--- _id: '14709' abstract: - lang: eng text: Amid the delays due to the global pandemic, in early October 2022, the auxin community gathered in the idyllic peninsula of Cavtat, Croatia. More than 170 scientists from across the world converged to discuss the latest advancements in fundamental and applied research in the field. The topics, from signalling and transport to plant architecture and response to the environment, show how auxin research must bridge from the molecular realm to macroscopic developmental responses. This is mirrored in this collection of reviews, contributed by participants of the Auxin 2022 meeting. article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Marta full_name: Del Bianco, Marta last_name: Del Bianco - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Lucia full_name: Strader, Lucia last_name: Strader - first_name: Stefan full_name: Kepinski, Stefan last_name: Kepinski citation: ama: 'Del Bianco M, Friml J, Strader L, Kepinski S. Auxin research: Creating tools for a greener future. Journal of Experimental Botany. 2023;74(22):6889-6892. doi:10.1093/jxb/erad420' apa: 'Del Bianco, M., Friml, J., Strader, L., & Kepinski, S. (2023). Auxin research: Creating tools for a greener future. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/erad420' chicago: 'Del Bianco, Marta, Jiří Friml, Lucia Strader, and Stefan Kepinski. “Auxin Research: Creating Tools for a Greener Future.” Journal of Experimental Botany. Oxford University Press, 2023. https://doi.org/10.1093/jxb/erad420.' ieee: 'M. Del Bianco, J. Friml, L. Strader, and S. Kepinski, “Auxin research: Creating tools for a greener future,” Journal of Experimental Botany, vol. 74, no. 22. Oxford University Press, pp. 6889–6892, 2023.' ista: 'Del Bianco M, Friml J, Strader L, Kepinski S. 2023. Auxin research: Creating tools for a greener future. Journal of Experimental Botany. 74(22), 6889–6892.' mla: 'Del Bianco, Marta, et al. “Auxin Research: Creating Tools for a Greener Future.” Journal of Experimental Botany, vol. 74, no. 22, Oxford University Press, 2023, pp. 6889–92, doi:10.1093/jxb/erad420.' short: M. Del Bianco, J. Friml, L. Strader, S. Kepinski, Journal of Experimental Botany 74 (2023) 6889–6892. date_created: 2023-12-24T23:00:53Z date_published: 2023-12-01T00:00:00Z date_updated: 2024-01-02T09:29:24Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1093/jxb/erad420 external_id: pmid: - '38038239' file: - access_level: open_access checksum: f66fb960fd791dea53fd0e087f2fbbe8 content_type: application/pdf creator: dernst date_created: 2024-01-02T09:23:57Z date_updated: 2024-01-02T09:23:57Z file_id: '14724' file_name: 2023_JourExperimentalBotany_DelBianco.pdf file_size: 425194 relation: main_file success: 1 file_date_updated: 2024-01-02T09:23:57Z has_accepted_license: '1' intvolume: ' 74' issue: '22' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '12' oa: 1 oa_version: Published Version page: 6889-6892 pmid: 1 publication: Journal of Experimental Botany publication_identifier: eissn: - 1460-2431 issn: - 0022-0957 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: 'Auxin research: Creating tools for a greener future' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 74 year: '2023' ... --- _id: '14776' abstract: - lang: eng text: Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident. acknowledgement: "We thank C.U.T. Hellen for critically reading the manuscript. The MALDI MS facility and CLSM became available to us in the framework of Moscow State University Development Programs PNG 5.13 and PNR 5.13.\r\nThis work was funded by the Russian Science Foundation, grant numbers 19-14-00010 and 22-14-00071." article_number: '16527' article_processing_charge: Yes article_type: original author: - first_name: Anastasiia full_name: Teplova, Anastasiia id: e3736151-106c-11ec-b916-c2558e2762c6 last_name: Teplova - first_name: Artemii A. full_name: Pigidanov, Artemii A. last_name: Pigidanov - first_name: Marina V. full_name: Serebryakova, Marina V. last_name: Serebryakova - first_name: Sergei A. full_name: Golyshev, Sergei A. last_name: Golyshev - first_name: Raisa A. full_name: Galiullina, Raisa A. last_name: Galiullina - first_name: Nina V. full_name: Chichkova, Nina V. last_name: Chichkova - first_name: Andrey B. full_name: Vartapetian, Andrey B. last_name: Vartapetian citation: ama: Teplova A, Pigidanov AA, Serebryakova MV, et al. Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. 2023;24(22). doi:10.3390/ijms242216527 apa: Teplova, A., Pigidanov, A. A., Serebryakova, M. V., Golyshev, S. A., Galiullina, R. A., Chichkova, N. V., & Vartapetian, A. B. (2023). Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. MDPI. https://doi.org/10.3390/ijms242216527 chicago: Teplova, Anastasiia, Artemii A. Pigidanov, Marina V. Serebryakova, Sergei A. Golyshev, Raisa A. Galiullina, Nina V. Chichkova, and Andrey B. Vartapetian. “Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3.” International Journal of Molecular Sciences. MDPI, 2023. https://doi.org/10.3390/ijms242216527. ieee: A. Teplova et al., “Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3,” International Journal of Molecular Sciences, vol. 24, no. 22. MDPI, 2023. ista: Teplova A, Pigidanov AA, Serebryakova MV, Golyshev SA, Galiullina RA, Chichkova NV, Vartapetian AB. 2023. Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3. International Journal of Molecular Sciences. 24(22), 16527. mla: Teplova, Anastasiia, et al. “Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3.” International Journal of Molecular Sciences, vol. 24, no. 22, 16527, MDPI, 2023, doi:10.3390/ijms242216527. short: A. Teplova, A.A. Pigidanov, M.V. Serebryakova, S.A. Golyshev, R.A. Galiullina, N.V. Chichkova, A.B. Vartapetian, International Journal of Molecular Sciences 24 (2023). date_created: 2024-01-10T09:24:35Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-10T13:41:10Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.3390/ijms242216527 external_id: isi: - '001113792600001' pmid: - '38003717' file: - access_level: open_access checksum: 4df7d206ba022b7f54eff1f0aec1659a content_type: application/pdf creator: dernst date_created: 2024-01-10T13:39:42Z date_updated: 2024-01-10T13:39:42Z file_id: '14791' file_name: 2023_IJMS_Teplova.pdf file_size: 2637784 relation: main_file success: 1 file_date_updated: 2024-01-10T13:39:42Z has_accepted_license: '1' intvolume: ' 24' isi: 1 issue: '22' keyword: - Inorganic Chemistry - Organic Chemistry - Physical and Theoretical Chemistry - Computer Science Applications - Spectroscopy - Molecular Biology - General Medicine - Catalysis language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: International Journal of Molecular Sciences publication_identifier: issn: - 1422-0067 publication_status: published publisher: MDPI quality_controlled: '1' status: public title: Phytaspase Is capable of detaching the endoplasmic reticulum retrieval signal from tobacco calreticulin-3 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 24 year: '2023' ... --- _id: '13212' abstract: - lang: eng text: Auxin is the major plant hormone regulating growth and development (Friml, 2022). Forward genetic approaches in the model plant Arabidopsis thaliana have identified major components of auxin signalling and established the canonical mechanism mediating transcriptional and thus developmental reprogramming. In this textbook view, TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFBs) are auxin receptors, which act as F-box subunits determining the substrate specificity of the Skp1-Cullin1-F box protein (SCF) type E3 ubiquitin ligase complex. Auxin acts as a “molecular glue” increasing the affinity between TIR1/AFBs and the Aux/IAA repressors. Subsequently, Aux/IAAs are ubiquitinated and degraded, thus releasing auxin transcription factors from their repression making them free to mediate transcription of auxin response genes (Yu et al., 2022). Nonetheless, accumulating evidence suggests existence of rapid, non-transcriptional responses downstream of TIR1/AFBs such as auxin-induced cytosolic calcium (Ca2+) transients, plasma membrane depolarization and apoplast alkalinisation, all converging on the process of root growth inhibition and root gravitropism (Li et al., 2022). Particularly, these rapid responses are mostly contributed by predominantly cytosolic AFB1, while the long-term growth responses are mediated by mainly nuclear TIR1 and AFB2-AFB5 (Li et al., 2021; Prigge et al., 2020; Serre et al., 2021). How AFB1 conducts auxin-triggered rapid responses and how it is different from TIR1 and AFB2-AFB5 remains elusive. Here, we compare the roles