--- _id: '1536' abstract: - lang: eng text: Strigolactones, first discovered as germination stimulants for parasitic weeds [1], are carotenoid-derived phytohormones that play major roles in inhibiting lateral bud outgrowth and promoting plant-mycorrhizal symbiosis [2-4]. Furthermore, strigolactones are involved in the regulation of lateral and adventitious root development, root cell division [5, 6], secondary growth [7], and leaf senescence [8]. Recently, we discovered the strigolactone transporter Petunia axillaris PLEIOTROPIC DRUG RESISTANCE 1 (PaPDR1), which is required for efficient mycorrhizal colonization and inhibition of lateral bud outgrowth [9]. However, how strigolactones are transported through the plant remained unknown. Here we show that PaPDR1 exhibits a cell-type-specific asymmetric localization in different root tissues. In root tips, PaPDR1 is co-expressed with the strigolactone biosynthetic gene DAD1 (CCD8), and it is localized at the apical membrane of root hypodermal cells, presumably mediating the shootward transport of strigolactone. Above the root tip, in the hypodermal passage cells that form gates for the entry of mycorrhizal fungi, PaPDR1 is present in the outer-lateral membrane, compatible with its postulated function as strigolactone exporter from root to soil. Transport studies are in line with our localization studies since (1) a papdr1 mutant displays impaired transport of strigolactones out of the root tip to the shoot as well as into the rhizosphere and (2) DAD1 expression and PIN1/PIN2 levels change in plants deregulated for PDR1 expression, suggestive of variations in endogenous strigolactone contents. In conclusion, our results indicate that the polar localizations of PaPDR1 mediate directional shootward strigolactone transport as well as localized exudation into the soil. acknowledgement: "This work was funded by a grant of the Swiss National Foundation to E.M.\r\nWe thank Dr. José María Mateos (University of Zurich) for providing us with the vibratome, Prof. Dolf Weijers (Wageningen University, the Netherlands) for shipping us his set of ligation-independent cloning vectors, Prof. Bruno Humbel (University of Lausanne) for suggestions on GFP-PDR1 detection, and Dr. Undine Krügel (University of Zurich) and Prof. Michal Jasinski (Polish Academy of Science) for hints on protein quantification." author: - first_name: Joëlle full_name: Sasse, Joëlle last_name: Sasse - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 - first_name: Christian full_name: Gübeli, Christian last_name: Gübeli - first_name: Guowei full_name: Liu, Guowei last_name: Liu - first_name: Xi full_name: Cheng, Xi last_name: Cheng - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Harro full_name: Bouwmeester, Harro last_name: Bouwmeester - first_name: Enrico full_name: Martinoia, Enrico last_name: Martinoia - first_name: Lorenzo full_name: Borghi, Lorenzo last_name: Borghi citation: ama: Sasse J, Simon S, Gübeli C, et al. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. 2015;25(5):647-655. doi:10.1016/j.cub.2015.01.015 apa: Sasse, J., Simon, S., Gübeli, C., Liu, G., Cheng, X., Friml, J., … Borghi, L. (2015). Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. Cell Press. https://doi.org/10.1016/j.cub.2015.01.015 chicago: Sasse, Joëlle, Sibu Simon, Christian Gübeli, Guowei Liu, Xi Cheng, Jiří Friml, Harro Bouwmeester, Enrico Martinoia, and Lorenzo Borghi. “Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport.” Current Biology. Cell Press, 2015. https://doi.org/10.1016/j.cub.2015.01.015. ieee: J. Sasse et al., “Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport,” Current Biology, vol. 25, no. 5. Cell Press, pp. 647–655, 2015. ista: Sasse J, Simon S, Gübeli C, Liu G, Cheng X, Friml J, Bouwmeester H, Martinoia E, Borghi L. 2015. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology. 25(5), 647–655. mla: Sasse, Joëlle, et al. “Asymmetric Localizations of the ABC Transporter PaPDR1 Trace Paths of Directional Strigolactone Transport.” Current Biology, vol. 25, no. 5, Cell Press, 2015, pp. 647–55, doi:10.1016/j.cub.2015.01.015. short: J. Sasse, S. Simon, C. Gübeli, G. Liu, X. Cheng, J. Friml, H. Bouwmeester, E. Martinoia, L. Borghi, Current Biology 25 (2015) 647–655. date_created: 2018-12-11T11:52:35Z date_published: 2015-02-12T00:00:00Z date_updated: 2021-01-12T06:51:27Z day: '12' department: - _id: JiFr doi: 10.1016/j.cub.2015.01.015 intvolume: ' 25' issue: '5' language: - iso: eng month: '02' oa_version: None page: 647 - 655 publication: Current Biology publication_status: published publisher: Cell Press publist_id: '5635' quality_controlled: '1' scopus_import: 1 status: public title: Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 25 year: '2015' ... --- _id: '1543' abstract: - lang: eng text: A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. author: - first_name: Yadira full_name: Olvera Carrillo, Yadira last_name: Olvera Carrillo - first_name: Michiel full_name: Van Bel, Michiel last_name: Van Bel - first_name: Tom full_name: Van Hautegem, Tom last_name: Van Hautegem - first_name: Matyas full_name: Fendrych, Matyas id: 43905548-F248-11E8-B48F-1D18A9856A87 last_name: Fendrych orcid: 0000-0002-9767-8699 - first_name: Marlies full_name: Huysmans, Marlies last_name: Huysmans - first_name: Mária full_name: Šimášková, Mária last_name: Šimášková - first_name: Matthias full_name: Van Durme, Matthias last_name: Van Durme - first_name: Pierre full_name: Buscaill, Pierre last_name: Buscaill - first_name: Susana full_name: Rivas, Susana last_name: Rivas - first_name: Núria full_name: Coll, Núria last_name: Coll - first_name: Frederik full_name: Coppens, Frederik last_name: Coppens - first_name: Steven full_name: Maere, Steven last_name: Maere - first_name: Moritz full_name: Nowack, Moritz last_name: Nowack citation: ama: Olvera Carrillo Y, Van Bel M, Van Hautegem T, et al. