TY - DATA AB - Since the commercialization of brine shrimp (genus Artemia) in the 1950s, this lineage, and in particular the model species Artemia franciscana, has been the subject of extensive research. However, our understanding of the genetic mechanisms underlying various aspects of their reproductive biology, including sex determination, are still lacking. This is partly due to the scarcity of genomic resources for Artemia species and crustaceans in general. Here, we present a chromosome-level genome assembly of Artemia franciscana (Kellogg 1906), from the Great Salt Lake, USA. The genome is 1GB, and the majority of the genome (81%) is scaffolded into 21 linkage groups using a previously published high-density linkage map. We performed coverage and FST analyses using male and female genomic and transcriptomic reads to quantify the extent of differentiation between the Z and W chromosomes. Additionally, we quantified the expression levels in male and female heads and gonads and found further evidence for dosage compensation in this species. AU - Elkrewi, Marwan N ID - 14705 KW - sex chromosome evolution KW - genome assembly KW - dosage compensation TI - Data from "Chromosome-level assembly of Artemia franciscana sheds light on sex-chromosome differentiation" ER - TY - DATA AB - Disulfide bond formation is fundamentally important for protein structure, and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive microsecond time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfil other favorable contacts. This data repository contains NMR data presented in the associated manuscript AU - Schanda, Paul ID - 12820 TI - Research data of the publication "Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR" ER - TY - DATA AB - basic data for use in code for experimental data analysis for manuscript under revision: Dynamic pathogen detection and social feedback shape collective hygiene in ants Casillas-Pérez B, Boďová K, Grasse AV, Tkačik G, Cremer S AU - Cremer, Sylvia ID - 12945 KW - collective behavior KW - host-pathogen interactions KW - social immunity KW - epidemiology KW - social insects KW - probabilistic modeling TI - Data from: "Dynamic pathogen detection and social feedback shape collective hygiene in ants" ER - TY - DATA AB - Statistics of natural scenes are not uniform - their structure varies dramatically from ground to sky. It remains unknown whether these non-uniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. We show experimentally that, in agreement with our predictions, receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell-types. AU - Gupta, Divyansh AU - Sumser, Anton L AU - Jösch, Maximilian A ID - 12370 TI - Research Data for: Panoramic visual statistics shape retina-wide organization of receptive fields ER - TY - DATA AB - The classical infinitesimal model is a simple and robust model for the inheritance of quantitative traits. In this model, a quantitative trait is expressed as the sum of a genetic and a non-genetic (environmental) component and the genetic component of offspring traits within a family follows a normal distribution around the average of the parents’ trait values, and has a variance that is independent of the trait values of the parents. Although the trait distribution across the whole population can be far from normal, the trait distributions within families are normally distributed with a variance-covariance matrix that is determined entirely by that in the ancestral population and the probabilities of identity determined by the pedigree. Moreover, conditioning on some of the trait values within the pedigree has predictable effects on the mean and variance within and between families. In previous work, Barton et al. (2017), we showed that when trait values are determined by the sum of a large number of Mendelian factors, each of small effect, one can justify the infinitesimal model as limit of Mendelian inheritance. It was also shown that under some forms of epistasis, trait values within a family are still normally distributed. AU - Barton, Nicholas H ID - 12949 KW - Quantitative genetics KW - infinitesimal model TI - The infinitesimal model with dominance ER - TY - DATA AB - We introduce a stochastic cellular automaton as a model for culture and border formation. The model can be conceptualized as a game where the expansion rate of cultures is quantified in terms of their area and perimeter in such a way that approximately round cultures get a competitive advantage. We first analyse the model with periodic boundary conditions, where we study how the model can end up in a fixed state, i.e. freezes. Then we implement the model on the European geography with mountains and rivers. We see how the model reproduces some qualitative features of European culture formation, namely that rivers and mountains are more frequently borders between cultures, mountainous regions tend to have higher cultural