@article{1536, abstract = {Strigolactones, first discovered as germination stimulants for parasitic weeds [1], are carotenoid-derived phytohormones that play major roles in inhibiting lateral bud outgrowth and promoting plant-mycorrhizal symbiosis [2-4]. Furthermore, strigolactones are involved in the regulation of lateral and adventitious root development, root cell division [5, 6], secondary growth [7], and leaf senescence [8]. Recently, we discovered the strigolactone transporter Petunia axillaris PLEIOTROPIC DRUG RESISTANCE 1 (PaPDR1), which is required for efficient mycorrhizal colonization and inhibition of lateral bud outgrowth [9]. However, how strigolactones are transported through the plant remained unknown. Here we show that PaPDR1 exhibits a cell-type-specific asymmetric localization in different root tissues. In root tips, PaPDR1 is co-expressed with the strigolactone biosynthetic gene DAD1 (CCD8), and it is localized at the apical membrane of root hypodermal cells, presumably mediating the shootward transport of strigolactone. Above the root tip, in the hypodermal passage cells that form gates for the entry of mycorrhizal fungi, PaPDR1 is present in the outer-lateral membrane, compatible with its postulated function as strigolactone exporter from root to soil. Transport studies are in line with our localization studies since (1) a papdr1 mutant displays impaired transport of strigolactones out of the root tip to the shoot as well as into the rhizosphere and (2) DAD1 expression and PIN1/PIN2 levels change in plants deregulated for PDR1 expression, suggestive of variations in endogenous strigolactone contents. In conclusion, our results indicate that the polar localizations of PaPDR1 mediate directional shootward strigolactone transport as well as localized exudation into the soil.}, author = {Sasse, Joëlle and Simon, Sibu and Gübeli, Christian and Liu, Guowei and Cheng, Xi and Friml, Jirí and Bouwmeester, Harro and Martinoia, Enrico and Borghi, Lorenzo}, journal = {Current Biology}, number = {5}, pages = {647 -- 655}, publisher = {Cell Press}, title = {{Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport}}, doi = {10.1016/j.cub.2015.01.015}, volume = {25}, year = {2015}, } @article{1543, abstract = {A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta.}, author = {Olvera Carrillo, Yadira and Van Bel, Michiel and Van Hautegem, Tom and Fendrych, Matyas and Huysmans, Marlies and Šimášková, Mária and Van Durme, Matthias and Buscaill, Pierre and Rivas, Susana and Coll, Núria and Coppens, Frederik and Maere, Steven and Nowack, Moritz}, journal = {Plant Physiology}, number = {4}, pages = {2684 -- 2699}, publisher = {American Society of Plant Biologists}, title = {{A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants}}, doi = {10.1104/pp.15.00769}, volume = {169}, year = {2015}, } @article{1556, abstract = {The elongator complex subunit 2 (ELP2) protein, one subunit of an evolutionarily conserved histone acetyltransferase complex, has been shown to participate in leaf patterning, plant immune and abiotic stress responses in Arabidopsis thaliana. Here, its role in root development was explored. Compared to the wild type, the elp2 mutant exhibited an accelerated differentiation of its root stem cells and cell division was more active in its quiescent centre (QC). The key transcription factors responsible for maintaining root stem cell and QC identity, such as AP2 transcription factors PLT1 (PLETHORA1) and PLT2 (PLETHORA2), GRAS transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX5 transcription factor WOX5, were all strongly down-regulated in the mutant. On the other hand, expression of the G2/M transition activator CYCB1 was substantially induced in elp2. The auxin efflux transporters PIN1 and PIN2 showed decreased protein levels and PIN1 also displayed mild polarity alterations in elp2, which resulted in a reduced auxin content in the root tip. Either the acetylation or methylation level of each of these genes differed between the mutant and the wild type, suggesting that the ELP2 regulation of root development involves the epigenetic modification of a range of transcription factors and other developmental regulators.