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. 2015;169(4):2684-2699. doi:10.1104/pp.15.00769 apa: Olvera Carrillo, Y., Van Bel, M., Van Hautegem, T., Fendrych, M., Huysmans, M., Šimášková, M., … Nowack, M. (2015). A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.15.00769 chicago: Olvera Carrillo, Yadira, Michiel Van Bel, Tom Van Hautegem, Matyas Fendrych, Marlies Huysmans, Mária Šimášková, Matthias Van Durme, et al. “A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.” Plant Physiology. American Society of Plant Biologists, 2015. https://doi.org/10.1104/pp.15.00769. ieee: Y. Olvera Carrillo et al., “A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants,” Plant Physiology, vol. 169, no. 4. American Society of Plant Biologists, pp. 2684–2699, 2015. ista: Olvera Carrillo Y, Van Bel M, Van Hautegem T, Fendrych M, Huysmans M, Šimášková M, Van Durme M, Buscaill P, Rivas S, Coll N, Coppens F, Maere S, Nowack M. 2015. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiology. 169(4), 2684–2699. mla: Olvera Carrillo, Yadira, et al. “A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.” Plant Physiology, vol. 169, no. 4, American Society of Plant Biologists, 2015, pp. 2684–99, doi:10.1104/pp.15.00769. short: Y. Olvera Carrillo, M. Van Bel, T. Van Hautegem, M. Fendrych, M. Huysmans, M. Šimášková, M. Van Durme, P. Buscaill, S. Rivas, N. Coll, F. Coppens, S. Maere, M. Nowack, Plant Physiology 169 (2015) 2684–2699. date_created: 2018-12-11T11:52:38Z date_published: 2015-12-01T00:00:00Z date_updated: 2021-01-12T06:51:30Z day: '01' department: - _id: JiFr doi: 10.1104/pp.15.00769 intvolume: ' 169' issue: '4' language: - iso: eng month: '12' oa_version: None page: 2684 - 2699 publication: Plant Physiology publication_status: published publisher: American Society of Plant Biologists publist_id: '5628' scopus_import: 1 status: public title: A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 169 year: '2015' ... --- _id: '1556' abstract: - lang: eng text: The elongator complex subunit 2 (ELP2) protein, one subunit of an evolutionarily conserved histone acetyltransferase complex, has been shown to participate in leaf patterning, plant immune and abiotic stress responses in Arabidopsis thaliana. Here, its role in root development was explored. Compared to the wild type, the elp2 mutant exhibited an accelerated differentiation of its root stem cells and cell division was more active in its quiescent centre (QC). The key transcription factors responsible for maintaining root stem cell and QC identity, such as AP2 transcription factors PLT1 (PLETHORA1) and PLT2 (PLETHORA2), GRAS transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX5 transcription factor WOX5, were all strongly down-regulated in the mutant. On the other hand, expression of the G2/M transition activator CYCB1 was substantially induced in elp2. The auxin efflux transporters PIN1 and PIN2 showed decreased protein levels and PIN1 also displayed mild polarity alterations in elp2, which resulted in a reduced auxin content in the root tip. Either the acetylation or methylation level of each of these genes differed between the mutant and the wild type, suggesting that the ELP2 regulation of root development involves the epigenetic modification of a range of transcription factors and other developmental regulators. author: - first_name: Yuebin full_name: Jia, Yuebin last_name: Jia - first_name: Huiyu full_name: Tian, Huiyu last_name: Tian - first_name: Hongjiang full_name: Li, Hongjiang id: 33CA54A6-F248-11E8-B48F-1D18A9856A87 last_name: Li orcid: 0000-0001-5039-9660 - first_name: Qianqian full_name: Yu, Qianqian last_name: Yu - first_name: Lei full_name: Wang, Lei last_name: Wang - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Zhaojun full_name: Ding, Zhaojun last_name: Ding citation: ama: Jia Y, Tian H, Li H, et al. The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany. 2015;66(15):4631-4642. doi:10.1093/jxb/erv230 apa: Jia, Y., Tian, H., Li, H., Yu, Q., Wang, L., Friml, J., & Ding, Z. (2015). The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/erv230 chicago: Jia, Yuebin, Huiyu Tian, Hongjiang Li, Qianqian Yu, Lei Wang, Jiří Friml, and Zhaojun Ding. “The Arabidopsis Thaliana Elongator Complex Subunit 2 Epigenetically Affects Root Development.” Journal of Experimental Botany. Oxford University Press, 2015. https://doi.org/10.1093/jxb/erv230. ieee: Y. Jia et al., “The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development,” Journal of Experimental Botany, vol. 66, no. 15. Oxford University Press, pp. 4631–4642, 2015. ista: Jia Y, Tian H, Li H, Yu Q, Wang L, Friml J, Ding Z. 2015. The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development. Journal of Experimental Botany. 