diversity and the central European plain has less clear cultural borders. AU - Klausen, Frederik Ravn AU - Lauritsen, Asbjørn Bækgaard ID - 12869 TI - Research data for: A stochastic cellular automaton model of culture formation ER - TY - DATA AB - Regulation of the Arp2/3 complex is required for productive nucleation of branched actin networks. An emerging aspect of regulation is the incorporation of subunit isoforms into the Arp2/3 complex. Specifically, both ArpC5 subunit isoforms, ArpC5 and ArpC5L, have been reported to fine-tune nucleation activity and branch junction stability. We have combined reverse genetics and cellular structural biology to describe how ArpC5 and ArpC5L differentially affect cell migration. Both define the structural stability of ArpC1 in branch junctions and, in turn, by determining protrusion characteristics, affect protein dynamics and actin network ultrastructure. ArpC5 isoforms also affect the positioning of members of the Ena/Vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongators, which mediate ArpC5 isoform–specific effects on the actin assembly level. Our results suggest that ArpC5 and Ena/VASP proteins are part of a signaling pathway enhancing cell migration. AU - Schur, Florian KM ID - 14562 TI - Research data of the publication "ArpC5 isoforms regulate Arp2/3 complex-dependent protrusion through differential Ena/VASP positioning" ER - TY - DATA AB - Data related to the following paper: "Stress granules plug and stabilize damaged endolysosomal membranes" (https://doi.org/10.1038/s41586-023-06726-w) Abstract: Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. In this work we use a minimal coarse-grained molecular dynamics system to explore how lipid vesicles undergoing poration in a protein-rich medium can be plugged and stabilised by condensate formation. The solution of proteins in and out of the vesicle is described by beads dispersed in implicit solvent. The membrane is described as a one-bead-thick fluid elastic layer of mechanical properties that mimic biological membranes. We tune the interactions between solution beads in the different compartments to capture the differences between the cytoplasmic and endosomal protein solutions and explore how the system responds to different degrees of membrane poration. We find that, in the right interaction regime, condensates form rapidly at the damage site upon solution mixing and act as a plug that prevents futher mixing and destabilisation of the vesicle. Further, when the condensate can interact with the membrane (wetting interactions) we find that it mediates pore sealing and membrane repair. This research is part of the work published in "Stress granules plug and stabilize damaged endolysosomal membranes", Bussi et al, Nature, 2023 - 10.1038/s41586-023-06726-w. AU - Vanhille-Campos, Christian Eduardo AU - Šarić, Anđela ID - 14472 TI - Stress granules plug and stabilize damaged endolysosomal membranes ER - TY - DATA AB - See Readme File for further information. AU - Cremer, Sylvia ID - 12693 TI - Source data for Metzler et al, 2023: Trade-offs between immunity and competitive ability in fighting ant males ER - TY - DATA AB - Datasets of the publication "Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster". AU - Puixeu Sala, Gemma ID - 12933 TI - Data from: Sex-specific estimation of cis and trans regulation of gene expression in heads and gonads of Drosophila melanogaster ER - TY - DATA AB - 3D-reconstruction of living brain tissue down to individual synapse level would create opportunities for decoding the dynamics and structure-function relationships of the brain’s complex and dense information processing network. However, it has been hindered by insufficient 3D-resolution, inadequate signal-to-noise-ratio, and prohibitive light burden in optical imaging, whereas electron microscopy is inherently static. Here we solved these challenges by developing an integrated optical/machine learning technology, LIONESS (Live Information-Optimized Nanoscopy Enabling Saturated Segmentation). It leverages optical modifications to stimulated emission depletion (STED) microscopy in comprehensively, extracellularly labelled tissue and prior information on sample structure via machine learning to simultaneously achieve isotropic super-resolution, high signal-to-noise-ratio, and compatibility with living tissue. This allows dense deep-learning-based instance segmentation and 3D-reconstruction at synapse level incorporating molecular, activity, and morphodynamic information. LIONESS opens up avenues for studying the dynamic functional (nano-)architecture of living brain tissue. AU - Danzl, Johann G ID - 12817 TI - Research data for the publication "Dense 4D nanoscale reconstruction of living brain tissue" ER - TY - DATA AB - Aromatic side chains are important reporters of the plasticity of proteins, and often form important contacts in protein–protein interactions. We