}, author = {Jia, Yuebin and Tian, Huiyu and Li, Hongjiang and Yu, Qianqian and Wang, Lei and Friml, Jirí and Ding, Zhaojun}, journal = {Journal of Experimental Botany}, number = {15}, pages = {4631 -- 4642}, publisher = {Oxford University Press}, title = {{The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development}}, doi = {10.1093/jxb/erv230}, volume = {66}, year = {2015}, } @article{1558, abstract = {CyclophilinAis a conserved peptidyl-prolyl cis-trans isomerase (PPIase) best known as the cellular receptor of the immunosuppressant cyclosporine A. Despite significant effort, evidence of developmental functions of cyclophilin A in non-plant systems has remained obscure. Mutations in a tomato (Solanum lycopersicum) cyclophilin A ortholog, DIAGEOTROPICA (DGT), have been shown to abolish the organogenesis of lateral roots; however, a mechanistic explanation of the phenotype is lacking. Here, we show that the dgt mutant lacks auxin maxima relevant to priming and specification of lateral root founder cells. DGT is expressed in shoot and root, and localizes to both the nucleus and cytoplasm during lateral root organogenesis. Mutation of ENTIRE/ IAA9, a member of the auxin-responsive Aux/IAA protein family of transcriptional repressors, partially restores the inability of dgt to initiate lateral root primordia but not the primordia outgrowth. By comparison, grafting of a wild-type scion restores the process of lateral root formation, consistent with participation of a mobile signal. Antibodies do not detect movement of the DGT protein into the dgt rootstock; however, experiments with radiolabeled auxin and an auxin-specific microelectrode demonstrate abnormal auxin fluxes. Functional studies of DGT in heterologous yeast and tobacco-leaf auxin-transport systems demonstrate that DGT negatively regulates PIN-FORMED (PIN) auxin efflux transporters by affecting their plasma membrane localization. Studies in tomato support complex effects of the dgt mutation on PIN expression level, expression domain and plasma membrane localization. Our data demonstrate that DGT regulates auxin transport in lateral root formation.}, author = {Ivanchenko, Maria and Zhu, Jinsheng and Wang, Bangjun and Medvecka, Eva and Du, Yunlong and Azzarello, Elisa and Mancuso, Stefano and Megraw, Molly and Filichkin, Sergei and Dubrovsky, Joseph and Friml, Jirí and Geisler, Markus}, journal = {Development}, number = {4}, pages = {712 -- 721}, publisher = {Company of Biologists}, title = {{The cyclophilin a DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation}}, doi = {10.1242/dev.113225}, volume = {142}, year = {2015}, } @article{1554, abstract = {The visualization of hormonal signaling input and output is key to understanding how multicellular development is regulated. The plant signaling molecule auxin triggers many growth and developmental responses, but current tools lack the sensitivity or precision to visualize these. We developed a set of fluorescent reporters that allow sensitive and semiquantitative readout of auxin responses at cellular resolution in Arabidopsis thaliana. These generic tools are suitable for any transformable plant species.}, author = {Liao, Cheyang and Smet, Wouter and Brunoud, Géraldine and Yoshida, Saiko and Vernoux, Teva and Weijers, Dolf}, journal = {Nature Methods}, number = {3}, pages = {207 -- 210}, publisher = {Nature Publishing Group}, title = {{Reporters for sensitive and quantitative measurement of auxin response}}, doi = {10.1038/nmeth.3279}, volume = {12}, year = {2015}, } @article{1562, abstract = {The plant hormone auxin is a key regulator of plant growth and development. Auxin levels are sensed and interpreted by distinct receptor systems that activate a broad range of cellular responses. The Auxin-Binding Protein1 (ABP1) that has been identified based on its ability to bind auxin with high affinity is a prime candidate for the extracellular receptor responsible for mediating a range of auxin effects, in particular, the fast non-transcriptional ones. Contradictory genetic studies suggested prominent or no importance of ABP1 in many developmental processes. However, how crucial the role of auxin binding to ABP1 is for its functions has not been addressed. Here, we show that the auxin-binding pocket of ABP1 is essential for its gain-of-function cellular and developmental roles. In total, 16 different abp1 mutants were prepared that possessed substitutions in the metal core or in the hydrophobic amino acids of the auxin-binding pocket as well as neutral mutations. Their analysis revealed that an intact auxin-binding pocket is a prerequisite for ABP1 to activate downstream components of the ABP1 signalling pathway, such as Rho of Plants (ROPs) and to mediate the clathrin association with membranes for endocytosis regulation. In planta analyses demonstrated the importance of the auxin binding pocket for all known ABP1-mediated postembryonic developmental processes, including morphology of leaf epidermal cells, root growth and root meristem activity, and vascular tissue differentiation. Taken together, these findings suggest that auxin binding to ABP1 is central to its function, supporting the role of ABP1 as auxin receptor.