66(15), 4631–4642. mla: Jia, Yuebin, et al. “The Arabidopsis Thaliana Elongator Complex Subunit 2 Epigenetically Affects Root Development.” Journal of Experimental Botany, vol. 66, no. 15, Oxford University Press, 2015, pp. 4631–42, doi:10.1093/jxb/erv230. short: Y. Jia, H. Tian, H. Li, Q. Yu, L. Wang, J. Friml, Z. Ding, Journal of Experimental Botany 66 (2015) 4631–4642. date_created: 2018-12-11T11:52:42Z date_published: 2015-08-01T00:00:00Z date_updated: 2021-01-12T06:51:35Z day: '01' ddc: - '570' department: - _id: JiFr doi: 10.1093/jxb/erv230 file: - access_level: open_access checksum: 257919be0ce3d306185d3891ad7acf39 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:02Z date_updated: 2020-07-14T12:45:02Z file_id: '5051' file_name: IST-2016-480-v1+1_J._Exp._Bot.-2015-Jia-4631-42.pdf file_size: 7753043 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 66' issue: '15' language: - iso: eng month: '08' oa: 1 oa_version: Published Version page: 4631 - 4642 publication: Journal of Experimental Botany publication_status: published publisher: Oxford University Press publist_id: '5615' pubrep_id: '480' quality_controlled: '1' scopus_import: 1 status: public title: The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 66 year: '2015' ... --- _id: '1558' abstract: - lang: eng text: CyclophilinAis a conserved peptidyl-prolyl cis-trans isomerase (PPIase) best known as the cellular receptor of the immunosuppressant cyclosporine A. Despite significant effort, evidence of developmental functions of cyclophilin A in non-plant systems has remained obscure. Mutations in a tomato (Solanum lycopersicum) cyclophilin A ortholog, DIAGEOTROPICA (DGT), have been shown to abolish the organogenesis of lateral roots; however, a mechanistic explanation of the phenotype is lacking. Here, we show that the dgt mutant lacks auxin maxima relevant to priming and specification of lateral root founder cells. DGT is expressed in shoot and root, and localizes to both the nucleus and cytoplasm during lateral root organogenesis. Mutation of ENTIRE/ IAA9, a member of the auxin-responsive Aux/IAA protein family of transcriptional repressors, partially restores the inability of dgt to initiate lateral root primordia but not the primordia outgrowth. By comparison, grafting of a wild-type scion restores the process of lateral root formation, consistent with participation of a mobile signal. Antibodies do not detect movement of the DGT protein into the dgt rootstock; however, experiments with radiolabeled auxin and an auxin-specific microelectrode demonstrate abnormal auxin fluxes. Functional studies of DGT in heterologous yeast and tobacco-leaf auxin-transport systems demonstrate that DGT negatively regulates PIN-FORMED (PIN) auxin efflux transporters by affecting their plasma membrane localization. Studies in tomato support complex effects of the dgt mutation on PIN expression level, expression domain and plasma membrane localization. Our data demonstrate that DGT regulates auxin transport in lateral root formation. author: - first_name: Maria full_name: Ivanchenko, Maria last_name: Ivanchenko - first_name: Jinsheng full_name: Zhu, Jinsheng last_name: Zhu - first_name: Bangjun full_name: Wang, Bangjun last_name: Wang - first_name: Eva full_name: Medvecka, Eva id: 298814E2-F248-11E8-B48F-1D18A9856A87 last_name: Medvecka - first_name: Yunlong full_name: Du, Yunlong last_name: Du - first_name: Elisa full_name: Azzarello, Elisa last_name: Azzarello - first_name: Stefano full_name: Mancuso, Stefano last_name: Mancuso - first_name: Molly full_name: Megraw, Molly last_name: Megraw - first_name: Sergei full_name: Filichkin, Sergei last_name: Filichkin - first_name: Joseph full_name: Dubrovsky, Joseph last_name: Dubrovsky - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Markus full_name: Geisler, Markus last_name: Geisler citation: ama: Ivanchenko M, Zhu J, Wang B, et al. The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development. 2015;142(4):712-721. doi:10.1242/dev.113225 apa: Ivanchenko, M., Zhu, J., Wang, B., Medvecka, E., Du, Y., Azzarello, E., … Geisler, M. (2015). The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development. Company of Biologists. https://doi.org/10.1242/dev.113225 chicago: Ivanchenko, Maria, Jinsheng Zhu, Bangjun Wang, Eva Medvecka, Yunlong Du, Elisa Azzarello, Stefano Mancuso, et al. “The Cyclophilin a DIAGEOTROPICA Gene Affects Auxin Transport in Both Root and Shoot to Control Lateral Root Formation.” Development. Company of Biologists, 2015. https://doi.org/10.1242/dev.113225. ieee: M. Ivanchenko et al., “The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation,” Development, vol. 142, no. 4. Company of Biologists, pp. 712–721, 2015. ista: Ivanchenko M, Zhu J, Wang B, Medvecka E, Du Y, Azzarello E, Mancuso S, Megraw M, Filichkin S, Dubrovsky J, Friml J, Geisler M. 2015. The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation. Development. 