studied aromatic residues in the two structurally homologous cross-β amyloid fibrils HET-s, and HELLF by employing a specific isotope-labeling approach and magic-angle-spinning NMR. The dynamic behavior of the aromatic residues Phe and Tyr indicates that the hydrophobic amyloid core is rigid, without any sign of "breathing motions" over hundreds of milliseconds at least. Aromatic residues exposed at the fibril surface have a rigid ring axis but undergo ring flips on a variety of time scales from nanoseconds to microseconds. Our approach provides direct insight into hydrophobic-core motions, enabling a better evaluation of the conformational heterogeneity generated from an NMR structural ensemble of such amyloid cross-β architecture. AU - Becker, Lea Marie AU - Schanda, Paul ID - 12497 KW - aromatic side chains KW - isotopic labeling KW - protein dynamics KW - ring flips KW - spin relaxation TI - Research data to: The rigid core and flexible surface of amyloid fibrils probed by magic-angle-spinning NMR spectroscopy of aromatic residues ER - TY - DATA AB - Mapping the complex and dense arrangement of cells and their connectivity in brain tissue demands nanoscale spatial resolution imaging. Super-resolution optical microscopy excels at visualizing specific molecules and individual cells but fails to provide tissue context. Here, we developed Comprehensive Analysis of Tissues across Scales (CATS), a technology to densely map brain tissue architecture from millimeter regional to nanometer synaptic scales in diverse chemically fixed brain preparations, including rodent and human. CATS uses fixation-compatible extracellular labeling and optical imaging, including stimulated emission depletion or expansion microscopy, to comprehensively delineate cellular structures. It enables three-dimensional reconstruction of single synapses and mapping of synaptic connectivity by identification and analysis of putative synaptic cleft regions. Applying CATS to the mouse hippocampal mossy fiber circuitry, we reconstructed and quantified the synaptic input and output structure of identified neurons. We furthermore demonstrate applicability to clinically derived human tissue samples, including formalin-fixed paraffin-embedded routine diagnostic specimens, for visualizing the cellular architecture of brain tissue in health and disease. AU - Danzl, Johann G ID - 13126 TI - Research data for the publication "Imaging brain tissue architecture across millimeter to nanometer scales" ER - TY - DATA AB - The emergence of large-scale order in self-organized systems relies on local interactions between individual components. During bacterial cell division, FtsZ -- a prokaryotic homologue of the eukaryotic protein tubulin -- polymerizes into treadmilling filaments that further organize into a cytoskeletal ring. In vitro, FtsZ filaments can form dynamic chiral assemblies. However, how the active and passive properties of individual filaments relate to these large-scale self-organized structures remains poorly understood. Here, we connect single filament properties with the mesoscopic scale by combining minimal active matter simulations and biochemical reconstitution experiments. We show that density and flexibility of active chiral filaments define their global order. At intermediate densities, curved, flexible filaments organize into chiral rings and polar bands. An effectively nematic organization dominates for high densities and for straight, mutant filaments with increased rigidity. Our predicted phase diagram captures these features quantitatively, demonstrating how the flexibility, density and chirality of active filaments affect their collective behaviour. Our findings shed light on the fundamental properties of active chiral matter and explain how treadmilling FtsZ filaments organize during bacterial cell division. AU - Dunajova, Zuzana AU - Prats Mateu, Batirtze AU - Radler, Philipp AU - Lim, Keesiang AU - Brandis, Dörte AU - Velicky, Philipp AU - Danzl, Johann G AU - Wong, Richard W. AU - Elgeti, Jens AU - Hannezo, Edouard B AU - Loose, Martin ID - 13116 TI - Chiral and nematic phases of flexible active filaments ER - TY - DATA AB - Many insects carry an ancient X chromosome—the Drosophila Muller element F—that likely predates their origin. Interestingly, the X has undergone turnover in multiple fly species (Diptera) after being conserved for more than 450 My. The long evolutionary distance between Diptera and other sequenced insect clades makes it difficult to infer what could have contributed to this sudden increase in rate of turnover. Here, we produce the first genome and transcriptome of scorpionflies (genus Panorpa), an insect belonging to a long overlooked sister-order to Diptera: Mecoptera. Combining our genome assembly with genomic short-read data, we obtain genome coverage and identify X-linked super-scaffolds. We further perform a gene homology analysis