C. Sedbrook for a donation of sku5 and pSKU5::SKU5-GFP seeds; Catherine Perrot-Rechenmann and Ke Zhou for the donation of sks1, sks2, and sku5 sks1 seeds; Zengyu Liu and Zhongquan Lin for live-imaging microscopy assistance. We are grateful to Can Peng, and Xixia Li for helping with sample preparation, and taking TEM images, at the Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science. article_processing_charge: No article_type: original author: - first_name: C full_name: Chen, C last_name: Chen - first_name: Y full_name: Zhang, Y last_name: Zhang - first_name: J full_name: Cai, J last_name: Cai - first_name: Y full_name: Qiu, Y last_name: Qiu - first_name: L full_name: Li, L last_name: Li - first_name: C full_name: Gao, C last_name: Gao - first_name: Y full_name: Gao, Y last_name: Gao - first_name: M full_name: Ke, M last_name: Ke - first_name: S full_name: Wu, S last_name: Wu - first_name: C full_name: Wei, C last_name: Wei - first_name: J full_name: Chen, J last_name: Chen - first_name: T full_name: Xu, T last_name: Xu - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Wang, J last_name: Wang - first_name: R full_name: Li, R last_name: Li - first_name: D full_name: Chao, D last_name: Chao - first_name: B full_name: Zhang, B last_name: Zhang - first_name: X full_name: Chen, X last_name: Chen - first_name: Z full_name: Gao, Z last_name: Gao citation: ama: Chen C, Zhang Y, Cai J, et al. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 2023;192(3):2243-2260. doi:10.1093/plphys/kiad207 apa: Chen, C., Zhang, Y., Cai, J., Qiu, Y., Li, L., Gao, C., … Gao, Z. (2023). Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1093/plphys/kiad207 chicago: Chen, C, Y Zhang, J Cai, Y Qiu, L Li, C Gao, Y Gao, et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology. American Society of Plant Biologists, 2023. https://doi.org/10.1093/plphys/kiad207. ieee: C. Chen et al., “Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots,” Plant Physiology, vol. 192, no. 3. American Society of Plant Biologists, pp. 2243–2260, 2023. ista: Chen C, Zhang Y, Cai J, Qiu Y, Li L, Gao C, Gao Y, Ke M, Wu S, Wei C, Chen J, Xu T, Friml J, Wang J, Li R, Chao D, Zhang B, Chen X, Gao Z. 2023. Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots. Plant Physiology. 192(3), 2243–2260. mla: Chen, C., et al. “Multi-Copper Oxidases SKU5 and SKS1 Coordinate Cell Wall Formation Using Apoplastic Redox-Based Reactions in Roots.” Plant Physiology, vol. 192, no. 3, American Society of Plant Biologists, 2023, pp. 2243–60, doi:10.1093/plphys/kiad207. short: C. Chen, Y. Zhang, J. Cai, Y. Qiu, L. Li, C. Gao, Y. Gao, M. Ke, S. Wu, C. Wei, J. Chen, T. Xu, J. Friml, J. Wang, R. Li, D. Chao, B. Zhang, X. Chen, Z. Gao, Plant Physiology 192 (2023) 2243–2260. date_created: 2023-07-12T07:32:58Z date_published: 2023-07-01T00:00:00Z date_updated: 2023-08-02T06:27:55Z day: '01' ddc: - '575' department: - _id: JiFr doi: 10.1093/plphys/kiad207 external_id: isi: - '000971795800001' pmid: - '37010107' file: - access_level: open_access checksum: 5492e1d18ac3eaf202633d210fa0fb75 content_type: application/pdf creator: cchlebak date_created: 2023-07-13T13:26:33Z date_updated: 2023-07-13T13:26:33Z file_id: '13220' file_name: 2023_PlantPhys_Chen.pdf file_size: 2076977 relation: main_file success: 1 file_date_updated: 2023-07-13T13:26:33Z has_accepted_license: '1' intvolume: ' 192' isi: 1 issue: '3' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2243-2260 pmid: 1 publication: Plant Physiology publication_identifier: eissn: - 1532-2548 issn: - 0032-0889 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: Multi-copper oxidases SKU5 and SKS1 coordinate cell wall formation using apoplastic redox-based reactions in roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 192 year: '2023' ... --- _id: '12543' abstract: - lang: eng text: Treating sick group members is a hallmark of collective disease defence in vertebrates and invertebrates alike. Despite substantial effects on pathogen fitness and epidemiology, it is still largely unknown how pathogens react to the selection pressure imposed by care intervention. Using social insects and pathogenic fungi, we here performed a serial passage experiment in the presence or absence of colony members, which provide social immunity by grooming off infectious spores from exposed individuals. We found specific effects on pathogen diversity, virulence and transmission. Under selection of social immunity, pathogens invested into higher spore production, but spores were less virulent. Notably, they also elicited a lower grooming response in colony members, compared with spores from the individual host selection lines. Chemical spore analysis suggested that the spores from social selection lines escaped the caregivers’ detection by containing lower levels of ergosterol, a key fungal membrane component. Experimental application of chemically pure ergosterol indeed induced sanitary grooming, supporting its role as a microbe-associated cue triggering host social immunity against fungal pathogens. By reducing this detection cue, pathogens were able to evade the otherwise very effective collective disease defences of their social hosts. acknowledged_ssus: - _id: LifeSc acknowledgement: We thank B. M. Steinwender, N. V. Meyling and J. Eilenberg for the fungal strains; J. Anaya-Rojas for statistical advice; the Social Immunity team at ISTA for ant collection and experimental help, in particular H. Leitner, and the ISTA Lab Support Facility for general laboratory support; D. Ebert, H. Schulenburg and J. Heinze for continued project discussion; and M. Sixt, R. Roemhild and the Social Immunity team for comments on the manuscript. The study was funded by the German Research Foundation (CR118/3-1) within the Framework of the Priority Program SPP 1399, and the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (No. 771402; EPIDEMICSonCHIP), both to S.C. article_processing_charge: No article_type: original author: - first_name: Miriam full_name: Stock, Miriam id: 42462816-F248-11E8-B48F-1D18A9856A87 last_name: Stock - first_name: Barbara full_name: Milutinovic, Barbara id: 2CDC32B8-F248-11E8-B48F-1D18A9856A87 last_name: Milutinovic orcid: 0000-0002-8214-4758 - first_name: Michaela full_name: Hönigsberger, Michaela id: 953894f3-25bd-11ec-8556-f70a9d38ef60 last_name: Hönigsberger - first_name: Anna V full_name: Grasse, Anna V id: 406F989C-F248-11E8-B48F-1D18A9856A87 last_name: Grasse - first_name: Florian full_name: Wiesenhofer, Florian id: 39523C54-F248-11E8-B48F-1D18A9856A87 last_name: Wiesenhofer - first_name: Niklas full_name: Kampleitner, Niklas id: 2AC57FAC-F248-11E8-B48F-1D18A9856A87 last_name: Kampleitner - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Thomas full_name: Schmitt, Thomas last_name: Schmitt - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: Stock M, Milutinovic B, Hönigsberger M, et al. Pathogen evasion of social immunity. Nature Ecology and Evolution. 2023;7:450-460. doi:10.1038/s41559-023-01981-6 apa: Stock, M., Milutinovic, B., Hönigsberger, M., Grasse, A. V., Wiesenhofer, F., Kampleitner, N., … Cremer, S. (2023). Pathogen evasion of social immunity. Nature Ecology and Evolution. Springer Nature. https://doi.org/10.1038/s41559-023-01981-6 chicago: Stock, Miriam, Barbara Milutinovic, Michaela Hönigsberger, Anna V Grasse, Florian Wiesenhofer, Niklas Kampleitner, Madhumitha Narasimhan, Thomas Schmitt, and Sylvia Cremer. “Pathogen Evasion of Social Immunity.” Nature Ecology and Evolution. Springer Nature, 2023. https://doi.org/10.1038/s41559-023-01981-6. ieee: M. Stock et al., “Pathogen evasion of social immunity,” Nature Ecology and Evolution, vol. 7. Springer Nature, pp. 450–460, 2023. ista: Stock M, Milutinovic B, Hönigsberger M, Grasse AV, Wiesenhofer F, Kampleitner N, Narasimhan M, Schmitt T, Cremer S. 2023. Pathogen evasion of social immunity. Nature Ecology and Evolution. 7, 450–460. mla: Stock, Miriam, et al. “Pathogen Evasion of Social Immunity.” Nature Ecology and Evolution, vol. 7, Springer Nature, 2023, pp. 450–60, doi:10.1038/s41559-023-01981-6. short: M. Stock, B. Milutinovic, M. Hönigsberger, A.V. Grasse, F. Wiesenhofer, N. Kampleitner, M. Narasimhan, T. Schmitt, S. Cremer, Nature Ecology and Evolution 7 (2023) 450–460. date_created: 2023-02-12T23:00:59Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-16T11:55:48Z day: '01' ddc: - '570' department: - _id: SyCr - _id: LifeSc - _id: JiFr doi: 10.1038/s41559-023-01981-6 ec_funded: 1 external_id: isi: - '000924572800001' pmid: - '36732670' file: - access_level: open_access checksum: 8244f4650a0e7aeea488d1bcd4a31702 content_type: application/pdf creator: dernst date_created: 2023-08-16T11:54:59Z date_updated: 2023-08-16T11:54:59Z file_id: '14069' file_name: 2023_NatureEcoEvo_Stock.pdf file_size: 1600499 relation: main_file success: 1 file_date_updated: 2023-08-16T11:54:59Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 450-460 pmid: 1 project: - _id: 2649B4DE-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '771402' name: Epidemics in ant societies on a chip - _id: 25DAF0B2-B435-11E9-9278-68D0E5697425 grant_number: CR-118/3-1 name: Host-Parasite Coevolution publication: Nature Ecology and Evolution publication_identifier: eissn: - 2397-334X publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on ISTA website relation: press_release url: https://ista.ac.at/en/news/how-sneaky-germs-hide-from-ants/ scopus_import: '1' status: public title: Pathogen evasion of social immunity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2023' ... --- _id: '14313' abstract: - lang: eng text: To respond to auxin, the chief orchestrator of their multicellularity, plants evolved multiple receptor systems and signal transduction cascades. Despite decades of research, however, we are still lacking a satisfactory synthesis of various auxin signaling mechanisms. The chief discrepancy and historical controversy of the field is that of rapid and slow auxin effects on plant physiology and development. How is it possible that ions begin to trickle across the plasma membrane as soon as auxin enters the cell, even though the best-characterized transcriptional auxin pathway can take effect only after tens of minutes? Recently, unexpected progress has been made in understanding this and other unknowns of auxin signaling. We provide a perspective on these exciting developments and concepts whose general applicability might have ramifications beyond auxin signaling. acknowledgement: The opening quote is not intended to reflect any political views of the authors. The authors by no means endorse the rhetoric of Donald Rumsfeld or the 2003 invasion of Iraq by the United States. Nevertheless, Rumsfeld's quote led to both public and academic debates on the concept of known and unknown unknowns, which can be applied to the recent unexpected developments in the auxin signaling field. We thank Linlin Qi and Huihuang Chen for their suggestions on figure presentation and inspiring discussions of TIR1/AFB signaling. Finally, we thank Aroosa Hussain for discussion of Greek mythology. article_number: '102443' article_processing_charge: No article_type: review author: - first_name: Lukas full_name: Fiedler, Lukas id: 7c417475-8972-11ed-ae7b-8b674ca26986 last_name: Fiedler - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Fiedler L, Friml J. Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. 2023;75(10). doi:10.1016/j.pbi.2023.102443' apa: 'Fiedler, L., & Friml, J. (2023). Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2023.102443' chicago: 'Fiedler, Lukas, and Jiří Friml. “Rapid Auxin Signaling: Unknowns Old and New.” Current Opinion in Plant Biology. Elsevier, 2023. https://doi.org/10.1016/j.pbi.2023.102443.' ieee: 'L. Fiedler and J. Friml, “Rapid auxin signaling: Unknowns old and new,” Current Opinion in Plant Biology, vol. 75, no. 10. Elsevier, 2023.' ista: 'Fiedler L, Friml J. 2023. Rapid auxin signaling: Unknowns old and new. Current Opinion in Plant Biology. 75(10), 102443.' mla: 'Fiedler, Lukas, and Jiří Friml. “Rapid Auxin Signaling: Unknowns Old and New.” Current Opinion in Plant Biology, vol. 75, no. 10, 102443, Elsevier, 2023, doi:10.1016/j.pbi.2023.102443.' short: L. Fiedler, J. Friml, Current Opinion in Plant Biology 75 (2023). date_created: 2023-09-10T22:01:11Z date_published: 2023-10-01T00:00:00Z date_updated: 2023-11-07T08:17:13Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.pbi.2023.102443 external_id: pmid: - '37666097' file: - access_level: open_access checksum: 1c476c3414d2dfb0c85db0cb6cfd8a28 content_type: application/pdf creator: amally date_created: 2023-11-02T17:03:20Z date_updated: 2023-11-02T17:03:20Z file_id: '14482' file_name: Fiedler CurrOpinOlantBiol 2023_revised.pdf file_size: 737872 relation: main_file success: 1 file_date_updated: 2023-11-02T17:03:20Z has_accepted_license: '1' intvolume: ' 75' issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Submitted Version pmid: 1 publication: Current Opinion in Plant Biology publication_identifier: issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Rapid auxin signaling: Unknowns old and new' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 75 year: '2023' ... --- _id: '14591' abstract: - lang: eng text: Clathrin-mediated endocytosis (CME) is vital for the regulation of plant growth and development by controlling plasma membrane protein composition and cargo uptake. CME relies on the precise recruitment of regulators for vesicle maturation and release. Homologues of components of mammalian vesicle scission are strong candidates to be part of the scissin machinery in plants, but the precise roles of these proteins in this process is not fully understood. Here, we characterised the roles of Plant Dynamin-Related Proteins 2 (DRP2s) and SH3-domain containing protein 2 (SH3P2), the plant homologue to Dynamins’ recruiters, like Endophilin and Amphiphysin, in the CME by combining high-resolution imaging of endocytic events in vivo and characterisation of the purified proteins in vitro. Although DRP2s and SH3P2 arrive similarly late during CME and physically interact, genetic analysis of the Dsh3p1,2,3 triple-mutant and complementation assays with non-SH3P2-interacting DRP2 variants suggests that SH3P2 does not directly recruit DRP2s to the site of endocytosis. These observations imply that despite the presence of many well-conserved endocytic components, plants have acquired a distinct mechanism for CME. One Sentence Summary In contrast to predictions based on mammalian systems, plant Dynamin-related proteins 2 are recruited to the site of Clathrin-mediated endocytosis independently of BAR-SH3 proteins. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio article_processing_charge: No author: - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Marie-Kristin full_name: Nagel, Marie-Kristin last_name: Nagel - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Annamaria full_name: Hlavata, Annamaria id: 36062FEC-F248-11E8-B48F-1D18A9856A87 last_name: Hlavata - first_name: Erika full_name: Isono, Erika last_name: Isono - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Gnyliukh N, Johnson AJ, Nagel M-K, et al. Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv. doi:10.1101/2023.10.09.561523 apa: Gnyliukh, N., Johnson, A. J., Nagel, M.-K., Monzer, A., Hlavata, A., Isono, E., … Friml, J. (n.d.). Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv. https://doi.org/10.1101/2023.10.09.561523 chicago: Gnyliukh, Nataliia, Alexander J Johnson, Marie-Kristin Nagel, Aline Monzer, Annamaria Hlavata, Erika Isono, Martin Loose, and Jiří Friml. “Role of Dynamin-Related Proteins 2 and SH3P2 in Clathrin-Mediated Endocytosis in Plants.” BioRxiv, n.d. https://doi.org/10.1101/2023.10.09.561523. ieee: N. Gnyliukh et al., “Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants,” bioRxiv. . ista: Gnyliukh N, Johnson AJ, Nagel M-K, Monzer A, Hlavata A, Isono E, Loose M, Friml J. Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants. bioRxiv, 10.1101/2023.10.09.561523. mla: Gnyliukh, Nataliia, et al. “Role of Dynamin-Related Proteins 2 and SH3P2 in Clathrin-Mediated Endocytosis in Plants.” BioRxiv, doi:10.1101/2023.10.09.561523. short: N. Gnyliukh, A.J. Johnson, M.-K. Nagel, A. Monzer, A. Hlavata, E. Isono, M. Loose, J. Friml, BioRxiv (n.d.). date_created: 2023-11-22T10:17:49Z date_published: 2023-10-10T00:00:00Z date_updated: 2023-12-01T13:51:06Z day: '10' department: - _id: JiFr - _id: MaLo - _id: CaBe doi: 10.1101/2023.10.09.561523 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/2023.10.09.561523v2 month: '10' oa: 1 oa_version: Preprint project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: bioRxiv publication_status: submitted related_material: record: - id: '14510' relation: dissertation_contains status: public status: public title: Role of dynamin-related proteins 2 and SH3P2 in clathrin-mediated endocytosis in plants type: preprint user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '14339' abstract: - lang: eng text: Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root—PINs and phosphatases acting upon them—are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux. acknowledgement: We thank D. Weijers, C. Schwechheimer and R. Offringa for generous sharing of published and unpublished materials and P. Masson for advice on the use of the ARL2 promoter. We are grateful to M. Del Bianco and O. Leyser for critical reading of the manuscript. This work was supported by the BBSRC (grants BB/N010124/1 and BB/R000859/1 to S.K.), the Gatsby Charitable Foundation and the Leverhulme Trust (RPG-2018-137 to S.K.). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: S full_name: Roychoudhry, S last_name: Roychoudhry - first_name: K full_name: Sageman-Furnas, K last_name: Sageman-Furnas - first_name: C full_name: Wolverton, C last_name: Wolverton - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Gergely full_name: Molnar, Gergely id: 34F1AF46-F248-11E8-B48F-1D18A9856A87 last_name: Molnar - first_name: M full_name: De Angelis, M last_name: De Angelis - first_name: HL full_name: Goodman, HL last_name: Goodman - first_name: N full_name: Capstaff, N last_name: Capstaff - first_name: Lloyd full_name: JPB, Lloyd last_name: JPB - first_name: J full_name: Mullen, J last_name: Mullen - first_name: R full_name: Hangarter, R last_name: Hangarter - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: S full_name: Kepinski, S last_name: Kepinski citation: ama: Roychoudhry S, Sageman-Furnas K, Wolverton C, et al. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. Nature Plants. 2023;9:1500-1513. doi:10.1038/s41477-023-01478-x apa: Roychoudhry, S., Sageman-Furnas, K., Wolverton, C., Grones, P., Tan, S., Molnar, G., … Kepinski, S. (2023). Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. Nature Plants. Springer Nature. https://doi.org/10.1038/s41477-023-01478-x chicago: Roychoudhry, S, K Sageman-Furnas, C Wolverton, Peter Grones, Shutang Tan, Gergely Molnar, M De Angelis, et al. “Antigravitropic PIN Polarization Maintains Non-Vertical Growth in Lateral Roots.” Nature Plants. Springer Nature, 2023. https://doi.org/10.1038/s41477-023-01478-x. ieee: S. Roychoudhry et al., “Antigravitropic PIN polarization maintains non-vertical growth in lateral roots,” Nature Plants, vol. 9. Springer Nature, pp. 1500–1513, 2023. ista: Roychoudhry S, Sageman-Furnas K, Wolverton C, Grones P, Tan S, Molnar G, De Angelis M, Goodman H, Capstaff N, JPB L, Mullen J, Hangarter R, Friml J, Kepinski S. 2023. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. Nature Plants. 9, 1500–1513. mla: Roychoudhry, S., et al. “Antigravitropic PIN Polarization Maintains Non-Vertical Growth in Lateral Roots.” Nature Plants, vol. 9, Springer Nature, 2023, pp. 1500–13, doi:10.1038/s41477-023-01478-x. short: S. Roychoudhry, K. Sageman-Furnas, C. Wolverton, P. Grones, S. Tan, G. Molnar, M. De Angelis, H. Goodman, N. Capstaff, L. JPB, J. Mullen, R. Hangarter, J. Friml, S. Kepinski, Nature Plants 9 (2023) 1500–1513. date_created: 2023-09-15T09:56:01Z date_published: 2023-09-01T00:00:00Z date_updated: 2023-12-13T12:23:49Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41477-023-01478-x external_id: isi: - '001069238800014' pmid: - '37666965' file: - access_level: open_access checksum: 3d6d5d5abb937c14a5f6f0afba3b8624 content_type: application/pdf creator: dernst date_created: 2023-09-20T10:51:31Z date_updated: 2023-09-20T10:51:31Z file_id: '14351' file_name: 2023_NaturePlants_Roychoudhry.pdf file_size: 9647103 relation: main_file success: 1 file_date_updated: 2023-09-20T10:51:31Z has_accepted_license: '1' intvolume: ' 9' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1500-1513 pmid: 1 publication: Nature Plants publication_identifier: issn: - 2055-0278 publication_status: published publisher: Springer Nature quality_controlled: '1' status: public title: Antigravitropic PIN polarization maintains non-vertical growth in lateral roots tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2023' ... --- _id: '14447' abstract: - lang: eng text: "Auxin belongs among major phytohormones and governs multiple aspects of plant growth and development. The establishment of auxin concentration gradients, determines, among other processes, plant organ positioning and growth responses to environmental stimuli.\r\nHerein we report the synthesis of new NBD- or DNS-labelled IAA derivatives and the elucidation of their biological activity, fluorescence properties and subcellular accumulation patterns in planta. These novel compounds did not show auxin-like activity, but instead antagonized physiological auxin effects. The DNS-labelled derivatives FL5 and FL6 showed strong anti-auxin activity in roots and hypocotyls, which also occurred at the level of gene transcription as confirmed by quantitative PCR analysis. The auxin antagonism of our derivatives was further demonstrated in vitro using an SPR-based binding assay. The NBD-labelled compound FL4 with the best fluorescence properties proved to be unsuitable to study auxin accumulation patterns in planta. On the other hand, the strongest anti-auxin activity possessing compounds FL5 and FL6 could be useful to study binding mechanisms to auxin receptors and for manipulations of auxin-regulated processes." acknowledgement: The authors would like to thank Karolína Kubiasová and Iñigo Saiz-Fernández for valuable scientific discussions. Open access publishing supported by the National Technical Library in Prague. This work was supported by the Palacký University Olomouc Young Researcher Grant Competition (JG_2020_002), by the Internal Grant Agency of Palacký University Olomouc (IGA_PrF_2023_016, IGA_PrF_2023_031), by the Ministry of Education, Youth and Sports of the Czech Republic through the European Regional Development Fund-Project Plants as a tool for sustainable global development (CZ.02.1.01/0.0/0.0/16_019/0000827) and the project Support of mobility at Palacký University Olomouc II. (CZ.02.2.69/0.0/0.0/18_053/0016919). The Biacore T200 SPR instrument was provided by the WISB Research Technology Facility within the School of Life Sciences, University of Warwick. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Kristýna full_name: Bieleszová, Kristýna last_name: Bieleszová - first_name: Pavel full_name: Hladík, Pavel last_name: Hladík - first_name: Martin full_name: Kubala, Martin last_name: Kubala - first_name: Richard full_name: Napier, Richard last_name: Napier - first_name: Federica full_name: Brunoni, Federica last_name: Brunoni - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Lukas full_name: Fiedler, Lukas id: 7c417475-8972-11ed-ae7b-8b674ca26986 last_name: Fiedler - first_name: Ivan full_name: Kulich, Ivan id: 57a1567c-8314-11eb-9063-c9ddc3451a54 last_name: Kulich - first_name: Miroslav full_name: Strnad, Miroslav last_name: Strnad - first_name: Karel full_name: Doležal, Karel last_name: Doležal - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Asta full_name: Žukauskaitė, Asta last_name: Žukauskaitė citation: ama: 'Bieleszová K, Hladík P, Kubala M, et al. New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana. Plant Growth Regulation. 2023. doi:10.1007/s10725-023-01083-0' apa: 'Bieleszová, K., Hladík, P., Kubala, M., Napier, R., Brunoni, F., Gelová, Z., … Žukauskaitė, A. (2023). New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana. Plant Growth Regulation. Springer Nature. https://doi.org/10.1007/s10725-023-01083-0' chicago: 'Bieleszová, Kristýna, Pavel Hladík, Martin Kubala, Richard Napier, Federica Brunoni, Zuzana Gelová, Lukas Fiedler, et al. “New Fluorescent Auxin Derivatives: Anti-Auxin Activity and Accumulation Patterns in Arabidopsis Thaliana.” Plant Growth Regulation. Springer Nature, 2023. https://doi.org/10.1007/s10725-023-01083-0.' ieee: 'K. Bieleszová et al., “New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana,” Plant Growth Regulation. Springer Nature, 2023.' ista: 'Bieleszová K, Hladík P, Kubala M, Napier R, Brunoni F, Gelová Z, Fiedler L, Kulich I, Strnad M, Doležal K, Novák O, Friml J, Žukauskaitė A. 2023. New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana. Plant Growth Regulation.' mla: 'Bieleszová, Kristýna, et al. “New Fluorescent Auxin Derivatives: Anti-Auxin Activity and Accumulation Patterns in Arabidopsis Thaliana.” Plant Growth Regulation, Springer Nature, 2023, doi:10.1007/s10725-023-01083-0.' short: K. Bieleszová, P. Hladík, M. Kubala, R. Napier, F. Brunoni, Z. Gelová, L. Fiedler, I. Kulich, M. Strnad, K. Doležal, O. Novák, J. Friml, A. Žukauskaitė, Plant Growth Regulation (2023). date_created: 2023-10-22T22:01:15Z date_published: 2023-10-13T00:00:00Z date_updated: 2023-12-13T13:08:25Z day: '13' department: - _id: JiFr doi: 10.1007/s10725-023-01083-0 external_id: isi: - '001084334300001' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1007/s10725-023-01083-0 month: '10' oa: 1 oa_version: Published Version publication: Plant Growth Regulation publication_identifier: eissn: - 1573-5087 issn: - 0167-6903 publication_status: epub_ahead publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: 'New fluorescent auxin derivatives: anti-auxin activity and accumulation patterns in Arabidopsis thaliana' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14709' abstract: - lang: eng text: Amid the delays due to the global pandemic, in early October 2022, the auxin community gathered in the idyllic peninsula of Cavtat, Croatia. More than 170 scientists from across the world converged to discuss the latest advancements in fundamental and applied research in the field. The topics, from signalling and transport to plant architecture and response to the environment, show how auxin research must bridge from the molecular realm to macroscopic developmental responses. This is mirrored in this collection of reviews, contributed by participants of the Auxin 2022 meeting. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Marta full_name: Del Bianco, Marta last_name: Del Bianco - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Lucia full_name: Strader, Lucia last_name: Strader - first_name: Stefan full_name: Kepinski, Stefan last_name: Kepinski citation: ama: 'Del Bianco M, Friml J, Strader L, Kepinski S. Auxin research: Creating tools for a greener future. Journal of Experimental Botany. 2023;74(22):6889-6892. doi:10.1093/jxb/erad420' apa: 'Del Bianco, M., Friml, J., Strader, L., & Kepinski, S. (2023). Auxin research: Creating tools for a greener future. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/erad420' chicago: 'Del Bianco, Marta, Jiří Friml, Lucia Strader, and Stefan Kepinski. “Auxin Research: Creating Tools for a Greener Future.” Journal of Experimental Botany. Oxford University Press, 2023. https://doi.org/10.1093/jxb/erad420.' ieee: 'M. Del Bianco, J. Friml, L. Strader, and S. Kepinski, “Auxin research: Creating tools for a greener future,” Journal of Experimental Botany, vol. 74, no. 22. Oxford University Press, pp. 6889–6892, 2023.' ista: 'Del Bianco M, Friml J, Strader L, Kepinski S. 2023. Auxin research: Creating tools for a greener future. Journal of Experimental Botany. 74(22), 6889–6892.' mla: 'Del Bianco, Marta, et al. “Auxin Research: Creating Tools for a Greener Future.” Journal of Experimental Botany, vol. 74, no. 22, Oxford University Press, 2023, pp. 6889–92, doi:10.1093/jxb/erad420.' short: M. Del Bianco, J. Friml, L. Strader, S. Kepinski, Journal of Experimental Botany 74 (2023) 6889–6892. date_created: 2023-12-24T23:00:53Z date_published: 2023-12-01T00:00:00Z date_updated: 2024-01-02T09:29:24Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/jxb/erad420 external_id: pmid: - '38038239' file: - access_level: open_access checksum: f66fb960fd791dea53fd0e087f2fbbe8 content_type: application/pdf creator: dernst date_created: 2024-01-02T09:23:57Z date_updated: 2024-01-02T09:23:57Z file_id: '14724' file_name: 2023_JourExperimentalBotany_DelBianco.pdf file_size: 425194 relation: main_file success: 1 file_date_updated: 2024-01-02T09:23:57Z has_accepted_license: '1' intvolume: ' 74' issue: '22' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 6889-6892 pmid: 1 publication: Journal of Experimental Botany publication_identifier: eissn: - 1460-2431 issn: - 0022-0957 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: 'Auxin research: Creating tools for a greener future' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2023' ... --- _id: '14776' abstract: - lang: eng text: Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident. acknowledgement: "We thank C.U.T. Hellen for critically reading the manuscript. The MALDI MS facility and CLSM became available to us in the framework of Moscow State University Development Programs PNG 5.13 and PNR 5.13.\r\nThis work was funded by the Russian Science Foundation, grant numbers 19-14-00010 and 22-14-00071." article_number: '16527' article_processing_charge: Yes article_type: original author: - first_name: Anastasiia full_name: Teplova, Anastasiia id: e3736151-106c-11ec-b916-c2558e2762c6 last_name: Teplova - first_name: Artemii A. full_name: Pigidanov, Artemii A. last_name: Pigidanov - first_name: Marina V. full_name: Serebryakova, Marina V. last_name: Serebryakova - first_name: Sergei A. full_name: Golyshev, Sergei A. last_name: Golyshev - first_name: Raisa A. full_name: Galiullina, Raisa A. last_name: Galiullina - first_name: Nina V. full_name: Chichkova, Nina V. last_name: Chichkova - first_name: Andrey B. full_name: Vartapetian, Andrey B. last_name: Vartapetian citation: ama: Teplova A, Pigidanov AA, Serebryakova MV, et al. Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. 2023;24(22). doi:10.3390/ijms242216527 apa: Teplova, A., Pigidanov, A. A., Serebryakova, M. V., Golyshev, S. A., Galiullina, R. A., Chichkova, N. V., & Vartapetian, A. B. (2023). Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms242216527 chicago: Teplova, Anastasiia, Artemii A. Pigidanov, Marina V. Serebryakova, Sergei A. Golyshev, Raisa A. Galiullina, Nina V. Chichkova, and Andrey B. Vartapetian. “Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3.” International Journal of Molecular Sciences. MDPI, 2023. https://doi.org/10.3390/ijms242216527. ieee: A. Teplova et al., “Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3,” International Journal of Molecular Sciences, vol. 24, no. 22. MDPI, 2023. ista: Teplova A, Pigidanov AA, Serebryakova MV, Golyshev SA, Galiullina RA, Chichkova NV, Vartapetian AB. 2023. Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. 24(22), 16527. mla: Teplova, Anastasiia, et al. “Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3.” International Journal of Molecular Sciences, vol. 24, no. 22, 16527, MDPI, 2023, doi:10.3390/ijms242216527. short: A. Teplova, A.A. Pigidanov, M.V. Serebryakova, S.A. Golyshev, R.A. Galiullina, N.V. Chichkova, A.B. Vartapetian, International Journal of Molecular Sciences 24 (2023). date_created: 2024-01-10T09:24:35Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-10T13:41:10Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.3390/ijms242216527 external_id: isi: - '001113792600001' pmid: - '38003717' file: - access_level: open_access checksum: 4df7d206ba022b7f54eff1f0aec1659a content_type: application/pdf creator: dernst date_created: 2024-01-10T13:39:42Z date_updated: 2024-01-10T13:39:42Z file_id: '14791' file_name: 2023_IJMS_Teplova.pdf file_size: 2637784 relation: main_file success: 1 file_date_updated: 2024-01-10T13:39:42Z has_accepted_license: '1' intvolume: ' 24' isi: 1 issue: '22' keyword: - Inorganic Chemistry - Organic Chemistry - Physical and Theoretical Chemistry - Computer Science Applications - Spectroscopy - Molecular Biology - General Medicine - Catalysis language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: International Journal of Molecular Sciences publication_identifier: issn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2023' ... --- _id: '13212' abstract: - lang: eng text: Auxin is the major plant hormone regulating growth and development (Friml, 2022). Forward genetic approaches in the model plant Arabidopsis thaliana have identified major components of auxin signalling and established the canonical mechanism mediating transcriptional and thus developmental reprogramming. In this textbook view, TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFBs) are auxin receptors, which act as F-box subunits determining the substrate specificity of the Skp1-Cullin1-F box protein (SCF) type E3 ubiquitin ligase complex. Auxin acts as a “molecular glue” increasing the affinity between TIR1/AFBs and the Aux/IAA repressors. Subsequently, Aux/IAAs are ubiquitinated and degraded, thus releasing auxin transcription factors from their repression making them free to mediate transcription of auxin response genes (Yu et al., 2022). Nonetheless, accumulating evidence suggests existence of rapid, non-transcriptional responses downstream of TIR1/AFBs such as auxin-induced cytosolic calcium (Ca2+) transients, plasma membrane depolarization and apoplast alkalinisation, all converging on the process of root growth inhibition and root gravitropism (Li et al., 2022). Particularly, these rapid responses are mostly contributed by predominantly cytosolic AFB1, while the long-term growth responses are mediated by mainly nuclear TIR1 and AFB2-AFB5 (Li et al., 2021; Prigge et al., 2020; Serre et al., 2021). How AFB1 conducts auxin-triggered rapid responses and how it is different from TIR1 and AFB2-AFB5 remains elusive. Here, we compare the roles of TIR1 and AFB1 in transcriptional and rapid responses by modulating their subcellular localization in Arabidopsis and by testing their ability to mediate transcriptional responses when part of the minimal auxin circuit reconstituted in yeast. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: We thank all the authors for sharing the published materials. This research was supported by the Lab Support Facility and the Imaging and Optics Facility of ISTA. We thank Lukáš Fiedler (ISTA) for critical reading of the manuscript. This project was funded by the European Research Council Advanced Grant (ETAP-742985). article_processing_charge: Yes (via OA deal) article_type: letter_note author: - first_name: Huihuang full_name: Chen, Huihuang id: 83c96512-15b2-11ec-abd3-b7eede36184f last_name: Chen - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Minxia full_name: Zou, Minxia id: 5c243f41-03f3-11ec-841c-96faf48a7ef9 last_name: Zou - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Chen H, Li L, Zou M, Qi L, Friml J. Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. 2023;16(7):1117-1119. doi:10.1016/j.molp.2023.06.007 apa: Chen, H., Li, L., Zou, M., Qi, L., & Friml, J. (2023). Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. Elsevier . https://doi.org/10.1016/j.molp.2023.06.007 chicago: Chen, Huihuang, Lanxin Li, Minxia Zou, Linlin Qi, and Jiří Friml. “Distinct Functions of TIR1 and AFB1 Receptors in Auxin Signalling.” Molecular Plant. Elsevier , 2023. https://doi.org/10.1016/j.molp.2023.06.007. ieee: H. Chen, L. Li, M. Zou, L. Qi, and J. Friml, “Distinct functions of TIR1 and AFB1 receptors in auxin signalling.,” Molecular Plant, vol. 16, no. 7. Elsevier , pp. 1117–1119, 2023. ista: Chen H, Li L, Zou M, Qi L, Friml J. 2023. Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. 16(7), 1117–1119. mla: Chen, Huihuang, et al. “Distinct Functions of TIR1 and AFB1 Receptors in Auxin Signalling.” Molecular Plant, vol. 16, no. 7, Elsevier , 2023, pp. 1117–19, doi:10.1016/j.molp.2023.06.007. short: H. Chen, L. Li, M. Zou, L. Qi, J. Friml, Molecular Plant 16 (2023) 1117–1119. date_created: 2023-07-12T07:32:46Z date_published: 2023-07-01T00:00:00Z date_updated: 2024-01-29T10:38:57Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.molp.2023.06.007 ec_funded: 1 external_id: isi: - '001044410900001' pmid: - '37393433' file: - access_level: open_access checksum: 6012b7e4a2f680ee6c1f84001e2b945f content_type: application/pdf creator: dernst date_created: 2024-01-29T10:37:05Z date_updated: 2024-01-29T10:37:05Z file_id: '14894' file_name: 2023_MolecularPlant_Chen.pdf file_size: 1000871 relation: main_file success: 1 file_date_updated: 2024-01-29T10:37:05Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '07' oa: 1 oa_version: Published Version page: 1117-1119 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Molecular Plant publication_identifier: eissn: - 1674-2052 issn: - 1752-9867 publication_status: published publisher: 'Elsevier ' quality_controlled: '1' scopus_import: '1' status: public title: Distinct functions of TIR1 and AFB1 receptors in auxin signalling. tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2023' ... --- _id: '13266' abstract: - lang: eng text: The 3′,5′-cyclic adenosine monophosphate (cAMP) is a versatile second messenger in many mammalian signaling pathways. However, its role in plants remains not well-recognized. Recent discovery of adenylate cyclase (AC) activity for transport inhibitor response 1/auxin-signaling F-box proteins (TIR1/AFB) auxin receptors and the demonstration of its importance for canonical auxin signaling put plant cAMP research back into spotlight. This insight briefly summarizes the well-established cAMP signaling pathways in mammalian cells and describes the turbulent and controversial history of plant cAMP research highlighting the major progress and the unresolved points. We also briefly review the current paradigm of auxin signaling to provide a background for the discussion on the AC activity of TIR1/AFB auxin receptors and its potential role in transcriptional auxin signaling as well as impact of these discoveries on plant cAMP research in general. acknowledgement: 'We gratefully acknowledge our brave colleagues, whose excellent efforts kept the plant cAMP research going in the last two decades. The authors were financially supported by the Austrian Science Fund (FWF): I 6123 and P 37051-B.' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Qi L, Friml J. Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. 2023;240(2):489-495. doi:10.1111/nph.19123 apa: Qi, L., & Friml, J. (2023). Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. Wiley. https://doi.org/10.1111/nph.19123 chicago: Qi, Linlin, and Jiří Friml. “Tale of CAMP as a Second Messenger in Auxin Signaling and Beyond.” New Phytologist. Wiley, 2023. https://doi.org/10.1111/nph.19123. ieee: L. Qi and J. Friml, “Tale of cAMP as a second messenger in auxin signaling and beyond,” New Phytologist, vol. 240, no. 2. Wiley, pp. 489–495, 2023. ista: Qi L, Friml J. 2023. Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. 240(2), 489–495. mla: Qi, Linlin, and Jiří Friml. “Tale of CAMP as a Second Messenger in Auxin Signaling and Beyond.” New Phytologist, vol. 240, no. 2, Wiley, 2023, pp. 489–95, doi:10.1111/nph.19123. short: L. Qi, J. Friml, New Phytologist 240 (2023) 489–495. date_created: 2023-07-23T22:01:13Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-29T11:21:55Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.19123 external_id: isi: - '001026321500001' pmid: - '37434303' file: - access_level: open_access checksum: 6d9bbd45b8e7bb3ceee2586d447bacb2 content_type: application/pdf creator: dernst date_created: 2024-01-29T11:21:43Z date_updated: 2024-01-29T11:21:43Z file_id: '14898' file_name: 2023_NewPhytologist_Qi.pdf file_size: 974464 relation: main_file success: 1 file_date_updated: 2024-01-29T11:21:43Z has_accepted_license: '1' intvolume: ' 240' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 489-495 pmid: 1 project: - _id: bd76d395-d553-11ed-ba76-f678c14f9033 grant_number: I06123 name: Peptide receptor complexes for auxin canalization and regeneration in Arabidopsis - _id: 7bcece63-9f16-11ee-852c-ae94e099eeb6 grant_number: P37051 name: Guanylate cyclase activity of TIR1/AFBs auxin receptors publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Tale of cAMP as a second messenger in auxin signaling and beyond tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 240 year: '2023' ... --- _id: '13209' abstract: - lang: eng text: The phytohormone auxin plays central roles in many growth and developmental processes in plants. Development of chemical tools targeting the auxin pathway is useful for both plant biology and agriculture. Here we reveal that naproxen, a synthetic compound with anti-inflammatory activity in humans, acts as an auxin transport inhibitor targeting PIN-FORMED (PIN) transporters in plants. Physiological experiments indicate that exogenous naproxen treatment affects pleiotropic auxin-regulated developmental processes. Additional cellular and biochemical evidence indicates that naproxen suppresses auxin transport, specifically PIN-mediated auxin efflux. Moreover, biochemical and structural analyses confirm that naproxen binds directly to PIN1 protein via the same binding cavity as the indole-3-acetic acid substrate. Thus, by combining cellular, biochemical, and structural approaches, this study clearly establishes that naproxen is a PIN inhibitor and elucidates the underlying mechanisms. Further use of this compound may advance our understanding of the molecular mechanisms of PIN-mediated auxin transport and expand our toolkit in auxin biology and agriculture. acknowledgement: "This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB37020103 to Linfeng Sun); research funds from the Center for Advanced Interdisciplinary Science\r\nand Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China (QYPY20220012 to S.T.); start-up funding from the University of Science and Technology of China and the\r\nChinese Academy of Sciences (GG9100007007, KY9100000026,KY9100000051, and KJ2070000079 to S.T.); the National Natural Science Foundation of China (31900885 to X.L. and 31870732 to Linfeng Sun); the Natural Science Foundation of Anhui Province (2008085MC90 to X.L. and 2008085J15 to Linfeng Sun); the Fundamental Research Funds for the Central Universities (WK9100000021 to S.T. and WK9100000031 to Linfeng Sun); and the USTC Research Funds of the Double First-Class Initiative (YD9100002016 to S.T. and YD9100002004 to Linfeng Sun). Linfeng Sun is supported by an Outstanding Young Scholar Award from the Qiu Shi Science and Technologies Foundation and a Young Scholar Award from the Cyrus Tang Foundation.We thank Dr. Yang Zhao for sharing published materials (Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences) and the Cryo-EM Center of the University of Science and Technology of China for the EM facility support. We are grateful to Y. Gao and all other staff members for their technical support on cryo-EM data collection. " article_number: '100632' article_processing_charge: Yes article_type: original author: - first_name: Jing full_name: Xia, Jing last_name: Xia - first_name: Mengjuan full_name: Kong, Mengjuan last_name: Kong - first_name: Zhisen full_name: Yang, Zhisen last_name: Yang - first_name: Lianghanxiao full_name: Sun, Lianghanxiao last_name: Sun - first_name: Yakun full_name: Peng, Yakun last_name: Peng - first_name: Yanbo full_name: Mao, Yanbo last_name: Mao - first_name: Hong full_name: Wei, Hong last_name: Wei - first_name: Wei full_name: Ying, Wei last_name: Ying - first_name: Yongxiao full_name: Gao, Yongxiao last_name: Gao - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jianping full_name: Weng, Jianping last_name: Weng - first_name: Xin full_name: Liu, Xin last_name: Liu - first_name: Linfeng full_name: Sun, Linfeng last_name: Sun - first_name: Shutang full_name: Tan, Shutang last_name: Tan citation: ama: Xia J, Kong M, Yang Z, et al. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. 2023;4(6). doi:10.1016/j.xplc.2023.100632 apa: Xia, J., Kong, M., Yang, Z., Sun, L., Peng, Y., Mao, Y., … Tan, S. (2023). Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. Elsevier . https://doi.org/10.1016/j.xplc.2023.100632 chicago: Xia, Jing, Mengjuan Kong, Zhisen Yang, Lianghanxiao Sun, Yakun Peng, Yanbo Mao, Hong Wei, et al. “Chemical Inhibition of Arabidopsis PIN-FORMED Auxin Transporters by the Anti-Inflammatory Drug Naproxen.” Plant Communications. Elsevier , 2023. https://doi.org/10.1016/j.xplc.2023.100632. ieee: J. Xia et al., “Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen,” Plant Communications, vol. 4, no. 6. Elsevier , 2023. ista: Xia J, Kong M, Yang Z, Sun L, Peng Y, Mao Y, Wei H, Ying W, Gao Y, Friml J, Weng J, Liu X, Sun L, Tan S. 2023. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. 4(6), 100632. mla: Xia, Jing, et al. “Chemical Inhibition of Arabidopsis PIN-FORMED Auxin Transporters by the Anti-Inflammatory Drug Naproxen.” Plant Communications, vol. 4, no. 6, 100632, Elsevier , 2023, doi:10.1016/j.xplc.2023.100632. short: J. Xia, M. Kong, Z. Yang, L. Sun, Y. Peng, Y. Mao, H. Wei, W. Ying, Y. Gao, J. Friml, J. Weng, X. Liu, L. Sun, S. Tan, Plant Communications 4 (2023). date_created: 2023-07-12T07:32:00Z date_published: 2023-11-13T00:00:00Z date_updated: 2024-01-30T10:55:34Z day: '13' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.xplc.2023.100632 external_id: isi: - '001113003000001' pmid: - '37254481' file: - access_level: open_access checksum: f8ef92af6096834f91ce38587fb1db9f content_type: application/pdf creator: dernst date_created: 2024-01-30T10:54:40Z date_updated: 2024-01-30T10:54:40Z file_id: '14900' file_name: 2023_PlantCommunications_Xia.pdf file_size: 1434862 relation: main_file success: 1 file_date_updated: 2024-01-30T10:54:40Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Plant Communications publication_identifier: eissn: - 2590-3462 publication_status: published publisher: 'Elsevier ' quality_controlled: '1' status: public title: Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2023' ... --- _id: '13201' abstract: - lang: eng text: As a crucial nitrogen source, nitrate (NO3−) is a key nutrient for plants. Accordingly, root systems adapt to maximize NO3− availability, a developmental regulation also involving the phytohormone auxin. Nonetheless, the molecular mechanisms underlying this regulation remain poorly understood. Here, we identify low-nitrate-resistant mutant (lonr) in Arabidopsis (Arabidopsis thaliana), whose root growth fails to adapt to low-NO3− conditions. lonr2 is defective in the high-affinity NO3− transporter NRT2.1. lonr2 (nrt2.1) mutants exhibit defects in polar auxin transport, and their low-NO3−-induced root phenotype depends on the PIN7 auxin exporter activity. NRT2.1 directly associates with PIN7 and antagonizes PIN7-mediated auxin efflux depending on NO3− levels. These results reveal a mechanism by which NRT2.1 in response to NO3− limitation directly regulates auxin transport activity and, thus, root growth. This adaptive mechanism contributes to the root developmental plasticity to help plants cope with changes in NO3− availability. acknowledgement: We are grateful to Caifu Jiang for providing ethyl metha-nesulfonate- mutagenized population, Yi Wang for providing Xenopus oocytes, Jun Fan and Zhaosheng Kong for providing tobacco BY- 2 cells, and Claus Schwechheimer, Alain Gojon, and Shutang Tan for helpful discussions. This work was supported by the National Key Research and Development Program of China (2021YFF1000500), the National Natural Science Foundation of China (32170265 and 32022007), Hainan Provincial Natural Science Foundation of China (323CXTD379), Chinese Universities Scientific Fund (2023TC019), Beijing Municipal Natural Science Foundation (5192011), Beijing Outstanding University Discipline Program, and China Postdoctoral Science Foundation (BH2020259460). article_number: e2221313120 article_processing_charge: No article_type: original author: - first_name: Yalu full_name: Wang, Yalu last_name: Wang - first_name: Zhi full_name: Yuan, Zhi last_name: Yuan - first_name: Jinyi full_name: Wang, Jinyi last_name: Wang - first_name: Huixin full_name: Xiao, Huixin last_name: Xiao - first_name: Lu full_name: Wan, Lu last_name: Wan - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Yan full_name: Guo, Yan last_name: Guo - first_name: Zhizhong full_name: Gong, Zhizhong last_name: Gong - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jing full_name: Zhang, Jing last_name: Zhang citation: ama: Wang Y, Yuan Z, Wang J, et al. The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation. Proceedings of the National Academy of Sciences of the United States of America. 2023;120(25). doi:10.1073/pnas.2221313120 apa: Wang, Y., Yuan, Z., Wang, J., Xiao, H., Wan, L., Li, L., … Zhang, J. (2023). The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2221313120 chicago: Wang, Yalu, Zhi Yuan, Jinyi Wang, Huixin Xiao, Lu Wan, Lanxin Li, Yan Guo, Zhizhong Gong, Jiří Friml, and Jing Zhang. “The Nitrate Transporter NRT2.1 Directly Antagonizes PIN7-Mediated Auxin Transport for Root Growth Adaptation.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2023. https://doi.org/10.1073/pnas.2221313120. ieee: Y. Wang et al., “The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 25. National Academy of Sciences, 2023. ista: Wang Y, Yuan Z, Wang J, Xiao H, Wan L, Li L, Guo Y, Gong Z, Friml J, Zhang J. 2023. The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation. Proceedings of the National Academy of Sciences of the United States of America. 120(25), e2221313120. mla: Wang, Yalu, et al. “The Nitrate Transporter NRT2.1 Directly Antagonizes PIN7-Mediated Auxin Transport for Root Growth Adaptation.” Proceedings of the National Academy of Sciences of the United States of America, vol. 120, no. 25, e2221313120, National Academy of Sciences, 2023, doi:10.1073/pnas.2221313120. short: Y. Wang, Z. Yuan, J. Wang, H. Xiao, L. Wan, L. Li, Y. Guo, Z. Gong, J. Friml, J. Zhang, Proceedings of the National Academy of Sciences of the United States of America 120 (2023). date_created: 2023-07-09T22:01:12Z date_published: 2023-06-12T00:00:00Z date_updated: 2023-12-13T23:30:04Z day: '12' ddc: - '570' department: - _id: JiFr doi: 10.1073/pnas.2221313120 external_id: isi: - '001030689600003' pmid: - '37307446' file: - access_level: open_access checksum: d800e06252eaefba28531fa9440f23f0 content_type: application/pdf creator: alisjak date_created: 2023-07-10T08:48:40Z date_updated: 2023-12-13T23:30:03Z embargo: 2023-12-12 file_id: '13204' file_name: 2023_PNAS_Wang.pdf file_size: 5244581 relation: main_file file_date_updated: 2023-12-13T23:30:03Z has_accepted_license: '1' intvolume: ' 120' isi: 1 issue: '25' language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 120 year: '2023' ... --- _id: '14510' acknowledged_ssus: - _id: EM-Fac - _id: Bio - _id: LifeSc alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Nataliia full_name: Gnyliukh, Nataliia id: 390C1120-F248-11E8-B48F-1D18A9856A87 last_name: Gnyliukh orcid: 0000-0002-2198-0509 citation: ama: Gnyliukh N. Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. 2023. doi:10.15479/at:ista:14510 apa: Gnyliukh, N. (2023). Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:14510 chicago: Gnyliukh, Nataliia. “Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants.” Institute of Science and Technology Austria, 2023. https://doi.org/10.15479/at:ista:14510. ieee: N. Gnyliukh, “Mechanism of clathrin-coated vesicle  formation during endocytosis in plants,” Institute of Science and Technology Austria, 2023. ista: Gnyliukh N. 2023. Mechanism of clathrin-coated vesicle  formation during endocytosis in plants. Institute of Science and Technology Austria. mla: Gnyliukh, Nataliia. Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants. Institute of Science and Technology Austria, 2023, doi:10.15479/at:ista:14510. short: N. Gnyliukh, Mechanism of Clathrin-Coated Vesicle  Formation during Endocytosis in Plants, Institute of Science and Technology Austria, 2023. date_created: 2023-11-10T09:10:06Z date_published: 2023-11-10T00:00:00Z date_updated: 2024-03-27T23:30:45Z day: '10' ddc: - '570' degree_awarded: PhD department: - _id: GradSch - _id: JiFr - _id: MaLo doi: 10.15479/at:ista:14510 ec_funded: 1 file: - access_level: closed checksum: 3d5e680bfc61f98e308c434f45cc9bd6 content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: ngnyliuk date_created: 2023-11-20T09:18:51Z date_updated: 2023-11-20T09:18:51Z file_id: '14567' file_name: Thesis_Gnyliukh_final_08_11_23.docx file_size: 20824903 relation: source_file - access_level: closed checksum: bfc96d47fc4e7e857dd71656097214a4 content_type: application/pdf creator: ngnyliuk date_created: 2023-11-20T09:23:11Z date_updated: 2023-11-23T13:10:55Z embargo: 2024-11-23 embargo_to: open_access file_id: '14568' file_name: Thesis_Gnyliukh_final_20_11_23.pdf file_size: 24871844 relation: main_file file_date_updated: 2023-11-23T13:10:55Z has_accepted_license: '1' keyword: - Clathrin-Mediated Endocytosis - vesicle scission - Dynamin-Related Protein 2 - SH3P2 - TPLATE complex - Total internal reflection fluorescence microscopy - Arabidopsis thaliana language: - iso: eng month: '11' oa_version: Published Version page: '180' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication_identifier: isbn: - 978-3-99078-037-4 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '14591' relation: part_of_dissertation status: public - id: '9887' relation: part_of_dissertation status: public - id: '8139' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Martin full_name: Loose, Martin id: 462D4284-F248-11E8-B48F-1D18A9856A87 last_name: Loose orcid: 0000-0001-7309-9724 title: Mechanism of clathrin-coated vesicle formation during endocytosis in plants tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2023' ... --- _id: '10016' abstract: - lang: eng text: 'Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research. ' acknowledgement: "The author thanks the whole community of researchers consciously or unconsciously working on questions related to auxin, whose hard work and enthusiasm contributed to development of this exciting story. Particular thanks go to many\r\nbrilliant present and past members of the Friml group and our numerous excellent collaborators, without whom my own personal journey would not be possible. The way of the cross with its 14 stations is a popular devotion among Roman Catholics and inspires them to make a spiritual pilgrimage through contemplation of Christ on his last day. Its aspects of gradual progress, struggle, passion, and revelation served as an inspiration for the formal depiction of our journey to understanding auxin as described in this review. It is in no way intended to reflect the personal beliefs of the author and readers. I am grateful to Nick Barton, Eva Benková, Lenka Caisová, Matyáš Fendrych, Lukáš Fiedler, Monika Frátriková, Jarmila Frimlová, Michelle Gallei, Jakub Hajný, Lukas Hoermayer, Alexandra Mally, Ondrˇej Novák, Jan Petrášek, Aleš Pěnčík, Steffen Vanneste, Tongda Xu, and Zhenbiao Yang for their valuable comments. Special thanks go to Michelle Gallei for her invaluable assistance with the figures." article_number: a039859 article_processing_charge: No article_type: review author: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Friml J. Fourteen stations of auxin. Cold Spring Harbor Perspectives in Biology. 2022;14(5). doi:10.1101/cshperspect.a039859 apa: Friml, J. (2022). Fourteen stations of auxin. Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory. https://doi.org/10.1101/cshperspect.a039859 chicago: Friml, Jiří. “Fourteen Stations of Auxin.” Cold Spring Harbor Perspectives in Biology. Cold Spring Harbor Laboratory, 2022. https://doi.org/10.1101/cshperspect.a039859 . ieee: J. Friml, “Fourteen stations of auxin,” Cold Spring Harbor Perspectives in Biology, vol. 14, no. 5. Cold Spring Harbor Laboratory, 2022. ista: Friml J. 2022. Fourteen stations of auxin. Cold Spring Harbor Perspectives in Biology. 14(5), a039859. mla: Friml, Jiří. “Fourteen Stations of Auxin.” Cold Spring Harbor Perspectives in Biology, vol. 14, no. 5, a039859, Cold Spring Harbor Laboratory, 2022, doi:10.1101/cshperspect.a039859 . short: J. Friml, Cold Spring Harbor Perspectives in Biology 14 (2022). date_created: 2021-09-14T11:36:53Z date_published: 2022-05-27T00:00:00Z date_updated: 2023-08-02T06:54:42Z day: '27' department: - _id: JiFr doi: '10.1101/cshperspect.a039859 ' external_id: isi: - '000806563000003' pmid: - '34400554' intvolume: ' 14' isi: 1 issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: 'https://doi.org/10.1101/cshperspect.a039859 ' month: '05' oa: 1 oa_version: Published Version pmid: 1 publication: Cold Spring Harbor Perspectives in Biology publication_identifier: issn: - 1943-0264 publication_status: published publisher: Cold Spring Harbor Laboratory quality_controlled: '1' scopus_import: '1' status: public title: Fourteen stations of auxin type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2022' ... --- _id: '10583' abstract: - lang: eng text: The synthetic strigolactone (SL) analog, rac-GR24, has been instrumental in studying the role of SLs as well as karrikins because it activates the receptors DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2) of their signaling pathways, respectively. Treatment with rac-GR24 modifies the root architecture at different levels, such as decreasing the lateral root density (LRD), while promoting root hair elongation or flavonol accumulation. Previously, we have shown that the flavonol biosynthesis is transcriptionally activated in the root by rac-GR24 treatment, but, thus far, the molecular players involved in that response have remained unknown. To get an in-depth insight into the changes that occur after the compound is perceived by the roots, we compared the root transcriptomes of the wild type and the more axillary growth2 (max2) mutant, affected in both SL and karrikin signaling pathways, with and without rac-GR24 treatment. Quantitative reverse transcription (qRT)-PCR, reporter line analysis and mutant phenotyping indicated that the flavonol response and the root hair elongation are controlled by the ELONGATED HYPOCOTYL 5 (HY5) and MYB12 transcription factors, but HY5, in contrast to MYB12, affects the LRD as well. Furthermore, we identified the transcription factors TARGET OF MONOPTEROS 5 (TMO5) and TMO5 LIKE1 as negative and the Mediator complex as positive regulators of the rac-GR24 effect on LRD. Altogether, hereby, we get closer toward understanding the molecular mechanisms that underlay the rac-GR24 responses in the root. acknowledgement: The authors thank Ralf Stracke (Bielefeld University, Bielefeld, Germany) for providing the myb mutants and their colleagues Bert De Rybel for the tmo5t;mo5l1 double mutant, Boris Parizot for tips on the RNA-seq analysis, Veronique Storme for statistical help on both the RNA-seq and lateral root density, and Martine De Cock for help in preparing the manuscript. article_processing_charge: No article_type: original author: - first_name: Sylwia full_name: Struk, Sylwia last_name: Struk - first_name: Lukas full_name: Braem, Lukas last_name: Braem - first_name: Cedrick full_name: Matthys, Cedrick last_name: Matthys - first_name: Alan full_name: Walton, Alan last_name: Walton - first_name: Nick full_name: Vangheluwe, Nick last_name: Vangheluwe - first_name: Stan full_name: Van Praet, Stan last_name: Van Praet - first_name: Lingxiang full_name: Jiang, Lingxiang last_name: Jiang - first_name: Pawel full_name: Baster, Pawel id: 3028BD74-F248-11E8-B48F-1D18A9856A87 last_name: Baster - first_name: Carolien full_name: De Cuyper, Carolien last_name: De Cuyper - first_name: Francois-Didier full_name: Boyer, Francois-Didier last_name: Boyer - first_name: Elisabeth full_name: Stes, Elisabeth last_name: Stes - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Kris full_name: Gevaert, Kris last_name: Gevaert - first_name: Sofie full_name: Goormachtig, Sofie last_name: Goormachtig citation: ama: Struk S, Braem L, Matthys C, et al. Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density. Plant & Cell Physiology. 2022;63(1):104-119. doi:10.1093/pcp/pcab149 apa: Struk, S., Braem, L., Matthys, C., Walton, A., Vangheluwe, N., Van Praet, S., … Goormachtig, S. (2022). Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density. Plant & Cell Physiology. Oxford University Press. https://doi.org/10.1093/pcp/pcab149 chicago: Struk, Sylwia, Lukas Braem, Cedrick Matthys, Alan Walton, Nick Vangheluwe, Stan Van Praet, Lingxiang Jiang, et al. “Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators That Link Rac-GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density.” Plant & Cell Physiology. Oxford University Press, 2022. https://doi.org/10.1093/pcp/pcab149. ieee: S. Struk et al., “Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density,” Plant & Cell Physiology, vol. 63, no. 1. Oxford University Press, pp. 104–119, 2022. ista: Struk S, Braem L, Matthys C, Walton A, Vangheluwe N, Van Praet S, Jiang L, Baster P, De Cuyper C, Boyer F-D, Stes E, Beeckman T, Friml J, Gevaert K, Goormachtig S. 2022. Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density. Plant & Cell Physiology. 63(1), 104–119. mla: Struk, Sylwia, et al. “Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators That Link Rac-GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density.” Plant & Cell Physiology, vol. 63, no. 1, Oxford University Press, 2022, pp. 104–19, doi:10.1093/pcp/pcab149. short: S. Struk, L. Braem, C. Matthys, A. Walton, N. Vangheluwe, S. Van Praet, L. Jiang, P. Baster, C. De Cuyper, F.-D. Boyer, E. Stes, T. Beeckman, J. Friml, K. Gevaert, S. Goormachtig, Plant & Cell Physiology 63 (2022) 104–119. date_created: 2021-12-28T11:44:18Z date_published: 2022-01-21T00:00:00Z date_updated: 2023-08-02T13:40:43Z day: '21' department: - _id: JiFr doi: 10.1093/pcp/pcab149 external_id: isi: - '000877899400009' pmid: - '34791413' intvolume: ' 63' isi: 1 issue: '1' keyword: - flavonols - MAX2 - rac-Gr24 - RNA-seq - root development - transcriptional regulation language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1093/pcp/pcab149 month: '01' oa: 1 oa_version: Published Version page: 104-119 pmid: 1 publication: Plant & Cell Physiology publication_identifier: eissn: - 1471-9053 issn: - 0032-0781 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Transcriptional analysis in the Arabidopsis roots reveals new regulators that link rac-GR24 treatment with changes in flavonol accumulation, root hair elongation and lateral root density type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 63 year: '2022' ... --- _id: '10717' abstract: - lang: eng text: Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins and auxin analogs. In this context, synthetic auxin analogs, such as 1-Naphtalene Acetic Acid (1-NAA), are often favored over the endogenous auxin indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven to be instrumental to reveal the various faces of auxin, they display in some cases distinct bioactivities compared to IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in Brefeldin A-sensitive endosomal aggregations (BFA bodies), and the correlation with the ability to elicit Ca 2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin-analog induced Ca 2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca 2+ response, and their differential ability to elicit Ca 2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca 2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca 2+ signaling does not inhibit BFA body formation in Arabidopsis roots. acknowledgement: "We thank Joerg Kudla (WWU Munster, Germany), Petra Dietrich (F.A. University of Erlangen-Nurnberg, Germany) for sharing published materials, and NASC for providing seeds. We thank Veronique Storme for help with the statistical analyses. Part of the imaging analysis was carried out at NOLIMITS, an advanced imaging facility established by the University of Milan.\r\nThis work was supported by grants of the China Scholarship Council (CSC) to RW and JC; Fonds Wetenschappelijk Onderzoek (FWO) to TB and (G002220N) SV; the special research fund of Ghent University to EH; the Deutsche Forschungsgemeinschaft (DFG) through Grants within FOR964 (MK and KS); Piano di Sviluppo di Ateneo 2019 (University of Milan) to AC; the European Research Council (ERC) T-Rex project 682436 to DVD; the ERC ETAP project 742985 to JF, and by a PhD fellowship from the University of Milan to MG." article_number: erac019 article_processing_charge: No article_type: original author: - first_name: R full_name: Wang, R last_name: Wang - first_name: E full_name: Himschoot, E last_name: Himschoot - first_name: M full_name: Grenzi, M last_name: Grenzi - first_name: J full_name: Chen, J last_name: Chen - first_name: A full_name: Safi, A last_name: Safi - first_name: M full_name: Krebs, M last_name: Krebs - first_name: K full_name: Schumacher, K last_name: Schumacher - first_name: MK full_name: Nowack, MK last_name: Nowack - first_name: W full_name: Moeder, W last_name: Moeder - first_name: K full_name: Yoshioka, K last_name: Yoshioka - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: I full_name: De Smet, I last_name: De Smet - first_name: D full_name: Geelen, D last_name: Geelen - first_name: T full_name: Beeckman, T last_name: Beeckman - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: A full_name: Costa, A last_name: Costa - first_name: S full_name: Vanneste, S last_name: Vanneste citation: ama: Wang R, Himschoot E, Grenzi M, et al. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. Journal of Experimental Botany. 2022;73(8). doi:10.1093/jxb/erac019 apa: Wang, R., Himschoot, E., Grenzi, M., Chen, J., Safi, A., Krebs, M., … Vanneste, S. (2022). Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. Journal of Experimental Botany. Oxford Academic. https://doi.org/10.1093/jxb/erac019 chicago: Wang, R, E Himschoot, M Grenzi, J Chen, A Safi, M Krebs, K Schumacher, et al. “Auxin Analog-Induced Ca2+ Signaling Is Independent of Inhibition of Endosomal Aggregation in Arabidopsis Roots.” Journal of Experimental Botany. Oxford Academic, 2022. https://doi.org/10.1093/jxb/erac019. ieee: R. Wang et al., “Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots,” Journal of Experimental Botany, vol. 73, no. 8. Oxford Academic, 2022. ista: Wang R, Himschoot E, Grenzi M, Chen J, Safi A, Krebs M, Schumacher K, Nowack M, Moeder W, Yoshioka K, Van Damme D, De Smet I, Geelen D, Beeckman T, Friml J, Costa A, Vanneste S. 2022. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. Journal of Experimental Botany. 73(8), erac019. mla: Wang, R., et al. “Auxin Analog-Induced Ca2+ Signaling Is Independent of Inhibition of Endosomal Aggregation in Arabidopsis Roots.” Journal of Experimental Botany, vol. 73, no. 8, erac019, Oxford Academic, 2022, doi:10.1093/jxb/erac019. short: R. Wang, E. Himschoot, M. Grenzi, J. Chen, A. Safi, M. Krebs, K. Schumacher, M. Nowack, W. Moeder, K. Yoshioka, D. Van Damme, I. De Smet, D. Geelen, T. Beeckman, J. Friml, A. Costa, S. Vanneste, Journal of Experimental Botany 73 (2022). date_created: 2022-02-03T09:19:01Z date_published: 2022-04-18T00:00:00Z date_updated: 2023-08-02T14:07:58Z day: '18' department: - _id: JiFr doi: 10.1093/jxb/erac019 ec_funded: 1 external_id: isi: - '000764220900001' pmid: - '35085386' intvolume: ' 73' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://biblio.ugent.be/publication/8738721 month: '04' oa: 1 oa_version: Submitted Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Journal of Experimental Botany publication_identifier: eissn: - 1460-2431 issn: - 0022-0957 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 73 year: '2022' ... --- _id: '10719' abstract: - lang: eng text: Auxin, one of the first identified and most widely studied phytohormones, has been and will remain a hot topic in plant biology. After more than a century of passionate exploration, the mysteries of its synthesis, transport, signaling, and metabolism have largely been unlocked. Due to the rapid development of new technologies, new methods, and new genetic materials, the study of auxin has entered the fast lane over the past 30 years. Here, we highlight advances in understanding auxin signaling, including auxin perception, rapid auxin responses, TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALING F-boxes (TIR1/AFBs)-mediated transcriptional and non-transcriptional branches, and the epigenetic regulation of auxin signaling. We also focus on feedback inhibition mechanisms that prevent the over-amplification of auxin signals. In addition, we cover the TRANSMEMBRANE KINASEs (TMKs)-mediated non-canonical signaling, which converges with TIR1/AFBs-mediated transcriptional regulation to coordinate plant growth and development. The identification of additional auxin signaling components and their regulation will continue to open new avenues of research in this field, leading to an increasingly deeper, more comprehensive understanding of how auxin signals are interpreted at the cellular level to regulate plant growth and development. acknowledgement: "This research was financially supported by the National Natural Science Foundation of China and the Israel Science Foundation (NSFC-ISF; 32061143005), National Natural Science Foundation of China (32000225), Natural Science Foundation of Shandong Province (ZR2020QC036), and China Postdoctoral Science Foundation (2020M682165).\r\n" article_processing_charge: No article_type: review author: - first_name: Z full_name: Yu, Z last_name: Yu - first_name: F full_name: Zhang, F last_name: Zhang - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Z full_name: Ding, Z last_name: Ding citation: ama: 'Yu Z, Zhang F, Friml J, Ding Z. Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology. 2022;64(2):371-392. doi:10.1111/jipb.13225' apa: 'Yu, Z., Zhang, F., Friml, J., & Ding, Z. (2022). Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology. Wiley. https://doi.org/10.1111/jipb.13225' chicago: 'Yu, Z, F Zhang, Jiří Friml, and Z Ding. “Auxin Signaling: Research Advances over the Past 30 Years.” Journal of Integrative Plant Biology. Wiley, 2022. https://doi.org/10.1111/jipb.13225.' ieee: 'Z. Yu, F. Zhang, J. Friml, and Z. Ding, “Auxin signaling: Research advances over the past 30 years,” Journal of Integrative Plant Biology, vol. 64, no. 2. Wiley, pp. 371–392, 2022.' ista: 'Yu Z, Zhang F, Friml J, Ding Z. 2022. Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology. 64(2), 371–392.' mla: 'Yu, Z., et al. “Auxin Signaling: Research Advances over the Past 30 Years.” Journal of Integrative Plant Biology, vol. 64, no. 2, Wiley, 2022, pp. 371–92, doi:10.1111/jipb.13225.' short: Z. Yu, F. Zhang, J. Friml, Z. Ding, Journal of Integrative Plant Biology 64 (2022) 371–392. date_created: 2022-02-03T09:52:59Z date_published: 2022-02-01T00:00:00Z date_updated: 2023-08-02T14:08:30Z day: '01' department: - _id: JiFr doi: 10.1111/jipb.13225 external_id: isi: - '000761281200011' pmid: - '35018726' intvolume: ' 64' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/jipb.13225 month: '02' oa: 1 oa_version: Published Version page: 371-392 pmid: 1 publication: Journal of Integrative Plant Biology publication_identifier: eissn: - 1744-7909 issn: - 1672-9072 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Auxin signaling: Research advances over the past 30 years' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 64 year: '2022' ... --- _id: '10768' abstract: - lang: eng text: Among the most fascinated properties of the plant hormone auxin is its ability to promote formation of its own directional transport routes. These gradually narrowing auxin channels form from the auxin source toward the sink and involve coordinated, collective polarization of individual cells. Once established, the channels provide positional information, along which new vascular strands form, for example, during organogenesis, regeneration, or leave venation. The main prerequisite of this still mysterious auxin canalization mechanism is a feedback between auxin signaling and its directional transport. This is manifested by auxin-induced re-arrangements of polar, subcellular localization of PIN-FORMED (PIN) auxin exporters. Immanent open questions relate to how position of auxin source and sink as well as tissue context are sensed and translated into tissue polarization and how cells communicate to polarize coordinately. Recently, identification of the first molecular players opens new avenues into molecular studies of this intriguing example of self-organizing plant development. acknowledgement: The authors apologize to those researchers whose work was not cited. In addition, exciting topics such as PIN polarization in context of phyllotaxis, shoot branching and termination of gravitropic bending, or role of additional auxin transporters could not have been included owing to lack of space. This work was supported by the Czech Science Foundation GAČR (GA18-26981S). The authors also acknowledge the EMBO for supporting J.H. with a long-term fellowship (ALTF217-2021). article_number: '102174' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Jakub full_name: Hajny, Jakub id: 4800CC20-F248-11E8-B48F-1D18A9856A87 last_name: Hajny orcid: 0000-0003-2140-7195 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Hajny J, Tan S, Friml J. Auxin canalization: From speculative models toward molecular players. Current Opinion in Plant Biology. 2022;65(2). doi:10.1016/j.pbi.2022.102174' apa: 'Hajny, J., Tan, S., & Friml, J. (2022). Auxin canalization: From speculative models toward molecular players. Current Opinion in Plant Biology. Elsevier. https://doi.org/10.1016/j.pbi.2022.102174' chicago: 'Hajny, Jakub, Shutang Tan, and Jiří Friml. “Auxin Canalization: From Speculative Models toward Molecular Players.” Current Opinion in Plant Biology. Elsevier, 2022. https://doi.org/10.1016/j.pbi.2022.102174.' ieee: 'J. Hajny, S. Tan, and J. Friml, “Auxin canalization: From speculative models toward molecular players,” Current Opinion in Plant Biology, vol. 65, no. 2. Elsevier, 2022.' ista: 'Hajny J, Tan S, Friml J. 2022. Auxin canalization: From speculative models toward molecular players. Current Opinion in Plant Biology. 65(2), 102174.' mla: 'Hajny, Jakub, et al. “Auxin Canalization: From Speculative Models toward Molecular Players.” Current Opinion in Plant Biology, vol. 65, no. 2, 102174, Elsevier, 2022, doi:10.1016/j.pbi.2022.102174.' short: J. Hajny, S. Tan, J. Friml, Current Opinion in Plant Biology 65 (2022). date_created: 2022-02-20T23:01:32Z date_published: 2022-02-01T00:00:00Z date_updated: 2023-08-02T14:29:12Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.pbi.2022.102174 external_id: isi: - '000758724700004' pmid: - '35123880' file: - access_level: open_access checksum: f1ee02b6fb4200934eeb31fa69120885 content_type: application/pdf creator: dernst date_created: 2022-03-10T13:34:09Z date_updated: 2022-03-10T13:34:09Z file_id: '10844' file_name: 2022_CurrentOpPlantBiology_Hajny.pdf file_size: 820322 relation: main_file success: 1 file_date_updated: 2022-03-10T13:34:09Z has_accepted_license: '1' intvolume: ' 65' isi: 1 issue: '2' language: - iso: eng month: '02' oa: 1 oa_version: Published Version pmid: 1 publication: Current Opinion in Plant Biology publication_identifier: issn: - 1369-5266 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Auxin canalization: From speculative models toward molecular players' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 65 year: '2022' ... --- _id: '10841' abstract: - lang: eng text: In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data. acknowledged_ssus: - _id: EM-Fac acknowledgement: 'The authors would like to acknowledge the VIB Proteomics Core Facility (VIB-UGent Center for Medical Biotechnology in Ghent, Belgium) and the Research Technology Support Facility Proteomics Core (Michigan State University in East Lansing, Michigan) for sample analysis, as well as the University of Wisconsin Biotechnology Center Mass Spectrometry Core Facility (Madison, WI) for help with data processing. Additionally, we are grateful to Sue Weintraub (UT Health San Antonio) and Sydney Thomas (UW- Madison) for assistance with data analysis. This research was supported by grants to S.Y.B. from the National Science Foundation (Nos. 1121998 and 1614915) and a Vilas Associate Award (University of Wisconsin, Madison, Graduate School); to J.P. from the National Natural Science Foundation of China (Nos. 91754104, 31820103008, and 31670283); to I.H. from the National Research Foundation of Korea (No. 2019R1A2B5B03099982). This research was also supported by the Scientific Service Units (SSU) of IST Austria through resources provided by the Electron microscopy Facility (EMF). A.J. is supported by funding from the Austrian Science Fund (FWF): I3630B25 to J.F. A.H. is supported by funding from the National Science Foundation (NSF IOS Nos. 1025837 and 1147032).' article_processing_charge: No article_type: original author: - first_name: DA full_name: Dahhan, DA last_name: Dahhan - first_name: GD full_name: Reynolds, GD last_name: Reynolds - first_name: JJ full_name: Cárdenas, JJ last_name: Cárdenas - first_name: D full_name: Eeckhout, D last_name: Eeckhout - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: K full_name: Yperman, K last_name: Yperman - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: N full_name: Vang, N last_name: Vang - first_name: X full_name: Yan, X last_name: Yan - first_name: I full_name: Hwang, I last_name: Hwang - first_name: A full_name: Heese, A last_name: Heese - first_name: G full_name: De Jaeger, G last_name: De Jaeger - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: J full_name: Pan, J last_name: Pan - first_name: SY full_name: Bednarek, SY last_name: Bednarek citation: ama: Dahhan D, Reynolds G, Cárdenas J, et al. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. 2022;34(6):2150-2173. doi:10.1093/plcell/koac071 apa: Dahhan, D., Reynolds, G., Cárdenas, J., Eeckhout, D., Johnson, A. J., Yperman, K., … Bednarek, S. (2022). Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. Oxford Academic. https://doi.org/10.1093/plcell/koac071 chicago: Dahhan, DA, GD Reynolds, JJ Cárdenas, D Eeckhout, Alexander J Johnson, K Yperman, Walter Kaufmann, et al. “Proteomic Characterization of Isolated Arabidopsis Clathrin-Coated Vesicles Reveals Evolutionarily Conserved and Plant-Specific Components.” Plant Cell. Oxford Academic, 2022. https://doi.org/10.1093/plcell/koac071. ieee: D. Dahhan et al., “Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components,” Plant Cell, vol. 34, no. 6. Oxford Academic, pp. 2150–2173, 2022. ista: Dahhan D, Reynolds G, Cárdenas J, Eeckhout D, Johnson AJ, Yperman K, Kaufmann W, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek S. 2022. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell. 34(6), 2150–2173. mla: Dahhan, DA, et al. “Proteomic Characterization of Isolated Arabidopsis Clathrin-Coated Vesicles Reveals Evolutionarily Conserved and Plant-Specific Components.” Plant Cell, vol. 34, no. 6, Oxford Academic, 2022, pp. 2150–73, doi:10.1093/plcell/koac071. short: D. Dahhan, G. Reynolds, J. Cárdenas, D. Eeckhout, A.J. Johnson, K. Yperman, W. Kaufmann, N. Vang, X. Yan, I. Hwang, A. Heese, G. De Jaeger, J. Friml, D. Van Damme, J. Pan, S. Bednarek, Plant Cell 34 (2022) 2150–2173. date_created: 2022-03-08T13:47:51Z date_published: 2022-06-01T00:00:00Z date_updated: 2023-08-02T14:46:48Z day: '01' department: - _id: JiFr - _id: EM-Fac doi: 10.1093/plcell/koac071 external_id: isi: - '000767438800001' pmid: - '35218346' intvolume: ' 34' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2021.09.16.460678 month: '06' oa: 1 oa_version: Preprint page: 2150-2173 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: Oxford Academic quality_controlled: '1' scopus_import: '1' status: public title: Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2022' ... --- _id: '10888' abstract: - lang: eng text: Despite the growing interest in using chemical genetics in plant research, small molecule target identification remains a major challenge. The cellular thermal shift assay coupled with high-resolution mass spectrometry (CETSA MS) that monitors changes in the thermal stability of proteins caused by their interactions with small molecules, other proteins, or posttranslational modifications, allows the discovery of drug targets or the study of protein–metabolite and protein–protein interactions mainly in mammalian cells. To showcase the applicability of this method in plants, we applied CETSA MS to intact Arabidopsis thaliana cells and identified the thermal proteome of the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, bikinin. A comparison between the thermal and the phosphoproteomes of bikinin revealed the auxin efflux carrier PIN-FORMED1 (PIN1) as a substrate of the Arabidopsis GSK3s that negatively regulate the brassinosteroid signaling. We established that PIN1 phosphorylation by the GSK3s is essential for maintaining its intracellular polarity that is required for auxin-mediated regulation of vascular patterning in the leaf, thus revealing cross-talk between brassinosteroid and auxin signaling. acknowledgement: "We thank Yanhai Yin for providing the anti-BES1 antibody, Johan Winne and Brenda Callebaut for synthesizing bikinin, Yuki Kondo and Hiroo Fukuda for published materials, Tomasz Nodzy\x03nski for useful advice, and Martine De Cock for help in preparing the manuscript. This\r\nwork was supported by the China Scholarship Council for predoctoral (Q.L. and X.X.) and postdoctoral (Y.Z.) fellowships; the Agency for Innovation by Science and Technology for a predoctoral fellowship (W.D.); the Research Foundation-Flanders, Projects G009018N and G002121N (E.R.); and the VIB TechWatch Fund (E.R.)." article_number: e2118220119 article_processing_charge: No article_type: original author: - first_name: Qing full_name: Lu, Qing last_name: Lu - first_name: Yonghong full_name: Zhang, Yonghong last_name: Zhang - first_name: Joakim full_name: Hellner, Joakim last_name: Hellner - first_name: Caterina full_name: Giannini, Caterina id: e3fdddd5-f6e0-11ea-865d-ca99ee6367f4 last_name: Giannini - first_name: Xiangyu full_name: Xu, Xiangyu last_name: Xu - first_name: Jarne full_name: Pauwels, Jarne last_name: Pauwels - first_name: Qian full_name: Ma, Qian last_name: Ma - first_name: Wim full_name: Dejonghe, Wim last_name: Dejonghe - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Brigitte full_name: Van De Cotte, Brigitte last_name: Van De Cotte - first_name: Francis full_name: Impens, Francis last_name: Impens - first_name: Kris full_name: Gevaert, Kris last_name: Gevaert - first_name: Ive full_name: De Smet, Ive last_name: De Smet - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Daniel Martinez full_name: Molina, Daniel Martinez last_name: Molina - first_name: Eugenia full_name: Russinova, Eugenia last_name: Russinova citation: ama: Lu Q, Zhang Y, Hellner J, et al. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proceedings of the National Academy of Sciences of the United States of America. 2022;119(11). doi:10.1073/pnas.2118220119 apa: Lu, Q., Zhang, Y., Hellner, J., Giannini, C., Xu, X., Pauwels, J., … Russinova, E. (2022). Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2118220119 chicago: Lu, Qing, Yonghong Zhang, Joakim Hellner, Caterina Giannini, Xiangyu Xu, Jarne Pauwels, Qian Ma, et al. “Proteome-Wide Cellular Thermal Shift Assay Reveals Unexpected Cross-Talk between Brassinosteroid and Auxin Signaling.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2022. https://doi.org/10.1073/pnas.2118220119. ieee: Q. Lu et al., “Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 11. Proceedings of the National Academy of Sciences, 2022. ista: Lu Q, Zhang Y, Hellner J, Giannini C, Xu X, Pauwels J, Ma Q, Dejonghe W, Han H, Van De Cotte B, Impens F, Gevaert K, De Smet I, Friml J, Molina DM, Russinova E. 2022. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proceedings of the National Academy of Sciences of the United States of America. 119(11), e2118220119. mla: Lu, Qing, et al. “Proteome-Wide Cellular Thermal Shift Assay Reveals Unexpected Cross-Talk between Brassinosteroid and Auxin Signaling.” Proceedings of the National Academy of Sciences of the United States of America, vol. 119, no. 11, e2118220119, Proceedings of the National Academy of Sciences, 2022, doi:10.1073/pnas.2118220119. short: Q. Lu, Y. Zhang, J. Hellner, C. Giannini, X. Xu, J. Pauwels, Q. Ma, W. Dejonghe, H. Han, B. Van De Cotte, F. Impens, K. Gevaert, I. De Smet, J. Friml, D.M. Molina, E. Russinova, Proceedings of the National Academy of Sciences of the United States of America 119 (2022). date_created: 2022-03-20T23:01:39Z date_published: 2022-03-07T00:00:00Z date_updated: 2023-08-03T06:06:27Z day: '07' ddc: - '580' department: - _id: JiFr doi: 10.1073/pnas.2118220119 external_id: isi: - '000771756300008' pmid: - '35254915' file: - access_level: open_access checksum: 83e0fea7919570d0b519b41193342571 content_type: application/pdf creator: dernst date_created: 2022-03-21T09:19:47Z date_updated: 2022-03-21T09:19:47Z file_id: '10910' file_name: 2022_PNAS_Lu.pdf file_size: 2169534 relation: main_file success: 1 file_date_updated: 2022-03-21T09:19:47Z has_accepted_license: '1' intvolume: ' 119' isi: 1 issue: '11' language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - 1091-6490 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 119 year: '2022' ... --- _id: '11589' abstract: - lang: eng text: Calcium-dependent protein kinases (CPK) are key components of a wide array of signaling pathways, translating stress and nutrient signaling into the modulation of cellular processes such as ion transport and transcription. However, not much is known about CPKs in endomembrane trafficking. Here, we screened for CPKs that impact on root growth and gravitropism, by overexpressing constitutively active forms of CPKs under the control of an inducible promoter in Arabidopsis thaliana. We found that inducible overexpression of an constitutive active CPK30 (CA-CPK30) resulted in a loss of root gravitropism and ectopic auxin accumulation in the root tip. Immunolocalization revealed that CA-CPK30 roots have reduced PIN protein levels, PIN1 polarity defects and impaired Brefeldin A (BFA)-sensitive trafficking. Moreover, FM4-64 uptake was reduced, indicative of a defect in endocytosis. The effects on BFA-sensitive trafficking were not specific to PINs, as BFA could not induce aggregation of ARF1- and CHC-labeled endosomes in CA-CPK30. Interestingly, the interference with BFA-body formation, could be reverted by increasing the extracellular pH, indicating a pH-dependence of this CA-CPK30 effect. Altogether, our data reveal an important role for CPK30 in root growth regulation and endomembrane trafficking in Arabidopsis thaliana. acknowledgement: "RW and JC predoctoral fellows that were supported by the Chinese Science Counsil. The IPS2 benefits from the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS).\r\nWe thank Jen Sheen for establishing and generously sharing the CKP family clone sets, and for providing useful feedback on the manuscript." article_number: '862398' article_processing_charge: No article_type: original author: - first_name: Ren full_name: Wang, Ren last_name: Wang - first_name: Ellie full_name: Himschoot, Ellie last_name: Himschoot - first_name: Jian full_name: Chen, Jian last_name: Chen - first_name: Marie full_name: Boudsocq, Marie last_name: Boudsocq - first_name: Danny full_name: Geelen, Danny last_name: Geelen - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste citation: ama: Wang R, Himschoot E, Chen J, et al. Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana. Frontiers in Plant Science. 2022;13. doi:10.3389/fpls.2022.862398 apa: Wang, R., Himschoot, E., Chen, J., Boudsocq, M., Geelen, D., Friml, J., … Vanneste, S. (2022). Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana. Frontiers in Plant Science. Frontiers. https://doi.org/10.3389/fpls.2022.862398 chicago: Wang, Ren, Ellie Himschoot, Jian Chen, Marie Boudsocq, Danny Geelen, Jiří Friml, Tom Beeckman, and Steffen Vanneste. “Constitutive Active CPK30 Interferes with Root Growth and Endomembrane Trafficking in Arabidopsis Thaliana.” Frontiers in Plant Science. Frontiers, 2022. https://doi.org/10.3389/fpls.2022.862398. ieee: R. Wang et al., “Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana,” Frontiers in Plant Science, vol. 13. Frontiers, 2022. ista: Wang R, Himschoot E, Chen J, Boudsocq M, Geelen D, Friml J, Beeckman T, Vanneste S. 2022. Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana. Frontiers in Plant Science. 13, 862398. mla: Wang, Ren, et al. “Constitutive Active CPK30 Interferes with Root Growth and Endomembrane Trafficking in Arabidopsis Thaliana.” Frontiers in Plant Science, vol. 13, 862398, Frontiers, 2022, doi:10.3389/fpls.2022.862398. short: R. Wang, E. Himschoot, J. Chen, M. Boudsocq, D. Geelen, J. Friml, T. Beeckman, S. Vanneste, Frontiers in Plant Science 13 (2022). date_created: 2022-07-17T22:01:54Z date_published: 2022-06-16T00:00:00Z date_updated: 2023-08-03T12:01:47Z day: '16' ddc: - '580' department: - _id: JiFr doi: 10.3389/fpls.2022.862398 external_id: isi: - '000819250500001' pmid: - '35783951' file: - access_level: open_access checksum: 95313515637c0f84de591d204375d764 content_type: application/pdf creator: dernst date_created: 2022-07-18T08:05:15Z date_updated: 2022-07-18T08:05:15Z file_id: '11596' file_name: 2022_FrontiersPlantScience_Wang.pdf file_size: 5040638 relation: main_file success: 1 file_date_updated: 2022-07-18T08:05:15Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: Frontiers in Plant Science publication_identifier: eissn: - 1664-462X publication_status: published publisher: Frontiers quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.3389/fpls.2022.1100792 scopus_import: '1' status: public title: Constitutive active CPK30 interferes with root growth and endomembrane trafficking in Arabidopsis thaliana tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '11723' abstract: - lang: eng text: Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379–402 (2020); Blackburn et al., Plant Physiol. 182, 1657–1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term. acknowledgement: We thank Sarah M. Assmann, Kris Vissenberg, and Nadine Paris for kindly sharing seeds; Matyáš Fendrych for initiating this project and providing constant support; Lukas Fiedler for revising the manuscript; and Huibin Han and Arseny Savin for contributing to genotyping. This work was supported by the Austrian Science Fund (FWF) I 3630-B25 (to J.F.) and the Doctoral Fellowship Progrmme of the Austrian Academy of Sciences (to L.L.) We also acknowledge Taif University Researchers Supporting Project TURSP-HC2021/02 and funding “Plants as a tool for sustainable global development (no. CZ.02.1.01/0.0/0.0/16_019/0000827).” article_number: e2121058119 article_processing_charge: No article_type: original author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Huihuang full_name: Chen, Huihuang id: 83c96512-15b2-11ec-abd3-b7eede36184f last_name: Chen - first_name: Saqer S. full_name: Alotaibi, Saqer S. last_name: Alotaibi - first_name: Aleš full_name: Pěnčík, Aleš last_name: Pěnčík - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Ondřej full_name: Novák, Ondřej last_name: Novák - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li L, Chen H, Alotaibi SS, et al. RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proceedings of the National Academy of Sciences. 2022;119(31). doi:10.1073/pnas.2121058119 apa: Li, L., Chen, H., Alotaibi, S. S., Pěnčík, A., Adamowski, M., Novák, O., & Friml, J. (2022). RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2121058119 chicago: Li, Lanxin, Huihuang Chen, Saqer S. Alotaibi, Aleš Pěnčík, Maciek Adamowski, Ondřej Novák, and Jiří Friml. “RALF1 Peptide Triggers Biphasic Root Growth Inhibition Upstream of Auxin Biosynthesis.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2022. https://doi.org/10.1073/pnas.2121058119. ieee: L. Li et al., “RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis,” Proceedings of the National Academy of Sciences, vol. 119, no. 31. Proceedings of the National Academy of Sciences, 2022. ista: Li L, Chen H, Alotaibi SS, Pěnčík A, Adamowski M, Novák O, Friml J. 2022. RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proceedings of the National Academy of Sciences. 119(31), e2121058119. mla: Li, Lanxin, et al. “RALF1 Peptide Triggers Biphasic Root Growth Inhibition Upstream of Auxin Biosynthesis.” Proceedings of the National Academy of Sciences, vol. 119, no. 31, e2121058119, Proceedings of the National Academy of Sciences, 2022, doi:10.1073/pnas.2121058119. short: L. Li, H. Chen, S.S. Alotaibi, A. Pěnčík, M. Adamowski, O. Novák, J. Friml, Proceedings of the National Academy of Sciences 119 (2022). date_created: 2022-08-04T20:06:49Z date_published: 2022-07-25T00:00:00Z date_updated: 2023-08-03T12:43:53Z day: '25' ddc: - '580' department: - _id: GradSch - _id: JiFr doi: 10.1073/pnas.2121058119 external_id: isi: - '000881496900002' pmid: - '35878023' file: - access_level: open_access checksum: ae6f19b0d9efba6687f9e4dc1bab1d6e content_type: application/pdf creator: dernst date_created: 2022-08-08T07:42:09Z date_updated: 2022-08-08T07:42:09Z file_id: '11747' file_name: 2022_PNAS_Li.pdf file_size: 2506262 relation: main_file success: 1 file_date_updated: 2022-08-08T07:42:09Z has_accepted_license: '1' intvolume: ' 119' isi: 1 issue: '31' keyword: - Multidisciplinary language: - iso: eng month: '07' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Proceedings of the National Academy of Sciences publication_identifier: eissn: - 1091-6490 issn: - 0027-8424 publication_status: published publisher: Proceedings of the National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 119 year: '2022' ... --- _id: '12053' abstract: - lang: eng text: Strigolactones (SLs) are a class of phytohormones that regulate plant shoot branching and adventitious root development. However, little is known regarding the role of SLs in controlling the behavior of the smallest unit of the organism, the single cell. Here, taking advantage of a classic single-cell model offered by the cotton (Gossypium hirsutum) fiber cell, we show that SLs, whose biosynthesis is fine-tuned by gibberellins (GAs), positively regulate cell elongation and cell wall thickness by promoting the biosynthesis of very-long-chain fatty acids (VLCFAs) and cellulose, respectively. Furthermore, we identified two layers of transcription factors (TFs) involved in the hierarchical regulation of this GA-SL crosstalk. The top-layer TF GROWTH-REGULATING FACTOR 4 (GhGRF4) directly activates expression of the SL biosynthetic gene DWARF27 (D27) to increase SL accumulation in fiber cells and GAs induce GhGRF4 expression. SLs induce the expression of four second-layer TF genes (GhNAC100-2, GhBLH51, GhGT2, and GhB9SHZ1), which transmit SL signals downstream to two ketoacyl-CoA synthase genes (KCS) and three cellulose synthase (CesA) genes by directly activating their transcription. Finally, the KCS and CesA enzymes catalyze the biosynthesis of very long chain fatty acids and cellulose, respectively, to regulate development of high-grade cotton fibers. In addition to providing a theoretical basis for cotton fiber improvement, our results shed light on SL signaling in plant development at the single-cell level. acknowledgement: This work was supported by the National Natural Science Foundation of China (32070549), Shaanxi Youth Entrusted Talent Program (20190205), Fundamental Research Funds for the Central Universities (GK202002005 and GK202201017), Young Elite Scientists Sponsorship Program by China Association for Science and Technology (CAST) (2019-2021QNRC001), State Key Laboratory of Cotton Biology Open Fund (CB2020A12 and CB2021A21) and FWF Stand-alone Project (P29988). article_processing_charge: No article_type: original author: - first_name: Z full_name: Tian, Z last_name: Tian - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: L full_name: Zhu, L last_name: Zhu - first_name: B full_name: Jiang, B last_name: Jiang - first_name: H full_name: Wang, H last_name: Wang - first_name: R full_name: Gao, R last_name: Gao - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: G full_name: Xiao, G last_name: Xiao citation: ama: Tian Z, Zhang Y, Zhu L, et al. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). The Plant Cell. 2022;34(12):4816-4839. doi:10.1093/plcell/koac270 apa: Tian, Z., Zhang, Y., Zhu, L., Jiang, B., Wang, H., Gao, R., … Xiao, G. (2022). Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). The Plant Cell. Oxford University Press. https://doi.org/10.1093/plcell/koac270 chicago: Tian, Z, Yuzhou Zhang, L Zhu, B Jiang, H Wang, R Gao, Jiří Friml, and G Xiao. “Strigolactones Act Downstream of Gibberellins to Regulate Fiber Cell Elongation and Cell Wall Thickness in Cotton (Gossypium Hirsutum).” The Plant Cell. Oxford University Press, 2022. https://doi.org/10.1093/plcell/koac270. ieee: Z. Tian et al., “Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum),” The Plant Cell, vol. 34, no. 12. Oxford University Press, pp. 4816–4839, 2022. ista: Tian Z, Zhang Y, Zhu L, Jiang B, Wang H, Gao R, Friml J, Xiao G. 2022. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). The Plant Cell. 34(12), 4816–4839. mla: Tian, Z., et al. “Strigolactones Act Downstream of Gibberellins to Regulate Fiber Cell Elongation and Cell Wall Thickness in Cotton (Gossypium Hirsutum).” The Plant Cell, vol. 34, no. 12, Oxford University Press, 2022, pp. 4816–39, doi:10.1093/plcell/koac270. short: Z. Tian, Y. Zhang, L. Zhu, B. Jiang, H. Wang, R. Gao, J. Friml, G. Xiao, The Plant Cell 34 (2022) 4816–4839. date_created: 2022-09-07T14:19:39Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-03T13:41:06Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/plcell/koac270 external_id: isi: - '000852753000001' pmid: - '36040191' file: - access_level: open_access checksum: 1c606d9545f29dfca15235f69ad27b58 content_type: application/pdf creator: dernst date_created: 2023-01-20T08:29:12Z date_updated: 2023-01-20T08:29:12Z file_id: '12318' file_name: 2022_PlantCell_Tian.pdf file_size: 3282540 relation: main_file success: 1 file_date_updated: 2023-01-20T08:29:12Z has_accepted_license: '1' intvolume: ' 34' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 4816-4839 pmid: 1 project: - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: The Plant Cell publication_identifier: eissn: - 1532-298X issn: - 1040-4651 publication_status: published publisher: Oxford University Press quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1093/plcell/koac342 scopus_import: '1' status: public title: Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum) tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 34 year: '2022' ... --- _id: '12052' abstract: - lang: eng text: Directionality in the intercellular transport of the plant hormone auxin is determined by polar plasma membrane localization of PIN-FORMED (PIN) auxin transport proteins. However, apart from PIN phosphorylation at conserved motifs, no further determinants explicitly controlling polar PIN sorting decisions have been identified. Here we present Arabidopsis WAVY GROWTH 3 (WAV3) and closely related RING-finger E3 ubiquitin ligases, whose loss-of-function mutants show a striking apical-to-basal polarity switch in PIN2 localization in root meristem cells. WAV3 E3 ligases function as essential determinants for PIN polarity, acting independently from PINOID/WAG-dependent PIN phosphorylation. They antagonize ectopic deposition of de novo synthesized PIN proteins already immediately following completion of cell division, presumably via preventing PIN sorting into basal, ARF GEF-mediated trafficking. Our findings reveal an involvement of E3 ligases in the selective targeting of apically localized PINs in higher plants. acknowledgement: We would like to thank Tatsuo Sakai, Marcus Heisler, Toru Fujiwara, Lucia Strader, Christian Hardtke, Malcolm Bennett, Claus Schwechheimer, Gerd Jürgens and Remko Offringa for sharing published materials and Alba Grau Gimeno for support. We are greatly indebted to Bert de Rybel for supporting N.K. and M.G. to work on the final stages of manuscript preparation as postdocs in his laboratory. A full-length SOR1 cDNA clone (J090099M14) was obtained from the National Agriculture and Food Research Organization (NARO, Japan). Support by the Multiscale Imaging Core Facility at the BOKU is greatly acknowledged. This work has been supported by grants from the Austrian Science Fund (FWF P25931-B16; P31493-B25 to Christian Luschnig; I3630-B25 to Jiří Friml; P30850-B32 to Barbara Korbei) and from the Swiss National Funds (31003A-165877/1 to Markus Geisler) and the European Union’s Horizon 2020 research and innovation program (Marie Skłodowska-Curie grant agreement No 885979 to Matouš Glanc). article_number: '5147' article_processing_charge: No article_type: original author: - first_name: N full_name: Konstantinova, N last_name: Konstantinova - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 - first_name: R full_name: Keshkeih, R last_name: Keshkeih - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: M full_name: Di Donato, M last_name: Di Donato - first_name: K full_name: Retzer, K last_name: Retzer - first_name: J full_name: Moulinier-Anzola, J last_name: Moulinier-Anzola - first_name: M full_name: Schwihla, M last_name: Schwihla - first_name: B full_name: Korbei, B last_name: Korbei - first_name: M full_name: Geisler, M last_name: Geisler - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: C full_name: Luschnig, C last_name: Luschnig citation: ama: Konstantinova N, Hörmayer L, Glanc M, et al. WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions. Nature Communications. 2022;13. doi:10.1038/s41467-022-32888-8 apa: Konstantinova, N., Hörmayer, L., Glanc, M., Keshkeih, R., Tan, S., Di Donato, M., … Luschnig, C. (2022). WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-32888-8 chicago: Konstantinova, N, Lukas Hörmayer, Matous Glanc, R Keshkeih, Shutang Tan, M Di Donato, K Retzer, et al. “WAVY GROWTH Arabidopsis E3 Ubiquitin Ligases Affect Apical PIN Sorting Decisions.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-32888-8. ieee: N. Konstantinova et al., “WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions,” Nature Communications, vol. 13. Springer Nature, 2022. ista: Konstantinova N, Hörmayer L, Glanc M, Keshkeih R, Tan S, Di Donato M, Retzer K, Moulinier-Anzola J, Schwihla M, Korbei B, Geisler M, Friml J, Luschnig C. 2022. WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions. Nature Communications. 