142(4), 712–721. mla: Ivanchenko, Maria, et al. “The Cyclophilin a DIAGEOTROPICA Gene Affects Auxin Transport in Both Root and Shoot to Control Lateral Root Formation.” Development, vol. 142, no. 4, Company of Biologists, 2015, pp. 712–21, doi:10.1242/dev.113225. short: M. Ivanchenko, J. Zhu, B. Wang, E. Medvecka, Y. Du, E. Azzarello, S. Mancuso, M. Megraw, S. Filichkin, J. Dubrovsky, J. Friml, M. Geisler, Development 142 (2015) 712–721. date_created: 2018-12-11T11:52:42Z date_published: 2015-02-15T00:00:00Z date_updated: 2021-01-12T06:51:35Z day: '15' department: - _id: JiFr doi: 10.1242/dev.113225 intvolume: ' 142' issue: '4' language: - iso: eng month: '02' oa_version: None page: 712 - 721 publication: Development publication_status: published publisher: Company of Biologists publist_id: '5613' quality_controlled: '1' scopus_import: 1 status: public title: The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 142 year: '2015' ... --- _id: '1554' abstract: - lang: eng text: The visualization of hormonal signaling input and output is key to understanding how multicellular development is regulated. The plant signaling molecule auxin triggers many growth and developmental responses, but current tools lack the sensitivity or precision to visualize these. We developed a set of fluorescent reporters that allow sensitive and semiquantitative readout of auxin responses at cellular resolution in Arabidopsis thaliana. These generic tools are suitable for any transformable plant species. author: - first_name: Cheyang full_name: Liao, Cheyang last_name: Liao - first_name: Wouter full_name: Smet, Wouter last_name: Smet - first_name: Géraldine full_name: Brunoud, Géraldine last_name: Brunoud - first_name: Saiko full_name: Yoshida, Saiko id: 2E46069C-F248-11E8-B48F-1D18A9856A87 last_name: Yoshida - first_name: Teva full_name: Vernoux, Teva last_name: Vernoux - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers citation: ama: Liao C, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods. 2015;12(3):207-210. doi:10.1038/nmeth.3279 apa: Liao, C., Smet, W., Brunoud, G., Yoshida, S., Vernoux, T., & Weijers, D. (2015). Reporters for sensitive and quantitative measurement of auxin response. Nature Methods. Nature Publishing Group. https://doi.org/10.1038/nmeth.3279 chicago: Liao, Cheyang, Wouter Smet, Géraldine Brunoud, Saiko Yoshida, Teva Vernoux, and Dolf Weijers. “Reporters for Sensitive and Quantitative Measurement of Auxin Response.” Nature Methods. Nature Publishing Group, 2015. https://doi.org/10.1038/nmeth.3279. ieee: C. Liao, W. Smet, G. Brunoud, S. Yoshida, T. Vernoux, and D. Weijers, “Reporters for sensitive and quantitative measurement of auxin response,” Nature Methods, vol. 12, no. 3. Nature Publishing Group, pp. 207–210, 2015. ista: Liao C, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D. 2015. Reporters for sensitive and quantitative measurement of auxin response. Nature Methods. 12(3), 207–210. mla: Liao, Cheyang, et al. “Reporters for Sensitive and Quantitative Measurement of Auxin Response.” Nature Methods, vol. 12, no. 3, Nature Publishing Group, 2015, pp. 207–10, doi:10.1038/nmeth.3279. short: C. Liao, W. Smet, G. Brunoud, S. Yoshida, T. Vernoux, D. Weijers, Nature Methods 12 (2015) 207–210. date_created: 2018-12-11T11:52:41Z date_published: 2015-02-26T00:00:00Z date_updated: 2021-01-12T06:51:34Z day: '26' department: - _id: JiFr doi: 10.1038/nmeth.3279 external_id: pmid: - '25643149' intvolume: ' 12' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344836/ month: '02' oa: 1 oa_version: Submitted Version page: 207 - 210 pmid: 1 publication: Nature Methods publication_status: published publisher: Nature Publishing Group publist_id: '5617' quality_controlled: '1' scopus_import: 1 status: public title: Reporters for sensitive and quantitative measurement of auxin response type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 12 year: '2015' ... --- _id: '1562' abstract: - lang: eng text: The plant hormone auxin is a key regulator of plant growth and development. Auxin levels are sensed and interpreted by distinct receptor systems that activate a broad range of cellular responses. The Auxin-Binding Protein1 (ABP1) that has been identified based on its ability to bind auxin with high affinity is a prime candidate for the extracellular receptor responsible for mediating a range of auxin effects, in particular, the fast non-transcriptional ones. Contradictory genetic studies suggested prominent or no importance of ABP1 in many developmental processes. However, how crucial the role of auxin binding to ABP1 is for its functions has not been addressed. Here, we show that the auxin-binding pocket of ABP1 is essential for its gain-of-function cellular and developmental roles. In total, 16 different abp1 mutants were prepared that possessed substitutions in the metal core or in the hydrophobic amino acids of the auxin-binding pocket as well as neutral mutations. Their analysis revealed that an intact auxin-binding pocket is a prerequisite for ABP1 to activate downstream components of the ABP1 signalling pathway, such as Rho of Plants (ROPs) and to mediate the clathrin association with membranes for endocytosis regulation. In planta analyses demonstrated the importance of the auxin binding pocket for all known ABP1-mediated postembryonic developmental processes, including morphology of leaf epidermal cells, root growth and root meristem activity, and vascular tissue differentiation. Taken together, these findings suggest that auxin binding to ABP1 is central to its function, supporting the role of ABP1 as auxin receptor. acknowledgement: This work was supported