TY - JOUR AB - The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural (IAA) and synthetic (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network (EE/TGN), rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using Total Internal Reflection Fluorescence (TIRF) microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments. AU - Narasimhan, Madhumitha AU - Gallei, Michelle C AU - Tan, Shutang AU - Johnson, Alexander J AU - Verstraeten, Inge AU - Li, Lanxin AU - Rodriguez Solovey, Lesia AU - Han, Huibin AU - Himschoot, E AU - Wang, R AU - Vanneste, S AU - Sánchez-Simarro, J AU - Aniento, F AU - Adamowski, Maciek AU - Friml, Jiří ID - 9287 IS - 2 JF - Plant Physiology SN - 0032-0889 TI - Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking VL - 186 ER - TY - THES AB - Plant motions occur across a wide spectrum of timescales, ranging from seed dispersal through bursting (milliseconds) and stomatal opening (minutes) to long-term adaptation of gross architecture. Relatively fast motions include water-driven growth as exemplified by root cell expansion under abiotic/biotic stresses or during gravitropism. A showcase is a root growth inhibition in 30 seconds triggered by the phytohormone auxin. However, the cellular and molecular mechanisms are still largely unknown. This thesis covers the studies about this topic as follows. By taking advantage of microfluidics combined with live imaging, pharmaceutical tools, and transgenic lines, we examined the kinetics of and causal relationship among various auxininduced rapid cellular changes in root growth, apoplastic pH, cytosolic Ca2+, cortical microtubule (CMT) orientation, and vacuolar morphology. We revealed that CMT reorientation and vacuolar constriction are the consequence of growth itself instead of responding directly to auxin. In contrast, auxin induces apoplast alkalinization to rapidly inhibit root growth in 30 seconds. This auxin-triggered apoplast alkalinization results from rapid H+- influx that is contributed by Ca2+ inward channel CYCLIC NUCLEOTIDE-GATED CHANNEL 14 (CNGC14)-dependent Ca2+ signaling. To dissect which auxin signaling mediates the rapid apoplast alkalinization, we combined microfluidics and genetic engineering to verify that TIR1/AFB receptors conduct a non-transcriptional regulation on Ca2+ and H+ -influx. This non-canonical pathway is mostly mediated by the cytosolic portion of TIR1/AFB. On the other hand, we uncovered, using biochemical and phospho-proteomic analysis, that auxin cell surface signaling component TRANSMEMBRANE KINASE 1 (TMK1) plays a negative role during auxin-trigger apoplast alkalinization and root growth inhibition through directly activating PM H+ -ATPases. Therefore, we discovered that PM H+ -ATPases counteract instead of mediate the auxintriggered rapid H+ -influx, and that TIR1/AFB and TMK1 regulate root growth antagonistically. This opposite effect of TIR1/AFB and TMK1 is consistent during auxin-induced hypocotyl elongation, leading us to explore the relation of two signaling pathways. Assisted with biochemistry and fluorescent imaging, we verified for the first time that TIR1/AFB and TMK1 can interact with each other. The ability of TIR1/AFB binding to membrane lipid provides a basis for the interaction of plasma membrane- and cytosol-localized proteins. Besides, transgenic analysis combined with genetic engineering and biochemistry showed that vi they do function in the same pathway. Particularly, auxin-induced TMK1 increase is TIR1/AFB dependent, suggesting TIR1/AFB regulation on TMK1. Conversely, TMK1 also regulates TIR1/AFB protein levels and thus auxin canonical signaling. To follow the study of rapid growth regulation, we analyzed another rapid growth regulator, signaling peptide RALF1. We showed that RALF1 also triggers a rapid and reversible growth inhibition caused by H + influx, highly resembling but not dependent on auxin. Besides, RALF1 promotes auxin biosynthesis by increasing expression of auxin biosynthesis enzyme YUCCAs and thus induces auxin signaling in ca. 1 hour, contributing to the sustained RALF1-triggered growth inhibition. These studies collectively contribute to understanding rapid regulation on plant cell growth, novel auxin signaling pathway as well as auxin-peptide crosstalk. AU - Li, Lanxin ID - 10083 SN - 2663-337X TI - Rapid cell growth regulation in Arabidopsis ER - TY - JOUR AB - Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxincontrolled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip. AU - Nikonorova, N AU - Murphy, E AU - Fonseca de Lima, CF AU - Zhu, S AU - van de Cotte, B AU - Vu, LD AU - Balcerowicz, D AU - Li, Lanxin AU - Kong, X AU - De Rop, G AU - Beeckman, T AU - Friml, Jiří AU - Vissenberg, K AU - Morris, PC AU - Ding, Z AU - De Smet, I ID - 10015 JF - Cells KW - primary root KW - (phospho)proteomics KW - auxin KW - (receptor) kinase SN - 2073-4409 TI - The Arabidopsis root tip (phospho)proteomes at growth-promoting versus growth-repressing conditions reveal novel root growth regulators VL - 10 ER - TY - GEN AB - Growth regulation tailors plant development to its environment. A showcase is response to gravity, where shoots bend up and roots down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots, while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phospho-proteomics in Arabidopsis thaliana, we advance our understanding how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on the rapid regulation of the apoplastic pH, a causative growth determinant. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+-influx, causing apoplast alkalinisation. The simultaneous activation of these two counteracting mechanisms poises the root for a rapid, fine-tuned growth modulation while navigating complex soil environment. AU - Li, Lanxin AU - Verstraeten, Inge AU - Roosjen, Mark AU - Takahashi, Koji AU - Rodriguez Solovey, Lesia AU - Merrin, Jack AU - Chen, Jian AU - Shabala, Lana AU - Smet, Wouter AU - Ren, Hong AU - Vanneste, Steffen AU - Shabala, Sergey AU - De Rybel, Bert AU - Weijers, Dolf AU - Kinoshita, Toshinori AU - Gray, William M. AU - Friml, Jiří ID - 10095 SN - 2693-5015 T2 - Research Square TI - Cell surface and intracellular auxin signalling for H+-fluxes in root growth ER - TY - GEN AB - Plasmodesmata (PD) are crucial structures for intercellular communication in multicellular plants with remorins being their crucial plant-specific structural and functional constituents. The PD biogenesis is an intriguing but poorly understood process. By expressing an Arabidopsis remorin protein in mammalian cells, we have reconstituted a PD-like filamentous structure, termed remorin filament (RF), connecting neighboring cells physically and physiologically. Notably, RFs are capable of transporting macromolecules intercellularly, in a way similar to plant PD. With further super-resolution microscopic analysis and biochemical characterization, we found that RFs are also composed of actin filaments, forming the core skeleton structure, aligned with the remorin protein. This unique heterologous filamentous structure might explain the molecular mechanism for remorin function as well as PD construction. Furthermore, remorin protein exhibits a specific distribution manner in the plasma membrane in mammalian cells, representing a lipid nanodomain, depending on its lipid modification status. Our studies not only provide crucial insights into the mechanism of PD biogenesis, but also uncovers unsuspected fundamental mechanistic and evolutionary links between intercellular communication systems of plants and animals. AU - Wei, Zhuang AU - Tan, Shutang AU - Liu, Tao AU - Wu, Yuan AU - Lei, Ji-Gang AU - Chen, ZhengJun AU - Friml, Jiří AU - Xue, Hong-Wei AU - Liao, Kan ID - 7601 T2 - bioRxiv TI - Plasmodesmata-like intercellular connections by plant remorin in animal cells ER -