13, 5147. mla: Konstantinova, N., et al. “WAVY GROWTH Arabidopsis E3 Ubiquitin Ligases Affect Apical PIN Sorting Decisions.” Nature Communications, vol. 13, 5147, Springer Nature, 2022, doi:10.1038/s41467-022-32888-8. short: N. Konstantinova, L. Hörmayer, M. Glanc, R. Keshkeih, S. Tan, M. Di Donato, K. Retzer, J. Moulinier-Anzola, M. Schwihla, B. Korbei, M. Geisler, J. Friml, C. Luschnig, Nature Communications 13 (2022). date_created: 2022-09-07T14:19:26Z date_published: 2022-09-01T00:00:00Z date_updated: 2023-08-03T13:40:32Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-022-32888-8 external_id: isi: - '000848744900004' pmid: - '36050482' file: - access_level: open_access checksum: 43336758c89cd6c045839089af070afe content_type: application/pdf creator: dernst date_created: 2022-09-08T07:46:16Z date_updated: 2022-09-08T07:46:16Z file_id: '12063' file_name: 2022_NatureCommunications_Konstantinova.pdf file_size: 6678579 relation: main_file success: 1 file_date_updated: 2022-09-08T07:46:16Z has_accepted_license: '1' intvolume: ' 13' isi: 1 language: - iso: eng month: '09' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1038/s41467-022-33198-9 status: public title: WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '12054' abstract: - lang: eng text: 'Polar auxin transport is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters exhibit highly asymmetrical localizations at the plasma membrane and drive polar auxin transport3,4; however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of Arabidopsis thaliana PIN1: the apo state, bound to the natural auxin indole-3-acetic acid (IAA), and in complex with the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of PIN1 shares a conserved NhaA fold5. In the substrate-bound structure, IAA is coordinated by both hydrophobic stacking and hydrogen bonding. NPA competes with IAA for the same site at the intracellular pocket, but with a much higher affinity. These findings inform our understanding of the substrate recognition and transport mechanisms of PINs and set up a framework for future research on directional auxin transport, one of the most crucial processes underlying plant development.' acknowledgement: We thank the Cryo-EM Center of the University of Science and Technology of China (USTC) and the Center for Biological Imaging (CBI), Institute of Biophysics, Chinese Academy of Science, for the EM facility support; we thank B. Zhu, X. Huang and all the other staff members for their technical support on cryo-EM data collection. We thank J. Ren for his technical support with the transport assays and M. Seeger for providing the sybody libraries. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB 37020204 to D.L. and XDB37020103 to Linfeng Sun), National Natural Science Foundation of China (82151215 and 31870726 to D.L., 31900885 to X.L., and 31870732 to Linfeng Sun), Natural Science Foundation of Anhui Province (2008085MC90 to X.L. and 2008085J15 to Linfeng Sun), the Fundamental Research Funds for the Central Universities (WK9100000031 to Linfeng Sun), and the USTC Research Funds of the Double First-Class Initiative (YD9100002004 to Linfeng Sun). Linfeng Sun is supported by an Outstanding Young Scholar Award from the Qiu Shi Science and Technologies Foundation, and a Young Scholar Award from the Cyrus Tang Foundation. article_processing_charge: No article_type: original author: - first_name: Z full_name: Yang, Z last_name: Yang - first_name: J full_name: Xia, J last_name: Xia - first_name: J full_name: Hong, J last_name: Hong - first_name: C full_name: Zhang, C last_name: Zhang - first_name: H full_name: Wei, H last_name: Wei - first_name: W full_name: Ying, W last_name: Ying - first_name: C full_name: Sun, C last_name: Sun - first_name: L full_name: Sun, L last_name: Sun - first_name: Y full_name: Mao, Y last_name: Mao - first_name: Y full_name: Gao, Y last_name: Gao - first_name: S full_name: Tan, S last_name: Tan - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: D full_name: Li, D last_name: Li - first_name: X full_name: Liu, X last_name: Liu - first_name: L full_name: Sun, L last_name: Sun citation: ama: Yang Z, Xia J, Hong J, et al. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature. 2022;609(7927):611-615. doi:10.1038/s41586-022-05143-9 apa: Yang, Z., Xia, J., Hong, J., Zhang, C., Wei, H., Ying, W., … Sun, L. (2022). Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature. Springer Nature. https://doi.org/10.1038/s41586-022-05143-9 chicago: Yang, Z, J Xia, J Hong, C Zhang, H Wei, W Ying, C Sun, et al. “Structural Insights into Auxin Recognition and Efflux by Arabidopsis PIN1.” Nature. Springer Nature, 2022. https://doi.org/10.1038/s41586-022-05143-9. ieee: Z. Yang et al., “Structural insights into auxin recognition and efflux by Arabidopsis PIN1,” Nature, vol. 609, no. 7927. Springer Nature, pp. 611–615, 2022. ista: Yang Z, Xia J, Hong J, Zhang C, Wei H, Ying W, Sun C, Sun L, Mao Y, Gao Y, Tan S, Friml J, Li D, Liu X, Sun L. 2022. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature. 609(7927), 611–615. mla: Yang, Z., et al. “Structural Insights into Auxin Recognition and Efflux by Arabidopsis PIN1.” Nature, vol. 609, no. 7927, Springer Nature, 2022, pp. 611–15, doi:10.1038/s41586-022-05143-9. short: Z. Yang, J. Xia, J. Hong, C. Zhang, H. Wei, W. Ying, C. Sun, L. Sun, Y. Mao, Y. Gao, S. Tan, J. Friml, D. Li, X. Liu, L. Sun, Nature 609 (2022) 611–615. date_created: 2022-09-07T14:19:52Z date_published: 2022-08-02T00:00:00Z date_updated: 2023-08-03T13:41:44Z day: '02' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41586-022-05143-9 external_id: isi: - '000848082900002' pmid: - '35917925' file: - access_level: open_access checksum: 3136a585f8e1c7e73b5e1418b3d01898 content_type: application/pdf creator: dernst date_created: 2022-09-08T08:02:54Z date_updated: 2022-09-08T08:02:54Z file_id: '12064' file_name: 2022_Nature_Yang.pdf file_size: 32344580 relation: main_file success: 1 file_date_updated: 2022-09-08T08:02:54Z has_accepted_license: '1' intvolume: ' 609' isi: 1 issue: '7927' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 611-615 pmid: 1 publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Structural insights into auxin recognition and efflux by Arabidopsis PIN1 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 609 year: '2022' ... --- _id: '12121' abstract: - lang: eng text: Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, autophagosome maturation, i.e., delivery and fusion with the vacuole, remains largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1’s function is evolutionarily conserved in plants, as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by bridging autophagosomes with the multivesicular body-localized ESCRT-I component VPS23A, leading to the formation of amphisomes. Similar to CFS1-ATG8 interaction, disrupting the CFS1-VPS23A interaction blocks autophagic flux and renders plants sensitive to nitrogen starvation. Altogether, our results reveal a conserved vacuolar sorting hub that regulates autophagic flux in plants. acknowledgement: "We thank Suayip Ustün, Karin Schumacher, Erika Isono, Gerd Juergens, Takashi Ueda, Daniel Hofius, and Liwen Jiang for sharing published materials.\r\nWe acknowledge funding from Austrian Academy of Sciences, Austrian Science Fund (FWF, P 32355, P 34944), Austrian Science Fund (FWF-SFB F79), Vienna Science and Technology\r\nFund (WWTF, LS17-047) to Y. Dagdas; Austrian Academy of Sciences DOC Fellowship to J. Zhao, Marie Curie VIP2 Fellowship to J.C. De La Concepcion and M. Clavel; Hong Kong Research Grant Council (GRF14121019, 14113921, AoE/M-05/12, C4002-17G) to B.-H. Kang. We thank Vienna Biocenter Core Facilities (VBCF) Protein Chemistry, Biooptics, Plant Sciences, Molecular Biology, and Protein Technologies. We thank J. Matthew Watson\r\nand members of the Dagdas lab for the critical reading and editing of the manuscript." article_number: e202203139 article_processing_charge: No article_type: original author: - first_name: Jierui full_name: Zhao, Jierui last_name: Zhao - first_name: Mai Thu full_name: Bui, Mai Thu last_name: Bui - first_name: Juncai full_name: Ma, Juncai last_name: Ma - first_name: Fabian full_name: Künzl, Fabian last_name: Künzl - first_name: Lorenzo full_name: Picchianti, Lorenzo last_name: Picchianti - first_name: Juan Carlos full_name: De La Concepcion, Juan Carlos last_name: De La Concepcion - first_name: Yixuan full_name: Chen, Yixuan last_name: Chen - first_name: Sofia full_name: Petsangouraki, Sofia last_name: Petsangouraki - first_name: Azadeh full_name: Mohseni, Azadeh last_name: Mohseni - first_name: Marta full_name: García-Leon, Marta last_name: García-Leon - first_name: Marta Salas full_name: Gomez, Marta Salas last_name: Gomez - first_name: Caterina full_name: Giannini, Caterina id: e3fdddd5-f6e0-11ea-865d-ca99ee6367f4 last_name: Giannini - first_name: Dubois full_name: Gwennogan, Dubois last_name: Gwennogan - first_name: Roksolana full_name: Kobylinska, Roksolana last_name: Kobylinska - first_name: Marion full_name: Clavel, Marion last_name: Clavel - first_name: Swen full_name: Schellmann, Swen last_name: Schellmann - first_name: Yvon full_name: Jaillais, Yvon last_name: Jaillais - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Byung-Ho full_name: Kang, Byung-Ho last_name: Kang - first_name: Yasin full_name: Dagdas, Yasin last_name: Dagdas citation: ama: Zhao J, Bui MT, Ma J, et al. Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. Journal of Cell Biology. 2022;221(12). doi:10.1083/jcb.202203139 apa: Zhao, J., Bui, M. T., Ma, J., Künzl, F., Picchianti, L., De La Concepcion, J. C., … Dagdas, Y. (2022). Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.202203139 chicago: Zhao, Jierui, Mai Thu Bui, Juncai Ma, Fabian Künzl, Lorenzo Picchianti, Juan Carlos De La Concepcion, Yixuan Chen, et al. “Plant Autophagosomes Mature into Amphisomes Prior to Their Delivery to the Central Vacuole.” Journal of Cell Biology. Rockefeller University Press, 2022. https://doi.org/10.1083/jcb.202203139. ieee: J. Zhao et al., “Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole,” Journal of Cell Biology, vol. 221, no. 12. Rockefeller University Press, 2022. ista: Zhao J, Bui MT, Ma J, Künzl F, Picchianti L, De La Concepcion JC, Chen Y, Petsangouraki S, Mohseni A, García-Leon M, Gomez MS, Giannini C, Gwennogan D, Kobylinska R, Clavel M, Schellmann S, Jaillais Y, Friml J, Kang B-H, Dagdas Y. 2022. Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. Journal of Cell Biology. 221(12), e202203139. mla: Zhao, Jierui, et al. “Plant Autophagosomes Mature into Amphisomes Prior to Their Delivery to the Central Vacuole.” Journal of Cell Biology, vol. 221, no. 12, e202203139, Rockefeller University Press, 2022, doi:10.1083/jcb.202203139. short: J. Zhao, M.T. Bui, J. Ma, F. Künzl, L. Picchianti, J.C. De La Concepcion, Y. Chen, S. Petsangouraki, A. Mohseni, M. García-Leon, M.S. Gomez, C. Giannini, D. Gwennogan, R. Kobylinska, M. Clavel, S. Schellmann, Y. Jaillais, J. Friml, B.-H. Kang, Y. Dagdas, Journal of Cell Biology 221 (2022). date_created: 2023-01-12T11:57:10Z date_published: 2022-12-01T00:00:00Z date_updated: 2023-08-03T14:20:15Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1083/jcb.202203139 external_id: isi: - '000932958800001' pmid: - '36260289' file: - access_level: open_access checksum: 050b5cc4b25e6b94fe3e3cbfe0f5c06b content_type: application/pdf creator: dernst date_created: 2023-01-23T10:30:11Z date_updated: 2023-01-23T10:30:11Z file_id: '12342' file_name: 2022_JCB_Zhao.pdf file_size: 10365777 relation: main_file success: 1 file_date_updated: 2023-01-23T10:30:11Z has_accepted_license: '1' intvolume: ' 221' isi: 1 issue: '12' keyword: - Cell Biology language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 publication: Journal of Cell Biology publication_identifier: eissn: - 1540-8140 issn: - 0021-9525 publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 221 year: '2022' ... --- _id: '12130' abstract: - lang: eng text: Germline determination is essential for species survival and evolution in multicellular organisms. In most flowering plants, formation of the female germline is initiated with specification of one megaspore mother cell (MMC) in each ovule; however, the molecular mechanism underlying this key event remains unclear. Here we report that spatially restricted auxin signaling promotes MMC fate in Arabidopsis. Our results show that the microRNA160 (miR160) targeted gene ARF17 (AUXIN RESPONSE FACTOR17) is required for promoting MMC specification by genetically interacting with the SPL/NZZ (SPOROCYTELESS/NOZZLE) gene. Alterations of auxin signaling cause formation of supernumerary MMCs in an ARF17- and SPL/NZZ-dependent manner. Furthermore, miR160 and ARF17 are indispensable for attaining a normal auxin maximum at the ovule apex via modulating the expression domain of PIN1 (PIN-FORMED1) auxin transporter. Our findings elucidate the mechanism by which auxin signaling promotes the acquisition of female germline cell fate in plants. acknowledgement: "We thank A. Cheung,W. Lukowitz, V.Walbot, D.Weijers, and R. Yadegari for critically reading the manuscript; E. Xiong and G. Zhang for preparing some experiments, T. Schuck, J. Gonnering, and P. Engevold for plant care, the Arabidopsis Biological Resource Center (ABRC) for ARF10,ARF16, ARF17, EMS1,MIR160a BAC clones and cDNAs, the SALK_090804 seed, T. Nakagawa for pGBW vectors, Y. Zhao for the YUC1 cDNA, Q. Chen for the pHEE401E vector, R. Yadegari for pAT5G01860::n1GFP, pAT5G45980:n1GFP, pAT5G50490::n1GFP, pAT5G56200:n1GFP vectors, and D.Weijers for the pGreenII KAN SV40-3×GFP and R2D2 vectors, W. Yang for the splmutant, Y. Qin for the pKNU::KNU-VENUS vector and seed, G. Tang for the STTM160/160-48 vector, and L. Colombo for pPIN1::PIN1-GFP spl and pin1-5 seeds. This work was supported by the US National Science Foundation (NSF)-Israel Binational Science Foundation (BSF) research grant to D.Z. (IOS-1322796) and T.A. (2012756). D.Z. also\r\ngratefully acknowledges supports of the Shaw Scientist Award from the Greater Milwaukee Foundation, USDA National Institute of Food and Agriculture (NIFA, 2022-67013-36294), the UWM Discovery and Innovation Grant, the Bradley Catalyst Award from the UWM Research\r\nFoundation, and WiSys and UW System Applied Research Funding Programs." article_number: '6960' article_processing_charge: No article_type: original author: - first_name: Jian full_name: Huang, Jian last_name: Huang - first_name: Lei full_name: Zhao, Lei last_name: Zhao - first_name: Shikha full_name: Malik, Shikha last_name: Malik - first_name: Benjamin R. full_name: Gentile, Benjamin R. last_name: Gentile - first_name: Va full_name: Xiong, Va last_name: Xiong - first_name: Tzahi full_name: Arazi, Tzahi last_name: Arazi - first_name: Heather A. full_name: Owen, Heather A. last_name: Owen - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Dazhong full_name: Zhao, Dazhong last_name: Zhao citation: ama: Huang J, Zhao L, Malik S, et al. Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nature Communications. 2022;13. doi:10.1038/s41467-022-34723-6 apa: Huang, J., Zhao, L., Malik, S., Gentile, B. R., Xiong, V., Arazi, T., … Zhao, D. (2022). Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-022-34723-6 chicago: Huang, Jian, Lei Zhao, Shikha Malik, Benjamin R. Gentile, Va Xiong, Tzahi Arazi, Heather A. Owen, Jiří Friml, and Dazhong Zhao. “Specification of Female Germline by MicroRNA Orchestrated Auxin Signaling in Arabidopsis.” Nature Communications. Springer Nature, 2022. https://doi.org/10.1038/s41467-022-34723-6. ieee: J. Huang et al., “Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis,” Nature Communications, vol. 13. Springer Nature, 2022. ista: Huang J, Zhao L, Malik S, Gentile BR, Xiong V, Arazi T, Owen HA, Friml J, Zhao D. 2022. Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nature Communications. 13, 6960. mla: Huang, Jian, et al. “Specification of Female Germline by MicroRNA Orchestrated Auxin Signaling in Arabidopsis.” Nature Communications, vol. 13, 6960, Springer Nature, 2022, doi:10.1038/s41467-022-34723-6. short: J. Huang, L. Zhao, S. Malik, B.R. Gentile, V. Xiong, T. Arazi, H.A. Owen, J. Friml, D. Zhao, Nature Communications 13 (2022). date_created: 2023-01-12T12:02:41Z date_published: 2022-11-15T00:00:00Z date_updated: 2023-08-04T08:52:01Z day: '15' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-022-34723-6 external_id: isi: - '000884426700001' pmid: - '36379956' file: - access_level: open_access checksum: 233922a7b9507d9d48591e6799e4526e content_type: application/pdf creator: dernst date_created: 2023-01-23T11:17:33Z date_updated: 2023-01-23T11:17:33Z file_id: '12346' file_name: 2022_NatureCommunications_Huang.pdf file_size: 3375249 relation: main_file success: 1 file_date_updated: 2023-01-23T11:17:33Z has_accepted_license: '1' intvolume: ' 13' isi: 1 keyword: - General Physics and Astronomy - General Biochemistry - Genetics and Molecular Biology - General Chemistry - Multidisciplinary language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 13 year: '2022' ... --- _id: '12239' abstract: - lang: eng text: Biological systems are the sum of their dynamic three-dimensional (3D) parts. Therefore, it is critical to study biological structures in 3D and at high resolution to gain insights into their physiological functions. Electron microscopy of metal replicas of unroofed cells and isolated organelles has been a key technique to visualize intracellular structures at nanometer resolution. However, many of these methods require specialized equipment and personnel to complete them. Here, we present novel accessible methods to analyze biological structures in unroofed cells and biochemically isolated organelles in 3D and at nanometer resolution, focusing on Arabidopsis clathrin-coated vesicles (CCVs). While CCVs are essential trafficking organelles, their detailed structural information is lacking due to their poor preservation when observed via classical electron microscopy protocols experiments. First, we establish a method to visualize CCVs in unroofed cells using scanning transmission electron microscopy tomography, providing sufficient resolution to define the clathrin coat arrangements. Critically, the samples are prepared directly on electron microscopy grids, removing the requirement to use extremely corrosive acids, thereby enabling the use of this method in any electron microscopy lab. Secondly, we demonstrate that this standardized sample preparation allows the direct comparison of isolated CCV samples with those visualized in cells. Finally, to facilitate the high-throughput and robust screening of metal replicated samples, we provide a deep learning analysis method to screen the “pseudo 3D” morphologies of CCVs imaged with 2D modalities. Collectively, our work establishes accessible ways to examine the 3D structure of biological samples and provide novel insights into the structure of plant CCVs. acknowledged_ssus: - _id: EM-Fac - _id: LifeSc - _id: Bio acknowledgement: A.J. is supported by funding from the Austrian Science Fund I3630B25 (to J.F.). This research was supported by the Scientific Service Units of Institute of Science and Technology Austria (ISTA) through resources provided by the Electron Microscopy Facility, Lab Support Facility, and the Imaging and Optics Facility. We acknowledge Prof. David Robinson (Heidelberg) and Prof. Jan Traas (Lyon) for making us aware of previously published classical on-grid preparation methods. No conflict of interest declared. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Christoph M full_name: Sommer, Christoph M id: 4DF26D8C-F248-11E8-B48F-1D18A9856A87 last_name: Sommer orcid: 0000-0003-1216-9105 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Dana A. full_name: Dahhan, Dana A. last_name: Dahhan - first_name: Sebastian Y. full_name: Bednarek, Sebastian Y. last_name: Bednarek - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Johnson AJ, Kaufmann W, Sommer CM, et al. Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. 2022;15(10):1533-1542. doi:10.1016/j.molp.2022.09.003 apa: Johnson, A. J., Kaufmann, W., Sommer, C. M., Costanzo, T., Dahhan, D. A., Bednarek, S. Y., & Friml, J. (2022). Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2022.09.003 chicago: Johnson, Alexander J, Walter Kaufmann, Christoph M Sommer, Tommaso Costanzo, Dana A. Dahhan, Sebastian Y. Bednarek, and Jiří Friml. “Three-Dimensional Visualization of Planta Clathrin-Coated Vesicles at Ultrastructural Resolution.” Molecular Plant. Elsevier, 2022. https://doi.org/10.1016/j.molp.2022.09.003. ieee: A. J. Johnson et al., “Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution,” Molecular Plant, vol. 15, no. 10. Elsevier, pp. 1533–1542, 2022. ista: Johnson AJ, Kaufmann W, Sommer CM, Costanzo T, Dahhan DA, Bednarek SY, Friml J. 2022. Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution. Molecular Plant. 15(10), 1533–1542. mla: Johnson, Alexander J., et al. “Three-Dimensional Visualization of Planta Clathrin-Coated Vesicles at Ultrastructural Resolution.” Molecular Plant, vol. 15, no. 10, Elsevier, 2022, pp. 1533–42, doi:10.1016/j.molp.2022.09.003. short: A.J. Johnson, W. Kaufmann, C.M. Sommer, T. Costanzo, D.A. Dahhan, S.Y. Bednarek, J. Friml, Molecular Plant 15 (2022) 1533–1542. date_created: 2023-01-16T09:51:49Z date_published: 2022-10-03T00:00:00Z date_updated: 2023-08-04T09:39:24Z day: '03' ddc: - '580' department: - _id: JiFr - _id: EM-Fac - _id: Bio doi: 10.1016/j.molp.2022.09.003 external_id: isi: - '000882769800009' pmid: - '36081349' file: - access_level: open_access checksum: 04d5c12490052d03e4dc4412338a43dd content_type: application/pdf creator: dernst date_created: 2023-01-30T07:46:51Z date_updated: 2023-01-30T07:46:51Z file_id: '12435' file_name: 2022_MolecularPlant_Johnson.pdf file_size: 2307251 relation: main_file success: 1 file_date_updated: 2023-01-30T07:46:51Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '10' keyword: - Plant Science - Molecular Biology language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 1533-1542 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Molecular Plant publication_identifier: issn: - 1674-2052 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Three-dimensional visualization of planta clathrin-coated vesicles at ultrastructural resolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 15 year: '2022' ... --- _id: '11489' abstract: - lang: eng text: Much of plant development depends on cell-to-cell redistribution of the plant hormone auxin, which is facilitated by the plasma membrane (PM) localized PIN FORMED (PIN) proteins. Auxin export activity, developmental roles, subcellular trafficking, and polarity of PINs have been well studied, but their structure remains elusive besides a rough outline that they contain two groups of 5 alpha-helices connected by a large hydrophilic loop (HL). Here, we focus on the PIN1 HL as we could produce it in sufficient quantities for biochemical investigations to provide insights into its secondary structure. Circular dichroism (CD) studies revealed its nature as an intrinsically disordered protein (IDP), manifested by the increase of structure content upon thermal melting. Consistent with IDPs serving as interaction platforms, PIN1 loops homodimerize. PIN1 HL cytoplasmic overexpression in Arabidopsis disrupts early endocytic trafficking of PIN1 and PIN2 and causes defects in the cotyledon vasculature formation. In summary, we demonstrate that PIN1 HL has an intrinsically disordered nature, which must be considered to gain further structural insights. Some secondary structures may form transiently during pairing with known and yet-to-be-discovered interactors. acknowledgement: 'We thank Charo del Genio from Coventry University and Richard Napier from the University of Warwick for helpful discussion concerning protein modeling and inspiration concerning CD spectroscopy, respectively. We thank Jan Hejatko for sharing the published AHP2 construct. We also thank Josef Houser from the core facility BIC CEITEC for valuable assistance, discussions, and ideas relating to CD. We acknowledge the: Core Facility CELLIM of CEITEC supported by the Czech-BioImaging large RI project (LM2018129 funded by MEYS CR), part of the Euro-BioImaging (www.eurobioimaging.eu accessed on 1 January 2016) ALM and medical imaging Node (Brno, CZ), CF Biomolecular Interactions and Crystallization of CIISB, Instruct-CZ Centre, supported by MEYS CR (LM2018127) and European Regional Development Fund-Project “UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974) for their support with obtaining scientific data presented in this paper; Plant Sciences Core Facility of CEITEC Masaryk University for technical support. Open Access Funding by the Austrian Science Fund (FWF).' article_processing_charge: Yes article_type: original author: - first_name: V full_name: Bilanovičová, V last_name: Bilanovičová - first_name: N full_name: Rýdza, N last_name: Rýdza - first_name: L full_name: Koczka, L last_name: Koczka - first_name: M full_name: Hess, M last_name: Hess - first_name: E full_name: Feraru, E last_name: Feraru - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: T full_name: Nodzyński, T last_name: Nodzyński citation: ama: Bilanovičová V, Rýdza N, Koczka L, et al. The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein. International Journal of Molecular Sciences. 2022;23(11):6352. doi:10.3390/ijms23116352 apa: Bilanovičová, V., Rýdza, N., Koczka, L., Hess, M., Feraru, E., Friml, J., & Nodzyński, T. (2022). The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms23116352 chicago: Bilanovičová, V, N Rýdza, L Koczka, M Hess, E Feraru, Jiří Friml, and T Nodzyński. “The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein.” International Journal of Molecular Sciences. MDPI, 2022. https://doi.org/10.3390/ijms23116352. ieee: V. Bilanovičová et al., “The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein,” International Journal of Molecular Sciences, vol. 23, no. 11. MDPI, p. 6352, 2022. ista: Bilanovičová V, Rýdza N, Koczka L, Hess M, Feraru E, Friml J, Nodzyński T. 2022. The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein. International Journal of Molecular Sciences. 