by ERC Independent Research grant (ERC-2011-StG- 20101109-PSDP to JF); the European Social Fund and the state budget of the Czech Republic [the project ‘Employment of Newly Graduated Doctors of Science for Scientific Excellence’ (CZ.1.07/2.3.00/30.0009) to TN]; the Czech Science Foundation (GACR) [project 13-40637S to JF]. article_type: original author: - first_name: Peter full_name: Grones, Peter id: 399876EC-F248-11E8-B48F-1D18A9856A87 last_name: Grones - first_name: Xu full_name: Chen, Xu id: 4E5ADCAA-F248-11E8-B48F-1D18A9856A87 last_name: Chen - first_name: Sibu full_name: Simon, Sibu id: 4542EF9A-F248-11E8-B48F-1D18A9856A87 last_name: Simon orcid: 0000-0002-1998-6741 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Riet full_name: De Rycke, Riet last_name: De Rycke - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Eva full_name: Zažímalová, Eva last_name: Zažímalová - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Grones P, Chen X, Simon S, et al. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. Journal of Experimental Botany. 2015;66(16):5055-5065. doi:10.1093/jxb/erv177 apa: Grones, P., Chen, X., Simon, S., Kaufmann, W., De Rycke, R., Nodzyński, T., … Friml, J. (2015). Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. Journal of Experimental Botany. Oxford University Press. https://doi.org/10.1093/jxb/erv177 chicago: Grones, Peter, Xu Chen, Sibu Simon, Walter Kaufmann, Riet De Rycke, Tomasz Nodzyński, Eva Zažímalová, and Jiří Friml. “Auxin-Binding Pocket of ABP1 Is Crucial for Its Gain-of-Function Cellular and Developmental Roles.” Journal of Experimental Botany. Oxford University Press, 2015. https://doi.org/10.1093/jxb/erv177. ieee: P. Grones et al., “Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles,” Journal of Experimental Botany, vol. 66, no. 16. Oxford University Press, pp. 5055–5065, 2015. ista: Grones P, Chen X, Simon S, Kaufmann W, De Rycke R, Nodzyński T, Zažímalová E, Friml J. 2015. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. Journal of Experimental Botany. 66(16), 5055–5065. mla: Grones, Peter, et al. “Auxin-Binding Pocket of ABP1 Is Crucial for Its Gain-of-Function Cellular and Developmental Roles.” Journal of Experimental Botany, vol. 66, no. 16, Oxford University Press, 2015, pp. 5055–65, doi:10.1093/jxb/erv177. short: P. Grones, X. Chen, S. Simon, W. Kaufmann, R. De Rycke, T. Nodzyński, E. Zažímalová, J. Friml, Journal of Experimental Botany 66 (2015) 5055–5065. date_created: 2018-12-11T11:52:44Z date_published: 2015-08-01T00:00:00Z date_updated: 2023-02-23T10:04:26Z day: '01' department: - _id: JiFr - _id: EM-Fac doi: 10.1093/jxb/erv177 ec_funded: 1 intvolume: ' 66' issue: '16' language: - iso: eng month: '08' oa_version: None page: 5055 - 5065 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Journal of Experimental Botany publication_status: published publisher: Oxford University Press publist_id: '5609' quality_controlled: '1' scopus_import: 1 status: public title: Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 66 year: '2015' ... --- _id: '1574' abstract: - lang: eng text: Multiple plant developmental processes, such as lateral root development, depend on auxin distribution patterns that are in part generated by the PIN-formed family of auxin-efflux transporters. Here we propose that AUXIN RESPONSE FACTOR7 (ARF7) and the ARF7-regulated FOUR LIPS/MYB124 (FLP) transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation. This regulatory mechanism might endow the PIN3 circuitry with a temporal 'memory' of auxin stimuli, potentially maintaining and enhancing the robustness of the auxin flux directionality during lateral root development. The cooperative action between canonical auxin signalling and other transcription factors might constitute a general mechanism by which transcriptional auxin-sensitivity can be regulated at a tissue-specific level. acknowledgement: 'of the European Research Council (project ERC-2011-StG-20101109-PSDP) (to J.F.), a FEBS long-term fellowship (to P.M.) ' article_number: '8821' author: - first_name: Qian full_name: Chen, Qian last_name: Chen - first_name: Yang full_name: Liu, Yang last_name: Liu - first_name: Steven full_name: Maere, Steven last_name: Maere - first_name: Eunkyoung full_name: Lee, Eunkyoung last_name: Lee - first_name: Gert full_name: Van Isterdael, Gert last_name: Van Isterdael - first_name: Zidian full_name: Xie, Zidian last_name: Xie - first_name: Wei full_name: Xuan, Wei last_name: Xuan - first_name: Jessica full_name: Lucas, Jessica last_name: Lucas - first_name: Valya full_name: Vassileva, Valya last_name: Vassileva - first_name: Saeko full_name: Kitakura, Saeko last_name: Kitakura - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Niko full_name: Geldner, Niko last_name: Geldner - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 - first_name: Jie full_name: Le, Jie last_name: Le - first_name: Hidehiro full_name: Fukaki, Hidehiro last_name: Fukaki - first_name: Erich full_name: Grotewold, Erich last_name: Grotewold - first_name: Chuanyou full_name: Li, Chuanyou last_name: Li - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Fred full_name: Sack, Fred last_name: Sack - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste citation: ama: Chen Q, Liu Y, Maere S, et al. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications. 2015;6. doi:10.1038/ncomms9821 apa: Chen, Q., Liu, Y., Maere, S., Lee, E., Van Isterdael, G., Xie, Z., … Vanneste, S. (2015). A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms9821 chicago: Chen, Qian, Yang Liu, Steven Maere, Eunkyoung Lee, Gert Van Isterdael, Zidian Xie, Wei Xuan, et al. “A Coherent Transcriptional Feed-Forward Motif Model for Mediating Auxin-Sensitive PIN3 Expression during Lateral Root Development.” Nature Communications. Nature Publishing Group, 2015. https://doi.org/10.1038/ncomms9821. ieee: Q. Chen et al., “A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development,” Nature Communications, vol. 6. Nature Publishing Group, 2015. ista: Chen Q, Liu Y, Maere S, Lee E, Van Isterdael G, Xie Z, Xuan W, Lucas J, Vassileva V, Kitakura S, Marhavý P, Wabnik KT, Geldner N, Benková E, Le J, Fukaki H, Grotewold E, Li C, Friml J, Sack F, Beeckman T, Vanneste S. 2015. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications. 6, 8821. mla: Chen, Qian, et al. “A Coherent Transcriptional Feed-Forward Motif Model for Mediating Auxin-Sensitive PIN3 Expression during Lateral Root Development.” Nature Communications, vol. 6, 8821, Nature Publishing Group, 2015, doi:10.1038/ncomms9821. short: Q. Chen, Y. Liu, S. Maere, E. Lee, G. Van Isterdael, Z. Xie, W. Xuan, J. Lucas, V. Vassileva, S. Kitakura, P. Marhavý, K.T. Wabnik, N. Geldner, E. Benková, J. Le, H. Fukaki, E. Grotewold, C. Li, J. Friml, F. Sack, T. Beeckman, S. Vanneste, Nature Communications 6 (2015). date_created: 2018-12-11T11:52:48Z date_published: 2015-11-18T00:00:00Z date_updated: 2021-01-12T06:51:42Z day: '18' ddc: - '580' department: - _id: EvBe - _id: JiFr doi: 10.1038/ncomms9821 file: - access_level: open_access checksum: 8ff5c108899b548806e1cb7a302fe76d content_type: application/pdf creator: system date_created: 2018-12-12T10:14:32Z date_updated: 2020-07-14T12:45:02Z file_id: '5085' file_name: IST-2016-477-v1+1_ncomms9821.pdf file_size: 1701815 relation: main_file file_date_updated: 2020-07-14T12:45:02Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5597' pubrep_id: '477' quality_controlled: '1' scopus_import: 1 status: public title: A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ... --- _id: '1569' abstract: - lang: eng text: Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF- defective mutants gnom-like 1 ( gnl1-1) and gnom ( van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER) - Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development. acknowledgement: 'This work was supported by Vetenskapsrådet and Vinnova (Verket för Innovationssystemet) (S.M.D., T.V., M.Ł., and S.R.), Knut och Alice Wallenbergs Stiftelse (S.M.D., A.R., and C.V.), Kempestiftelserna (A.H. and Q.M.), Carl Tryggers Stiftelse för Vetenskaplig Forskning (Q.M.), European Research Council Grant ERC-2011-StG-20101109-PSDP (to J.F.), US Department of Energy Grant DE-FG02-02ER15295 (to N.V.R.), and National Science Foundation Grant MCB-0817916 (to N.V.R. and G.R.H.). ' author: - first_name: Siamsa full_name: Doyle, Siamsa last_name: Doyle - first_name: Ash full_name: Haegera, Ash last_name: Haegera - first_name: Thomas full_name: Vain, Thomas last_name: Vain - first_name: Adeline full_name: Rigala, Adeline last_name: Rigala - first_name: Corrado full_name: Viotti, Corrado last_name: Viotti - first_name: Małgorzata full_name: Łangowskaa, Małgorzata last_name: Łangowskaa - first_name: Qian full_name: Maa, Qian last_name: Maa - first_name: Jirí full_name: Friml, Jirí id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Natasha full_name: Raikhel, Natasha last_name: Raikhel - first_name: Glenn full_name: Hickse, Glenn last_name: Hickse - first_name: Stéphanie full_name: Robert, Stéphanie last_name: Robert citation: ama: Doyle S, Haegera A, Vain T, et al. An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana. PNAS. 2015;112(7):E806-E815. doi:10.1073/pnas.1424856112 apa: Doyle, S., Haegera, A., Vain, T., Rigala, A., Viotti, C., Łangowskaa, M., … Robert, S. (2015). An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1424856112 chicago: Doyle, Siamsa, Ash Haegera, Thomas Vain, Adeline Rigala, Corrado Viotti, Małgorzata Łangowskaa, Qian Maa, et al. “An Early Secretory Pathway Mediated by Gnom-like 1 and Gnom Is Essential for Basal Polarity Establishment in Arabidopsis Thaliana.” PNAS. National Academy of Sciences, 2015. https://doi.org/10.1073/pnas.1424856112. ieee: S. Doyle et al., “An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana,” PNAS, vol. 112, no. 7. National Academy of Sciences, pp. E806–E815, 2015. ista: Doyle S, Haegera A, Vain T, Rigala A, Viotti C, Łangowskaa M, Maa Q, Friml J, Raikhel N, Hickse G, Robert S. 2015. An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana. PNAS. 112(7), E806–E815. mla: Doyle, Siamsa, et al. “An Early Secretory Pathway Mediated by Gnom-like 1 and Gnom Is Essential for Basal Polarity Establishment in Arabidopsis Thaliana.” PNAS, vol. 112, no. 7, National Academy of Sciences, 2015, pp. E806–15, doi:10.1073/pnas.1424856112. short: S. Doyle, A. Haegera, T. Vain, A. Rigala, C. Viotti, M. Łangowskaa, Q. Maa, J. Friml, N. Raikhel, G. Hickse, S. Robert, PNAS 112 (2015) E806–E815. date_created: 2018-12-11T11:52:46Z date_published: 2015-02-17T00:00:00Z date_updated: 