of TIR1 and AFB1 in transcriptional and rapid responses by modulating their subcellular localization in Arabidopsis and by testing their ability to mediate transcriptional responses when part of the minimal auxin circuit reconstituted in yeast. acknowledged_ssus: - _id: LifeSc - _id: Bio acknowledgement: We thank all the authors for sharing the published materials. This research was supported by the Lab Support Facility and the Imaging and Optics Facility of ISTA. We thank Lukáš Fiedler (ISTA) for critical reading of the manuscript. This project was funded by the European Research Council Advanced Grant (ETAP-742985). article_processing_charge: Yes (via OA deal) article_type: letter_note author: - first_name: Huihuang full_name: Chen, Huihuang id: 83c96512-15b2-11ec-abd3-b7eede36184f last_name: Chen - first_name: Lanxin full_name: Li, Lanxin id: 367EF8FA-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0002-5607-272X - first_name: Minxia full_name: Zou, Minxia id: 5c243f41-03f3-11ec-841c-96faf48a7ef9 last_name: Zou - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Chen H, Li L, Zou M, Qi L, Friml J. Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. 2023;16(7):1117-1119. doi:10.1016/j.molp.2023.06.007 apa: Chen, H., Li, L., Zou, M., Qi, L., & Friml, J. (2023). Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. Elsevier . https://doi.org/10.1016/j.molp.2023.06.007 chicago: Chen, Huihuang, Lanxin Li, Minxia Zou, Linlin Qi, and Jiří Friml. “Distinct Functions of TIR1 and AFB1 Receptors in Auxin Signalling.” Molecular Plant. Elsevier , 2023. https://doi.org/10.1016/j.molp.2023.06.007. ieee: H. Chen, L. Li, M. Zou, L. Qi, and J. Friml, “Distinct functions of TIR1 and AFB1 receptors in auxin signalling.,” Molecular Plant, vol. 16, no. 7. Elsevier , pp. 1117–1119, 2023. ista: Chen H, Li L, Zou M, Qi L, Friml J. 2023. Distinct functions of TIR1 and AFB1 receptors in auxin signalling. Molecular Plant. 16(7), 1117–1119. mla: Chen, Huihuang, et al. “Distinct Functions of TIR1 and AFB1 Receptors in Auxin Signalling.” Molecular Plant, vol. 16, no. 7, Elsevier , 2023, pp. 1117–19, doi:10.1016/j.molp.2023.06.007. short: H. Chen, L. Li, M. Zou, L. Qi, J. Friml, Molecular Plant 16 (2023) 1117–1119. date_created: 2023-07-12T07:32:46Z date_published: 2023-07-01T00:00:00Z date_updated: 2024-01-29T10:38:57Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.molp.2023.06.007 ec_funded: 1 external_id: isi: - '001044410900001' pmid: - '37393433' file: - access_level: open_access checksum: 6012b7e4a2f680ee6c1f84001e2b945f content_type: application/pdf creator: dernst date_created: 2024-01-29T10:37:05Z date_updated: 2024-01-29T10:37:05Z file_id: '14894' file_name: 2023_MolecularPlant_Chen.pdf file_size: 1000871 relation: main_file success: 1 file_date_updated: 2024-01-29T10:37:05Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '07' oa: 1 oa_version: Published Version page: 1117-1119 pmid: 1 project: - _id: 261099A6-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '742985' name: Tracing Evolution of Auxin Transport and Polarity in Plants publication: Molecular Plant publication_identifier: eissn: - 1674-2052 issn: - 1752-9867 publication_status: published publisher: 'Elsevier ' quality_controlled: '1' scopus_import: '1' status: public title: Distinct functions of TIR1 and AFB1 receptors in auxin signalling. tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2023' ... --- _id: '13266' abstract: - lang: eng text: The 3′,5′-cyclic adenosine monophosphate (cAMP) is a versatile second messenger in many mammalian signaling pathways. However, its role in plants remains not well-recognized. Recent discovery of adenylate cyclase (AC) activity for transport inhibitor response 1/auxin-signaling F-box proteins (TIR1/AFB) auxin receptors and the demonstration of its importance for canonical auxin signaling put plant cAMP research back into spotlight. This insight briefly summarizes the well-established cAMP signaling pathways in mammalian cells and describes the turbulent and controversial history of plant cAMP research highlighting the major progress and the unresolved points. We also briefly review the current paradigm of auxin signaling to provide a background for the discussion on the AC activity of TIR1/AFB auxin receptors and its potential role in transcriptional auxin signaling as well as impact of these discoveries on plant cAMP research in general. acknowledgement: 'We gratefully acknowledge our brave colleagues, whose excellent efforts kept the plant cAMP research going in the last two decades. The authors were financially supported by the Austrian Science Fund (FWF): I 6123 and P 37051-B.' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Linlin full_name: Qi, Linlin id: 44B04502-A9ED-11E9-B6FC-583AE6697425 last_name: Qi orcid: 0000-0001-5187-8401 - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Qi L, Friml J. Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. 2023;240(2):489-495. doi:10.1111/nph.19123 apa: Qi, L., & Friml, J. (2023). Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. Wiley. https://doi.org/10.1111/nph.19123 chicago: Qi, Linlin, and Jiří Friml. “Tale of CAMP as a Second Messenger in Auxin Signaling and Beyond.” New Phytologist. Wiley, 2023. https://doi.org/10.1111/nph.19123. ieee: L. Qi and J. Friml, “Tale of cAMP as a second messenger in auxin signaling and beyond,” New Phytologist, vol. 240, no. 2. Wiley, pp. 489–495, 2023. ista: Qi L, Friml J. 2023. Tale of cAMP as a second messenger in auxin signaling and beyond. New Phytologist. 240(2), 489–495. mla: Qi, Linlin, and Jiří Friml. “Tale of CAMP as a Second Messenger in Auxin Signaling and Beyond.” New Phytologist, vol. 240, no. 2, Wiley, 2023, pp. 489–95, doi:10.1111/nph.19123. short: L. Qi, J. Friml, New Phytologist 240 (2023) 489–495. date_created: 2023-07-23T22:01:13Z date_published: 2023-10-01T00:00:00Z date_updated: 2024-01-29T11:21:55Z day: '01' ddc: - '580' department: - _id: JiFr doi: 10.1111/nph.19123 external_id: isi: - '001026321500001' pmid: - '37434303' file: - access_level: open_access checksum: 6d9bbd45b8e7bb3ceee2586d447bacb2 content_type: application/pdf creator: dernst date_created: 2024-01-29T11:21:43Z date_updated: 2024-01-29T11:21:43Z file_id: '14898' file_name: 2023_NewPhytologist_Qi.pdf file_size: 974464 relation: main_file success: 1 file_date_updated: 2024-01-29T11:21:43Z has_accepted_license: '1' intvolume: ' 240' isi: 1 issue: '2' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 489-495 pmid: 1 project: - _id: bd76d395-d553-11ed-ba76-f678c14f9033 grant_number: I06123 name: Peptide receptor complexes for auxin canalization and regeneration in Arabidopsis - _id: 7bcece63-9f16-11ee-852c-ae94e099eeb6 grant_number: P37051 name: Guanylate cyclase activity of TIR1/AFBs auxin receptors publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Tale of cAMP as a second messenger in auxin signaling and beyond tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 240 year: '2023' ... --- _id: '13209' abstract: - lang: eng text: The phytohormone auxin plays central roles in many growth and developmental processes in plants. Development of chemical tools targeting the auxin pathway is useful for both plant biology and agriculture. Here we reveal that naproxen, a synthetic compound with anti-inflammatory activity in humans, acts as an auxin transport inhibitor targeting PIN-FORMED (PIN) transporters in plants. Physiological experiments indicate that exogenous naproxen treatment affects pleiotropic auxin-regulated developmental processes. Additional cellular and biochemical evidence indicates that naproxen suppresses auxin transport, specifically PIN-mediated auxin efflux. Moreover, biochemical and structural analyses confirm that naproxen binds directly to PIN1 protein via the same binding cavity as the indole-3-acetic acid substrate. Thus, by combining cellular, biochemical, and structural approaches, this study clearly establishes that naproxen is a PIN inhibitor and elucidates the underlying mechanisms. Further use of this compound may advance our understanding of the molecular mechanisms of PIN-mediated auxin transport and expand our toolkit in auxin biology and agriculture. acknowledgement: "This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB37020103 to Linfeng Sun); research funds from the Center for Advanced Interdisciplinary Science\r\nand Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China (QYPY20220012 to S.T.); start-up funding from the University of Science and Technology of China and the\r\nChinese Academy of Sciences (GG9100007007, KY9100000026,KY9100000051, and