23(11), 6352. mla: Bilanovičová, V., et al. “The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein.” International Journal of Molecular Sciences, vol. 23, no. 11, MDPI, 2022, p. 6352, doi:10.3390/ijms23116352. short: V. Bilanovičová, N. Rýdza, L. Koczka, M. Hess, E. Feraru, J. Friml, T. Nodzyński, International Journal of Molecular Sciences 23 (2022) 6352. date_created: 2022-07-05T15:14:34Z date_published: 2022-06-06T00:00:00Z date_updated: 2023-08-09T10:13:57Z day: '06' ddc: - '570' department: - _id: JiFr doi: 10.3390/ijms23116352 external_id: isi: - '000808733300001' pmid: - '35683031' file: - access_level: open_access checksum: e997a57a928ec9d51fad8ce824a05935 content_type: application/pdf creator: cchlebak date_created: 2022-07-06T07:36:59Z date_updated: 2022-07-06T07:36:59Z file_id: '11492' file_name: 2022_IntJMolSci_Bilanovicova.pdf file_size: 2324542 relation: main_file success: 1 file_date_updated: 2022-07-06T07:36:59Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '11' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: '6352' pmid: 1 project: - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: International Journal of Molecular Sciences publication_identifier: issn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: The hydrophilic loop of Arabidopsis PIN1 auxin efflux carrier harbors hallmarks of an intrinsically disordered protein tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 23 year: '2022' ... --- _id: '12144' abstract: - lang: eng text: The phytohormone auxin is the major coordinative signal in plant development1, mediating transcriptional reprogramming by a well-established canonical signalling pathway. TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB) auxin receptors are F-box subunits of ubiquitin ligase complexes. In response to auxin, they associate with Aux/IAA transcriptional repressors and target them for degradation via ubiquitination2,3. Here we identify adenylate cyclase (AC) activity as an additional function of TIR1/AFB receptors across land plants. Auxin, together with Aux/IAAs, stimulates cAMP production. Three separate mutations in the AC motif of the TIR1 C-terminal region, all of which abolish the AC activity, each render TIR1 ineffective in mediating gravitropism and sustained auxin-induced root growth inhibition, and also affect auxin-induced transcriptional regulation. These results highlight the importance of TIR1/AFB AC activity in canonical auxin signalling. They also identify a unique phytohormone receptor cassette combining F-box and AC motifs, and the role of cAMP as a second messenger in plants. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: This research was supported by the Lab Support Facility (LSF) and the Imaging and Optics Facility (IOF) of IST Austria. We thank C. Gehring for suggestions and advice; and K. U. Torii and G. Stacey for seeds and plasmids. This project was funded by a European Research Council Advanced Grant (ETAP-742985). M.F.K. and R.N. acknowledge the support of the EU MSCA-IF project CrysPINs (792329). M.K. was supported by the project POWR.03.05.00-00-Z302/17 Universitas Copernicana Thoruniensis in Futuro–IDS “Academia Copernicana”. CIDG acknowledges support from UKRI under Future Leaders Fellowship grant number MR/T020652/1. article_processing_charge: No article_type: original author: - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: Mateusz full_name: Kwiatkowski, Mateusz last_name: Kwiatkowski - first_name: Huihuang full_name: Chen, Huihuang id: 83c96512-15b2-11ec-abd3-b7eede36184f last_name: Chen - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer orcid: 0000-0001-8295-2926 - first_name: Scott A full_name: Sinclair, Scott A id: 2D99FE6A-F248-11E8-B48F-1D18A9856A87 last_name: Sinclair orcid: 0000-0002-4566-0593 - first_name: Minxia full_name: Zou, Minxia id: 5c243f41-03f3-11ec-841c-96faf48a7ef9 last_name: Zou - first_name: Charo I. full_name: del Genio, Charo I. last_name: del Genio - first_name: Martin F. full_name: Kubeš, Martin F. last_name: Kubeš - first_name: Richard full_name: Napier, Richard last_name: Napier - first_name: Krzysztof full_name: Jaworski, Krzysztof last_name: Jaworski - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Qi L, Kwiatkowski M, Chen H, et al. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 2022;611(7934):133-138. doi:10.1038/s41586-022-05369-7 apa: Qi, L., Kwiatkowski, M., Chen, H., Hörmayer, L., Sinclair, S. A., Zou, M., … Friml, J. (2022). Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. Springer Nature. https://doi.org/10.1038/s41586-022-05369-7 chicago: Qi, Linlin, Mateusz Kwiatkowski, Huihuang Chen, Lukas Hörmayer, Scott A Sinclair, Minxia Zou, Charo I. del Genio, et al. “Adenylate Cyclase Activity of TIR1/AFB Auxin Receptors in Plants.” Nature. Springer Nature, 2022. https://doi.org/10.1038/s41586-022-05369-7. ieee: L. Qi et al., “Adenylate cyclase activity of TIR1/AFB auxin receptors in plants,” Nature, vol. 611, no. 7934. Springer Nature, pp. 133–138, 2022. ista: Qi L, Kwiatkowski M, Chen H, Hörmayer L, Sinclair SA, Zou M, del Genio CI, Kubeš MF, Napier R, Jaworski K, Friml J. 2022. Adenylate cyclase activity of TIR1/AFB auxin receptors in plants. Nature. 611(7934), 133–138. mla: Qi, Linlin, et al. “Adenylate Cyclase Activity of TIR1/AFB Auxin Receptors in Plants.” Nature, vol. 611, no. 7934, Springer Nature, 2022, pp. 133–38, doi:10.1038/s41586-022-05369-7. short: L. Qi, M. Kwiatkowski, H. Chen, L. Hörmayer, S.A. Sinclair, M. Zou, C.I. del Genio, M.F. Kubeš, R. Napier, K. Jaworski, J. Friml, Nature 611 (2022) 133–138. date_created: 2023-01-12T12:06:05Z date_published: 2022-11-03T00:00:00Z date_updated: 2023-10-03T11:04:53Z day: '03' department: - _id: JiFr doi: 10.1038/s41586-022-05369-7 ec_funded: 1 external_id: isi: - '000875061600013' pmid: - '36289340' intvolume: ' 611' isi: 1 issue: '7934' language: - iso: eng main_file_link: - open_access: '1' url: http://wrap.warwick.ac.uk/168325/1/WRAP-denylate-cyclase-activity-TIR1-AFB-auxin-receptors-root-growth-22.pdf month: '11' oa: 1 oa_version: Submitted Version page: 133-138 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Adenylate cyclase activity of TIR1/AFB auxin receptors in plants type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 611 year: '2022' ... --- _id: '12120' abstract: - lang: eng text: Plant root architecture flexibly adapts to changing nitrate (NO3−) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3−-mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3− in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3− availability. Under low-NO3− availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth. acknowledgement: The authors are grateful to Jörg Kudla, Ying Miao, Yu Zheng, Gang Li, and Jun Zheng for providing published materials and to Wenkun Zhou and Caifu Jiang for helpful discussions. This work was supported by grants from the National Key Research and Development Program of China (2021YFF1000500), the National Natural Science Foundation of China (32170265 and 32022007), the Beijing Municipal Natural Science Foundation (5192011), and the Chinese Universities Scientific Fund (2022TC153). article_processing_charge: No article_type: original author: - first_name: Huixin full_name: Xiao, Huixin last_name: Xiao - first_name: Yumei full_name: Hu, Yumei last_name: Hu - first_name: Yaping full_name: Wang, Yaping last_name: Wang - first_name: Jinkui full_name: Cheng, Jinkui last_name: Cheng - first_name: Jinyi full_name: Wang, Jinyi last_name: Wang - first_name: Guojingwei full_name: Chen, Guojingwei last_name: Chen - first_name: Qian full_name: Li, Qian last_name: Li - first_name: Shuwei full_name: Wang, Shuwei last_name: Wang - first_name: Yalu full_name: Wang, Yalu last_name: Wang - first_name: Shao-Shuai full_name: Wang, Shao-Shuai last_name: Wang - first_name: Yi full_name: Wang, Yi last_name: Wang - first_name: Wei full_name: Xuan, Wei last_name: Xuan - first_name: Zhen full_name: Li, Zhen last_name: Li - first_name: Yan full_name: Guo, Yan last_name: Guo - first_name: Zhizhong full_name: Gong, Zhizhong last_name: Gong - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jing full_name: Zhang, Jing last_name: Zhang citation: ama: Xiao H, Hu Y, Wang Y, et al. Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Developmental Cell. 2022;57(23):2638-2651.e6. doi:10.1016/j.devcel.2022.11.006 apa: Xiao, H., Hu, Y., Wang, Y., Cheng, J., Wang, J., Chen, G., … Zhang, J. (2022). Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2022.11.006 chicago: Xiao, Huixin, Yumei Hu, Yaping Wang, Jinkui Cheng, Jinyi Wang, Guojingwei Chen, Qian Li, et al. “Nitrate Availability Controls Translocation of the Transcription Factor NAC075 for Cell-Type-Specific Reprogramming of Root Growth.” Developmental Cell. Elsevier, 2022. https://doi.org/10.1016/j.devcel.2022.11.006. ieee: H. Xiao et al., “Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth,” Developmental Cell, vol. 57, no. 23. Elsevier, p. 2638–2651.e6, 2022. ista: Xiao H, Hu Y, Wang Y, Cheng J, Wang J, Chen G, Li Q, Wang S, Wang Y, Wang S-S, Wang Y, Xuan W, Li Z, Guo Y, Gong Z, Friml J, Zhang J. 2022. Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Developmental Cell. 57(23), 2638–2651.e6. mla: Xiao, Huixin, et al. “Nitrate Availability Controls Translocation of the Transcription Factor NAC075 for Cell-Type-Specific Reprogramming of Root Growth.” Developmental Cell, vol. 57, no. 23, Elsevier, 2022, p. 2638–2651.e6, doi:10.1016/j.devcel.2022.11.006. short: H. Xiao, Y. Hu, Y. Wang, J. Cheng, J. Wang, G. Chen, Q. Li, S. Wang, Y. Wang, S.-S. Wang, Y. Wang, W. Xuan, Z. Li, Y. Guo, Z. Gong, J. Friml, J. Zhang, Developmental Cell 57 (2022) 2638–2651.e6. date_created: 2023-01-12T11:57:00Z date_published: 2022-12-05T00:00:00Z date_updated: 2023-10-04T08:23:20Z day: '05' department: - _id: JiFr doi: 10.1016/j.devcel.2022.11.006 external_id: isi: - '000919603800005' pmid: - '36473460' intvolume: ' 57' isi: 1 issue: '23' keyword: - Developmental Biology - Cell Biology - General Biochemistry - Genetics and Molecular Biology - Molecular Biology language: - iso: eng month: '12' oa_version: None page: 2638-2651.e6 pmid: 1 publication: Developmental Cell publication_identifier: issn: - 1534-5807 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 57 year: '2022' ... --- _id: '12291' abstract: - lang: eng text: The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1,2,3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization. acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: LifeSc acknowledgement: We acknowledge K. Kubiasová for excellent technical assistance, J. Neuhold, A. Lehner and A. Sedivy for technical assistance with protein production and purification at Vienna Biocenter Core Facilities; Creoptix for performing GCI; and the Bioimaging, Electron Microscopy and Life Science Facilities at ISTA, the Plant Sciences Core Facility of CEITEC Masaryk University, the Core Facility CELLIM (MEYS CR, LM2018129 Czech-BioImaging) and J. Sprakel for their assistance. J.F. is grateful to R. Napier for many insightful suggestions and support. We thank all past and present members of the Friml group for their support and for other contributions to this effort to clarify the controversial role of ABP1 over the past seven years. The project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 742985 to J.F. and 833867 to D.W.); the Austrian Science Fund (FWF; P29988 to J.F.); the Netherlands Organization for Scientific Research (NWO; VICI grant 865.14.001 to D.W. and VENI grant VI.Veni.212.003 to A.K.); the Ministry of Education, Science and Technological Development of the Republic of Serbia (contract no. 451-03-68/2022-14/200053 to B.D.Ž.); and the MEXT/JSPS KAKENHI to K.T. (20K06685) and T.K. (20H05687 and 20H05910). article_processing_charge: No article_type: original author: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Zuzana full_name: Gelová, Zuzana id: 0AE74790-0E0B-11E9-ABC7-1ACFE5697425 last_name: Gelová orcid: 0000-0003-4783-1752 - first_name: Alexander J full_name: Johnson, Alexander J id: 46A62C3A-F248-11E8-B48F-1D18A9856A87 last_name: Johnson orcid: 0000-0002-2739-8843 - first_name: Ewa full_name: Mazur, Ewa last_name: Mazur - first_name: Aline full_name: Monzer, Aline id: 2DB5D88C-D7B3-11E9-B8FD-7907E6697425 last_name: Monzer - first_name: Lesia full_name: Rodriguez Solovey, Lesia id: 3922B506-F248-11E8-B48F-1D18A9856A87 last_name: Rodriguez Solovey orcid: 0000-0002-7244-7237 - first_name: Mark full_name: Roosjen, Mark last_name: Roosjen - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Branka D. full_name: Živanović, Branka D. last_name: Živanović - first_name: Minxia full_name: Zou, Minxia id: 5c243f41-03f3-11ec-841c-96faf48a7ef9 last_name: Zou - first_name: Lukas full_name: Fiedler, Lukas id: 7c417475-8972-11ed-ae7b-8b674ca26986 last_name: Fiedler - first_name: Caterina full_name: Giannini, Caterina id: e3fdddd5-f6e0-11ea-865d-ca99ee6367f4 last_name: Giannini - first_name: Peter full_name: Grones, Peter last_name: Grones - first_name: Mónika full_name: Hrtyan, Mónika id: 45A71A74-F248-11E8-B48F-1D18A9856A87 last_name: Hrtyan - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Andre full_name: Kuhn, Andre last_name: Kuhn - first_name: Madhumitha full_name: Narasimhan, Madhumitha id: 44BF24D0-F248-11E8-B48F-1D18A9856A87 last_name: Narasimhan orcid: 0000-0002-8600-0671 - first_name: Marek full_name: Randuch, Marek id: 6ac4636d-15b2-11ec-abd3-fb8df79972ae last_name: Randuch - first_name: Nikola full_name: Rýdza, Nikola last_name: Rýdza - first_name: Koji full_name: Takahashi, Koji last_name: Takahashi - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Anastasiia full_name: Teplova, Anastasiia id: e3736151-106c-11ec-b916-c2558e2762c6 last_name: Teplova - first_name: Toshinori full_name: Kinoshita, Toshinori last_name: Kinoshita - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Hana full_name: Rakusová, Hana last_name: Rakusová citation: ama: Friml J, Gallei MC, Gelová Z, et al. ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature. 2022;609(7927):575-581. doi:10.1038/s41586-022-05187-x apa: Friml, J., Gallei, M. C., Gelová, Z., Johnson, A. J., Mazur, E., Monzer, A., … Rakusová, H. (2022). ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature. Springer Nature. https://doi.org/10.1038/s41586-022-05187-x chicago: Friml, Jiří, Michelle C Gallei, Zuzana Gelová, Alexander J Johnson, Ewa Mazur, Aline Monzer, Lesia Rodriguez Solovey, et al. “ABP1–TMK Auxin Perception for Global Phosphorylation and Auxin Canalization.” Nature. Springer Nature, 2022. https://doi.org/10.1038/s41586-022-05187-x. ieee: J. Friml et al., “ABP1–TMK auxin perception for global phosphorylation and auxin canalization,” Nature, vol. 609, no. 7927. Springer Nature, pp. 575–581, 2022. ista: Friml J, Gallei MC, Gelová Z, Johnson AJ, Mazur E, Monzer A, Rodriguez Solovey L, Roosjen M, Verstraeten I, Živanović BD, Zou M, Fiedler L, Giannini C, Grones P, Hrtyan M, Kaufmann W, Kuhn A, Narasimhan M, Randuch M, Rýdza N, Takahashi K, Tan S, Teplova A, Kinoshita T, Weijers D, Rakusová H. 2022. ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature. 609(7927), 575–581. mla: Friml, Jiří, et al. “ABP1–TMK Auxin Perception for Global Phosphorylation and Auxin Canalization.” Nature, vol. 609, no. 7927, Springer Nature, 2022, pp. 575–81, doi:10.1038/s41586-022-05187-x. short: J. Friml, M.C. Gallei, Z. Gelová, A.J. Johnson, E. Mazur, A. Monzer, L. Rodriguez Solovey, M. Roosjen, I. Verstraeten, B.D. Živanović, M. Zou, L. Fiedler, C. Giannini, P. Grones, M. Hrtyan, W. Kaufmann, A. Kuhn, M. Narasimhan, M. Randuch, N. Rýdza, K. Takahashi, S. Tan, A. Teplova, T. Kinoshita, D. Weijers, H. Rakusová, Nature 609 (2022) 575–581. date_created: 2023-01-16T10:04:48Z date_published: 2022-09-15T00:00:00Z date_updated: 2023-11-07T08:16:09Z day: '15' ddc: - '580' department: - _id: JiFr - _id: GradSch - _id: EvBe - _id: EM-Fac doi: 10.1038/s41586-022-05187-x ec_funded: 1 external_id: isi: - '000851357500002' pmid: - '36071161' file: - access_level: open_access checksum: a6055c606aefb900bf62ae3e7d15f921 content_type: application/pdf creator: amally date_created: 2023-11-02T17:12:37Z date_updated: 2023-11-02T17:12:37Z file_id: '14483' file_name: Friml Nature 2022_merged.pdf file_size: 79774945 relation: main_file success: 1 file_date_updated: 2023-11-02T17:12:37Z has_accepted_license: '1' intvolume: ' 609' isi: 1 issue: '7927' language: - iso: eng month: '09' oa: 1 oa_version: Submitted Version page: 575-581 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 262EF96E-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29988 name: RNA-directed DNA methylation in plant development publication: Nature publication_identifier: eissn: - 1476-4687 issn: - 0028-0836 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: ABP1–TMK auxin perception for global phosphorylation and auxin canalization type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 609 year: '2022' ... --- _id: '11626' abstract: - lang: eng text: Plant growth and development is well known to be both, flexible and dynamic. The high capacity for post-embryonic organ formation and tissue regeneration requires tightly regulated intercellular communication and coordinated tissue polarization. One of the most important drivers for patterning and polarity in plant development is the phytohormone auxin. Auxin has the unique characteristic to establish polarized channels for its own active directional cell to cell transport. This fascinating phenomenon is called auxin canalization. Those auxin transport channels are characterized by the expression and polar, subcellular localization of PIN auxin efflux carriers. PIN proteins have the ability to dynamically change their localization and auxin itself can affect this by interfering with trafficking. Most of the underlying molecular mechanisms of canalization still remain enigmatic. What is known so far is that canonical auxin signaling is indispensable but also other non-canonical signaling components are thought to play a role. In order to shed light into the mysteries auf auxin canalization this study revisits the branches of auxin signaling in detail. Further a new auxin analogue, PISA, is developed which triggers auxin-like responses but does not directly activate canonical transcriptional auxin signaling. We revisit the direct auxin effect on PIN trafficking where we found that, contradictory to previous observations, auxin is very specifically promoting endocytosis of PIN2 but has no overall effect on endocytosis. Further, we evaluate which cellular processes related to PIN subcellular dynamics are involved in the establishment of auxin conducting channels and the formation of vascular tissue. We are re-evaluating the function of AUXIN BINDING PROTEIN 1 (ABP1) and provide a comprehensive picture about its developmental phneotypes and involvement in auxin signaling and canalization. Lastly, we are focusing on the crosstalk between the hormone strigolactone (SL) and auxin and found that SL is interfering with essentially all processes involved in auxin canalization in a non-transcriptional manner. Lastly we identify a new way of SL perception and signaling which is emanating from mitochondria, is independent of canonical SL signaling and is modulating primary root growth. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 citation: ama: Gallei MC. Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana. 2022. doi:10.15479/at:ista:11626 apa: Gallei, M. C. (2022). Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:11626 chicago: Gallei, Michelle C. “Auxin and Strigolactone Non-Canonical Signaling Regulating Development in Arabidopsis Thaliana.” Institute of Science and Technology Austria, 2022. https://doi.org/10.15479/at:ista:11626. ieee: M. C. Gallei, “Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana,” Institute of Science and Technology Austria, 2022. ista: Gallei MC. 2022. Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana. Institute of Science and Technology Austria. mla: Gallei, Michelle C. Auxin and Strigolactone Non-Canonical Signaling Regulating Development in Arabidopsis Thaliana. Institute of Science and Technology Austria, 2022, doi:10.15479/at:ista:11626. short: M.C. Gallei, Auxin and Strigolactone Non-Canonical Signaling Regulating Development in Arabidopsis Thaliana, Institute of Science and Technology Austria, 2022. date_created: 2022-07-20T11:21:53Z date_published: 2022-07-20T00:00:00Z date_updated: 2023-11-07T08:20:13Z day: '20' ddc: - '575' degree_awarded: PhD department: - _id: GradSch - _id: JiFr doi: 10.15479/at:ista:11626 ec_funded: 1 file: - access_level: open_access checksum: bd7ac35403cf5b4b2607287d2a104b3a content_type: application/pdf creator: mgallei date_created: 2022-07-25T09:08:47Z date_updated: 2022-07-25T09:08:47Z file_id: '11645' file_name: Thesis_Gallei.pdf file_size: 9730864 relation: main_file - access_level: closed checksum: a9e54fe5471ba25dc13c2150c1b8ccbb content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: mgallei date_created: 2022-07-25T09:09:09Z date_updated: 2022-07-25T09:39:58Z file_id: '11646' file_name: Thesis_Gallei_source.docx file_size: 19560720 relation: source_file - access_level: closed checksum: 3994f7f20058941b5bb8a16886b21e71 content_type: application/pdf creator: mgallei date_created: 2022-07-25T09:09:32Z date_updated: 2022-07-25T09:39:58Z description: This is the print version of the thesis including the full appendix file_id: '11647' file_name: Thesis_Gallei_to_print.pdf file_size: 24542837 relation: source_file - access_level: open_access checksum: f24acd3c0d864f4c6676e8b0d7bfa76b content_type: application/pdf creator: mgallei date_created: 2022-07-25T11:48:45Z date_updated: 2022-07-25T11:48:45Z file_id: '11650' file_name: Thesis_Gallei_Appendix.pdf file_size: 15435966 relation: main_file file_date_updated: 2022-07-25T11:48:45Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '248' project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication_identifier: isbn: - 978-3-99078-019-0 issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '8931' relation: part_of_dissertation status: public - id: '9287' relation: part_of_dissertation status: public - id: '7142' relation: part_of_dissertation status: public - id: '7465' relation: part_of_dissertation status: public - id: '8138' relation: part_of_dissertation status: public - id: '6260' relation: part_of_dissertation status: public - id: '10411' relation: part_of_dissertation status: public status: public supervisor: - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Eilon full_name: Shani, Eilon last_name: Shani title: Auxin and strigolactone non-canonical signaling regulating development in Arabidopsis thaliana type: dissertation user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 year: '2022' ... --- _id: '10411' abstract: - lang: eng text: The phytohormone auxin is the major growth regulator governing tropic responses including gravitropism. Auxin build-up at the lower side of stimulated shoots promotes cell expansion, whereas in roots it inhibits growth, leading to upward shoot bending and downward root bending, respectively. Yet it remains an enigma how the same signal can trigger such opposite cellular responses. In this review, we discuss several recent unexpected insights into the mechanisms underlying auxin regulation of growth, challenging several existing models. We focus on the divergent mechanisms of apoplastic pH regulation in shoots and roots revisiting the classical Acid Growth Theory and discuss coordinated involvement of multiple auxin signaling pathways. From this emerges a more comprehensive, updated picture how auxin regulates growth. acknowledgement: The authors thank Alexandra Mally for editing the text. This work was supported by the Austrian Science Fund (FWF) I 3630-B25 to Jiří Friml and the DOC Fellowship of the Austrian Academy of Sciences to Lanxin Li. All figures were created with BioRender.com. article_processing_charge: No article_type: original author: - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Michelle C full_name: Gallei, Michelle C id: 35A03822-F248-11E8-B48F-1D18A9856A87 last_name: Gallei orcid: 0000-0003-1286-7368 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Li L, Gallei MC, Friml J. Bending to auxin: Fast acid growth for tropisms. Trends in Plant Science. 2022;27(5):440-449. doi:10.1016/j.tplants.2021.11.006' apa: 'Li, L., Gallei, M. C., & Friml, J. (2022). Bending to auxin: Fast acid growth for tropisms. Trends in Plant Science. Cell Press. https://doi.org/10.1016/j.tplants.2021.11.006' chicago: 'Li, Lanxin, Michelle C Gallei, and Jiří Friml. “Bending to Auxin: Fast Acid Growth for Tropisms.” Trends in Plant Science. Cell Press, 2022. https://doi.org/10.1016/j.tplants.2021.11.006.' ieee: 'L. Li, M. C. Gallei, and J. Friml, “Bending to auxin: Fast acid growth for tropisms,” Trends in Plant Science, vol. 27, no. 5. Cell Press, pp. 440–449, 2022.' ista: 'Li L, Gallei MC, Friml J. 2022. Bending to auxin: Fast acid growth for tropisms. Trends in Plant Science. 