2021-01-12T06:51:39Z day: '17' department: - _id: JiFr doi: 10.1073/pnas.1424856112 ec_funded: 1 intvolume: ' 112' issue: '7' language: - iso: eng main_file_link: - open_access: '1' url: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4343110/ month: '02' oa: 1 oa_version: Published Version page: E806 - E815 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5602' quality_controlled: '1' scopus_import: 1 status: public title: An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2015' ... --- _id: '1640' abstract: - lang: eng text: Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development. acknowledged_ssus: - _id: Bio - _id: LifeSc acknowledgement: This work was supported by the European Research Council Starting Independent Research grant (ERC-2007-Stg-207362-HCPO to E.B., M.S., C.C.), by the Ghent University Multidisciplinary Research Partnership ‘Biotechnology for a Sustainable Economy’ no.01MRB510W, by the Research Foundation—Flanders (grant 3G033711 to J.-A.O.), by the Austrian Science Fund (FWF01_I1774S) to K.Ö.,E.B., and by the Interuniversity Attraction Poles Programme (IUAP P7/29 ‘MARS’) initiated by the Belgian Science Policy Office. I.D.C. and S.V. are post-doctoral fellows of the Research Foundation—Flanders (FWO). This research was supported by the Scientific Service Units (SSU) of IST-Austria through resources provided by the Bioimaging Facility (BIF), the Life Science Facility (LSF). article_number: '8717' author: - first_name: Mária full_name: Šimášková, Mária last_name: Šimášková - first_name: José full_name: O'Brien, José last_name: O'Brien - first_name: Mamoona full_name: Khan-Djamei, Mamoona id: 391B5BBC-F248-11E8-B48F-1D18A9856A87 last_name: Khan-Djamei - first_name: Giel full_name: Van Noorden, Giel last_name: Van Noorden - first_name: Krisztina full_name: Ötvös, Krisztina id: 29B901B0-F248-11E8-B48F-1D18A9856A87 last_name: Ötvös orcid: 0000-0002-5503-4983 - first_name: Anne full_name: Vieten, Anne last_name: Vieten - first_name: Inge full_name: De Clercq, Inge last_name: De Clercq - first_name: Johanna full_name: Van Haperen, Johanna last_name: Van Haperen - first_name: Candela full_name: Cuesta, Candela id: 33A3C818-F248-11E8-B48F-1D18A9856A87 last_name: Cuesta orcid: 0000-0003-1923-2410 - first_name: Klára full_name: Hoyerová, Klára last_name: Hoyerová - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Peter full_name: Marhavy, Peter id: 3F45B078-F248-11E8-B48F-1D18A9856A87 last_name: Marhavy orcid: 0000-0001-5227-5741 - first_name: Krzysztof T full_name: Wabnik, Krzysztof T id: 4DE369A4-F248-11E8-B48F-1D18A9856A87 last_name: Wabnik orcid: 0000-0001-7263-0560 - first_name: Frank full_name: Van Breusegem, Frank last_name: Van Breusegem - first_name: Moritz full_name: Nowack, Moritz last_name: Nowack - first_name: Angus full_name: Murphy, Angus last_name: Murphy - first_name: Jiřĺ full_name: Friml, Jiřĺ id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 - first_name: Dolf full_name: Weijers, Dolf last_name: Weijers - first_name: Tom full_name: Beeckman, Tom last_name: Beeckman - first_name: Eva full_name: Benková, Eva id: 38F4F166-F248-11E8-B48F-1D18A9856A87 last_name: Benková orcid: 0000-0002-8510-9739 citation: ama: Šimášková M, O’Brien J, Khan-Djamei M, et al. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications. 2015;6. doi:10.1038/ncomms9717 apa: Šimášková, M., O’Brien, J., Khan-Djamei, M., Van Noorden, G., Ötvös, K., Vieten, A., … Benková, E. (2015). Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms9717 chicago: Šimášková, Mária, José O’Brien, Mamoona Khan-Djamei, Giel Van Noorden, Krisztina Ötvös, Anne Vieten, Inge De Clercq, et al. “Cytokinin Response Factors Regulate PIN-FORMED Auxin Transporters.” Nature Communications. Nature Publishing Group, 2015. https://doi.org/10.1038/ncomms9717. ieee: M. Šimášková et al., “Cytokinin response factors regulate PIN-FORMED auxin transporters,” Nature Communications, vol. 6. Nature Publishing Group, 2015. ista: Šimášková M, O’Brien J, Khan-Djamei M, Van Noorden G, Ötvös K, Vieten A, De Clercq I, Van Haperen J, Cuesta C, Hoyerová K, Vanneste S, Marhavý P, Wabnik KT, Van Breusegem F, Nowack M, Murphy A, Friml J, Weijers D, Beeckman T, Benková E. 2015. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications. 6, 8717. mla: Šimášková, Mária, et al. “Cytokinin Response Factors Regulate PIN-FORMED Auxin Transporters.” Nature Communications, vol. 6, 8717, Nature Publishing Group, 2015, doi:10.1038/ncomms9717. short: M. Šimášková, J. O’Brien, M. Khan-Djamei, G. Van Noorden, K. Ötvös, A. Vieten, I. De Clercq, J. Van Haperen, C. Cuesta, K. Hoyerová, S. Vanneste, P. Marhavý, K.T. Wabnik, F. Van Breusegem, M. Nowack, A. Murphy, J. Friml, D. Weijers, T. Beeckman, E. Benková, Nature Communications 6 (2015). date_created: 2018-12-11T11:53:12Z date_published: 2015-01-01T00:00:00Z date_updated: 2021-01-12T06:52:11Z day: '01' ddc: - '580' department: - _id: EvBe - _id: JiFr doi: 10.1038/ncomms9717 ec_funded: 1 file: - access_level: open_access checksum: c2c84bca37401435fedf76bad0ba0579 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:36Z date_updated: 2020-07-14T12:45:08Z file_id: '5358' file_name: IST-2018-1020-v1+1_Simaskova_et_al_NatCom_2015.pdf file_size: 1471217 relation: main_file file_date_updated: 