KJ2070000079 to S.T.); the National Natural Science Foundation of China (31900885 to X.L. and 31870732 to Linfeng Sun); the Natural Science Foundation of Anhui Province (2008085MC90 to X.L. and 2008085J15 to Linfeng Sun); the Fundamental Research Funds for the Central Universities (WK9100000021 to S.T. and WK9100000031 to Linfeng Sun); and the USTC Research Funds of the Double First-Class Initiative (YD9100002016 to S.T. and YD9100002004 to Linfeng Sun). Linfeng Sun is supported by an Outstanding Young Scholar Award from the Qiu Shi Science and Technologies Foundation and a Young Scholar Award from the Cyrus Tang Foundation.We thank Dr. Yang Zhao for sharing published materials (Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences) and the Cryo-EM Center of the University of Science and Technology of China for the EM facility support. We are grateful to Y. Gao and all other staff members for their technical support on cryo-EM data collection. " article_number: '100632' article_processing_charge: Yes article_type: original author: - first_name: Jing full_name: Xia, Jing last_name: Xia - first_name: Mengjuan full_name: Kong, Mengjuan last_name: Kong - first_name: Zhisen full_name: Yang, Zhisen last_name: Yang - first_name: Lianghanxiao full_name: Sun, Lianghanxiao last_name: Sun - first_name: Yakun full_name: Peng, Yakun last_name: Peng - first_name: Yanbo full_name: Mao, Yanbo last_name: Mao - first_name: Hong full_name: Wei, Hong last_name: Wei - first_name: Wei full_name: Ying, Wei last_name: Ying - first_name: Yongxiao full_name: Gao, Yongxiao last_name: Gao - first_name: Jiří full_name: Friml, Jiří id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Jianping full_name: Weng, Jianping last_name: Weng - first_name: Xin full_name: Liu, Xin last_name: Liu - first_name: Linfeng full_name: Sun, Linfeng last_name: Sun - first_name: Shutang full_name: Tan, Shutang last_name: Tan citation: ama: Xia J, Kong M, Yang Z, et al. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. 2023;4(6). doi:10.1016/j.xplc.2023.100632 apa: Xia, J., Kong, M., Yang, Z., Sun, L., Peng, Y., Mao, Y., … Tan, S. (2023). Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. Elsevier . https://doi.org/10.1016/j.xplc.2023.100632 chicago: Xia, Jing, Mengjuan Kong, Zhisen Yang, Lianghanxiao Sun, Yakun Peng, Yanbo Mao, Hong Wei, et al. “Chemical Inhibition of Arabidopsis PIN-FORMED Auxin Transporters by the Anti-Inflammatory Drug Naproxen.” Plant Communications. Elsevier , 2023. https://doi.org/10.1016/j.xplc.2023.100632. ieee: J. Xia et al., “Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen,” Plant Communications, vol. 4, no. 6. Elsevier , 2023. ista: Xia J, Kong M, Yang Z, Sun L, Peng Y, Mao Y, Wei H, Ying W, Gao Y, Friml J, Weng J, Liu X, Sun L, Tan S. 2023. Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen. Plant Communications. 4(6), 100632. mla: Xia, Jing, et al. “Chemical Inhibition of Arabidopsis PIN-FORMED Auxin Transporters by the Anti-Inflammatory Drug Naproxen.” Plant Communications, vol. 4, no. 6, 100632, Elsevier , 2023, doi:10.1016/j.xplc.2023.100632. short: J. Xia, M. Kong, Z. Yang, L. Sun, Y. Peng, Y. Mao, H. Wei, W. Ying, Y. Gao, J. Friml, J. Weng, X. Liu, L. Sun, S. Tan, Plant Communications 4 (2023). date_created: 2023-07-12T07:32:00Z date_published: 2023-11-13T00:00:00Z date_updated: 2024-01-30T10:55:34Z day: '13' ddc: - '580' department: - _id: JiFr doi: 10.1016/j.xplc.2023.100632 external_id: isi: - '001113003000001' pmid: - '37254481' file: - access_level: open_access checksum: f8ef92af6096834f91ce38587fb1db9f content_type: application/pdf creator: dernst date_created: 2024-01-30T10:54:40Z date_updated: 2024-01-30T10:54:40Z file_id: '14900' file_name: 2023_PlantCommunications_Xia.pdf file_size: 1434862 relation: main_file success: 1 file_date_updated: 2024-01-30T10:54:40Z has_accepted_license: '1' intvolume: ' 4' isi: 1 issue: '6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version pmid: 1 publication: Plant Communications publication_identifier: eissn: - 2590-3462 publication_status: published publisher: 'Elsevier ' quality_controlled: '1' status: public title: Chemical inhibition of Arabidopsis PIN-FORMED auxin transporters by the anti-inflammatory drug naproxen tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 4 year: '2023' ...