27(5), 440–449.' mla: 'Li, Lanxin, et al. “Bending to Auxin: Fast Acid Growth for Tropisms.” Trends in Plant Science, vol. 27, no. 5, Cell Press, 2022, pp. 440–49, doi:10.1016/j.tplants.2021.11.006.' short: L. Li, M.C. Gallei, J. Friml, Trends in Plant Science 27 (2022) 440–449. date_created: 2021-12-05T23:01:43Z date_published: 2022-05-01T00:00:00Z date_updated: 2023-11-07T08:20:14Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.tplants.2021.11.006 external_id: isi: - '000793707900005' pmid: - '34848141' file: - access_level: open_access checksum: 3d94980ee1ff6bec100dd813f6a921a6 content_type: application/pdf creator: amally date_created: 2023-11-02T17:00:03Z date_updated: 2023-11-02T17:00:03Z file_id: '14480' file_name: Li Plants 2021_accepted.pdf file_size: 805779 relation: main_file success: 1 file_date_updated: 2023-11-02T17:00:03Z has_accepted_license: '1' intvolume: ' 27' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 440-449 pmid: 1 project: - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants - _id: 26B4D67E-B435-11E9-9278-68D0E5697425 grant_number: '25351' name: 'A Case Study of Plant Growth Regulation: Molecular Mechanism of Auxin-mediated Rapid Growth Inhibition in Arabidopsis Root' publication: Trends in Plant Science publication_identifier: issn: - 1360-1385 publication_status: published publisher: Cell Press quality_controlled: '1' related_material: record: - id: '11626' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Bending to auxin: Fast acid growth for tropisms' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 27 year: '2022' ... --- _id: '13240' abstract: - lang: eng text: Ustilago maydis is a biotrophic phytopathogenic fungus that causes corn smut disease. As a well-established model system, U. maydis is genetically fully accessible with large omics datasets available and subject to various biological questions ranging from DNA-repair, RNA-transport, and protein secretion to disease biology. For many genetic approaches, tight control of transgene regulation is important. Here we established an optimised version of the Tetracycline-ON (TetON) system for U. maydis. We demonstrate the Tetracycline concentration-dependent expression of fluorescent protein transgenes and the system’s suitability for the induced expression of the toxic protein BCL2 Associated X-1 (Bax1). The Golden Gate compatible vector system contains a native minimal promoter from the mating factor a-1 encoding gene, mfa with ten copies of the tet-regulated operator (tetO) and a codon optimised Tet-repressor (tetR*) which is translationally fused to the native transcriptional corepressor Mql1 (UMAG_05501). The metabolism-independent transcriptional regulator system is functional both, in liquid culture as well as on solid media in the presence of the inducer and can become a useful tool for toxin-antitoxin studies, identification of antifungal proteins, and to study functions of toxic gene products in Ustilago maydis. acknowledgement: "The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme ERC-2013-STG (grant agreement: 335691), the Austrian Science Fund (I 3033-B22), the Austrian Academy of Sciences, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy EXC-2070-390732324 (PhenoRob) and DFG grant (DJ 64/5-1).\r\nWe would like to thank the GMI/IMBA/IMP core facilities for their excellent technical support. We would like to acknowledge Dr. Sinéad A. O’Sullivan from DZNE, University of Bonn for providing anti-GFP antibodies. The authors are thankful to the Excellence University of Bonn for providing infrastructure and instrumentation facilities at the INRES-Plant Pathology department." article_number: '1029114' article_processing_charge: Yes article_type: original author: - first_name: Kishor D. full_name: Ingole, Kishor D. last_name: Ingole - first_name: Nithya full_name: Nagarajan, Nithya last_name: Nagarajan - first_name: Simon full_name: Uhse, Simon last_name: Uhse - first_name: Caterina full_name: Giannini, Caterina id: e3fdddd5-f6e0-11ea-865d-ca99ee6367f4 last_name: Giannini - first_name: Armin full_name: Djamei, Armin last_name: Djamei citation: ama: Ingole KD, Nagarajan N, Uhse S, Giannini C, Djamei A. Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis. Frontiers in Fungal Biology. 2022;3. doi:10.3389/ffunb.2022.1029114 apa: Ingole, K. D., Nagarajan, N., Uhse, S., Giannini, C., & Djamei, A. (2022). Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis. Frontiers in Fungal Biology. Frontiers Media. https://doi.org/10.3389/ffunb.2022.1029114 chicago: Ingole, Kishor D., Nithya Nagarajan, Simon Uhse, Caterina Giannini, and Armin Djamei. “Tetracycline-Controlled (TetON) Gene Expression System for the Smut Fungus Ustilago Maydis.” Frontiers in Fungal Biology. Frontiers Media, 2022. https://doi.org/10.3389/ffunb.2022.1029114. ieee: K. D. Ingole, N. Nagarajan, S. Uhse, C. Giannini, and A. Djamei, “Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis,” Frontiers in Fungal Biology, vol. 3. Frontiers Media, 2022. ista: Ingole KD, Nagarajan N, Uhse S, Giannini C, Djamei A. 2022. Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis. Frontiers in Fungal Biology. 3, 1029114. mla: Ingole, Kishor D., et al. “Tetracycline-Controlled (TetON) Gene Expression System for the Smut Fungus Ustilago Maydis.” Frontiers in Fungal Biology, vol. 3, 1029114, Frontiers Media, 2022, doi:10.3389/ffunb.2022.1029114. short: K.D. Ingole, N. Nagarajan, S. Uhse, C. Giannini, A. Djamei, Frontiers in Fungal Biology 3 (2022). date_created: 2023-07-16T22:01:12Z date_published: 2022-10-19T00:00:00Z date_updated: 2024-03-06T14:01:57Z day: '19' ddc: - '579' department: - _id: JiFr doi: 10.3389/ffunb.2022.1029114 file: - access_level: open_access checksum: 2254e0119c0749d6f7237084fefcece6 content_type: application/pdf creator: dernst date_created: 2023-07-17T11:46:34Z date_updated: 2023-07-17T11:46:34Z file_id: '13242' file_name: 2023_FrontiersFungalBio_Ingole.pdf file_size: 27966699 relation: main_file success: 1 file_date_updated: 2023-07-17T11:46:34Z has_accepted_license: '1' intvolume: ' 3' language: - iso: eng month: '10' oa: 1 oa_version: Published Version publication: Frontiers in Fungal Biology publication_identifier: eissn: - 2673-6128 publication_status: published publisher: Frontiers Media quality_controlled: '1' scopus_import: '1' status: public title: Tetracycline-controlled (TetON) gene expression system for the smut fungus Ustilago maydis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 3 year: '2022' ... --- _id: '10267' abstract: - lang: eng text: Tropisms are among the most important growth responses for plant adaptation to the surrounding environment. One of the most common tropisms is root gravitropism. Root gravitropism enables the plant to anchor securely to the soil enabling the absorption of water and nutrients. Most of the knowledge related to the plant gravitropism has been acquired from the flowering plants, due to limited research in non-seed plants. Limited research on non-seed plants is due in large part to the lack of standard research methods. Here, we describe the experimental methods to evaluate gravitropism in representative non-seed plant species, including the non-vascular plant moss Physcomitrium patens, the early diverging extant vascular plant lycophyte Selaginella moellendorffii and fern Ceratopteris richardii. In addition, we introduce the methods used for statistical analysis of the root gravitropism in non-seed plant species. acknowledgement: The Ceratopteris richardii spores were obtained from the lab of Jo Ann Banks at Purdue University. This work was supported by funding from the European Union’s Horizon 2020 research and innovation program (ERC grant agreement number 742985), Austrian Science Fund (FWF, grant number I 3630-B25), IST Fellow program and DOC Fellowship of the Austrian Academy of Sciences. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Zhang Y, Li L, Friml J. Evaluation of gravitropism in non-seed plants. In: Blancaflor EB, ed. Plant Gravitropism. Vol 2368. MIMB. Springer Nature; 2021:43-51. doi:10.1007/978-1-0716-1677-2_2' apa: Zhang, Y., Li, L., & Friml, J. (2021). Evaluation of gravitropism in non-seed plants. In E. B. Blancaflor (Ed.), Plant Gravitropism (Vol. 2368, pp. 43–51). Springer Nature. https://doi.org/10.1007/978-1-0716-1677-2_2 chicago: Zhang, Yuzhou, Lanxin Li, and Jiří Friml. “Evaluation of Gravitropism in Non-Seed Plants.” In Plant Gravitropism, edited by Elison B Blancaflor, 2368:43–51. MIMB. Springer Nature, 2021. https://doi.org/10.1007/978-1-0716-1677-2_2. ieee: Y. Zhang, L. Li, and J. Friml, “Evaluation of gravitropism in non-seed plants,” in Plant Gravitropism, vol. 2368, E. B. Blancaflor, Ed. Springer Nature, 2021, pp. 43–51. ista: 'Zhang Y, Li L, Friml J. 2021.Evaluation of gravitropism in non-seed plants. In: Plant Gravitropism. Methods in Molecular Biology, vol. 2368, 43–51.' mla: Zhang, Yuzhou, et al. “Evaluation of Gravitropism in Non-Seed Plants.” Plant Gravitropism, edited by Elison B Blancaflor, vol. 2368, Springer Nature, 2021, pp. 43–51, doi:10.1007/978-1-0716-1677-2_2. short: Y. Zhang, L. Li, J. Friml, in:, E.B. Blancaflor (Ed.), Plant Gravitropism, Springer Nature, 2021, pp. 43–51. date_created: 2021-11-11T09:26:10Z date_published: 2021-10-14T00:00:00Z date_updated: 2022-08-26T09:13:00Z day: '14' department: - _id: JiFr doi: 10.1007/978-1-0716-1677-2_2 ec_funded: 1 editor: - first_name: Elison B full_name: Blancaflor, Elison B last_name: Blancaflor external_id: pmid: - '34647246' intvolume: ' 2368' language: - iso: eng month: '10' oa_version: None page: 43-51 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: Plant Gravitropism publication_identifier: eisbn: - 978-1-0716-1677-2 isbn: - 978-1-0716-1676-5 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' series_title: MIMB status: public title: Evaluation of gravitropism in non-seed plants type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2368 year: '2021' ... --- _id: '10268' abstract: - lang: eng text: The analysis of dynamic cellular processes such as plant cytokinesis stands and falls with live-cell time-lapse confocal imaging. Conventional approaches to time-lapse imaging of cell division in Arabidopsis root tips are tedious and have low throughput. Here, we describe a protocol for long-term time-lapse simultaneous imaging of multiple root tips on a vertical-stage confocal microscope with automated root tracking. We also provide modifications of the basic protocol to implement this imaging method in the analysis of genetic, pharmacological or laser ablation wounding-mediated experimental manipulations. Our method dramatically improves the efficiency of cell division time-lapse imaging by increasing the throughput, while reducing the person-hour requirements of such experiments. acknowledged_ssus: - _id: Bio acknowledgement: We thank B. De Rybel for allowing M.G. to work on this manuscript during a postdoc in his laboratory, and EMBO for supporting M.G. with a Long-Term fellowship (ALTF 1005-2019) during this time. We acknowledge the service and support by the Bioimaging Facility at IST Austria, and finally, we thank A. Mally for proofreading and correcting the manuscript. alternative_title: - Methods in Molecular Biology article_processing_charge: No author: - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Matous full_name: Glanc, Matous id: 1AE1EA24-02D0-11E9-9BAA-DAF4881429F2 last_name: Glanc orcid: 0000-0003-0619-7783 citation: ama: 'Hörmayer L, Friml J, Glanc M. Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy. In: Plant Cell Division. Vol 2382. MIMB. Humana Press; 2021:105-114. doi:10.1007/978-1-0716-1744-1_6' apa: Hörmayer, L., Friml, J., & Glanc, M. (2021). Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy. In Plant Cell Division (Vol. 2382, pp. 105–114). Humana Press. https://doi.org/10.1007/978-1-0716-1744-1_6 chicago: Hörmayer, Lukas, Jiří Friml, and Matous Glanc. “Automated Time-Lapse Imaging and Manipulation of Cell Divisions in Arabidopsis Roots by Vertical-Stage Confocal Microscopy.” In Plant Cell Division, 2382:105–14. MIMB. Humana Press, 2021. https://doi.org/10.1007/978-1-0716-1744-1_6. ieee: L. Hörmayer, J. Friml, and M. Glanc, “Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy,” in Plant Cell Division, vol. 2382, Humana Press, 2021, pp. 105–114. ista: 'Hörmayer L, Friml J, Glanc M. 2021.Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy. In: Plant Cell Division. Methods in Molecular Biology, vol. 2382, 105–114.' mla: Hörmayer, Lukas, et al. “Automated Time-Lapse Imaging and Manipulation of Cell Divisions in Arabidopsis Roots by Vertical-Stage Confocal Microscopy.” Plant Cell Division, vol. 2382, Humana Press, 2021, pp. 105–14, doi:10.1007/978-1-0716-1744-1_6. short: L. Hörmayer, J. Friml, M. Glanc, in:, Plant Cell Division, Humana Press, 2021, pp. 105–114. date_created: 2021-11-11T10:03:30Z date_published: 2021-10-28T00:00:00Z date_updated: 2022-06-03T06:47:06Z day: '28' department: - _id: JiFr doi: 10.1007/978-1-0716-1744-1_6 external_id: pmid: - '34705235' intvolume: ' 2382' language: - iso: eng month: '10' oa_version: None page: 105-114 pmid: 1 publication: Plant Cell Division publication_identifier: eisbn: - 978-1-0716-1744-1 eissn: - 1940-6029 isbn: - 978-1-0716-1743-4 issn: - 1064-3745 publication_status: published publisher: Humana Press quality_controlled: '1' scopus_import: '1' series_title: MIMB status: public title: Automated time-lapse imaging and manipulation of cell divisions in Arabidopsis roots by vertical-stage confocal microscopy type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2382 year: '2021' ... --- _id: '8582' abstract: - lang: eng text: "Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear.\r\nHere, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains.\r\nPharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane.\r\nThis study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems." acknowledged_ssus: - _id: Bio acknowledgement: We thank Dr Ingo Heilmann (Martin‐Luther‐University Halle‐Wittenberg) for the XVE>>PIP5K1‐YFP line, Dr Brad Day (Michigan State University) for the ndr1‐1 mutant and the complementation lines, and Dr Patricia C. Zambryski (University of California, Berkeley) for the 35S::P30‐GFP line, the Bioimaging team (IST Austria) for assistance with imaging, group members for discussions, Martine De Cock for help in preparing the manuscript and Nataliia Gnyliukh for critical reading and revision of the manuscript. This project received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 742985) and Comisión Nacional de Investigación Científica y Tecnológica (Project CONICYT‐PAI 82130047). DvW received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007‐2013) under REA grant agreement no. 291734. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Hongjiang full_name: Li, Hongjiang id: 33CA54A6-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0001-5039-9660 - first_name: Daniel full_name: von Wangenheim, Daniel id: 49E91952-F248-11E8-B48F-1D18A9856A87 last_name: von Wangenheim orcid: 0000-0002-6862-1247 - first_name: Xixi full_name: Zhang, Xixi id: 61A66458-47E9-11EA-85BA-8AEAAF14E49A last_name: Zhang orcid: 0000-0001-7048-4627 - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Nasser full_name: Darwish-Miranda, Nasser id: 39CD9926-F248-11E8-B48F-1D18A9856A87 last_name: Darwish-Miranda orcid: 0000-0002-8821-8236 - first_name: Satoshi full_name: Naramoto, Satoshi last_name: Naramoto - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Riet full_name: de Rycke, Riet last_name: de Rycke - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Daniel J full_name: Gütl, Daniel J id: 381929CE-F248-11E8-B48F-1D18A9856A87 last_name: Gütl - first_name: Ricardo full_name: Tejos, Ricardo last_name: Tejos - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Meiyu full_name: Ke, Meiyu last_name: Ke - first_name: Xu full_name: Chen, Xu id: 4E5ADCAA-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Jan full_name: Dettmer, Jan last_name: Dettmer - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Li H, von Wangenheim D, Zhang X, et al. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist. 2021;229(1):351-369. doi:10.1111/nph.16887 apa: Li, H., von Wangenheim, D., Zhang, X., Tan, S., Darwish-Miranda, N., Naramoto, S., … Friml, J. (2021). Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist. Wiley. https://doi.org/10.1111/nph.16887 chicago: Li, Hongjiang, Daniel von Wangenheim, Xixi Zhang, Shutang Tan, Nasser Darwish-Miranda, Satoshi Naramoto, Krzysztof T Wabnik, et al. “Cellular Requirements for PIN Polar Cargo Clustering in Arabidopsis Thaliana.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.16887. ieee: H. Li et al., “Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana,” New Phytologist, vol. 229, no. 1. Wiley, pp. 351–369, 2021. ista: Li H, von Wangenheim D, Zhang X, Tan S, Darwish-Miranda N, Naramoto S, Wabnik KT, de Rycke R, Kaufmann W, Gütl DJ, Tejos R, Grones P, Ke M, Chen X, Dettmer J, Friml J. 2021. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist. 229(1), 351–369. mla: Li, Hongjiang, et al. “Cellular Requirements for PIN Polar Cargo Clustering in Arabidopsis Thaliana.” New Phytologist, vol. 229, no. 1, Wiley, 2021, pp. 351–69, doi:10.1111/nph.16887. short: H. Li, D. von Wangenheim, X. Zhang, S. Tan, N. Darwish-Miranda, S. Naramoto, K.T. Wabnik, R. de Rycke, W. Kaufmann, D.J. Gütl, R. Tejos, P. Grones, M. Ke, X. Chen, J. Dettmer, J. Friml, New Phytologist 229 (2021) 351–369. date_created: 2020-09-28T08:59:28Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-08-04T11:01:21Z day: '01' ddc: - '580' department: - _id: JiFr - _id: EM-Fac - _id: Bio - _id: EvBe doi: 10.1111/nph.16887 ec_funded: 1 external_id: isi: - '000570187900001' file: - access_level: open_access checksum: b45621607b4cab97eeb1605ab58e896e content_type: application/pdf creator: dernst date_created: 2021-02-04T09:44:17Z date_updated: 2021-02-04T09:44:17Z file_id: '9084' file_name: 2021_NewPhytologist_Li.pdf file_size: 4061962 relation: main_file success: 1 file_date_updated: 2021-02-04T09:44:17Z has_accepted_license: '1' intvolume: ' 229' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 351-369 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: New Phytologist publication_identifier: eissn: - '14698137' issn: - 0028646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 229 year: '2021' ... --- _id: '8606' abstract: - lang: eng text: The leaf is a crucial organ evolved with remarkable morphological diversity to maximize plant photosynthesis. The leaf shape is a key trait that affects photosynthesis, flowering rates, disease resistance, and yield. Although many genes regulating leaf development have been identified in the past years, the precise regulatory architecture underlying the generation of diverse leaf shapes remains to be elucidated. We used cotton as a reference model to probe the genetic framework underlying divergent leaf forms. Comparative transcriptome analysis revealed that the GhARF16‐1 and GhKNOX2‐1 genes might be potential regulators of leaf shape. We functionally characterized the auxin‐responsive factor ARF16‐1 acting upstream of GhKNOX2‐1 to determine leaf morphology in cotton. The transcription of GhARF16‐1 was significantly higher in lobed‐leaved cotton than in smooth‐leaved cotton. Furthermore, the overexpression of GhARF16‐1 led to the upregulation of GhKNOX2‐1 and resulted in more and deeper serrations in cotton leaves, similar to the leaf shape of cotton plants overexpressing GhKNOX2‐1. We found that GhARF16‐1 specifically bound to the promoter of GhKNOX2‐1 to induce its expression. The heterologous expression of GhARF16‐1 and GhKNOX2‐1 in Arabidopsis led to lobed and curly leaves, and a genetic analysis revealed that GhKNOX2‐1 is epistatic to GhARF16‐1 in Arabidopsis, suggesting that the GhARF16‐1 and GhKNOX2‐1 interaction paradigm also functions to regulate leaf shape in Arabidopsis. To our knowledge, our results uncover a novel mechanism by which auxin, through the key component ARF16‐1 and its downstream‐activated gene KNOX2‐1, determines leaf morphology in eudicots. acknowledgement: We are thankful to Professor Yuxian Zhu from Wuhan University for his extremely valuable remarks and helpful comments on the manuscript. This work was supported by the Shaanxi Natural Science Foundation (2019JQ‐062 and 2020JQ‐410), Shaanxi Youth Entrusted Talents Program (20190205), China Postdoctoral Science Foundation (2018M640947, 2020T130394), Shaanxi Postdoctoral Project (2018BSHYDZZ76), Natural Science Basic Research Plan in Shaanxi Province of China (2018JZ3006), Fundamental Research Funds for the Central Universities (GK201903064, GK201901004, GK202002005 and GK202001004), and State Key Laboratory of Cotton Biology Open Fund (CB2020A12). article_processing_charge: No article_type: original author: - first_name: P full_name: He, P last_name: He - first_name: Yuzhou full_name: Zhang, Yuzhou id: 3B6137F2-F248-11E8-B48F-1D18A9856A87 last_name: Zhang orcid: 0000-0003-2627-6956 - first_name: H full_name: Li, H last_name: Li - first_name: X full_name: Fu, X last_name: Fu - first_name: H full_name: Shang, H last_name: Shang - first_name: C full_name: Zou, C last_name: Zou - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: G full_name: Xiao, G last_name: Xiao citation: ama: He P, Zhang Y, Li H, et al. GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton. Plant Biotechnology Journal. 2021;19(3):548-562. doi:10.1111/pbi.13484 apa: He, P., Zhang, Y., Li, H., Fu, X., Shang, H., Zou, C., … Xiao, G. (2021). GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton. Plant Biotechnology Journal. Wiley. https://doi.org/10.1111/pbi.13484 chicago: He, P, Yuzhou Zhang, H Li, X Fu, H Shang, C Zou, Jiří Friml, and G Xiao. “GhARF16-1 Modulates Leaf Development by Transcriptionally Regulating the GhKNOX2-1 Gene in Cotton.” Plant Biotechnology Journal. Wiley, 2021. https://doi.org/10.1111/pbi.13484. ieee: P. He et al., “GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton,” Plant Biotechnology Journal, vol. 19, no. 3. Wiley, pp. 548–562, 2021. ista: He P, Zhang Y, Li H, Fu X, Shang H, Zou C, Friml J, Xiao G. 2021. GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton. Plant Biotechnology Journal. 19(3), 548–562. mla: He, P., et al. “GhARF16-1 Modulates Leaf Development by Transcriptionally Regulating the GhKNOX2-1 Gene in Cotton.” Plant Biotechnology Journal, vol. 19, no. 3, Wiley, 2021, pp. 548–62, doi:10.1111/pbi.13484. short: P. He, Y. Zhang, H. Li, X. Fu, H. Shang, C. Zou, J. Friml, G. Xiao, Plant Biotechnology Journal 19 (2021) 548–562. date_created: 2020-10-05T12:44:33Z date_published: 2021-03-01T00:00:00Z date_updated: 2023-08-04T11:03:10Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/pbi.13484 external_id: isi: - '000577682300001' pmid: - '32981232' file: - access_level: open_access checksum: 63845be37fb962586e0c7773f2355970 content_type: application/pdf creator: dernst date_created: 2021-04-12T12:29:07Z date_updated: 2021-04-12T12:29:07Z file_id: '9321' file_name: 2021_PlantBiotechJournal_He.pdf file_size: 15691871 relation: main_file success: 1 file_date_updated: 2021-04-12T12:29:07Z has_accepted_license: '1' intvolume: ' 19' isi: 1 issue: '3' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: 548-562 pmid: 1 publication: Plant Biotechnology Journal publication_identifier: issn: - 1467-7644 - 1467-7652 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: GhARF16-1 modulates leaf development by transcriptionally regulating the GhKNOX2-1 gene in cotton tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 19 year: '2021' ... --- _id: '8992' abstract: - lang: eng text: The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network. acknowledgement: This work was supported by the European Union’s Horizon 2020 Program (ERC grant agreement no. 742985 to J.F.). S.T. was funded by a European Molecular Biology Organization (EMBO) long-term postdoctoral fellowship (ALTF 723-2015). C.L. is supported by the Austrian Science Fund (FWF; P 31493). article_processing_charge: No article_type: original author: - first_name: Shutang full_name: Tan, Shutang id: 2DE75584-F248-11E8-B48F-1D18A9856A87 last_name: Tan orcid: 0000-0002-0471-8285 - first_name: Christian full_name: Luschnig, Christian last_name: Luschnig - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: 'Tan S, Luschnig C, Friml J. Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. 2021;14(1):151-165. doi:10.1016/j.molp.2020.11.004' apa: 'Tan, S., Luschnig, C., & Friml, J. (2021). Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2020.11.004' chicago: 'Tan, Shutang, Christian Luschnig, and Jiří Friml. “Pho-View of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling.” Molecular Plant. Elsevier, 2021. https://doi.org/10.1016/j.molp.2020.11.004.' ieee: 'S. Tan, C. Luschnig, and J. Friml, “Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling,” Molecular Plant, vol. 14, no. 1. Elsevier, pp. 151–165, 2021.' ista: 'Tan S, Luschnig C, Friml J. 2021. Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling. Molecular Plant. 14(1), 151–165.' mla: 'Tan, Shutang, et al. “Pho-View of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling.” Molecular Plant, vol. 14, no. 1, Elsevier, 2021, pp. 151–65, doi:10.1016/j.molp.2020.11.004.' short: S. Tan, C. Luschnig, J. Friml, Molecular Plant 14 (2021) 151–165. date_created: 2021-01-03T23:01:23Z date_published: 2021-01-04T00:00:00Z date_updated: 2023-08-04T11:21:13Z day: '04' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.molp.2020.11.004 ec_funded: 1 external_id: isi: - '000605359400014' pmid: - '33186755' file: - access_level: open_access checksum: 917e60e57092f22e16beac70b1775ea6 content_type: application/pdf creator: dernst date_created: 2021-01-07T14:03:53Z date_updated: 2021-01-07T14:03:53Z file_id: '8995' file_name: 2020_MolecularPlant_Tan.pdf file_size: 871088 relation: main_file success: 1 file_date_updated: 2021-01-07T14:03:53Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: 151-165 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 256FEF10-B435-11E9-9278-68D0E5697425 grant_number: 723-2015 name: Long Term Fellowship publication: Molecular Plant publication_identifier: eissn: - '17529867' issn: - '16742052' publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: 'Pho-view of auxin: Reversible protein phosphorylation in auxin biosynthesis, transport and signaling' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 14 year: '2021' ... --- _id: '8993' abstract: - lang: eng text: N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism. acknowledgement: "This work was supported by Austrian Science Fund Grant FWF P21533-B20 (to L.A.); German Research Foundation Grant DFG HA3468/6-1 (to U.Z.H.); and European Research Council Grant 742985 (to J.F.). We thank Herta Steinkellner and Alexandra Castilho for N. benthamiana plants, Fabian Nagelreiter for statistical advice, Lanassa Bassukas for help with [ɣ32P]-\r\nATP assays, and Josef Penninger for providing access to mass spectrometry instruments at the Vienna BioCenter Core Facilities. We thank PNAS reviewers for the many comments and suggestions that helped to improve this manuscript." article_number: e2020857118 article_processing_charge: No article_type: original author: - first_name: Lindy full_name: Abas, Lindy last_name: Abas - first_name: Martina full_name: Kolb, Martina last_name: Kolb - first_name: Johannes full_name: Stadlmann, Johannes last_name: Stadlmann - first_name: Dorina P. full_name: Janacek, Dorina P. last_name: Janacek - first_name: Kristina full_name: Lukic, Kristina id: 2B04DB84-F248-11E8-B48F-1D18A9856A87 last_name: Lukic orcid: 0000-0003-1581-881X - first_name: Claus full_name: Schwechheimer, Claus last_name: Schwechheimer - first_name: Leonid A full_name: Sazanov, Leonid A id: 338D39FE-F248-11E8-B48F-1D18A9856A87 last_name: Sazanov orcid: 0000-0002-0977-7989 - first_name: Lukas full_name: Mach, Lukas last_name: Mach - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Ulrich Z. full_name: Hammes, Ulrich Z. last_name: Hammes citation: ama: Abas L, Kolb M, Stadlmann J, et al. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. PNAS. 2021;118(1). doi:10.1073/pnas.2020857118 apa: Abas, L., Kolb, M., Stadlmann, J., Janacek, D. P., Lukic, K., Schwechheimer, C., … Hammes, U. Z. (2021). Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.2020857118 chicago: Abas, Lindy, Martina Kolb, Johannes Stadlmann, Dorina P. Janacek, Kristina Lukic, Claus Schwechheimer, Leonid A Sazanov, Lukas Mach, Jiří Friml, and Ulrich Z. Hammes. “Naphthylphthalamic Acid Associates with and Inhibits PIN Auxin Transporters.” PNAS. National Academy of Sciences, 2021. https://doi.org/10.1073/pnas.2020857118. ieee: L. Abas et al., “Naphthylphthalamic acid associates with and inhibits PIN auxin transporters,” PNAS, vol. 118, no. 1. National Academy of Sciences, 2021. ista: Abas L, Kolb M, Stadlmann J, Janacek DP, Lukic K, Schwechheimer C, Sazanov LA, Mach L, Friml J, Hammes UZ. 2021. Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. PNAS. 118(1), e2020857118. mla: Abas, Lindy, et al. “Naphthylphthalamic Acid Associates with and Inhibits PIN Auxin Transporters.” PNAS, vol. 118, no. 1, e2020857118, National Academy of Sciences, 2021, doi:10.1073/pnas.2020857118. short: L. Abas, M. Kolb, J. Stadlmann, D.P. Janacek, K. Lukic, C. Schwechheimer, L.A. Sazanov, L. Mach, J. Friml, U.Z. Hammes, PNAS 118 (2021). date_created: 2021-01-03T23:01:23Z date_published: 2021-01-05T00:00:00Z date_updated: 2023-08-07T13:29:23Z day: '05' department: - _id: JiFr - _id: LeSa doi: 10.1073/pnas.2020857118 ec_funded: 1 external_id: isi: - '000607270100073' pmid: - '33443187' intvolume: ' 118' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1073/pnas.2020857118 month: '01' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: PNAS publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' related_material: link: - relation: erratum url: https://doi.org/10.1073/pnas.2102232118 scopus_import: '1' status: public title: Naphthylphthalamic acid associates with and inhibits PIN auxin transporters type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 118 year: '2021' ... --- _id: '9254' abstract: - lang: eng text: 'Auxin is a key regulator of plant growth and development. Local auxin biosynthesis and intercellular transport generates regional gradients in the root that are instructive for processes such as specification of developmental zones that maintain root growth and tropic responses. Here we present a toolbox to study auxin-mediated root development that features: (i) the ability to control auxin synthesis with high spatio-temporal resolution and (ii) single-cell nucleus tracking and morphokinetic analysis infrastructure. Integration of these two features enables cutting-edge analysis of root development at single-cell resolution based on morphokinetic parameters under normal growth conditions and during cell-type-specific induction of auxin biosynthesis. We show directional auxin flow in the root and refine the contributions of key players in this process. In addition, we determine the quantitative kinetics of Arabidopsis root meristem skewing, which depends on local auxin gradients but does not require PIN2 and AUX1 auxin transporter activities. Beyond the mechanistic insights into root development, the tools developed here will enable biologists to study kinetics and morphology of various critical processes at the single cell-level in whole organisms.' acknowledgement: This work was supported by grants from the Israel Science Foundation (2378/19 to E.S.), the Joint NSFC-ISF Research Grant (3419/20 to E.S. and Z.D.), the Human Frontier Science Program (HFSP—LIY000540/2020 to E.S.), the European Research Council Starting Grant (757683- RobustHormoneTrans to E.S.), PBC postdoctoral fellowships (to Y.H. and M.O.), NIH (GM114660 to Y.Z.), Breast Cancer Research Foundation (BCRF to I.T.). article_number: '1657' article_processing_charge: No article_type: original author: - first_name: Yangjie full_name: Hu, Yangjie last_name: Hu - first_name: Moutasem full_name: Omary, Moutasem last_name: Omary - first_name: Yun full_name: Hu, Yun last_name: Hu - first_name: Ohad full_name: Doron, Ohad last_name: Doron - first_name: Lukas full_name: Hörmayer, Lukas id: 2EEE7A2A-F248-11E8-B48F-1D18A9856A87 last_name: Hörmayer - first_name: Qingguo full_name: Chen, Qingguo last_name: Chen - first_name: Or full_name: Megides, Or last_name: Megides - first_name: Ori full_name: Chekli, Ori last_name: Chekli - first_name: Zhaojun full_name: Ding, Zhaojun last_name: Ding - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Yunde full_name: Zhao, Yunde last_name: Zhao - first_name: Ilan full_name: Tsarfaty, Ilan last_name: Tsarfaty - first_name: Eilon full_name: Shani, Eilon last_name: Shani citation: ama: Hu Y, Omary M, Hu Y, et al. Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nature Communications. 2021;12. doi:10.1038/s41467-021-21802-3 apa: Hu, Y., Omary, M., Hu, Y., Doron, O., Hörmayer, L., Chen, Q., … Shani, E. (2021). Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-021-21802-3 chicago: Hu, Yangjie, Moutasem Omary, Yun Hu, Ohad Doron, Lukas Hörmayer, Qingguo Chen, Or Megides, et al. “Cell Kinetics of Auxin Transport and Activity in Arabidopsis Root Growth and Skewing.” Nature Communications. Springer Nature, 2021. https://doi.org/10.1038/s41467-021-21802-3. ieee: Y. Hu et al., “Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing,” Nature Communications, vol. 12. Springer Nature, 2021. ista: Hu Y, Omary M, Hu Y, Doron O, Hörmayer L, Chen Q, Megides O, Chekli O, Ding Z, Friml J, Zhao Y, Tsarfaty I, Shani E. 2021. Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nature Communications. 12, 1657. mla: Hu, Yangjie, et al. “Cell Kinetics of Auxin Transport and Activity in Arabidopsis Root Growth and Skewing.” Nature Communications, vol. 12, 1657, Springer Nature, 2021, doi:10.1038/s41467-021-21802-3. short: Y. Hu, M. Omary, Y. Hu, O. Doron, L. Hörmayer, Q. Chen, O. Megides, O. Chekli, Z. Ding, J. Friml, Y. Zhao, I. Tsarfaty, E. Shani, Nature Communications 12 (2021). date_created: 2021-03-21T23:01:19Z date_published: 2021-03-12T00:00:00Z date_updated: 2023-08-07T14:17:55Z day: '12' ddc: - '580' department: - _id: JiFr doi: 10.1038/s41467-021-21802-3 external_id: isi: - '000630419400048' pmid: - '33712581' file: - access_level: open_access checksum: e1022f3aee349853ded2b2b3e092362d content_type: application/pdf creator: dernst date_created: 2021-03-22T11:18:58Z date_updated: 2021-03-22T11:18:58Z file_id: '9275' file_name: 2021_NatureComm_Hu.pdf file_size: 8602096 relation: main_file success: 1 file_date_updated: 2021-03-22T11:18:58Z has_accepted_license: '1' intvolume: ' 12' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version pmid: 1 publication: Nature Communications publication_identifier: eissn: - '20411723' publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ... --- _id: '9443' abstract: - lang: eng text: Endoplasmic reticulum–plasma membrane contact sites (ER–PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER–PM protein tether synaptotagmin1 (SYT1) exhibit decreased PM integrity under multiple abiotic stresses, such as freezing, high salt, osmotic stress, and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER–PM tether that also functions in maintaining PM integrity. The ER–PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild-type while the levels of most glycerolipid species remain unchanged. In addition, the SYT1-green fluorescent protein fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress. acknowledgement: "We would also like to thank Lothar Willmitzer for the lipidomic analysis at the Max Planck Institute of Molecular Plant Physiology (Potsdam, Germany). We thank Manuela Vega from SCI for her technical assistance in image analysis. We thank John R. Pearson and the Bionand Nanoimaging Unit, F. David Navas Fernández and the SCAI Imaging Facility and The Plant Cell Biology facility at the Shanghai Center for Plant Stress Biology for assistance with confocal microscopy. The FaFAH1 clone was a gift from Iraida Amaya Saavedra (IFAPA-Centro de Churriana, Málaga, Spain). The AHA3 antibody against the H+-ATPase was a gift from Ramón Serrano Salom (Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain). The MAP-mTU2-SAC1 construct was provided by Yvon Jaillais (Laboratoire Reproduction et Développement des Plantes, Univ Lyon, France). The pGWB5 from the pGWB vector series, was provided by Tsuyoshi Nakagawa (Department of Molecular and Functional Genomics, Shimane University). We thank Plan Propio from the University of Málaga for financial support.\r\nFunding" article_processing_charge: No article_type: original author: - first_name: N full_name: Ruiz-Lopez, N last_name: Ruiz-Lopez - first_name: J full_name: Pérez-Sancho, J last_name: Pérez-Sancho - first_name: A full_name: Esteban Del Valle, A last_name: Esteban Del Valle - first_name: RP full_name: Haslam, RP last_name: Haslam - first_name: S full_name: Vanneste, S last_name: Vanneste - first_name: R full_name: Catalá, R last_name: Catalá - first_name: C full_name: Perea-Resa, C last_name: Perea-Resa - first_name: D full_name: Van Damme, D last_name: Van Damme - first_name: S full_name: García-Hernández, S last_name: García-Hernández - first_name: A full_name: Albert, A last_name: Albert - first_name: J full_name: Vallarino, J last_name: Vallarino - first_name: J full_name: Lin, J last_name: Lin - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: AP full_name: Macho, AP last_name: Macho - first_name: J full_name: Salinas, J last_name: Salinas - first_name: A full_name: Rosado, A last_name: Rosado - first_name: JA full_name: Napier, JA last_name: Napier - first_name: V full_name: Amorim-Silva, V last_name: Amorim-Silva - first_name: MA full_name: Botella, MA last_name: Botella citation: ama: Ruiz-Lopez N, Pérez-Sancho J, Esteban Del Valle A, et al. Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. 2021;33(7):2431-2453. doi:10.1093/plcell/koab122 apa: Ruiz-Lopez, N., Pérez-Sancho, J., Esteban Del Valle, A., Haslam, R., Vanneste, S., Catalá, R., … Botella, M. (2021). Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1093/plcell/koab122 chicago: Ruiz-Lopez, N, J Pérez-Sancho, A Esteban Del Valle, RP Haslam, S Vanneste, R Catalá, C Perea-Resa, et al. “Synaptotagmins at the Endoplasmic Reticulum-Plasma Membrane Contact Sites Maintain Diacylglycerol Homeostasis during Abiotic Stress.” Plant Cell. American Society of Plant Biologists, 2021. https://doi.org/10.1093/plcell/koab122. ieee: N. Ruiz-Lopez et al., “Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress,” Plant Cell, vol. 33, no. 7. American Society of Plant Biologists, pp. 2431–2453, 2021. ista: Ruiz-Lopez N, Pérez-Sancho J, Esteban Del Valle A, Haslam R, Vanneste S, Catalá R, Perea-Resa C, Van Damme D, García-Hernández S, Albert A, Vallarino J, Lin J, Friml J, Macho A, Salinas J, Rosado A, Napier J, Amorim-Silva V, Botella M. 2021. Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. Plant Cell. 33(7), 2431–2453. mla: Ruiz-Lopez, N., et al. “Synaptotagmins at the Endoplasmic Reticulum-Plasma Membrane Contact Sites Maintain Diacylglycerol Homeostasis during Abiotic Stress.” Plant Cell, vol. 33, no. 7, American Society of Plant Biologists, 2021, pp. 2431–53, doi:10.1093/plcell/koab122. short: N. Ruiz-Lopez, J. Pérez-Sancho, A. Esteban Del Valle, R. Haslam, S. Vanneste, R. Catalá, C. Perea-Resa, D. Van Damme, S. García-Hernández, A. Albert, J. Vallarino, J. Lin, J. Friml, A. Macho, J. Salinas, A. Rosado, J. Napier, V. Amorim-Silva, M. Botella, Plant Cell 33 (2021) 2431–2453. date_created: 2021-06-02T13:13:58Z date_published: 2021-07-01T00:00:00Z date_updated: 2023-08-08T13:54:32Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/plcell/koab122 ec_funded: 1 external_id: isi: - '000703938100026' pmid: - '33944955' file: - access_level: open_access checksum: 22d596678d00310d793611864a6d0fcd content_type: application/pdf creator: cchlebak date_created: 2021-10-14T13:36:38Z date_updated: 2021-10-14T13:36:38Z file_id: '10141' file_name: 2021_PlantCell_RuizLopez.pdf file_size: 2952028 relation: main_file success: 1 file_date_updated: 2021-10-14T13:36:38Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2431-2453 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' scopus_import: '1' status: public title: Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 33 year: '2021' ... --- _id: '9657' abstract: - lang: eng text: To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-fixing rhizobia that is fostered in specialized organs (nodules). Similar to other organs, nodule formation is determined by a local maximum of the phytohormone auxin at the primordium site. However, how auxin regulates nodule development remains poorly understood. Here, we found that in soybean, (Glycine max), dynamic auxin transport driven by PIN-FORMED (PIN) transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants generated with CRISPR-Cas9 showed impaired establishment of auxin maxima in nodule meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule development and suggest that establishment of auxin gradient is a prerequisite for the proper interaction between legumes and rhizobia. article_processing_charge: No article_type: original author: - first_name: Z full_name: Gao, Z last_name: Gao - first_name: Z full_name: Chen, Z last_name: Chen - first_name: Y full_name: Cui, Y last_name: Cui - first_name: M full_name: Ke, M last_name: Ke - first_name: H full_name: Xu, H last_name: Xu - first_name: Q full_name: Xu, Q last_name: Xu - first_name: J full_name: Chen, J last_name: Chen - first_name: Y full_name: Li, Y last_name: Li - first_name: L full_name: Huang, L last_name: Huang - first_name: H full_name: Zhao, H last_name: Zhao - first_name: D full_name: Huang, D last_name: Huang - first_name: S full_name: Mai, S last_name: Mai - first_name: T full_name: Xu, T last_name: Xu - first_name: X full_name: Liu, X last_name: Liu - first_name: S full_name: Li, S last_name: Li - first_name: Y full_name: Guan, Y last_name: Guan - first_name: W full_name: Yang, W last_name: Yang - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: J full_name: Petrášek, J last_name: Petrášek - first_name: J full_name: Zhang, J last_name: Zhang - first_name: X full_name: Chen, X last_name: Chen citation: ama: Gao Z, Chen Z, Cui Y, et al. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. 2021;33(9):2981–3003. doi:10.1093/plcell/koab183 apa: Gao, Z., Chen, Z., Cui, Y., Ke, M., Xu, H., Xu, Q., … Chen, X. (2021). GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. American Society of Plant Biologists. https://doi.org/10.1093/plcell/koab183 chicago: Gao, Z, Z Chen, Y Cui, M Ke, H Xu, Q Xu, J Chen, et al. “GmPIN-Dependent Polar Auxin Transport Is Involved in Soybean Nodule Development.” Plant Cell. American Society of Plant Biologists, 2021. https://doi.org/10.1093/plcell/koab183. ieee: Z. Gao et al., “GmPIN-dependent polar auxin transport is involved in soybean nodule development,” Plant Cell, vol. 33, no. 9. American Society of Plant Biologists, pp. 2981–3003, 2021. ista: Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. 2021. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell. 33(9), 2981–3003. mla: Gao, Z., et al. “GmPIN-Dependent Polar Auxin Transport Is Involved in Soybean Nodule Development.” Plant Cell, vol. 33, no. 9, American Society of Plant Biologists, 2021, pp. 2981–3003, doi:10.1093/plcell/koab183. short: Z. Gao, Z. Chen, Y. Cui, M. Ke, H. Xu, Q. Xu, J. Chen, Y. Li, L. Huang, H. Zhao, D. Huang, S. Mai, T. Xu, X. Liu, S. Li, Y. Guan, W. Yang, J. Friml, J. Petrášek, J. Zhang, X. Chen, Plant Cell 33 (2021) 2981–3003. date_created: 2021-07-14T15:32:43Z date_published: 2021-07-07T00:00:00Z date_updated: 2023-08-10T14:01:41Z day: '07' ddc: - '580' department: - _id: JiFr doi: 10.1093/plcell/koab183 external_id: isi: - '000702165300012' pmid: - '34240197' file: - access_level: open_access checksum: 6715712ec306c321f0204c817b7f8ae7 content_type: application/pdf creator: cziletti date_created: 2021-07-19T12:13:34Z date_updated: 2021-07-19T12:13:34Z file_id: '9691' file_name: 2021_PlantCell_Gao.pdf file_size: 10566921 relation: main_file success: 1 file_date_updated: 2021-07-19T12:13:34Z has_accepted_license: '1' intvolume: ' 33' isi: 1 issue: '9' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 2981–3003 pmid: 1 publication: Plant Cell publication_identifier: eissn: - 1532-298x issn: - 1040-4651 publication_status: published publisher: American Society of Plant Biologists quality_controlled: '1' status: public title: GmPIN-dependent polar auxin transport is involved in soybean nodule development tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 33 year: '2021' ... --- _id: '9656' abstract: - lang: eng text: Tropisms, growth responses to environmental stimuli such as light or gravity, are spectacular examples of adaptive plant development. The plant hormone auxin serves as a major coordinative signal. The PIN auxin exporters, through their dynamic polar subcellular localizations, redirect auxin fluxes in response to environmental stimuli and the resulting auxin gradients across organs underly differential cell elongation and bending. In this review, we discuss recent advances concerning regulations of PIN polarity during tropisms, focusing on PIN phosphorylation and trafficking. We also cover how environmental cues regulate PIN actions during tropisms, and a crucial role of auxin feedback on PIN polarity during bending termination. Finally, the interactions between different tropisms are reviewed to understand plant adaptive growth in the natural environment. acknowledgement: We are grateful to Lukas Fiedler, Alexandra Mally (IST Austria) and Dr. Bartel Vanholme (VIB, Ghent) for their critical comments on the manuscript. We apologize to those researchers whose great work was not cited. This work is supported by the European Research Council under the European Union’s Horizon 2020 research and innovation Programme (ERC grant agreement number 742985), and the Austrian Science Fund (FWF, grant number I 3630-B25) to JF. HH is supported by the China Scholarship Council (CSC scholarship, 201506870018) and a starting grant from Jiangxi Agriculture University (9232308314). article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Huibin full_name: Han, Huibin id: 31435098-F248-11E8-B48F-1D18A9856A87 last_name: Han - first_name: Maciek full_name: Adamowski, Maciek id: 45F536D2-F248-11E8-B48F-1D18A9856A87 last_name: Adamowski orcid: 0000-0001-6463-5257 - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: SS full_name: Alotaibi, SS last_name: Alotaibi - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Han H, Adamowski M, Qi L, Alotaibi S, Friml J. PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. 2021;232(2):510-522. doi:10.1111/nph.17617 apa: Han, H., Adamowski, M., Qi, L., Alotaibi, S., & Friml, J. (2021). PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. Wiley. https://doi.org/10.1111/nph.17617 chicago: Han, Huibin, Maciek Adamowski, Linlin Qi, SS Alotaibi, and Jiří Friml. “PIN-Mediated Polar Auxin Transport Regulations in Plant Tropic Responses.” New Phytologist. Wiley, 2021. https://doi.org/10.1111/nph.17617. ieee: H. Han, M. Adamowski, L. Qi, S. Alotaibi, and J. Friml, “PIN-mediated polar auxin transport regulations in plant tropic responses,” New Phytologist, vol. 232, no. 2. Wiley, pp. 510–522, 2021. ista: Han H, Adamowski M, Qi L, Alotaibi S, Friml J. 2021. PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist. 232(2), 510–522. mla: Han, Huibin, et al. “PIN-Mediated Polar Auxin Transport Regulations in Plant Tropic Responses.” New Phytologist, vol. 232, no. 2, Wiley, 2021, pp. 510–22, doi:10.1111/nph.17617. short: H. Han, M. Adamowski, L. Qi, S. Alotaibi, J. Friml, New Phytologist 232 (2021) 510–522. date_created: 2021-07-14T15:29:14Z date_published: 2021-10-01T00:00:00Z date_updated: 2023-08-10T14:02:41Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.17617 ec_funded: 1 external_id: isi: - '000680587100001' pmid: - '34254313' file: - access_level: open_access checksum: 6422a6eb329b52d96279daaee0fcf189 content_type: application/pdf creator: kschuh date_created: 2021-10-07T13:42:47Z date_updated: 2021-10-07T13:42:47Z file_id: '10105' file_name: 2021_NewPhytologist_Han.pdf file_size: 1939800 relation: main_file success: 1 file_date_updated: 2021-10-07T13:42:47Z has_accepted_license: '1' intvolume: ' 232' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 510-522 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants - _id: 26538374-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I03630 name: Molecular mechanisms of endocytic cargo recognition in plants publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646x publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: PIN-mediated polar auxin transport regulations in plant tropic responses tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 232 year: '2021' ... --- _id: '9909' abstract: - lang: eng text: Roots are composed of different root types and, in the dicotyledonous Arabidopsis, typically consist of a primary root that branches into lateral roots. Adventitious roots emerge from non-root tissue and are formed upon wounding or other types of abiotic stress. Here, we investigated adventitious root (AR) formation in Arabidopsis hypocotyls under conditions of altered abscisic acid (ABA) signaling. Exogenously applied ABA suppressed AR formation at 0.25 µM or higher doses. AR formation was less sensitive to the synthetic ABA analog pyrabactin (PB). However, PB was a more potent inhibitor at concentrations above 1 µM, suggesting that it was more selective in triggering a root inhibition response. Analysis of a series of phosphonamide and phosphonate pyrabactin analogs suggested that adventitious root formation and lateral root branching are differentially regulated by ABA signaling. ABA biosynthesis and signaling mutants affirmed a general inhibitory role of ABA and point to PYL1 and PYL2 as candidate ABA receptors that regulate AR inhibition. acknowledgement: We thank S. Cutler (Riverside, USA) for providing the ABA biosynthesis mutants and ABA signaling mutants. article_number: '1141' article_processing_charge: Yes article_type: original author: - first_name: Yinwei full_name: Zeng, Yinwei last_name: Zeng - first_name: Inge full_name: Verstraeten, Inge id: 362BF7FE-F248-11E8-B48F-1D18A9856A87 last_name: Verstraeten orcid: 0000-0001-7241-2328 - first_name: Hoang Khai full_name: Trinh, Hoang Khai last_name: Trinh - first_name: Thomas full_name: Heugebaert, Thomas last_name: Heugebaert - first_name: Christian V. full_name: Stevens, Christian V. last_name: Stevens - first_name: Irene full_name: Garcia-Maquilon, Irene last_name: Garcia-Maquilon - first_name: Pedro L. full_name: Rodriguez, Pedro L. last_name: Rodriguez - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Danny full_name: Geelen, Danny last_name: Geelen citation: ama: Zeng Y, Verstraeten I, Trinh HK, et al. Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling. Genes. 2021;12(8). doi:10.3390/genes12081141 apa: Zeng, Y., Verstraeten, I., Trinh, H. K., Heugebaert, T., Stevens, C. V., Garcia-Maquilon, I., … Geelen, D. (2021). Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling. Genes. MDPI. https://doi.org/10.3390/genes12081141 chicago: Zeng, Yinwei, Inge Verstraeten, Hoang Khai Trinh, Thomas Heugebaert, Christian V. Stevens, Irene Garcia-Maquilon, Pedro L. Rodriguez, Steffen Vanneste, and Danny Geelen. “Arabidopsis Hypocotyl Adventitious Root Formation Is Suppressed by ABA Signaling.” Genes. MDPI, 2021. https://doi.org/10.3390/genes12081141. ieee: Y. Zeng et al., “Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling,” Genes, vol. 12, no. 8. MDPI, 2021. ista: Zeng Y, Verstraeten I, Trinh HK, Heugebaert T, Stevens CV, Garcia-Maquilon I, Rodriguez PL, Vanneste S, Geelen D. 2021. Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling. Genes. 12(8), 1141. mla: Zeng, Yinwei, et al. “Arabidopsis Hypocotyl Adventitious Root Formation Is Suppressed by ABA Signaling.” Genes, vol. 12, no. 8, 1141, MDPI, 2021, doi:10.3390/genes12081141. short: Y. Zeng, I. Verstraeten, H.K. Trinh, T. Heugebaert, C.V. Stevens, I. Garcia-Maquilon, P.L. Rodriguez, S. Vanneste, D. Geelen, Genes 12 (2021). date_created: 2021-08-15T22:01:28Z date_published: 2021-07-27T00:00:00Z date_updated: 2023-08-11T10:32:21Z day: '27' ddc: - '580' - '570' department: - _id: JiFr doi: 10.3390/genes12081141 external_id: isi: - '000690558000001' file: - access_level: open_access checksum: 3d99535618cf9a5b14d264408fa52e97 content_type: application/pdf creator: asandaue date_created: 2021-08-16T09:02:40Z date_updated: 2021-08-16T09:02:40Z file_id: '9919' file_name: 2021_Genes_Zeng.pdf file_size: 1340305 relation: main_file success: 1 file_date_updated: 2021-08-16T09:02:40Z has_accepted_license: '1' intvolume: ' 12' isi: 1 issue: '8' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Genes publication_identifier: eissn: - '20734425' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Arabidopsis hypocotyl adventitious root formation is suppressed by ABA signaling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 12 year: '2021' ...