2020-07-14T12:45:08Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version project: - _id: 253FCA6A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '207362' name: Hormonal cross-talk in plant organogenesis - _id: 2542D156-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: I 1774-B16 name: Hormone cross-talk drives nutrient dependent plant development publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5513' pubrep_id: '1020' quality_controlled: '1' scopus_import: 1 status: public title: Cytokinin response factors regulate PIN-FORMED auxin transporters type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2015' ... --- _id: '1819' abstract: - lang: eng text: 'The sessile life style of plants creates the need to deal with an often adverse environment, in which water availability can change on a daily basis, challenging the cellular physiology and integrity. Changes in osmotic conditions disrupt the equilibrium of the plasma membrane: hypoosmotic conditions increase and hyperosmotic environment decrease the cell volume. Here, we show that short-term extracellular osmotic treatments are closely followed by a shift in the balance between endocytosis and exocytosis in root meristem cells. Acute hyperosmotic treatments (ionic and nonionic) enhance clathrin-mediated endocytosis simultaneously attenuating exocytosis, whereas hypoosmotic treatments have the opposite effects. In addition to clathrin recruitment to the plasma membrane, components of early endocytic trafficking are essential during hyperosmotic stress responses. Consequently, growth of seedlings defective in elements of clathrin or early endocytic machinery is more sensitive to hyperosmotic treatments. We also found that the endocytotic response to a change of osmotic status in the environment is dominant over the presumably evolutionary more recent regulatory effect of plant hormones, such as auxin. These results imply that osmotic perturbation influences the balance between endocytosis and exocytosis acting through clathrin-mediated endocytosis. We propose that tension on the plasma membrane determines the addition or removal of membranes at the cell surface, thus preserving cell integrity.' acknowledgement: This work was supported by the European Research Council (project ERC-2011-StG-20101109-PSDP); European Social Fund (CZ.1.07/2.3.00/20.0043) and the Czech Science Foundation GAČR (GA13-40637S) to J.F.; project Postdoc I. (CZ.1.07/2.3.00/30.0009) co-financed by the European Social Fund and the state budget of the Czech Republic to M.Z. and T.N.. author: - first_name: Marta full_name: Zwiewka, Marta last_name: Zwiewka - first_name: Tomasz full_name: Nodzyński, Tomasz last_name: Nodzyński - first_name: Stéphanie full_name: Robert, Stéphanie last_name: Robert - first_name: Steffen full_name: Vanneste, Steffen last_name: Vanneste - first_name: Jiřĺ full_name: Friml, Jiřĺ id: 4159519E-F248-11E8-B48F-1D18A9856A87 last_name: Friml orcid: 0000-0002-8302-7596 citation: ama: Zwiewka M, Nodzyński T, Robert S, Vanneste S, Friml J. Osmotic stress modulates the balance between exocytosis and clathrin mediated endocytosis in Arabidopsis thaliana. Molecular Plant. 2015;8(8):1175-1187. doi:10.1016/j.molp.2015.03.007 apa: Zwiewka, M., Nodzyński, T., Robert, S., Vanneste, S., & Friml, J. (2015). Osmotic stress modulates the balance between exocytosis and clathrin mediated endocytosis in Arabidopsis thaliana. Molecular Plant. Elsevier. https://doi.org/10.1016/j.molp.2015.03.007 chicago: Zwiewka, Marta, Tomasz Nodzyński, Stéphanie Robert, Steffen Vanneste, and Jiří Friml. “Osmotic Stress Modulates the Balance between Exocytosis and Clathrin Mediated Endocytosis in Arabidopsis Thaliana.” Molecular Plant. Elsevier, 2015. https://doi.org/10.1016/j.molp.2015.03.007. ieee: M. Zwiewka, T. Nodzyński, S. Robert, S. Vanneste, and J. Friml, “Osmotic stress modulates the balance between exocytosis and clathrin mediated endocytosis in Arabidopsis thaliana,” Molecular Plant, vol. 8, no. 8. Elsevier, pp. 1175–1187, 2015. ista: Zwiewka M, Nodzyński T, Robert S, Vanneste S, Friml J. 2015. Osmotic stress modulates the balance between exocytosis and clathrin mediated endocytosis in Arabidopsis thaliana. Molecular Plant. 8(8), 1175–1187. mla: Zwiewka, Marta, et al. “Osmotic Stress Modulates the Balance between Exocytosis and Clathrin Mediated Endocytosis in Arabidopsis Thaliana.” Molecular Plant, vol. 8, no. 8, Elsevier, 2015, pp. 1175–87, doi:10.1016/j.molp.2015.03.007. short: M. Zwiewka, T. Nodzyński, S. Robert, S. Vanneste, J. Friml, Molecular Plant 8 (2015) 1175–1187. date_created: 2018-12-11T11:54:11Z date_published: 2015-08-03T00:00:00Z date_updated: 2021-01-12T06:53:24Z day: '03' department: - _id: JiFr doi: 10.1016/j.molp.2015.03.007 ec_funded: 1 intvolume: ' 8' issue: '8' language: - iso: eng month: '08' oa_version: None page: 1175 - 1187 project: - _id: 25716A02-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '282300' name: Polarity and subcellular dynamics in plants publication: Molecular Plant publication_status: published publisher: Elsevier publist_id: '5287' quality_controlled: '1' scopus_import: 1 status: public title: Osmotic stress modulates the balance between exocytosis and clathrin mediated endocytosis in Arabidopsis thaliana type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2015' ...