@article{11723, abstract = {Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379–402 (2020); Blackburn et al., Plant Physiol. 182, 1657–1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.}, author = {Li, Lanxin and Chen, Huihuang and Alotaibi, Saqer S. and Pěnčík, Aleš and Adamowski, Maciek and Novák, Ondřej and Friml, Jiří}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, keywords = {Multidisciplinary}, number = {31}, publisher = {Proceedings of the National Academy of Sciences}, title = {{RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis}}, doi = {10.1073/pnas.2121058119}, volume = {119}, year = {2022}, } @article{12053, abstract = {Strigolactones (SLs) are a class of phytohormones that regulate plant shoot branching and adventitious root development. However, little is known regarding the role of SLs in controlling the behavior of the smallest unit of the organism, the single cell. Here, taking advantage of a classic single-cell model offered by the cotton (Gossypium hirsutum) fiber cell, we show that SLs, whose biosynthesis is fine-tuned by gibberellins (GAs), positively regulate cell elongation and cell wall thickness by promoting the biosynthesis of very-long-chain fatty acids (VLCFAs) and cellulose, respectively. Furthermore, we identified two layers of transcription factors (TFs) involved in the hierarchical regulation of this GA-SL crosstalk. The top-layer TF GROWTH-REGULATING FACTOR 4 (GhGRF4) directly activates expression of the SL biosynthetic gene DWARF27 (D27) to increase SL accumulation in fiber cells and GAs induce GhGRF4 expression. SLs induce the expression of four second-layer TF genes (GhNAC100-2, GhBLH51, GhGT2, and GhB9SHZ1), which transmit SL signals downstream to two ketoacyl-CoA synthase genes (KCS) and three cellulose synthase (CesA) genes by directly activating their transcription. Finally, the KCS and CesA enzymes catalyze the biosynthesis of very long chain fatty acids and cellulose, respectively, to regulate development of high-grade cotton fibers. In addition to providing a theoretical basis for cotton fiber improvement, our results shed light on SL signaling in plant development at the single-cell level.}, author = {Tian, Z and Zhang, Yuzhou and Zhu, L and Jiang, B and Wang, H and Gao, R and Friml, Jiří and Xiao, G}, issn = {1532-298X}, journal = {The Plant Cell}, number = {12}, pages = {4816--4839}, publisher = {Oxford University Press}, title = {{Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum)}}, doi = {10.1093/plcell/koac270}, volume = {34}, year = {2022}, } @article{12052, abstract = {Directionality in the intercellular transport of the plant hormone auxin is determined by polar plasma membrane localization of PIN-FORMED (PIN) auxin transport proteins. However, apart from PIN phosphorylation at conserved motifs, no further determinants explicitly controlling polar PIN sorting decisions have been identified. Here we present Arabidopsis WAVY GROWTH 3 (WAV3) and closely related RING-finger E3 ubiquitin ligases, whose loss-of-function mutants show a striking apical-to-basal polarity switch in PIN2 localization in root meristem cells. WAV3 E3 ligases function as essential determinants for PIN polarity, acting independently from PINOID/WAG-dependent PIN phosphorylation. They antagonize ectopic deposition of de novo synthesized PIN proteins already immediately following completion of cell division, presumably via preventing PIN sorting into basal, ARF GEF-mediated trafficking. Our findings reveal an involvement of E3 ligases in the selective targeting of apically localized PINs in higher plants.}, author = {Konstantinova, N and Hörmayer, Lukas and Glanc, Matous and Keshkeih, R and Tan, Shutang and Di Donato, M and Retzer, K and Moulinier-Anzola, J and Schwihla, M and Korbei, B and Geisler, M and Friml, Jiří and Luschnig, C}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{WAVY GROWTH Arabidopsis E3 ubiquitin ligases affect apical PIN sorting decisions}}, doi = {10.1038/s41467-022-32888-8}, volume = {13}, year = {2022}, } @article{12054, abstract = {Polar auxin transport is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters exhibit highly asymmetrical localizations at the plasma membrane and drive polar auxin transport3,4; however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of Arabidopsis thaliana PIN1: the apo state, bound to the natural auxin indole-3-acetic acid (IAA), and in complex with the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of PIN1 shares a conserved NhaA fold5. In the substrate-bound structure, IAA is coordinated by both hydrophobic stacking and hydrogen bonding. NPA competes with IAA for the same site at the intracellular pocket, but with a much higher affinity. These findings inform our understanding of the substrate recognition and transport mechanisms of PINs and set up a framework for future research on directional auxin transport, one of the most crucial processes underlying plant development.}, author = {Yang, Z and Xia, J and Hong, J and Zhang, C and Wei, H and Ying, W and Sun, C and Sun, L and Mao, Y and Gao, Y and Tan, S and Friml, Jiří and Li, D and Liu, X and Sun, L}, issn = {1476-4687}, journal = {Nature}, number = {7927}, pages = {611--615}, publisher = {Springer Nature}, title = {{Structural insights into auxin recognition and efflux by Arabidopsis PIN1}}, doi = {10.1038/s41586-022-05143-9}, volume = {609}, year = {2022}, } @article{12121, abstract = {Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, autophagosome maturation, i.e., delivery and fusion with the vacuole, remains largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1’s function is evolutionarily conserved in plants, as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by bridging autophagosomes with the multivesicular body-localized ESCRT-I component VPS23A, leading to the formation of amphisomes. Similar to CFS1-ATG8 interaction, disrupting the CFS1-VPS23A interaction blocks autophagic flux and renders plants sensitive to nitrogen starvation. Altogether, our results reveal a conserved vacuolar sorting hub that regulates autophagic flux in plants.}, author = {Zhao, Jierui and Bui, Mai Thu and Ma, Juncai and Künzl, Fabian and Picchianti, Lorenzo and De La Concepcion, Juan Carlos and Chen, Yixuan and Petsangouraki, Sofia and Mohseni, Azadeh and García-Leon, Marta and Gomez, Marta Salas and Giannini, Caterina and Gwennogan, Dubois and Kobylinska, Roksolana and Clavel, Marion and Schellmann, Swen and Jaillais, Yvon and Friml, Jiří and Kang, Byung-Ho and Dagdas, Yasin}, issn = {1540-8140}, journal = {Journal of Cell Biology}, keywords = {Cell Biology}, number = {12}, publisher = {Rockefeller University Press}, title = {{Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole}}, doi = {10.1083/jcb.202203139}, volume = {221}, year = {2022}, }