}, author = {Grones, Peter and Chen, Xu and Simon, Sibu and Kaufmann, Walter and De Rycke, Riet and Nodzyński, Tomasz and Zažímalová, Eva and Friml, Jirí}, journal = {Journal of Experimental Botany}, number = {16}, pages = {5055 -- 5065}, publisher = {Oxford University Press}, title = {{Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles}}, doi = {10.1093/jxb/erv177}, volume = {66}, year = {2015}, } @article{1574, abstract = {Multiple plant developmental processes, such as lateral root development, depend on auxin distribution patterns that are in part generated by the PIN-formed family of auxin-efflux transporters. Here we propose that AUXIN RESPONSE FACTOR7 (ARF7) and the ARF7-regulated FOUR LIPS/MYB124 (FLP) transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation. This regulatory mechanism might endow the PIN3 circuitry with a temporal 'memory' of auxin stimuli, potentially maintaining and enhancing the robustness of the auxin flux directionality during lateral root development. The cooperative action between canonical auxin signalling and other transcription factors might constitute a general mechanism by which transcriptional auxin-sensitivity can be regulated at a tissue-specific level.}, author = {Chen, Qian and Liu, Yang and Maere, Steven and Lee, Eunkyoung and Van Isterdael, Gert and Xie, Zidian and Xuan, Wei and Lucas, Jessica and Vassileva, Valya and Kitakura, Saeko and Marhavy, Peter and Wabnik, Krzysztof T and Geldner, Niko and Benková, Eva and Le, Jie and Fukaki, Hidehiro and Grotewold, Erich and Li, Chuanyou and Friml, Jirí and Sack, Fred and Beeckman, Tom and Vanneste, Steffen}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development}}, doi = {10.1038/ncomms9821}, volume = {6}, year = {2015}, } @article{1569, abstract = {Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF- defective mutants gnom-like 1 ( gnl1-1) and gnom ( van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER) - Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.}, author = {Doyle, Siamsa and Haegera, Ash and Vain, Thomas and Rigala, Adeline and Viotti, Corrado and Łangowskaa, Małgorzata and Maa, Qian and Friml, Jirí and Raikhel, Natasha and Hickse, Glenn and Robert, Stéphanie}, journal = {PNAS}, number = {7}, pages = {E806 -- E815}, publisher = {National Academy of Sciences}, title = {{An early secretory pathway mediated by gnom-like 1 and gnom is essential for basal polarity establishment in Arabidopsis thaliana}}, doi = {10.1073/pnas.1424856112}, volume = {112}, year = {2015}, } @article{1640, abstract = {Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.}, author = {Šimášková, Mária and O'Brien, José and Khan-Djamei, Mamoona and Van Noorden, Giel and Ötvös, Krisztina and Vieten, Anne and De Clercq, Inge and Van Haperen, Johanna and Cuesta, Candela and Hoyerová, Klára and Vanneste, Steffen and Marhavy, Peter and Wabnik, Krzysztof T and Van Breusegem, Frank and Nowack, Moritz and Murphy, Angus and Friml, Jiřĺ and Weijers, Dolf and Beeckman, Tom and Benková, Eva}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Cytokinin response factors regulate PIN-FORMED auxin transporters}}, doi = {10.1038/ncomms9717}, volume = {6}, year = {2015}, } @article{1819, abstract = {The sessile life style of plants creates the need to deal with an often adverse environment, in which water availability can change on a daily basis, challenging the cellular physiology and integrity. Changes in osmotic conditions disrupt the equilibrium of the plasma membrane: hypoosmotic conditions increase and hyperosmotic environment decrease the cell volume. Here, we show that short-term extracellular osmotic treatments are closely followed by a shift in the balance between endocytosis and exocytosis in root meristem cells. Acute hyperosmotic treatments (ionic and nonionic) enhance clathrin-mediated endocytosis simultaneously attenuating exocytosis, whereas hypoosmotic treatments have the opposite effects. In addition to clathrin recruitment to the plasma membrane, components of early endocytic trafficking are essential during hyperosmotic stress responses. Consequently, growth of seedlings defective in elements of clathrin or early endocytic machinery is more sensitive to hyperosmotic treatments. We also found that the endocytotic response to a change of osmotic status in the environment is dominant over the presumably evolutionary more recent regulatory effect of plant hormones, such as auxin. These results imply that osmotic perturbation influences the balance between endocytosis and exocytosis acting through clathrin-mediated endocytosis. We propose that tension on the plasma membrane determines the addition or removal of membranes at the cell surface, thus preserving cell integrity.}, author = {Zwiewka, Marta and Nodzyński, Tomasz and Robert, Stéphanie and Vanneste, Steffen and Friml, Jiřĺ}, journal = {Molecular Plant}, number = {8}, pages = {1175 -- 1187}, publisher = {Elsevier}, title = {{Osmotic stress modulates the balance between exocytosis and clathrin mediated endocytosis in Arabidopsis thaliana}}, doi = {10.1016/j.molp.2015.03.007}, volume = {8}, year = {2015}, }