between the Panorpa X and a closely related Diptera species, and we assess the conservation of the Panorpa X-linked gene content with that of more distantly related insect species. We explored the structure of the Panorpa X by determining its repeat content, GC content, and nucleotide diversity. Finally, we used RNAseq data to detect the presence of dosage compensation in somatic tissues, as well as to explore gene expression tissue-specificity, and sex-bias in gene expression. We find high conservation of gene content between the mecopteran X and the dipteran Muller F element, as well as several shared biological features, such as the presence of dosage compensation and a low amount of genetic diversity, consistent with a low recombination rate. However, the 2 homologous X chromosomes differ strikingly in their size and number of genes they carry. Our results therefore support a common ancestry of the mecopteran and ancestral dipteran X chromosomes, and suggest that Muller element F shrank in size and gene content after the split of Diptera and Mecoptera, which may have contributed to its turnover in dipteran insects. AU - Lasne, Clementine AU - Elkrewi, Marwan N ID - 14614 KW - Panorpa KW - scorpionfly KW - genome KW - transcriptome TI - The scorpionfly (Panorpa cognata) genome highlights conserved and derived features of the peculiar dipteran X chromosome ER - TY - DATA AB - GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles at the presynaptic active zone (AZ). Strikingly, tonic and phasic release exhibit distinct coupling distances and are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. Double pre-embedding immunolabeling confirmed the co-localization of CAPS2 and SPO inside the same terminal. The cytosolic protein CAPS2 showed a synaptic vesicle (SV)-associated distribution similar to the vesicular transmembrane protein SPO. A newly developed “Flash and Freeze-fracture” method revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to a persistent RRP increase. Thus, we discovered structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals. AU - Shigemoto, Ryuichi ID - 13173 KW - medial habenula KW - GABAB receptor KW - vesicle release KW - Flash and Freeze KW - Flash and Freeze-fracture TI - Transition from tonic to phasic neurotransmitter release by presynaptic GABAB receptor activation in medial habenula terminals ER - TY - DATA AB - FtsA is crucial for assembly of the E. coli divisome, as it dynamically links cytoplasmic FtsZ filaments with transmembrane cell division proteins. FtsA allegedly initiates cell division by switching from an inactive polymeric to an active monomeric confirmation, which recruits downstream proteins and stabilizes FtsZ filaments. Here, we use biochemical reconstitution experiments combined with quantitative fluorescence microscopy to study divisome activation in vitro. We compare wildtype-FtsA with FtsA-R286W, a constantly active gain-of-function mutant and find that R286W outperforms the wildtype protein in replicating FtsZ treadmilling dynamics, stabilizing FtsZ filaments and recruiting FtsN. We attribute these differences to a faster membrane exchange of FtsA-R286W and its higher packing density below FtsZ filaments. Using FRET microscopy, we find that FtsN binding does not compete with, but promotes FtsA self-interaction. Our findings suggest a model where FtsA always forms dynamic polymers on the membrane, which re-organize during assembly and activation of the divisome. AU - Radler, Philipp ID - 10934 KW - Bacterial cell division KW - in vitro reconstitution KW - FtsZ KW - FtsN KW - FtsA TI - In vitro reconstitution of Escherichia coli divisome activation ER - TY - DATA AU - Schulz, Rouven ID - 11542 TI - Source Data (Chimeric GPCRs mimic distinct signaling pathways and modulate microglia responses) ER - TY - DATA AB - This .zip File contains the transport data, the codes for the data analysis, the microscopy analysis and the codes for the theoretical simulations for "Majorana-like Coulomb spectroscopy in the absence of zero bias peaks" by M. Valentini, et. al. The transport data are saved with hdf5 file format. The files can be open with the log browser of Labber. AU - Valentini, Marco AU - San-Jose, Pablo AU - Arbiol, Jordi AU - Marti-Sanchez, Sara AU - Botifoll, Marc ID - 12522 TI - Data for "Majorana-like Coulomb spectroscopy in the absence of zero bias peaks" ER - TY - DATA AB - Here are the research data underlying the publication "Effects of fine-scale population structure on the distribution of heterozygosity in a long-term study of Antirrhinum majus" Further information are summed up in the README document. AU - Surendranadh, Parvathy AU - Arathoon, Louise S AU - Baskett, Carina AU - Field, David AU - Pickup, Melinda AU - Barton, Nicholas H ID - 11321 TI - Effects of fine-scale population structure on the distribution of heterozygosity in a long-term study of Antirrhinum majus ER -